
PreDiaG: A Tool for the Generation of
Predicate Diagrams

Cecilia E. Nugraheni

Dept. of Computer Science, University of Munich, Germany
nugrahen@informatik.uni-muenchen.de

Abstract. This paper presents PreDiaG (Predicate Diagrams Genera-
tor), a tool prototype for the verification of reactive systems using pre-
dicate diagrams, which are a class of diagrams that represent the abstrac-
tions of reactive systems. PreDiaG supports the generation of predicate
diagrams automatically based on the algorithm in [3]. Given three in-
puts, namely a system specification written in a subset of TLA+ [12],
a set of state predicates and a set of abstraction function and rewriting
rules, this tool generates the suitable predicate diagram using the con-
cept of abstract interpretation. The generated diagram can be encoded
in Promela, the input language of model checker SPIN [9].

Keywords: reactive systems, abstraction, verification, predicate diagrams, tool,
TLA, SPIN.

1 Introduction

Abstraction is an attractive method for proving a temporal property for a reac-
tive system. Given a reactive system Spec and a temporal property F , the proof
that Spec satisfies F can be done by finding a simpler abstract system Spec such
that if Spec satisfies F , then Spec satisfies F as well [5].

Predicate diagrams, first introduced in [4], are a class of diagrams that rep-
resent abstractions of reactive systems described by specification written in tem-
poral logic. These diagrams are intended as the basis for the verification of both
safety and liveness properties of reactive systems.

In this framework the specifications of reactive systems are written as TLA+

formulas [12] of the form: Spec ≡ Init ∧ ¤[Next]v ∧ L where Init is a state
predicate that characterizes the system’s initial state, Next is an action formula
representing the next-state relation, v is the tuple of state variables of interest
and L is a conjunction of formulas WFv(A) and SFv(A), where WFv(A) and
SFv(A) are formulas that assert weak and strong fairness condition for the action
formula 〈A〉v respectively.

A predicate diagram G over a set of state predicates P and a set of action for-
mulas A is a finite graph whose nodes are labeled with sets of (possible negated)
predicates in P, and whose edges are labeled with action names from the action
formula in A and possibly with an ordering annotation. Every action in A may

Mária Bieliková (Ed.): SOFSEM 2002 Student Research Forum, pp. 35–40, 2002.



36 Cecilia E. Nugraheni

have an associated fairness condition. The ordering annotation and fairness con-
dition will be used to verify liveness properties. See [3, 4] for the formal definition
of predicate diagrams.

Verification reactive systems using predicate diagrams is done in two steps.
The first step is generating the predicate diagram that represents the abstraction
of the system described by specification. The next step is to check whether the
predicate diagram satisfies the desired properties or not.

Related to the first step, in [3] Cansell et.al. presented techniques based on
abstract interpretation [2] that can be used to compute a predicate diagram for
a given system specification and a set of predicates that define the abstraction
(rewrite rules). Viewing predicate diagrams as finite-state transition systems,
temporal properties of their traces can be established using LTL model checking
such as SPIN [9]. The detail of how to encode the diagrams in Promela (the
input language of SPIN) and how to verify them using SPIN is explained in [3,
4].

Based on their ideas, I have developed PreDiaG (Predicate Diagram Genera-
tor). PreDiaG is a tool prototype that supports the verification reactive systems
using predicate diagrams. The two main tasks of PreDiaG are to generate pre-
dicate diagrams automatically and to produce the representation of predicate
diagram in Promela language. PreDiaG also produces the graphical representa-
tion of predicate diagrams.

Related Work. There are some tools based on the similar idea, such as InVest
from Saidi et.al. [8, 14] and SAL from Bensalem et.al. [1]. The most related work
is the tool from Cansell et.al. [3]. Instead of using the rewriting engine Logic
Solver from Atelier B [15] and the automatic prover Simplify [7] like their im-
plementation, PreDiaG uses its own simple rewriting engine. Besides the genera-
tion algorithm that is implemented in PreDiaG, their tool has also implemented
some methods for improving the abstract interpretation; but it does not support
the generation of Promela code and the graphical representation of predicate
diagrams.

Outline. This paper is structured as follows. Section 2 describes the input and
output files that are needed and produced by the tool, the architecture and the
algorithm of the generation of predicate diagrams. Some experiment results will
be given in section 3 and section 4 concludes this paper.

2 Tool

2.1 Input and output

In order to generate the predicate diagrams, this tool needs three input files,
namely: specification file (.tla), state predicate declaration file (.prd) and rewri-
ting rules file (.rew).

The first output of this tool is the representation of predicate diagrams in
Promela (.pro) and the second output is the graphically representation of pre-
dicate diagrams (.dot).



PreDiaG: A Tool for the Generation of Predicate Diagrams 37

2.2 Architecture

There are four main components of PreDiaG, namely user interface, abstract
states generator, rewriting engine and output generator. Each of these compo-
nents will be briefly discussed in the sequel.

1. User interface
This component receives the input files from the user. It gives the information
extracted from .tla and .prd to the abstract states generator, whereas the
information extracted from .rew file will be given to the rewriting engine
component. From the output generator it receives the representations of the
generated predicate diagrams as Promela code and as .dot file and displays
the both representations on the screen.

2. Abstract states generator
This component receives the abstract specification and the state predicates
declaration from the user interface component. It generates the abstract
states and gives the result to the output generator.

3. Rewriting engine
This component receives a set of rewriting rules from the user interface com-
ponent and stores them in a table (rule-base). Every rewriting rule consists
of two formulas, where the second formula is the simplication of the first for-
mula. During the generation process this module receives formulas from the
abstract state generator, simplifies the formulas using the rules in rule-base
and give the simplified formulas to the abstract state generator.

4. Output generator
This component consists of two modules: the module that produces the repre-
sentation of predicate diagram as .dot file and the module that produces the
representation of predicate diagram in Promela language. These two modules
then give the produced representations to user interface component.

2.3 Predicate diagrams generation

Let us illustrate the generation process of a simple example, the so called “AnyY
problem” [10]. Fig. 1 presents a simple program consisting of two processes
communicating by the shared variable x, initially set to 0. Process P1 keeps
incrementing variable y as long as x = 0. Once process P2 sets x to 1, process
P2 terminates and some time later so does P1 as soon as it observes that x 6= 0.

−−−−−−−− MODULE AnyY −−−−−−−−−
VARIABLES x, y
Init ≡ x = 0 ∧ y = 0
P1 ≡ x = 0 ∧ y′ = y + 1 ∧ x′ = x
P2 ≡ x′ = 1 ∧ y′ = y
Spec ≡ Init ∧¤[P1 ∨ P2]〈x,y〉∧ WFv(P1)∧ WFv(P2)
===============================

Fig. 2. TLA specification of AnyY problem.



38 Cecilia E. Nugraheni

We want to generate a suitable predicate diagram for the AnyY problem.
Following the abstraction process in [3], the predicate y = 0 might be represented
by y = zero and y > 0 by y = pos. The specification input file (AnyY.tla) appears
on Fig. 2, the predicate declaration file (AnyY.prd) appears on Fig. 3 and the
rewriting rules file (AnyY.rew) appear on Fig. 4.

−−−−− MODULE AnyY −−−−
Init == x = 0 ∧ y = 0
P1 == x = 0 ∧ y’ = x + 1 ∧ x’ = x
P2 == x’ = 1 ∧ y’ = y
=====================

Fig. 2. The content of file AnyY.tla.

(* state predicates *) (* constraints *)
p1 == x = 0 p1 <=> ∼ (p2)
p2 == x = 1 p3 <=> ∼ (p4)
p3 == y = zero
p4 == y = pos

Fig.3. The content of file .AnyY.prd.

(* abstraction function *) (* rewrite rules *)
y = 0 => y = zero 0 = 0 => true zero + 1 => pos
∼ (y = 0) => y = pos 1 = 0 => false pos + 1 => pos

Fig. 4. The content of file AnyY.rew.

Abstract states are represented as a record of n character, where n is the
number of state predicates which are declared in .prd file. Every ith character of
an abstract state s corresponds with the ith state predicate. If s[i] = ’1’ then the
correspondence predicate holds, otherwise if s[i] = ’0’ then the correspondence
predicate does not holds on that state.

The first step in generating predicate diagram is to find a set of initial states,
which are abstract states that satisfy Init and constraints that are specified in
.prd. In the case of program AnyY, the only initial state is 1010.

Starting from the set of initial states, we repeatedly apply this following
steps:

1. Add the value of current abstract state to the rule-base. For example, if the
current state is 1010 then the rule-base contains x => 0 and y => zero.

2. For every action formula A (except Init) we evaluate every sub-formula that
contains only unprimed variables using the rules in the rule-base. If the
result is true then we continue with the evaluation of every sub-formula of
A that contains some primed variables. Based on the unprimed version of



PreDiaG: A Tool for the Generation of Predicate Diagrams 39

the resulted formula, we find a set of abstract states that satisfies it and
also satisfy the predicate constrains and then add those states to the set of
abstract states.
Assume the current state is 1010 and the current action formula is P1. The
evaluation of unprimed part of P1 is as follows:

x = 0 −→ 0 = 0 −→ true
and the evaluation of primed part of P1 is as follows:

y’ = y + 1 −→ y’ = zero + 1 −→ y’ = pos
x’ = x −→ x’ = 0.

The only abstract state that satisfies the formula y = pos ∧ x = 0 and the
predicate constraints is 1001.

The generated predicate diagrams for the AnyY problem is given in Fig. 5.

1010

1001

P1

0110

P2

P1

0101

P2

P2

P2

Fig. 5. The generated predicate diagram for AnyY problem.

3 Results

Some experiments have been done with PreDiaG. Using this PreDiaG and SPIN,
I have verified the safety and liveness properties of some protocols, such as
“Dining Mathematicians” [6], “Bakery” [11] and “Peterson” [13].

4 Conclusions and Future Work

I have presented PreDiaG which is a tool prototype for the generation of pre-
dicate diagrams. Using this tool, predicate diagrams can be generated automati-
cally. One of the outputs of this tool is the representation of the generated
diagrams in Promela language. The verification is then can be done by using the
model checker SPIN.

Now I am studying the applications of predicate diagrams on parameterized
systems and plan to extend PreDiaG so that it can support the generation of
predicate diagrams for parameterized systems.



40 Cecilia E. Nugraheni

References

1. S. Bensalem, et.al. An overview of SAL. In C M. Holloway, editor, LFM 2000: 5th

NASA Langley Formal Methods Workshop, pages 187-196, 2000.
2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In 4th ACM
Symp. Princ. of Prog. Lang., pp. 238-252. ACM Press, 1977.

3. Dominique Cansell, Dominique Méry and Stephan Merz. Predicate diagrams for
the verification of reactive systems. In 2nd Intl. Conf. on Integrated Formal Methods
(IFM 2000), vol. 1945 of Lectures Notes of Computer Science, Dagstuhl, Germany,
November 2000. Springer-Verlag.

4. Dominique Cansell, Dominique Méry and Stephan Merz. Diagram refinements for
the design of reactive systems. In Journal of Universal Computer Science, 7(2):159-
174, 2001.

5. Michael A. Colón and Tomás Uribe. Generating Finite-State Abstractions of Reac-
tive Systems using Decision Procedure. In 10th International Conference on Com-
puter Aided Verification, vol. 1427 of Lecture Notes in Computer-Science, pp. 293-
304, Springer-Verlag, June/July 1998.

6. D.R. Dams, O. Grumberg and R. Gerth. Abstract interpretation of reactive sys-
tems: Abstractions preserving ∀CTL∗. In IFIP Working Conference on Program-
ming Concepts, Methods and Calculi (PROCOMET 94), pp. 573-592, June 1994.
Park. Experience with Predicate Abstraction. In 11th International Conference on
Computer Aided Verification, vol. 1633 of Lecture Notes in Computer-Science, pp.
160-171, Springer-Verlag, 1999.

7. D. Detlefts, G. Nelson, and J. Saxe. Simplify: the ECS theorem prover. Technical
report, Systems Research Center, Digital Equipment Corporation, Palo Alto, CA,
November 1996.

8. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grum-
berg, editor, Conference on Computer Aided Verifications, vol. 1254 of Lecture
Notes in Computer-Science, pp. 72-83. Springer-Verlag, 1997. June 1997, Haifa,
Israel.

9. G. Holzmann. The SPIN model checker. IEEE Trans. on software engineering,
16(5):1512-1542. May 1997.

10. Y. Kesten and A. Pnueli. Taming the Infinite: Verification of Infinite-State Reactive
Systems by Finitary Means. In Engineering Theories of Software Construction,
(NATO) Science Series, Series III: Computer and Systems Sciences, Vol. 180, pages
261-299, IOS Press 2001.

11. L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM, 17(8):435-455, May 1974.

12. L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3) : 872-923, May 1994.

13. Gary L. Peterson. A new solution to Lamport’s concurrent programming problem
using small shared variables. ACM Transaction of Programming Languages and
Systems, 5(1):56-65, 1983.

14. H. Saidi and N. Shankar. Abstract and model check while you prove. In N.
Halbwachs and D. Peled, editors, Conference on Computer-Aided Verification
(CAV’99), vol. 1633 of Lecture Notes in Computer-Science, pages 443-454, Trento,
Italy, 1999, Springer-Verlag.

15. STERIA - Technolgies de l’Information, Aix-en-Provence (F). Atelier B, Manual
Utilisateur, 1998. Version 3.5.


