
How to Distribute LTL Model-Checking Using
Decomposition of Negative Claim Automaton?

Jǐŕı Barnat

Faculty of Informatics, Masaryk University Brno,
Botanická 68a, 602 00 Brno, Czech Republic

barnat@fi.muni.cz

Abstract. We propose a distributed algorithm for model-checking LTL
formulas that works on a network of workstations and effectively uses the
decomposition of the formula automaton to strongly connected compo-
nents to achieve more efficient distribution of the verification problem. In
particular, we explore the possibility of performing a distributed nested
depth-first search algorithm.

1 Introduction

The verification of complex concurrent systems requires techniques to avoid the
state-explosion problem. Several methods to overcome this barrier have been
proposed and successfully implemented in automatic verification tools. One of
the relatively successful recently used method is a distribution of required com-
putational resources among several LAN interconnected computers.

The main issue in distributing explicit state model-checking algorithms is the
way how to partition the state space among the individual computers (network
nodes) and how to modify sequential algorithms to work correctly and effectively
in the distributed environment.

Some of the known state space partition techniques exploit certain charac-
teristics of the system, and hence work well for systems possessing these charac-
teristics, but fail to work well for systems which do not have them. One of the
very successful general technique to cope with situations where we are unable
to compute some characteristic in advance is the randomization. Probabilistic
techniques to partition the state space have been used e.g. in [6, 8, 1] with sur-
prisingly good results.

Recently, there have been proposed two approaches that use additional in-
formation about the state space to make the verification process more efficient.
In [4] the authors have exploited the particular structure of the verified prop-
erty to get shorter counter-examples while in [2] the authors have used similar
method to distribute the verification algorithm for alternation-free mu-calculus.

In this paper we report on one particular way how to obtain some information
about the structure of the state space from the verified property and how to use
it for the distribution of explicit state LTL model-checking.
? This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/00/1023 and by Ministry of Education grant FRVŠ No. 598/G4/2002

Mária Bieliková (Ed.): SOFSEM 2002 Student Research Forum, pp. 9–14, 2002.



10 Jǐŕı Barnat

2 Distributed Nested DFS algorithm

Our aim is to explore a technique that allows effective partition of the state space
and thus allows a distribution of the on-the-fly automata-based model-checking
of LTL properties. The automata-based approach transforms the verification
problem to the Büchi automaton emptiness problem. This can be further trans-
ferred to a problem of detecting a reachable cycle with an accepting state in the
underlying graph of the automaton. The cycle detection is done by the nested
depth-first search algorithm. As the depth-first search is a P-complete problem,
promising efficient parallel DFS-based algorithm that would work on general
systems is unlikely to exist [7]. The practical effectiveness of such an algorithm
depends very much on the appropriate partitioning of the graph among the par-
ticipating network nodes. Ideally, if the partition respects the decomposition
into strongly connected components in such a way that no cycle crosses network
nodes boundaries then on each network node the search for accepting cycles
can proceed independently and in parallel with computations on other network
nodes. The question is whether any partition satisfying the above mentioned cri-
terion can be efficiently found and whether the partition is well-balanced among
the network (each node “owns” approximately the same number of states).

In the case of automata-based LTL model-checking so called product au-
tomaton is built. The product automaton is a result of a synchronization of the
small negative claim automaton with a huge system automaton (with all states
considered as accepting). The system automaton models the behavior of the
given system and the negative claim automaton describes the behavior which
contradicts the verified property. If the language of the product automaton is
not empty then the system has some illegal behavior which means that verified
property is not satisfied.

Definition 1. Let A = (Σ, SA, qA, δA, FA) and B = (Σ,SB , qB , δB , FB) be
Büchi automata. The synchronous product A⊗B of A and B is the automaton
(Σ, S, q, δ, F ), where S = SA × SB , q = (qA, qB), F = FA × FB and (u′, v′) ∈
δ((u, v), a) if and only if u′ ∈ δA(u, a) and v′ ∈ δB(v, a). The automata A and
B are called projections.

Our aim is to distribute the standard (sequential) nested DFS algorithm on a
network of workstations that communicate via message-passing. The algorithm
was chosen not only because of its efficiency, but also because a distribution of
this algorithm seems to be a natural extension of commonly used verification
tools such as SPIN [5].

A safe solution is to decompose the graph into strongly connected compo-
nents first and then to partition the graph according to this decomposition. In
addition, the decomposition can make the nested (second) search even more effi-
cient by searching only those paths that can really form a cycle in the graph (i.e.,
the paths that belong to one maximal strongly connected component). However,
decomposing the system in advance would actually solve the verification prob-
lem.



Title Suppressed Due to Excessive Length 11

In contrast to the product automaton it is possible to effectively decompose
the negative claim automaton into all its maximal strongly connected compo-
nents in advance since the size of a negative claim automaton is not overwhelm-
ing. Moreover, we can carry over this decomposition to the product automaton
and split the product automaton into sets of maximal strongly connected com-
ponents according to the following lemma.

Lemma 1. For each maximal strongly connected component in B there is a
corresponding set of maximal strongly connected components in A⊗B.

The partition function, which is responsible for the distribution of the state
space among the network nodes, checks to which set of maximal strongly con-
nected component the state belongs to. The state is placed on the same network
node as the other states of the same set.

Lemma 2. Let A,B be Büchi automata. If C is a maximal strongly connected
component in A ⊗ B then projection π1(C) forms a (not necessarily maximal)
strongly connected component of A and projection π2(C) forms a (not necessarily
maximal) strongly connected component of B.

It follows immediately that no cycle in the underlying graph can cross the
set boundaries. Hence, the searches revealing the cycles can be performed within
the different sets of A⊗B independently.

Lemma 3. Let A,B be Büchi automata. If D in A ⊗ B is an accepting cycle
then the set π1(D) forms an accepting cycle in A and the set π2(D) forms an
accepting cycle in B.

Moreover, according to Lemma 3 it is meaningful to characterize the types of
the sets of maximal strongly connected components of a given graph. The clas-
sification of the sets of maximal strongly connected components can be derived
from the following classification of maximal strongly connected components:

Type F: (Fully Accepting) Any cycle within the component contains at least
one accepting state. (There is no non-accepting cycle within the component.)

Type P: (Partially Accepting) There is at least one accepting cycle and one
non-accepting cycle within the component.

Type N: (Non-Accepting) There is no accepting cycle within the component.

In the presented technique the types of the sets of the components are not
used to partition of the state space, but enable further optimization of the depth-
first search algorithm (as presented in [4]). On the other hand, the information
about the types is easily obtained and thus may be fruitfully used in other
approaches to the problem of state space partition.

The pseudo-code of the final Distributed Nested DFS algorithm is given in
Figure 1. Each node maintains its own local queue of states to be explored and is
responsible for its own part of the state space. When a network node computes
a new state it checks whether the state belongs to its subset of the state space.
If the state is local then the network node continues locally, otherwise a message
containing the state is sent to the state’s owner.



12 Jǐŕı Barnat

3 Implementation

We have implemented an experimental version of the Distributed Nested DFS
algorithm using the SPIN verifier version 3.4.10 and performed a series of prelim-
inary tests. All the experiments were performed without partial order reductions.

Our algorithm uses a manager process running on the “master” network node
to initiate and terminate the distributed computation. The manager process
decomposes the negative claim automaton and defines the partition of the state
space. In the current implementation we assign the part corresponding to one
set of maximal strongly connected components to one network node.

In the distributed computation all the network nodes involved perform the
same algorithm for the assigned part of the state space. After the manager
process has detected termination it stops the entire computation. The termi-
nation detection is done using a virtual ring-based distributed algorithm. The
distributed algorithm terminates when all local computations are finished and
all communication channels are empty.

The experiments we made indicate that there are some realistic formulas that
can help the decomposition. For example the following formula express some kind
of fairness in serving floors by an elevator cabin:

G((r1) =⇒ ((¬p1)U((p1)U((¬p1)U((p1)U((p1) ∧ o))))))

The negative claim of the formula has 8 strongly connected components. And
experiment has shown that the maximal memory utilization per node is about
25% of the memory requirenments during the standard sequential computation.

4 Conclusion

We propose a distributed algorithm for LTL model checking that runs on a clus-
ter of PCs. The main novelty of our approach is that we use the decomposition of
the negative claim automaton into maximal strongly connected components to
distribute the verification problem over the cluster. In addition to the fact that
we are able to decompose the task so that several instances of the verification
procedure can be performed in parallel, we are also able to perform an improved
version of the nested DFS algorithm. Our new approach to the distribution of
the algorithm can be used in the framework of multi-thread programming as
well. We stress that our technique is compatible with other state space saving
techniques and that it is independent of the others partition techniques, hence,
it can be fruitfully combined with them.

There are other possible strategies for partitioning the state space. One of
them places states belonging to a component of type N randomly on network
nodes. This is possible because the only relevant information for these states
is their reachability and can be analysed e.g. using the algorithm of Lerda and
Sisto[6]. The other parts of the graph which are of type P and F can be dis-
tributed using algorithm presented in [1] or [3] or using the simplest baton algo-
rithm.



Title Suppressed Due to Excessive Length 13

proc Node(i)
if Part(initstate) = i

then queue[i] := {initstate}
else queue[i] := ∅

fi
while Not End do

if queue[i] 6= ∅
then state := Head(queue[i])

queue[i] := Tail(queue[i])
in stack[i] := {state}
DFS(i, state)

fi
od

end

proc DFS(i, state)
if (state, 0) 6∈ visited[i]

then visited[i] := visited[i] ∪ {(state, 0)};
foreach s ∈ Succ(state) do

if Part(s) 6= i
then queue[Part(s)] := (queue[Part(s)], s)
else in stack[i] := in stack[i] ∪ {s}

DFS(i, s)
in stack[i] := in stack[i] \ {s}

fi od
if Accepting(state) ∧ Part(state) is of type P

then NestedDFS(i, state)
fi

else if state ∈ in stack[i] ∧ Part(state) is of type F
then Report(”Cycle Found”)

fi fi
end

proc NestedDFS (i, state)
if (state, 1) 6∈ visited

then visited := visited ∪ (state, 1)
foreach s ∈ Succ(state) do

if Part(s) = Part(state)
then if state ∈ in stack[i]

then Report(”Cycle Found”)
else NestedDFS(i, s)

fi fi
od fi

end

Fig. 1. Distributed Nested DFS Algorithm



14 Jǐŕı Barnat

In the future we intend to implement and experiment other strategies for
distribution of the verification problem that use additional information from
the verified property. Also, we would like to continue our search for similar
improvements achieved by the structure gained from the modeled system.

The other question is whether it is possible to find a specialized algorithm
for Fully and Partially accepting subclasses of the problem. We would like also
to explore the possibility and cost of turning all type P components of negative
claim automaton into type F components which can lead to simpler algorithm.

Acknowledgment. I would like to thank my supervisor Luboš Brim for his
highly appreciated support. I also acknowledge the many comments and remarks
made by Ivana Černá that were used to polish the final version of the paper.

References

1. J. Barnat, L. Brim, and J. Stř́ıbrná. Distributed ltl model-checking in SPIN.
In Matthew B. Dwyer, editor, 8th International SPIN Workshop, volume 2057 of
LNCS, pages 200–216. Springer, 2001.

2. B. Bollig, M. Leucker, and M Weber. Parallel model checking for the alternation
free mu-calculus. In T. Margaria and W. Yi, editors, Proc. TACAS 2001, volume
2031 of LNCS, pages 543–558. Springer, 2001.

3. L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL Model Checking
Based on Negative Cycle Detection. In Ramesh Hariharan, Madhavan Mukund, and
V. Vinay, editors, FST TCS 2001, volume 2245 of LNCS, pages 96–107. Springer,
2001.

4. S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed model-checking in HSF-
SPIN. In Matthew B. Dwyer, editor, 8th International SPIN Workshop, number
2057 in LNCS, pages 57–79. Springer, 2001.

5. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997.

6. F. Lerda and R. Sisto. Distributed-Memory Model Checking with SPIN. In D. Dams,
R. Gerth, S. Leue, and M. Massink, editors, Proc. 6th SPIN Workshop on Model
Checking of Software (SPIN99), volume 1680 of LNCS. Springer, 1999.

7. J.H. Reif. Depth-first search is inherrently sequential. Information Processing Let-
ters, 20(5):229–234, 1985.

8. U.Stern and D. L. Dill. Parallelizing the murϕ verifier. In O. Grumberg, editor,
Proceedings of Computer Aided Verification (CAV ’97), volume 1254 of LNCS, pages
256–267. Springer, 1997.


