
⊕-OBDD in Symbolic Model Checking?

Vojtěch Řehák

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic

rehak@fi.muni.cz

Abstract. We present a feasibility study of using ⊕-OBDD data struc-
ture in symbolic model checking (SMC). ⊕-OBDD has been proposed as
a more succinct modification of well known OBDD data structure which
is of common use in nowadays SMC. We introduce three modifications
of ⊕-OBDD, analyze their respective efficiency, and present some exper-
imental results based on implementations of ⊕-OBDD within a symbolic
model checker NuSMV.

1 Introduction

Nowadays, hardware and software systems are widely used in applications where
failure is unacceptable. As examples can serve systems for electronic commerce,
air traffic control, medical instruments, and many others. Hence, methods for
validating these systems are in great demand. This paper focuses on the model
checking approach to automatic validation.

Model checking [3] is an automatic technique for verifying finite state systems.
In this approach, properties are expressed in a temporal logic and systems are
modelled as transition systems. A model checker accepts two inputs, a transition
system and a temporal formula, and returns ”true” if the system satisfies the
formula; otherwise it returns ”false”.

The basic model checking problem is the state explosion problem due to the
fact that the size (number of states) of transition system can be exponential with
respect to the description of the system. The exponenciality is (mostly) caused
by parallel composition of interacting processes. Hence, the basic problem is the
space complexity of model checking algorithms. One of the most successful and
widely commercially used approach to avoid the explosion problem is a symbolic
approach. Symbolic model checking algorithms are based on manipulations with
sets of states of the transition system where sets of states are represented by
Ordered Binary Decision Diagrams [1] (OBDDs).

The first step in using OBDDs in the symbolic model checking is the represen-
tation of states of transition systems as boolean vectors and the representation
of sets of states as boolean functions. OBDDs effectively represent boolean func-
tions and allow efficient implementation of complementation, union and equality
test on sets (of states). In this paper we investigate a possibility of using a novel

? This work has been partially supported by the GACR grant No. 201/00/1023.

Mária Bieliková (Ed.): SOFSEM 2002 Student Research Forum, pp. 41–46, 2002.

42 Vojtěch Řehák

data structure, so called ⊕-OBDD, and its modifications, to reduce the space
complexity of the symbolic model checking algorithm.

2 Definition of ⊕-OBDD

A ⊕-OBDD [5] (called also Mod2-OBDD or Parity-OBDD) is an extension of
OBDD data structure, namely there are ⊕-nodes in ⊕-OBDD. This innovation
can lead to exponentially more succinct representation of sets of states.

Syntax A ⊕-BDD P over a set Xn = {x1, . . . , xn} of boolean variables is a
directed acyclic connected labelled graph P = (V,E) with three types of nodes:

– a terminal node v has a label l(v) ∈ {0, 1} and its out-degree is 0,
– a variable (branching) node v has a label l(v) = xi (xi ∈ Xn) and two

successors denoted by low(v), high(v) ∈ V ,
– a ⊕-node v has a label l(v) = ⊕ and two successors low(v), high(v) ∈ V .

Edges from v to low(v) and high(v) are labeled as 0-edge and 1-edge, respec-
tively. A node with in-degree 0 is the root.

A ⊕-BDD is free if each variable is encountered at most once on each path
from the root to a terminal node. A ⊕-BDD is ordered if it is free and the
variables are encountered in the same order on each path from the root to a
terminal node. Ordered ⊕-BDD is denoted as ⊕-OBDD.

Semantics Each node v of ⊕-BDD represents a boolean function fv : {0, 1}n →
{0, 1}. The definition of fv is given recursively as follows:

– If v is a terminal node, then fv(x1, . . . , xn) = l(v).
– If v is a branching (variable) node with l(v) = xi, then

fv(x1, . . . , xn) = (¬xi ∧ flow(v)(x1, . . . , xn)) ∨ (xi ∧ fhigh(v)(x1, . . . , xn)).
– If v is a ⊕-node, then

fv(x1, . . . , xn) = flow(v)(x1, . . . , xn)⊕ fhigh(v)(x1, . . . , xn),
where ⊕ is a boolean exclusive or (XOR) operator.

A ⊕-BDD with the root v represents the boolean function fv(x1, . . . , xn).

3 Reduced Forms of ⊕-OBDD

In order to achieve even more succinct representation several reduction rules
are introduced. Duplicate nodes can be unified (merging rule) and redundant
variable nodes can be omitted (elimination rule) [13]. The semantics of ⊕-nodes
enables many other reductions – some of them are proposed here.

⊕-OBDD in Symbolic Model Checking 43

Basic ⊕-OBDD The basic form can be obtained by applying the following
three rules for ⊕-nodes.

��?>=<89:;⊕
{{
f

⇒ ��
0

��?>=<89:;⊕
~~}}}

}
��>

>>
>

0 f

⇒
��
f

��?>=<89:;⊕
~~}}}

}
��>

>>
>

1 f

⇒
��
¬f

⊕-OBDD with ⊕-meta-nodes A ⊕-meta-node is a ⊕-node which can have
more than two successors. Successors of ⊕-meta-node are sorted. This reduction
is based on commutativity and associativity of the boolean operation XOR.

?>=<89:;⊕
wwooo ((PPP?>=<89:;⊕

~~~~
~~

~
  @

@@
@@

?>=<89:;⊕
~~||

||
| ''OOO ?>=<89:;⊕

wwnnn ''PPPGFED@ABCx2

~~~ @@@
GFED@ABCx3

~~~ 55
GFED@ABCx1

		 @@@
GFED@ABCx2

~~~ @@@

⇒
?>=<89:;⊕

����
��

�
�� ��>

>>
>>

GFED@ABCx1

~~~ 55
GFED@ABCx2

		 55
GFED@ABCx2

		 @@@

Merged ⊕-OBDD This reduced form unifies ⊕-node’s successors with the
same label.

?>=<89:;⊕
vvllllllllllll

||zz
zz

zz
�� ""D

DD
DD

D

((QQQQQQQQQQQQ

GFED@ABCx1

1
����
� 0
��-

--
GFED@ABCx1

1
����
� 0
��-

--
GFED@ABCx1

1
����
� 0
��-

--
GFED@ABCx1

1
����
� 0
��,

,,
GFED@ABCx2

1
����
� 0
��-

--

f1 f0 g1 g0 h1 h0 j1 j0 k1 k0

⇒

?>=<89:;⊕
{{vvv

v
''OOOOOO

GFED@ABCx1
1
{{www

w 0
##HH

HH
GFED@ABCx2

1 ���� 0��6
6

?>=<89:;⊕
����

��
����
�
����
�
�� ��.

..
?>=<89:;⊕
����
�
�� ��

//
/
��=

==
= k1 k0

f1 g1 h1 j1 f0 g0 h0 j0

Exact definitions of these modifications are presented in [11]. The basic dis-
advantage of merged ⊕-OBDD is the loss of strictly bottom-up implementation
of the reducing algorithm. The reduction must be performed top-down. Hence,
the careful creation (keeping the reduced form) of a new node is not of constant
complexity but it has a linear time complexity.

4 Operations

The simplest operation is the complementation (negation) which is implemented
using complemented edges [7].

The implementation of the union (disjunction) is based on the recursive call
for co-factors for the topmost variable. Co-factors of the union can be computed
as:

(f ∨ g)|x←0 = f |x←0 ∨ g|x←0 and (f ∨ g)|x←1 = f |x←1 ∨ g|x←1

where f |x←0 and f |x←1 are co-factors of f for x = 0 and x = 1, respectively.



44 Vojtěch Řehák

Co-factoring for the topmost variable is easy provided if the root is a variable
node. If the root is ⊕-node then its successors must be co-factored.

?>=<89:;⊕
{{www

www ,,YYYYYYYYYYYY
?>=<89:;⊕

uukkkk ))SSSSGFED@ABCx1
1
����

0
��;

;
GFED@ABCx2

1
�����

0
��;

;;
GFED@ABCx1

1
����

0
��;

;

f1 f0 g1 g0 h1 h0

⇒

?>=<89:;⊕

		��
��
��
�� ,,YYYYYYYYYYYY

?>=<89:;⊕
uukkkk

��/
//

//GFED@ABCx2
1
�����

0
��;

;;

f0 g1 g0 h0

An example of co-factoring ⊕-OBDD for x1 = 0.

Co-factors of the result cannot be connected as in OBDD because the OBDD
connection does not create ⊕-nodes. ⊕-OBDD connection is performed according
to the positive Davio expansion rule [6]:

f = f |x←0 ⊕ x(f |x←1 ⊕ f |x←0).

Both OBDD and ⊕-OBDD connections are presented in the following figure (f0,
f1 are co-factors of the result).

?>=<89:;x

1

��













0

��4
44

44
44

4

f1 f0

?>=<89:;⊕

����
��

��
��

((RRR ?>=<89:;x1
vvlll

0

��:
::

::
:?>=<89:;⊕

{{www
w

##G
GGG

f0 f1 0
OBDD connection ⊕-OBDD connection

The most complex operation is the equality test which can be performed in
time O(n ∗ (|F | + |G|)3) and in space O((|F | + |G|)2), where n is the number
of variables [12] and thus it is not efficient. On the other hand, the probabilistic
equivalence test [4] for ⊕-OBDD needs linear time only.

The time complexities of all operations are presented in Table 1. For detailed
descriptions of algorithms and proofs of its complexities see [11].

Table 1. Comparison of the time complexities.

OBDD ⊕-OBDD
procedure basic meta nodes merged

careful creation O(1) O(1) O(1) O(|F |)

negation O(1) O(1) O(1) O(1)

F |xtop←0 O(1) O(|F |) O(|F |) O(1)

union O(|F |∗|G|) O(|F |∗|G|) O(|F |2∗|G|2) O(|F |2∗|G|2)

equivalence test O(1) O(|F |+|G|) O(|F |+|G|) O(|F |+|G|)

5 Experimental Results

I have modified the implementation of the widely used OBDD package CUDD [10]
so as it allows manipulations with ⊕-OBDDs. The main reason for choosing
CUDD package is its compatibility with the symbolic model checker NuSMV [2].



⊕-OBDD in Symbolic Model Checking 45

The CUDD package has been augmented with a node counter MaxUsedKey
which keeps the maximal number of active nodes during the computation. A
node is active if it is created and it is not designated to be erased. Therefore
MaxUsedKey corresponds to the maximal size of memory which is occupied
during the computation of NuSMV.

I have implemented all three types of ⊕-OBDD introduced here into the
CUDD package. All new nodes are created according to the positive Davio ex-
pansion rule and many ⊕-nodes may be thus superfluous. ⊕-meta-nodes were
not implemented as single special nodes as the original CUDD package does not
support meta-nodes. Therefore, ⊕-meta-nodes are implemented as chains of ⊕-
nodes. Even this implementation is beneficial as it allows efficient detection of
redundancy. Any heuristics reordering variables have not been implemented.

Table 2. The maximal number of active nodes during the computation of NuSMV.

OBDD ⊕-OBDD
protocol basic meta nodes merged

dartes - - - -
counter 47 54 54 51

dme1 - - - -
mutex 104 145 131 127

mutex1 306 895 573 567
ring 124 252 175 170

semaphore 237 490 376 358
short 22 22 22 22

gigamax 52633 - 127864 191084
hwb6 789 3274 1955 1878

newring 60 97 82 73
p error 8182446 - - -

p 5194783 - - -
philo 5543735 - 8491390 -
robot 33346 - 44723 -

I have verified some protocols by NuSMV and compared the MaxUsedKeys
with respect to the representation used. Results of these comparisons are pre-
sented in Table 2. The column protocol contains the names of protocols which
have been verified. Next columns contain the values of MaxUsedKeys. A dash
indicates the computation did not finish in twelve hours. The probabilistic test
of equality did not cause any incorrect result.

Results presented in Table 2 indicate that the stricter modifications of ⊕-
OBDD is used the more succinct representation is obtained. Nevertheless, the
OBDD representations remain the best one for the verified protocols.

Computation of large protocols (philo and robot) did not terminate for the
merged modification. It is a consequence of the fact that the careful creation
takes a linear time with respect to the size of merged ⊕-OBDD.



46 Vojtěch Řehák

6 Conclusions

⊕-OBDDs seem to be a promising alternative to OBDDs because they admit
a more compact representation of boolean functions. However, our comparisons
indicate that the ⊕-OBDDs are not so good for symbolic model checking as
OBDDs.

The adverse result of our comparisons may be induced by incompleteness
of our implementation such as representing ⊕-meta-node as a chain of ⊕-nodes
and absence of heuristic algorithms for reordering and ⊕-node placement. Elim-
ination of these imperfections may lead to the applicability of ⊕-OBDDs. Some
elementary heuristic algorithms are presented in [8, 9].

⊕-OBDDs are very suitable for performing boolean operation XOR. Symbolic
model checking algorithms are performed according to the CTL formula which
is made by a person and people are not accustomed to use XOR. So, it is better
to apply ⊕-OBDDs into algorithms where the need for XOR operations springs
up naturally.

References

1. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. In
IEEE Transactions on Computers, volume C-35-8, pages 677–691, August 1986.

2. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A New Symbolic
Model Checker. International Journal on Software Tools for Technology Transfer,
2(4):410–425, 2000.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

4. J. Gergov and Ch. Meinel. Frontiers of Feasible and Probabilistic Feasible Boolean
Manipulation with Branching Programs. In Proceedings of STACS, volume 665 of
LNCS. Springer, 1993.

5. J. Gergov and Ch. Meinel. Mod-2-OBDD’s: A Generalization of OBDD’s and
EXOR-Sum-of-Products. Technical Report 93–21, Universität Trier, 1993.

6. Ch. Meinel and H. Sack. Case Study: Manipulating ⊕-OBDDs by Means of Signa-
tures. In 3rd International Workshop on Applications of the Reed-Muller Expansion
in Circuit Design, Oxford, UK, 1997.

7. Ch. Meinel and H. Sack. Parity-OBDDs - a BDD Structure for Probabilistic Ver-
ification. In ENTCS, volume 22. Elsevier, 2000.

8. Ch. Meinel and H. Sack. A Heuristic for ⊕-OBDD Minimization. Technical report,
Universität Trier, 2001.

9. Ch. Meinel and H. Sack. Improving XOR-Node Placement for ⊕-OBDDs. Technical
report, Universität Trier, 2001.

10. F. Somenzi. CUDD: CU Decision Diagram Package Release, 1998.
11. V. Řehák. Randomized symbolic model checking. Master’s thesis, Masaryk Uni-

versity Brno, 2002.
12. S. Waack. On the Descriptive and Algorithmic Power of Parity Ordered Binary

Decision Diagrams. In Proceedings of STACS, volume 1200 of LNCS. Springer,
1997.

13. I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Ap-
plications. Society for Industrial and Apllied Mathematics, 2000.


