
Oraculum, a System for Complex Linguistic
Queries

Vladimı́r Ljubopytnov, Petr Němec, Michaela Pilátová, Jakub Reschke, and
Jan Stuchl

Center for Computational Linguistics, MFF UK, Prague
{s.ljubo|s.nemec|s.pilat|s.reschke|s.stuchl}@ufal.mff.cuni.cz

Abstract. A system for complex linguistic queries is proposed. Data of
multiple resources are converted into uniform representation of logical
programming language predicates. Query is expressed as the program-
ming language code, too.

Users may use the interactive web interface to generate the query code
automatically and to view the result in the desired form.

The system database presently contains the set of tectogramatically an-
notated data of the Prague Dependency Treebank [1, 6] and part of the
German corpus Negra [4].

1 Introduction

Nowadays, there are several annotated language corpora available worldwide
containing linguistic data of various nature. For complex linguistic query pur-
poses it would be advantageous to engage a system that stores the data of these
resources in uniform way and allows to query them via appropriate user inter-
face. The user should then be able to search for various linguistic phenomena in
the corpora involved, even across these resources.

In this paper we present a linguistic query system, Oraculum. Oraculum is
able to perform query operations on the corpora it encapsulates.

Data of each corpus involved are converted into uniform representation of log-
ical programming language predicates. Above these stem predicates there is a
set of extending predicates1 designed for each corpus. These perform expected
types of query operations and the user can combine them in his/her particular
query.

There are several possibilities to form a query, most of them connected
with the interactive web interface (which has been made available at http://slu-
nicko.ms.mff.cuni.cz). The user can generate the query code via graphical inter-
face, using a specially designed query language or write it directly in the internal
logical language predicate form. It is possible to combine the methods in one par-
ticular query.

1 In the paper we will often refer to a predicate in its procedural rather than the usual
declarative sense.

Mária Bieliková (Ed.): SOFSEM 2002 Student Research Forum, pp. 27–34, 2002.

28 Vladimı́r Ljubopytnov et al.

Oraculum presently works over the set of tectogramatically annotated data
of the Prague Dependency Treebank [1, 6] and the part of German corpus Ne-
gra [4], which has been automatically transformed into tectogrammatic trees [8].
Other tectogramatically annotated corpora as well as other selected resources
from EuroWordNet [7] will be incorporated into the system soon.

The goal of the project is to create a fully functional application that can be
used by the community of linguists.

In this paper we aim to describe the system in greater details. Section 2
gives the system overview in form of data flow diagram. Section 3 describes the
predicate set structure with respect to PDT tectogrammatical data. Sections
4 and 5 briefly describe the query mechanism together with the user interface
functionality. Sections 6 gives a detailed query example and section 7 summarizes
the crucial predicate performance test results. Finally, in section 8 conclusions
and future work are pointed out.

2 System overview

The data flow diagram (Figure 1) gives an overview of the system functionality.
The selected linguistic resources are automatically converted into predicate form
and stored in the database. Users set the queries via the web interface and
the code performs the operation on the database. Results are then displayed
by the interface.

3 The Predicate Set

The set of predicates for the given corpus can be basically divided into three
layers:

1. The stem layer representing the sole data of the original resource.
2. The extending layer consisting of predicates performing basic operations on

the stem layer data regardless of their semantics.
3. The language layer made up of predicates that perform the expected types

of linguistic queries. This layer represent the high-level database interface.

User defined predicates (forming queries) can be though of as a separate
layer.

The stem layer predicates of the respective resources are visible for all the
extending and language layer predicates. That allows to perform (if it makes
sense) the designed operation on any data included.

3.1 The Representation of a Tectogrammatic Tree

The structure of tectogrammatic tree (TGTS [2]) representing the deep structure
of a sentence is that of an ordinary tree. Unlike the regular tree, however, the
order of daughter nodes is fixed and these are furthermore divided into left and

Oraculum, a System for Complex Linguistic Queries 29

Fig. 1. Data Flow Diagram

30 Vladimı́r Ljubopytnov et al.

right daughter nodes respective to their parent node. Each node of a TGTS
is labelled by given set of attribute - value pairs. The following set of stem
predicates has been designed to represent a TGTS2:

– node(Tree id,Node id,Parent node id,List of children nodes) represents
a node of a tree

– attribute(Name,Tree id,Node id,Value) specifies the value for an attribute
of the given node

– type(Attribute name,Type of value) determines the type of attribute value

3.2 The Extending and Linguistic Layer for a Tectogrammatic
Corpora

Although many predicates have been designed to operate over the stem repre-
sentation, most of them serve only as a basis for a small number of much more
general ones. Only the most important predicates of the extending and linguistic
layer are presented below:

struct (in combination with the path predicate) is the universal search
predicate. It allows to define a subgraph structure to be searched for in great
detail. Nodes in a subgraph may be restricted by a rich system of conditions.
These include logical expressions the node attributes must fulfill, the restrictions
imposed on presence of other nodes surrounding the searched subgraph etc. (See
section 6 for an example.)

stat performs various statistical operations over the query (it counts the
percentage of the matching structures etc.)

path checks whether the path in the tree between two specified nodes sat-
isfy the given conditions. Together with the struct predicate it represents the
essential searching predicate equipment.

sentence dependency tree creates a sentence dependency tree (nodes
represent the sentences and edges the respective dependencies) for the given
complex sentence

3.3 Advantages over NetGraph Query Tool

To query the PDT data, NetGraph tool has been created [5]. Until the Oraculum
system has been developed, NetGraph was the only application available for this
purpose. NetGraph is a client-server application, which allows the user to browse
and view on-line analytic and tectogramatic trees.
2 An abbreviated form of the predicate arguments is presented, the actual form of the

predicates contains few more technical details.

Oraculum, a System for Complex Linguistic Queries 31

As NetGraph has been designed for simple query purposes, it has limited
capabilities in comparison with Oraculum PDT query predicates. It only allows
to define a tree subgraph together with simple conditions for node labelling to be
searched for and display the matching trees. There is no possibility to perform
any other operation on the corpus.

It is also not possible to process the result further or to form a complex query
as there are no logical variables or language designed for this purpose. Moreover,
the sole subgraph structure cannot be defined in such detailed and flexible way as
the Oraculum logical programming engine together with the searching predicates
offers.

4 Query

Every query in Oraculum is either written in the internal logical language (Mer-
cury [3]) form or is converted to that form by the user interface preproces-
sor. A query is therefore just a user defined predicate that is temporary linked
with the main predicate set. As soon as the query is completed, the query predi-
cate is retracted from the database (memory). The logical programming language
approach allows the user to combine the built-in predicates in a complex logical
expression (which may involve negation, for instance) that forms the resulting
query.

4.1 Data types

For the tectogrammatical data, the result of a predicate may be the one and only
one of the following four data types (at the logical language level, all of them
except for the last one are list types):

– set of scalars
– set of node attributes
– set of nodes (possibly forming a tree)
– fail or proved status (no data are returned)

The return type is explicitly stated for each predicate. The query code may
contain variables representing different data types, but only variables of one type
may be selected to form the query result, which is then properly displayed by
the user interface.

4.2 Caching and Optimization

Multiple user access, large data volumes and mainly exponential computing com-
plexities of some operations (predicate struct, for instance) require the overall
optimization of the system.

Currently, caching of the struct predicate on the user interface level is
implemented. The results of queries and subqueries are stored and before an at-
tempt to call a time consuming predicate is made the cache is searched for the po-
tential result.

32 Vladimı́r Ljubopytnov et al.

Moreover, the Mercury compiler itself performs a lot of code optimization [5].
In the future, an automatic optimizing procedure based on the corpus semantics
will be implemented.

5 User Interface

Web user interface serves two main purposes: to help the user to write a query
code and to display the results in the appropriate form.

5.1 Forming a Query

There are three ways to form a query: to write the pure logical language code,
to use predefined macros to generate parts of the code, or to design the query
via graphic interface. It is possible to combine these approaches in one query.

Graphic interface is mostly used to generate the struct and path predicate
code, which is otherwise quite uncomfortable to write. The user visually creates
the structure to be searched for and sets the desired conditions via set of dialog
windows. The code is then generated automatically and can be further modified
and extended by the user.

5.2 Result Formatting

As far as the result formatting is concerned, Oraculum web interface offers either
textual or graphical output of the result. Any query output variable can be
displayed as a text regardless of its semantics. Special structures (such as trees
or parts of trees) can be displayed graphically and exported to a defined format
(XML, for instance) if requested.

6 Example

The usage of the search predicates struct and path is demonstrated. The fol-
lowing code3 finds all the tectogrammatic trees, whose head clause is a verb
having either ”agens” or ”patiens” valency actant and an actant, whose mor-
phological tag is not the same as of some descendant of the ”agens”/”patiens”
actant :

query([],[]).

query([Tree|Trees],Output) :-
(struct(Tree,

[[x, central, [left-any-eq-y, y-any-eq-z, z-any-eq-right],
[y-z], [(’tag’,’V*’)]],

[y, [left-any-eq-right], [(’afun’,’agens’),(or),

3 The code has been abbreviated and the syntax has been altered for sake of simplicity.

Oraculum, a System for Complex Linguistic Queries 33

(’afun’,’patiens’)]],
[z, [left-any-eq-right], [(’tag’,V)]], Matching_struct]),
not (struct([u, (’tag’,V)]),

path(u, y, [’vu’,(1,INF)])
)

-> Output = [Tree, NextTrees] ; Output = [NextTrees]),
query(Trees, NextTrees).

Here, [Tree—Trees] is the input set of trees and Output is the resulting set.
The first struct predicate defines a subgraph of three nodes x,y,z. x is defined
to be a central node and a verb (matching regular expression ’V*’, it has to have
at least two daughter nodes being the given actants (the first one is specified
by the ’afun’ attributte, the second one matches any daughter node, its morpho-
logical tag afterwards unifies with the V variable). Both daughters are mutually
interchangeable and any number of other daughters may be present. The sec-
ond struct predicate call is present in the negated clause and finds all the nodes
with the V morphological tag. The successive path predicate call succeeds only
for a descendant of the first actant. Each tree is searched for the occurrence
of such structure and is added to the Output list on success.

The code is apparently quite cumbersome and hard to construct for a non-
programmer. The query language allows to avoid predicate definition and recur-
sion call by placing preprocessor directive in front of struct predicate call and
the rest of the code is automatically generated.

7 Benchmark

The performance of exponentially complex struct predicate has been tested
in order to confirm acceptable running time of the query engine. The benchmarks
were run on an Intel Pentium III 1 GHz processor machine with 256 megabytes
of memory running Windows 2000.

The input data set consists of 5 query types (A,B,C,D,E) of descending com-
plexity. The class A input represents the most complex query (the task was to
find all paths -dependencies of length 3), the class E input represents the least
complex query (to find all nodes representing adjectives).

Similarly, the corpus data are divided into 3 sets. Set 1 consists of large trees
(above 20 nodes), set 2 of medium size trees (20 to 10 nodes) and set 3 of small
trees (less than 10 nodes).

Each query type has been performed on the 3 groups. Table 1 shows the av-
erage response times for each query type and group.

Because the stem layer predicate set contains thousands of trees, the mea-
sured response times show acceptable performance of the crucial struct pred-
icate.

34 Vladimı́r Ljubopytnov et al.

Table 1. The average response times for one tree of the given set in miliseconds.

Query A Query B Query C Query D Query E

Set 1 0,447 0,197 0,082 0,064 0,053

Set 2 0,145 0,072 0,034 0,022 0,021

Set 3 0,011 0,030 0,013 0,008 0.006

8 Conclusions

The Oraculum query system has been presented. The logical programming back-
ground of the system offers great possibilities of querying the data of various cor-
pora. On the other hand, this approach may be more difficult for a user without
programming experience, although the system offers as much help as possible.

The performance of crucial part of the system has been tested and the re-
sponse times showed to be acceptable.

As future work, new data resources will be incorporated to the system and
the optimizing procedures will be enhanced. The set of predicates will also be
enlarged.

References

1. Hajič J., Hajičová E., Hladká B., Holub M., Pajas P., Řezńičková V., Sgall P.: The
Current Status of Prague Dependency Treebank. In: Text, Speech and Dialogue,
ed. by V. Matoušek, P. Mautner, R. Mouček, K. Taušer, Plzeň: University of West
Bohemia (2001) 11-20

2. Hajičová E., Panevová J., Sgall P.: A Manual for Tectogrammatic Tagging of the
Prague Dependency Treebank. ÚFAL/CKL Technical Report TR-2000-09, Charles
University, Czech Republic (2000)

3. Mercury programming language homepage:
http://www.cs.mu.oz.au/research/mercury

4. Negra Corpus on-line resources: http://www.coli.uni-sb.de/sfb378/negra-corpus
5. NetGraph main page: http://shadow.ms.mff.cuni.cz/~mirovsky/netgraph/in-

dexEn.html
6. PDT on-line resources: http://ufal.ms.mff.cuni.cz/pdt
7. Vossen P. (eds.) EuroWordNet: a multilingual database with lexical semantic net-

works for European Languages. Kluwer Academic Publishers, Dordrecht, 2002.
8. Zabokrtsky,Z. Transforming Negra-Millenium Treebank into (Praguian) Tec-

togrammatic Tree Structures:
http://ckl.mff.cuni.cz/~zabokrtsky/saarbrucken2002/negra2tgts.ps

