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Abstract. Information theory for non-additive measures has always at-
tracted considerable attention. This effort resulted, among others, in
defining information measures for Dempster-Shafer (D-S) theory. In the
paper, the properties of information quantities called the aggregate un-
certainty (AU) and the nonspecificity are discussed within the framework
of possibility theory that may be viewed as a special part of D-S theory
for this purpose. An axiomatic approach to possibility theory (formu-
lated by de Cooman) is adopted. Fundamental properties of the AU and
the nonspecificity are analyzed and summarized. Moreover, an inequal-
ity clarifying their mutual relationship is presented. A relation between
possibilistic independence (parameterized by a continuous t-norm) and
the additivity requirement frequently imposed on uncertainty measures
is explored in detail.

1 Introduction

Information theory covers a variety of uncertainty formalizations today. In the
field of non-additive measures, several information quantities were defined in D-S
theory and possibility theory – we refer an interested reader to [4].

In this book, there are distinguished the three uncertainty types. Fuzzines is
a type of uncertainty closely connected with fuzzy set theory. Nonspecifity is de-
pendent on the cardinality of relevant sets of alternatives and conflict stems from
assigning potentially conflicting degrees of the uncertainty to these alternatives.

In D-S theory, an aggregate uncertainty (AU) measures the ’total’ uncertainty
associated with a given belief measure whereas a nonspecificity quantifies a de-
gree of the ’nonspecificity’ of the belief measure. Because possibility theory can
be considered as a special part of D-S theory, these information quantities may
be employed in calculating the uncertainties for possibility measures as well.
The aim of this paper is to study their properties in an axiomatic framework for
possibility theory [1].
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Mária Bieliková (Ed.): SOFSEM 2002 Student Research Forum, pp. 21–26, 2002.



22 Tomáš Kroupa

2 Possibility Theory

2.1 Possibility Measures

Let us introduce the basic notions concerning possibility theory. A universe X is
a set having at least two elements; X contains all values that a variable X may
take. We deal only with finite universes. 2X denotes a power set of X. A possibility
measure Π on X is a set function Π : 2X → [0, 1] such that for any system
{Aj : j ∈ J} of the elements of 2X the condition Π(

⋃
j∈J Aj) = maxj∈J Π(Aj)

is satisfied. The possibility measure Π is normal if Π(X) = 1. Only normal
possibility measures are considered in this paper.

A possibility distribution π is a pointwise function π : X → [0, 1] having
the property Π(A) = maxx∈A π(x) for all A ⊆ X. Every possibility measure
uniquely determines the possibility distribution and vice versa. Assume that πXY

is a joint possibility distribution defined on a Cartesian product X×Y. We define
a marginal possibility distribution by the equation πX(x) = maxy∈Y πXY (x, y)
for any x ∈ X.

2.2 Independence in Possibility Theory

An independence of possibilistic variables is parameterized by a t-norm. The t-
norm T is a commutative semigroup operation on [0, 1] having a neutral element
1 and being isotonic, i.e. ∀a1, a2, b ∈ [0, 1] : a1 ≤ a2 ⇒ T (a1, b) ≤ T (a2, b).

There exist three significant examples of continuous t-norms: the Gödel’s t-
norm TG(a, b) = min(a, b), the product t-norm T×(a, b) = ab and the  Lukasziewicz’
t-norm TL(a, b) = max(0, a + b− 1). It is easy to show [3] that the following in-
equality holds true for all (a, b) ∈ [0, 1]2:

TL(a, b) ≤ T×(a, b) ≤ TG(a, b). (1)

In addition, T ≤ TG for any t-norm T .
Let variables X and Y have a joint possibility distribution πXY . We call

the variables X and Y T -independent if πXY (x, y) = T (πX(x), πY (y)) for any
(x, y) ∈ X×Y. The joint possibility distribution πXY on X×Y is then called
a T -product extension of πX and πY .

2.3 Possibility Measure as an Upper Envelope

According to [2], every normal possibility measure Π on X can be assigned a
system

IP(Π) = {P : P (A) ≤ Π(A), for all A ⊆ X}
of probability measures on X dominated by Π.3 Moreover, Π is an upper envelope
of IP(Π), i.e. for any A ⊆ X there exists P ∈ IP(Π) such that P (A) = Π(A).
As we require every possibility measure Π to be normal, Π always dominates
at least one probability measure P and IP(Π) is therefore nonempty.
3 For the sake of simplicity, we denote by IP(Π) also the set of all probability distri-

butions corresponding to the probability measures in IP(Π).
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3 Possibilistic Information Quantities

3.1 Aggregate Uncertainty

The AU is conceived as a measure of the uncertainty capturing both the non-
specifity and the conflict in an aggregated fashion. Its definition [4] originated
from more general efforts to introduce a meaningful measure of the ’total’ un-
certainty within D-S theory. In the following, H(p) denotes the Shannon entropy
of a probability distribution p.

Definition 1. Let π be a possibility distribution on X. The aggregate uncer-
tainty U of π is defined as the maximum entropy attainable within IP(Π), that
is U(π) = maxp∈IP(Π)H(p).

Although a single computation of U involves finding a solution to a nonlinear
optimization problem, a simple and an effective algorithm can be employed [4].
Moreover, due to the convexity of IP(Π) and the concavity of the Shannon
entropy, the probability distribution p̂ maximizing the entropy within constraints
specified by IP(Π) is uniquely determined. These are some of the basic properties
of aggregate uncertainty (for proof see [4]):

1. range: U(π) ∈ [0, log2 |X|] for any π on X;
2. maximum: U(π) = log2 |X| if π is non-informative, i.e. π(x) = 1 for all

x ∈ X;
3. minimum: U(π) = 0 iff π is degenerated, i.e. π(x′) = 1 for a single x′ ∈ X

and π(x) = 0 for all x 6= x′;
4. subadditivity: the inequality U(πXY ) ≤ U(πX)+U(πY ) holds for a joint pos-

sibility distribution πXY on X×Y with the marginal possibility distributions
πX and πY .

The maximality condition from 2. can be further refined.

Proposition 1. U(π) = log2 |X| iff π satisfies the condition

∀A ⊆ X :
|A|
|X|

≤ max
x∈A

π(x). (2)

Proof. U(π) = log2 |X| if and only if IP(Π) contains the uniform probability
distribution p̂. This is obviously equivalent with having satisfied the following
inequality for every A ∈ X:

|A|
|X|

=
∑
x∈A

p̂(x) = P̂ (A) ≤ Π(A) = max
x∈A

π(x).

ut

Possibility distributions can be partially ordered in this way: π1 ≤ π2 whenever
π1(x) ≤ π2(x) for all x ∈ X. The following assertion is then straightforward to
obtain.
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Lemma 1. If π1 ≤ π2, then U(π1) ≤ U(π2).

Further, taking into account this lemma and the t-norm inequality (1):

Lemma 2. Assume that πX , πY are possibility distributions on X and Y, re-
spectively. Let πL, π× and πG be their TL-, T×- and TG-product extension, re-
spectively. Then U(πL) ≤ U(π×) ≤ U(πG).

The proposition stated above can be justified also on an intuitive ground: the
less specific a T -product extension πT is, the higher value U(πT ) should attain.

One might also ask a question if there is some analog of additivity of Shan-
non entropy, i.e. the equality H(pXY ) = H(pX) + H(pY ) which is satisfied for
independent variables X, Y . However, in possibility theory, this property must
be analyzed w.r.t. the independence parameterized by a t-norm: it can easily be
demonstrated that the additivity property is generally violated in case of the
three significant t-norms TG, T×, TL. In fact, we prove much more; the additivity
is violated under any t-norm T .

Proposition 2. There doesn’t exist a t-norm T such that the equality

U(πXY ) = U(πX) + U(πY ) (3)

is preserved for all possibility distributions πX and πY on X and Y, respectively,
where πXY is a T -product extension of πX , πY .

Proof. Denote by πG a TG-product extension of πX and πY . Due to the subad-
ditivity of U , we have U(πX)+U(πY ) ≥ U(πG). Since TG is the maximal t-norm,
we obtain further U(πG) ≥ U(πXY ) from Lemma 1. Realize that the additivity
is generally violated under TG-independence and πXY is always equal or lower
than πG. In either case, the equality (3) can’t be satisfied. ut

Do there nevertheless exist some special examples of the possibilistic distribu-
tions πX , πY preserving the additivity? An answer to this question is contained
in the assertion below whose proof is rather technical and lengthy and hence we
decided not to include it in this paper.

Proposition 3. Let πX , πY be possibility distributions on X,Y, respectively,
and πXY be their T -product extension where T is an arbitrary t-norm. The
equality (3) holds true if at least one of the distributions πX or πY takes only
values from {0, 1}.

The implication can’t be reversed, i.e. the conditions imposed on the possibility
distributions are merely sufficient.

3.2 Nonspecificity

The nonspecificity was proposed to quantify a degree of uncertainty resulting
from both the values of possibility and the cardinality of the considered subsets
of a universe X. A point of resemblance between the AU and the nonspecificity
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is that it also was originally defined [4] in D-S theory. In order to introduce this
information measure, we can’t avoid defining the central notion of D-S theory,
so called basic assignment. Given a universe X and a possibility measure Π,
basic assignment (BA) m is a mapping m : 2X → [0, 1] such that for arbitrary
A ⊆ X is Π(A) =

∑
B⊆X:B∩A 6=∅ m(B). BA can also be easily calculated from

any possibility measure and distribution [6]. We have
∑

A⊆X m(A) = 1 and
m(∅) = 0.

Definition 2. Let π be a possibility distribution on X and m be a corresponding
BA. A nonspecificity N of π is then a weighted sum of Hartley functions, i.e.
N (π) =

∑
A⊆X m(A) log2 |A|.

Let us mention the properties of the nonspecificity in order to make a com-
parison with the aggregate uncertainty complete.

1. range: N (π) ∈ [0, log2 |X|] for any π on X;
2. maximum: N (π) = log2 |X| iff π is non-informative;
3. minimum: N (π) = 0 iff π is degenerated;
4. subadditivity: the inequality N (πXY ) ≤ N (πX) + N (πY ) holds for a joint

possibility distribution πXY on X ×Y with the marginal possibility distri-
butions πX and πY .

Moreover, one can show that π1 ≤ π2 implies N (π1) ≤ N (π2). Let us consider
the case of T -independent possibilistic variables X, Y and make an effort to
derive some results regarding this T -independence and additivity property. First
and foremost, the proposition below is straightforward to deduce from the similar
discussion in D-S theory [4].

Proposition 4. Assume that πG is a TG-product extension of possibilistic dis-
tributions πX a πY . Then

N (πG) = N (πX) +N (πY ). (4)

Moreover, in [5], we have proven that TG is the only t-norm preserving (4). The
following assertion is analogous to Prop. 3.

Proposition 5. Let πX , πY be possibility distributions on X,Y, respectively,
and πXY be their T -product extension where T is an arbitrary t-norm. The
equality N (πXY ) = N (πX)+N (πY ) holds true if at least one of the distributions
πX or πY takes only the values from {0, 1}.

3.3 Relation Between U and N

Does the designation ’aggregate uncertainty’ of the information measure U en-
compass all of its significant properties? Stated more precisely, if U aggregates
the uncertainty of the type ’conflict’ as well as the uncertainty of the type ’non-
specificity’, we would expect the values of U to be always higher than those of
N .

The proposition below is thus confirming our conjecture. For proof see [5].

Proposition 6. For any possibility distribution π on X, U(π) ≥ N (π).



26 Tomáš Kroupa

4 Conclusions

In the paper, new properties concerning the AU and the nonspecificity were
explored; they are contained in Section 3 in the form of propositions. The main
result is the inequality between U and N .

Further space is devoted to an analysis of additivity with respect to a possi-
bilistic T -independence. Rather unsatisfactory results were achieved by adopting
the classical additivity concept. We therefore propose to formulate the problem
as follows: given a t-norm T and some information measure I, does there exist
a binary operation ⊕T : [0,∞)2 → [0,∞) with appropriate algebraic properties
(for example, commutativity, associativity and neutral element 0) such that the
equality

I(πT ) = I(πX )⊕ I(πX )

is satisfied for a T -product extension of any possibility distributions πX and
πY ? An answer to this question in still unknown, further research seems to be
neccesary.
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