
Learning Restarting Automata
by Genetic Algorithms?

Petr Hoffmann

Charles University, Department of Computer Science, Malostranské nám. 25, 118 00
PRAHA 1, Czech Republic, petr.hoffmann@matfyz.cz

Abstract. Restarting automaton is a special type of a linear bounded
automaton designed for modelling the so-called analysis by reduction.
We use genetic algorithms to learn restarting automata to recognize lan-
guages according to input consisting of sets of positive and negative ex-
amples of words from the language together with positive and negative
examples of simplifications.

1 Introduction

The checking of the syntactical correctness of a sentence may be based on the
so-called analysis by reduction. Its principle consists in a stepwise simplification
of a given extended sentence until a simple sentence is got or an error is found.
To model the analysis by reduction we can use restarting automata [1].

The problem discussed in this article is the following. We want to do the
analysis by reduction of a given language L. At the beginning we have a finite
subset of L, a finite subset of its complement and finite sets of pairs of words de-
scribing preferred and prohibited simplifications. The goal is to find a restarting
automaton which does the analysis by reduction of the given language.

This is the first attempt at learning restarting automata. With respect to the
complexity of this problem, we decided to use genetic algorithms [2] to solve it.

In the next section we present definitions for restarting automata. Section
3 introduces genetic algorithms and main problems which must be solved for
applying them to the above stated problem. Section 4 presents the solution.
Section 5 describes experiments done. The last section discusses the achieved
results and presents ideas for further research.

2 Restarting Automata

A restarting automaton [1] is a 7-tuple M = (Q, Σ, k, I, q0, qA, qR), where

– Q is a finite set of states,
– Σ is a finite set of symbols, Σ ∩ { |c, $} = ∅

? This work was supported by grants 300/2002/A INF/MFF of Grant Agency of the
Charles University and 201/02/1456 of Grant Agency of the Czech Republic.

Mária Bieliková (Ed.): SOFSEM 2002 Student Research Forum, pp. 15–20, 2002.

16 Petr Hoffmann

– k is a non-negative integer called the size of lookahead,
– q0 ∈ Q is the initial state,
– qA ∈ Q is the accepting state,
– qR ∈ Q is the rejecting state,
– I is a finite set of instructions of the following two types (q, q′ ∈ Q, a ∈

Σ ∪ { |c, $}, u ∈ Σ∗ · {$, λ}, v ∈ { |c, λ} ·Σ∗ · {$, λ}, k + 1 ≥ |au| > |v| ≥ 0):
(1) (q, au) → (q′,MVR),
(2) (q, au) → RESTART(v),

The restarting automaton (RW-automaton) M is a device with a finite state
control unit, and a head moving on a finite linear (doubly linked) list of items
containing the word of the form |c ·Σ∗ · $. The head has a lookahead of the size
k ≥ 0 – in addition to the item scanned by the head, M also scans the next k
right neighbouring items (or the end of the word when the distance to $ is less
than k).

We suppose that Q is divided into the set of nonhalting states Q− {qA, qR}
(when the state control unit is in such a state, then there is at least one instruc-
tion which is applicable) and the set of halting states {qA, qR}.

The computation of M is controlled by a set of instructions I. The left-
hand side (q, au) of an instruction determines when it is applicable – q means
the current state, a the symbol being scanned by the head, and u means the
contents of the lookahead.

The right-hand side of an instruction describes the activity to be performed.
In the case (1), M changes the current state to q′ and moves the head to the
right neighbour item of the item containing a. If a is equal to $ then q′ must be
a halting state. In the case (2), the activity consists of deleting some items (at
least one) of the just scanned part of the list, rewriting some (possibly also none)
of the non-deleted scanned items (in other words au is replaced with v), entering
the initial state and placing the head on the first item of the list. Symbols |c and
$ cannot be deleted or rewritten. In this article we will deal with a restricted
version of restarting automata – so called R-automata [1]. For R-automata v is
the (proper) subsequence of au for all restart instructions.

A computation of M can be divided into certain phases. A phase called cycle
starts when the control unit is in the initial state and the head is attached to
the item containing |c. The head moves to the right along the input list until a
restart instruction is performed. Then the head is moved to the item containing
|c, state of the control unit is set to the initial state and a new phase starts. A
phase called tail differs from cycle in that the head moves right until a halting
state is reached. A word w is accepted if there is a computation in which the
first phase starts on the word |cw$ and which ends in the accepting state.

A cycle corresponds to one simplification in the analysis by reduction and a
tail corresponds to accepting a simple sentence or rejecting an incorrect one.

In general, an R-automaton is nondeterministic, i.e., there can occur two or
more instructions with the same left-hand side (q, au) in its set of instructions.
If this is not the case, the automaton is deterministic.

Learning Restarting Automata by Genetic Algorithms 17

3 Genetic Algorithms

Genetic algorithms [2] are search algorithms based on the mechanics of natural
evolution. At the beginning genetic algorithm has a fixed number of strings
(called generation) of the same fixed length coding some points of the searched
space. It works in a cycle – it takes the previous generation and generates a new
one using simple genetic operators (reproduction, crossover and mutation) or
returns the generation as the output.

Reproduction is a process in which individual strings are copied according to
their fitness function values. The fitness function measures suitability of the point
(coded in the given string) for our purposes. Strings with a higher value have a
higher probability of contributing one or more offspring in the next generation.

After reproduction crossover proceeds in two steps. First, the newly repro-
duced strings are mated at random. Second, each pair of strings undergoes cross-
ing over with some probability. If the pair does not undergo crossing over, it
is copied to the new generation directly. Crossing over means combining in-
formation from two strings into the new ones and putting them into the new
generation.

Mutation is needed to insert some useful information randomly (a probability
is given with which parts of new strings are changed).

4 Using Genetic Algorithms

4.1 String Representation of an Automaton

We suppose that the number of states, the length of lookahead and the alpha-
bet are fixed before the searching starts. The only thing coded into the string
representation of a nondeterministic R-automaton is the set of instructions. The
set of all possible instructions contains more than (|Q| − 2)|Q||Σ|k+1 elements,
so it may be too big to fit into the memory. Also the searched space may be too
large. For this reason we decided to limit the number of instructions coded in
the string representation using some fixed number.

String coding a particular automaton is a sequence of codes of its instruc-
tions1. An instruction is coded as a triplet of numbers representing the state
and the string from the left-hand side of this instruction and the action from its
right-hand side.

There occured a problem in using of this simple coding. If the code of a
restart instruction contains the word v from its right-hand side, the operator of
mutation could change the word au in its left-hand side and make this instruction
incorrect. To solve this problem the number coding the right-hand side of a
restart instruction codes indices of the deleted symbols of the word au from its
left-hand side. The operator of mutation must be implemented in such a way
that the generated instructions are correct.

1 So one automaton may have more than one string representation.

18 Petr Hoffmann

4.2 Genetic Operators

The used operator of crossover chooses randomly the number 1 ≤ n ≤ |I| − 1.
Then codes of n instructions are got randomly from the first string, copied to
the first output string and this string is completed using randomly chosen codes
of instructions from the second string. The analogical way (using the same n) is
used to generate the second output string.

The next operator needed is the operator of mutation. It is based on a simple
change of an item of a triplet coding an instruction, but also assures that the
output string is a valid code of an automaton.

Reproduction is not described here because of space limitations (it is done
using a standard method [2]).

4.3 Fitness Function

For a successful application of genetic algorithms, it is important to have a good
fitness function. Fitness function should measure the quality of an automaton
with respect to the input requirements (positive and negative examples of words
and simplifications). The trivial fitness function could be the number of require-
ments satisfied by the given automaton. This function has the following draw-
back: We often got an automaton recognizing the given subset of the language,
but do not recognizing any element of the given subset of its complement or
respectively. We think this automaton is worse than the one which recognizes
some elements from both given subsets. A better measure of the quality of a
given automaton can be the function sp

p
sn
n (inspired by [3]), where p (n, resp.)

is the number of positive (negative, resp.) examples of words from the language,
sp (sn, resp.) is the number of correctly classified2 words from the positive (neg-
ative, resp.) examples. In the similar way we measure the quality with respect
to the positive and negative examples of simplifications.

Let pwr = sp
p and nwr = sn

n . To further constrain the problem described
above we suggest to handicap automata with very small pwr relatively to nwr
or respectively: If pwr < nwr

d then we multiply the value of the previously given
fitness function by pwr

nwr
d

and respectively. In experiments we used 3 d = 5.
Using this fitness function may have following problem: During the work of

the genetic algorithm there may be a lot of randomly generated strings coding
automata without the ability to end any computation in a halting state (thus
incorrect). Therefore we force every computation to end in a halting state. The
way to do it may consist in adding some default instructions – every time the
automaton has no applicable instruction we apply some special instruction – for
example the instruction leading the automaton into the rejecting state4.
2 To avoid time consuming computations we limit the maximal number of operations

that can be done during simulation of a work of an automaton. If the limit is achieved,
the given automaton is said not to classify the given word correctly too.

3 This value was obtained by doing several experiments, but more statistic testing
must be done to choose the best one.

4 Note that this is a correct extension of the set of instructions.

Learning Restarting Automata by Genetic Algorithms 19

5 Experiments

We applied the described method in learning several languages using the follow-
ing scenario. First we suggested requirements used by the fitness function. We
chose these requirements manually, more time is needed to look out some useful
heuristics. Then we run the genetic algorithm (repeatedly) until an automaton
satisfying all requirements was found. Then we analyzed the found automaton
and possibly got this as a result of the experiment. In the case of any problems
we modified requirements (by hand) and run the genetic algorithm again.

In all experiments we worked with generations of 100 members, the probabil-
ity of applying the operator of crossover to given strings was 0.9, the probability
of applying the operator of mutation to a part (item of a triplet coding an in-
struction) of a string was 0.04. To avoid loss of some very good strings during
the computation of the genetic algorithm we used so-called elitism [2] – a fixed
number (we used 14) of the best strings was copied to the new generation with-
out using any operator. The maximum number of generations of one run of the
genetic algorithm was 1000. Used default instructions always move the head
right and preserve the current state (there is one exception – when the head
scans $, the new state is the rejecting state). These parameters were obtained
by doing several experiments, but more statistic testing must be done to choose
the best one’s. We let the genetic algorithm work with codes of nondeterministic
automata. We did not use any positive simplifications in requirements.

At first we tried some simple regular languages. Inspired by finite automata
we searched for automata with zero lookahead. The first language was L0 =
{a3n;n ∈ {0, 1, . . .}}. We looked for an automaton having at most 10 states
and 10 non-default instructions. The same holds for experiments with languages
L1 = {a4n;n ∈ {0, 1, . . .}} and L2 = {a5n;n ∈ {0, 1, . . .}}. Automata recognizing
L0 and L1 were found without any change of the initial requirements. In the case
of L2 we were not able to find any suitable automaton.

The next language was L3 = {a2mb3n;m,n ∈ {0, 1, . . .}}. We looked for an
automaton having at most 20 states and 20 non-default instructions. Automata
satisfying all given requirements were not found.

We tried also a context-free language L4 = {anb2n;n ∈ {0, 1, . . .}}. Here
the situation is simplified since the wanted automaton obviously need not use
many states. We wanted an automaton using only 3 states, having 3 symbols in
lookahead and using at most 10 non-default instructions. About 10 extensions
of initial requirements were done until a suitable automaton was found.

At last we tried the language L5 of expressions consisting of one symbol for
variables, one symbol for operations and left and right parentheses (for example
a+(a+a+a+(a+a)+a) belongs to this language). We looked for an automaton
using only 3 states, having 2 symbols in lookahead and using at most 10 non-
default instructions. About 5 extensions of initial requirements were done until
a suitable automaton was found.

20 Petr Hoffmann

6 Conclusions and Future Work

The achieved results show that genetic algorithms can be used for learning a
certain type of restarting automata. However, the learning was not successful
even for some simple languages. Hence, further research is needed. Some ideas
are presented in the following sections.

6.1 A Problem with Default Instructions

Since default instructions are not represented explicitly in the string coding the
set of instructions, the described genetic operators cannot deal with them. Sup-
pose having the automaton satisfying some of our requirements and using the
default instruction I1 with the left-hand side L. Further let us have other automa-
ton satisfying other part of requirements and using the (not default) instruction
I2 with the same left-hand side L and not having I1 in its set of instructions.
Applying of crossover onto these automata we cannot yield an automaton with
both I1 and I2 in its set of instructions since presence of I2 means there is no rea-
son for using the default instruction with the left-hand side L. Similar problem
exists in the case of the operator of mutation since default instructions cannot be
mutated. An idea that may help is to change dealing with default instructions.

6.2 Dealing with Problematic Languages

Section 5 described experiments with languages L1 and L2. Here the first differ-
ence between these languages may be the higher probability of getting needed
set of instructions for the automaton recognizing L1 than for the automaton
recognizing L2. Our next conjecture is that it is easier to find an automaton
recognizing L1 since it is a subset of L6 = {a2n;n ∈ {0, 1, . . .}}. If the genetic
algorithm find an automaton recognizing L6 first, it will obtain a higher fit-
ness value and will influence members of the new generation. Then there may
be higher probability of getting an automaton recognizing L1 by using genetic
operators.

An idea of dealing with problematic languages is to search for an automaton
satisfying set of requirements (maybe for a different but in some sense similar
language) other than initially suggested requirements first. If an automaton sat-
isfying this set of requirements is found, we will use automata from the last
generation as the initial generation for the computation of the genetic algorithm
using the initial requirements.

References

1. Frantǐsek Mráz: Forgetting and restarting automata, Ph.D. thesis, Charles Univer-
sity (May 2001)

2. David E. Goldberg: Genetic Algorithms in Search, Optimization & Machine Learn-
ing, Addison-Wesley Publishing Company, Inc. (1989)

3. Marc M. Lankhorst: A Genetic Algorithm for the Induction of Nondeterministic
Pushdown Automata, Computing Science Report CS-R 9502

