
Text Correction Using Approaches Based on Markovian Architectural Bias

Michal Čerňanský, Matej Makula, Peter Trebatický and Peter Lacko
Faculty of Informatics and Information Technologies

Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava

E-mail: {cernansky,makula,trebaticky,lacko}@fiit.stuba.sk

Abstract

Several authors have reported interesting results ob-
tained by using untrained randomly initialized recurrent
part of an recurrent neural network (RNN). Instead of long,
difficult and often unnecessary adaptation process, dynam-
ics based on fixed point attractors can be rich enough for
further exploitation for some tasks. The principle explain-
ing untrained RNN state space structure is called Marko-
vian architectural bias [1, 8] and several methods using
this behavior were studied. In this paper we apply these
approaches to correct corrupted symbols from symbol se-
quence. These approaches share some properties with vari-
able length Markov models hence our experiments are in-
spired by the paper dealing with the text correction on the
bible dataset.

1 Introduction

The dynamics of randomly initialized recurrent neural
network (RNN) is not “random”. On the contrary, its state
space shows considerable amount of structural differenti-
ation. It means the activities of recurrent neurons can be
grouped in clusters even in an untrained, randomly initial-
ized recurrent neural network [4]. The structure of the state
space reflects the history of inputs presented to the net-
work and clusters correspond to the contexts of the variable
length Markov models (VLMMs) [6, 7].

The authors have reported promising results working
with approaches based on Markovian architectural bias,
such as the chaos game representation of input sequence
[6] or Echo state networks [2, 3]. Inspired by experiments
with VLMM performed in [10] we try to adopt these novel
approaches to tasks of practical usage. Specifically, we
build predictive models based on chaos game representa-
tion (CGR) of the input symbolic sequence and compare
their predictive performance to the prediction models based
on VLMM. We also apply created predictive models to the

text correction task on the bible dataset.
Next section explains the principles and properties of

Markovian architectural bias of recurrent neural networks.
It is also shown the correspondence to the class of Markov
models called variable length Markov models. The third
section shows how the predictive models are built and their
performance is tested. In the fourth section created predic-
tive models are used on the text correction task and conclu-
sions are formulated in the last section.

2 Architectural Bias of RNNs

RNN training process is considerably more complex in
comparison with feed-forward network weight adaptation.
Changing recurrent connections in order to obtain desirable
dynamics by providing input-output pairs is often difficult
and computationally expensive task. The dynamics of a ran-
domly initialized recurrent neural network is surprisingly
not “random”, instead the RNN state space shows consider-
able amount of structural differentiation. It means that ac-
tivities of recurrent neurons even in an untrained, randomly
initialized recurrent neural network can be grouped in clus-
ters [4]. The structure of clusters reflects the history of in-
puts presented to the network. This phenomenon is called
Markovian architectural bias and can be explained by means
of the iterated function system theory. For example the dy-
namics of simple RNN can be expressed by equation

s(t) = f
(

W · s(t − 1) + Win · i(t)
)

, (1)

wheref stands for nonlinear activation function,W and
Win are matrices of recurrent and input weights respec-
tively. Recurrent and input activities in timet are denoted
by s(t) andi(t), respectively. Network output is calculated
as

o(t) = f
(

Wout · s(t)
)

, (2)

whereWout is matrix of output weights. Usually nonlinear
activation functionf is used and recurrent and input weight
matricesW andWin are initialized to small values drawn

from symmetric interval such as(−1, 1). The notion of
Markovian architectural bias can be explained by simpli-
fying RNN dynamics by using linear activation functionf

and by setting network weights deterministically to:

W =

(

0.5 0
0 0.5

)

(3)

Win =

(

0.5 0 0 0.5
0 0.5 0 0.5

)

(4)

Processing of symbol sequences1s2 . . . st created over
4 symbol alphabetA = {a, b, c, d} with symbols en-
coded by one-hot-encoding scheme (ifst = a thani(t) =
(1, 0, 0, 0)T . . .) would create the following regions in two
dimensional state space (Fig. 1).

Figure 1. The relationship between the net-
work state and the history of symbols pre-
sented to the network with simplified dynam-
ics.

The network state (activities of hidden units) is always
located in a region corresponding to the last symbolst pre-
sented to the network as shown in Fig. 1a. Moreover the
position within this region can be further specified by the
previously presented symbolst−1. This ”second level” is
shown in Fig. 1b and sub-regions differentiated by the sym-
bol presented to the network in timest−2 are shown in
Fig. 1c. The position of activities in the network state space
is determined by the history of symbols presented to the net-
work with the recent symbols having more important impact
than symbols presented in older time steps.

When recurrent and input weights are initialized ran-
domly to small values and activation functionf is nonlinear,
regions in state space are not positioned precisely and might
overlap. However, the main feature of network dynamics –
to transform sequences with similar suffix to similar hidden
unit activities – is unchanged.

To obtain visual representation of the whole sequence
we can insert hidden unit activitiess(t) from all time steps
into two-dimensional plot as shown in Fig.2. This way of
representing input sequence is called chaos game represen-
tation (CGR). The random sequence was created by draw-
ing symbols from alphabetA with equal probability. Laser

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Random Sequence

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Laser Sequence

Figure 2. Chaos game representations of se-
quence of random symbols and Laser se-
quence (using simplified RNN settings)

data set is the sequence of differences between successive
activations of a real laser in chaotic regime [7] which was
quantized to symbolic sequence over four-symbol alphabet
A. CGR of random sequence results in the state space reg-
ularly covered by points. It is not the case of CGR of the
laser sequence. Similar subsequences correspond to points
that are closer in the state space. The longer the common
suffix, the nearer the points are in the state space. Frequent
subsequences of longer length produce clusters.

This behavior has led to the idea described in [7] where
prediction models called neural prediction machine (NPM)
and fractal prediction machine (FPM) were suggested. Both
use Markovian dynamics of untrained recurrent network
(Eq. 1). In FPM, activation functionf is linear and weights
are defined deterministically in order to create precise state
space dynamics as it was described earlier. In NPM, activa-
tion functionf is nonlinear and weights are randomly ini-
tilized to small values as in regular RNN. Instead of using
classical output layer NPM and FPM use prediction model
that is created by extracting clusters from the network state
space. Each cluster corresponds to different prediction con-
text with the next symbol probabilities.

More precisely, symbol presented to the network drives
the network to some state (activities on hidden units). The
state belongs to some cluster and the context correspond-
ing to this cluster is used for the prediction. The context’s
next symbol probabilities are estimated during training pro-
cess by relating the number of times that the corresponding
clusterC is encountered and the given next symbolx is
observedNx

C with the total number when the clusterC is
encounteredNC :

P (x|C) ≈
Nx

C

NC

(5)

These models share some properties with variable length
Markov models. Building Markov next-symbol predic-
tion model is straightforward by estimating probabilities

P (x|w) ≈
Nx

w

Nw
, whereP (x|w) is the probability of symbol

x ∈ A being observed after sequencew = s1s2 . . . ∈ A∗.
In this case sequence of observed symbolsw represents the
prediction context. In n-th order Markov model the set of
contexts is formed of all words of lengthn which can be
created from alphabetA. The set contains|A|n contexts
where|A| is the size of the alphabet.

Variable length Markov models (VLMMs) [5, 10] con-
tain contexts with different lengths. They try to evaluate
the context importance and irrelevant contexts are not kept
by the model. The importance of the context is estimated
from the training sequence. There is a natural idea of grow-
ing of VLMMs. Existing contextw ∈ A∗ is extended by
symbolx ∈ A and new contextxw is added to the model
if its next symbol probability distributionP (.|xw) signifi-
cantly differs from the next symbol probability distribution
of original contextP (.|w) and its occurrenceP (xw) is im-
portant enough. A natural way of representing VLMMs is
in the form of a prediction suffix trees (PSTs). Fig. 3 shows
simple PST created for laser sequence. For example the
probability of observing symbolb after the sequenceccca
will be estimated asP (b|ccca) = 0.06.

Figure 3. Simple variable length Markov
model represented by the prediction suffix
tree for the symbolic laser sequence.

We can graphically represent the regions of CGR of sym-
bolic laser sequence created using simplified RNN dynam-
ics (Fig. 2b) that correspond to the contexts of variable
length Markov model created for symbolic laser sequence
(Fig. 3). In Fig. 4 the shades of gray are used to indicate
the corresponding VLMM context. Longer contexts corre-
spond to the smaller regions and the darker shades of gray
are used. As already mentioned, the clusters in the RNN
state space correspond to the frequent and similar (hence

from the modeling point of view important) substrings of
sequence presented to the network. As can be seen in Fig. 3
the clusters in the state space of recurrent neural networks
with simplified dynamics correspond to the prediction con-
texts of variable length Markov models. The structure of
RNN state space initialized with small weights corresponds
to the prediction contexts of Markov model hence the name
for Markovian architectural bias.

Figure 4. Chaos game representation of the
symbolic laser sequence that correspond to
the contexts of variable length Markov model
created for symbolic laser sequence.

3 Creating Prediction Models

The purpose of this paper is to show how approaches
based on Markovian architectural bias can be used for sym-
bolic sequence processing. In [10] the authors used vari-
able length Markov model on the bible dataset. Since ap-
proaches based on the chaos game representation (FPM,
NPM) share some properties with VLMM we decide to per-
form experiments with the same dataset. We modified en-
glish version of King James Bible and took out the Genesis
book as test sequence. The rest of books served as a training
sequence. The length of test sequence was1.9 · 105 and the
length of training sequence was2.9 ·106. Alphabet includes
26 characters and a space character.

3.1 Prediction Model Based on VLMM

We repeated experiments with VLMM as in [10]. The er-
ror criteria based on Kullback-Leiblerg divergence was used
to evaluate context importance.

Err(xw, w) = P (xw)
∑

a∈A

P (a|xw)log
P (a|xw)

P (a|w)
, (6)

wherexw is a candidate context associated with a child
node andw is a context associated with parent node in the
prediction suffix tree being iteratively built. If statistical dif-
ference was superior to chosen ratioǫ, the child node with
contextxw was added to the model. All nodes up to the
specified lengthL were tested. Laplace correction was used
to avoid estimating any probabilities of zero for events never
observed in training data. Next symbol probabilities were
estimated using:

P (w) ≈
γ + Nw

γ|A| +
∑

v∈A|w| Nv

, (7)

P (x|w) ≈
γ + Nx

w

γ|A| +
∑

a∈A Na
w

, (8)

whereNv is a number of occurrences of stringv in a sample
sequence andNx

v is a number of observations of symbolx

after stringv. Laplace correction parameterγ was set to
|A|−1.

Training prediction suffix tree is summarized in the
following code in pseudo-language:

ALPHABET - sequence alphabet, a set of symbols
StrLength(W) - the length of stringW
L - maximum tree depth
Eps - minimum statistical surprise
Error(W) - calculates statistical surprise of stringw

CSTRINGS - set of candidate strings
StringsInit(STRS) - initialize set of stringsSTRS
StringsInsert(STRS,W)- insert stringW into set of stringsSTRS
StringsRemove(STRS) - removes string from set of stringsSTRS
StringsIsEmpty(STRS) - test set of stringsSTRS for being empty

PST - prediction suffix tree
TreeInit(TREE) - initialize treeTREE
TreeInsert(TREE,W) - insert contextW into treeTREE

Algorithm description:
First, the set of candidate strings is initialized with one

symbol words formed of symbols from alphabet (lines1 to
3). Then the prediction suffix treePST is initialized with
only root node corresponding to the empty stringe. The
next symbol probability table is also calculated (line5). The
tree is iteratively built in the loop (lines7 to 15). If the set
of candidate strings is not empty (line7), a candidate string
is removed from the set (line9), the statistical surprise of
the string is evaluated and if relevant enough (line10) the
string is inserted into the treePST (line 11). All ancestor
strings not present in the tree are also inserted and the next
symbol probabilities are calculated for all strings being in-
serted. If maximal tree depth was not reached (line12)

1 StringsInit(CSTRINGS);
2 foreach A from ALPHABET do
3 StringsInsert(CSTRINGS, A);
4

5 TreeInit(PST);
6

7 while NOT StringsIsEmpty(CSTRINGS) do
8 begin
9 CSTRING := StringsRemove(CSTRINGS);

10 if Error(CSTRING) >= Eps then
11 TreeInsert(PST, CSTRING);
12 if StrLength(CSTRING) < L then
13 foreach A from ALPHABET do
14 StringsInsert(CSTRINGS, A+CSTRING);
15 end;

Figure 5. Algorithm for training prediction
suffix tree

the set of candidate strings is enhanced with novel strings
formed by concatenation of symbols of alphabet with the
processed string (lines13 and14). Operator+ is meant as
a concatenation of the strings.

3.2 Prediction Model Based on Chaos
Game Representation

Models such as FPM and NPM are based on attractor
dynamics of RNN-like state space. Prediction contexts cor-
respond to clusters in the state space driven by equation 1.
For both NPM and FPM one-hot encoding of input alphabet
was used resulting in input layer containing|A| = 27 units.

FPM models had deterministically set recurrent weights
and linear activation function was used. We investi-
gated two possibilities of initializing network dynamics
of FPM. The first model labeled FPM5 was composed of
⌈log2(|A|)⌉ = 5 recurrent units, recurrent weights were ini-
talized asW = k · I wherek = 0.5 is the contraction ratio.
Columns of input weight matrixWinp are binary displace-
ment vectors multiplied by1 − k in the same manner as
described in eq. 4. The second model labeled FPM27 use
|A| = 27 recurrent units and weight matrices were initial-
ized toW = k · I andWinp = (1 − k) · I.

We have also performed several experiments with NPM
models. MatricesW and Winp were randomly initial-
ized from symmetric interval(−1, 1) and sigmoidal acti-
vation function was used. Dynamics driven by randomly
set weights combined with nonlinear transfer function work
remarkably well in case of ESN models, to our knowledge
no deterministic method was proposed that would perform
as well. Similarly to the FPM models, we used NPM5 and
NPM27 models having 5 and 27 hidden units, respectively.

Vector quantization techniques such as popular K-means
quantization can be used for identifying clusters. Slow con-
vergence is the major drawback of K-means which limits

its practical applicability to larger datasets. To make train-
ing process feasible and at least partially comparable to the
VLMM training we estimated clusters only on the fraction
of activities produced by models. Overall training process
can be summarized in several simple steps:

1. Activation Creation
By running through training sequenceS =
s1s2s3 . . . sT symbols st are presented to the
network and activities on hidden units (s(t) from
eq. 1) are recorded into sequence of activities
X = (X1, X2, X3 . . . XT). Dimension of vectorsXt

is given by the hidden layer size and was5 for FPM5
and NPM5 and27 for FPM27 and NPM27.

2. Quantization
For a given numberm of prediction contexts clusters
representing activitiesX are found. K-means quanti-
zation was performed on a fraction ofX (every 100th
activity), resulting inm centersC = (C1, C2, . . . Cm)
representing clusters.

3. Creating the Next Symbol Predictions Probabilities
The next symbol counterNx

Ci
is created for each clus-

ter i represented by centerCi and for each symbol
x from alphabetA. By running through training se-
quenceS and sequence of activitiesX with index
0 < t < n − 1 clusterCi corresponding to the ac-
tivity Xt is found and the next symbol counterN

st+1

Ci

associated with the next symbol observedst+1 is in-
cremented. The next symbol probabilities associated
with clusters are estimated as:

P (x|Ci) ≈
γ + Nx

Ci

γ|A| +
∑

a∈A Na
Ci

, (9)

where Laplace correction parameterγ was set to
|A|−1.

3.3 Experimental Results

Predictive performance was evaluated by means of a nor-
malized negative log-likelihood (NNL) calculated over the
test symbol sequenceS = s1s2 . . . sT from time stept = 1
to T as

NNL = −
1

T

T
∑

t=1

log|A| Pt(st), (10)

where the base of the logarithm is the alphabet size, and
thePt(st) is the probability of predicting symbolst in the
time stept. For VLMM the valuePt(st) is equal to the
P (s|w) wherew is the longest suffix ofs1 . . . st−1 found in
the PST. For FPM and NPM the testing procedure resembles
the training process steps:

1. Activation Creation
By running through test sequenceS = s1s2s3 . . . sT

symbolsst are presented to the network and activities
on hidden units are recorded into sequence of activities
X = (X1, X2, X3 . . . XT).

2. Finding the Next Symbol Predictions Probabilities
Probabilities for NNL calculationsPt(st) equal
P (x|Cj) wherex is the next observed symbolx = st

andCj is the center of clusterj representing the previ-
ous activityXt−1 (Cj is the nearest center from allm

centers).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 5 10 30 100 300 1000 3000 10000 30000 100000

N
N

L

t

VLMM
NPM5

NPM27

Figure 6. The next symbol prediction perfor-
mance for VLMM and NPM models.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 5 10 30 100 300 1000 3000 10000 30000 100000

N
N

L

t

VLMM
FPM5

FPM27

Figure 7. The next symbol prediction perfor-
mance for VLMM and FPM models.

Prediction models with different number of clusters
ranging from 1 to 30000 were created for FPM and NPM.

Single VLMM was created with statistical surprise param-
eter set to very small value ofǫ = 0.000001 and maxi-
mal context length (maximal PST depth) set toL = 30.
Final suffix tree contained more than200000 nodes and
resulting predictive performance on the test sequence was
aboutNNL = 0.366. Modifying PST by removing the
least important leaves in statistical surprise sense resulted
in VLMMs having from about200000 to 1 node, hence
predictive performances of these models can be shown as
a smooth line in figures Fig. 6 and Fig. 7. Predictive perfor-
mance of models based on the chaos game representation
is slightly worse but comparable with VLMM. Both NPM5
and NPM27 have similar performance (Fig. 6). In the case
of FPM models (Fig. 7) enhancing the model state space
seems to give slightly better results, but in general the state
space enhanced to more dimensions did not prove to be use-
ful as it is in the case of the bible dataset.

4 Text Correction

Much of the effort in building recognition systems is de-
voted to correct the corrupted sequences. In many opti-
cal and handwriting character recognition systems, the last
stage employs natural-language analysis techniques to cor-
rect corrupted sequences.

We chose the problem of correcting the corrupted text
in order to compare performance of proposed techniques on
the real-world problem. These techniques are simple and ef-
ficient and yet provide even better results than soffisticated
methods using huge corpora and dictionaries [10].

4.1 Transforming PST into Probabilistic
Finite Automaton

Before the text correcting technique can be applied, it
is neccessary to transform prediction suffix tree into prob-
abilistic finite automaton (PFA). To be able to achieve this,
all the internal nodes of PST have to be of full degree and
for every leafs, the longest prefix ofs must be either leaf or
an internal node of resulting PST. When adding new nodes
to the tree in order to fulfill this requirement, these nodes
inherit their next symbol probability function from their re-
spective parents. The states of the PFA then correspond
to the leaves of resulting PST including their next symbol
probability functions [10].

One also has to compute the initial probability distribu-
tion over the states of PFA. Sum of initial probabilities of
all states must be1. The initial probability of each state
equals the sum of products of probability of transfering to
that state and the initial probability of state from which we
transfer from. Thus one obtainsn + 1 equations inn un-
knowns.

4.2 Extracting PFA from CGR State
Space

The state space of CGR can be successfully used for the
prediction model creation as described in the previous sec-
tion using process consisting of the clusterization of unit
activations and the estimation of the next symbol probabil-
ity distribution for found clusters. Very similar process can
be used for creating a probabilistic finite automaton based
on the CGR state space. The PFA creation process consists
of 4 steps, the first two steps were already described in the
previous section:

1. Activation Creation

2. Quantization

3. Creating the State Transition Probabilities
Clusters found in the quantization step correspond to
the PFA states. The state transition counterN

Cj

Ci
is

created for each pair of statesCi andCj . By running
through sequence of activitiesX with index0 < t <

n−1 clustersCi andCj corresponding to the activities
Xt andXt+1 are found and the state transition counter
N

Cj

Ci
is incremented. Finally the state transition prob-

abilities associated with clusters are estimated as:

P (Cj |Ci) ≈
N

Cj

Ci
∑

k NCk

Ci

(11)

4. Creating the Observation Symbol Probabilities
The observation symbol counterNx

Ci
is created for

each PFA statei represented by centerCi and for each
symbolx from alphabetA. By running through train-
ing sequenceS and sequence of activitiesX with in-
dex 0 < t < n clusterCi corresponding to the ac-
tivity Xt is found and its observation symbol counter
Nst

Ci
associated with the symbolst is incremented.

The probabilities of observing symbolx when being
in stateCi are estimated as:

P (x|Ci) ≈
γ + Nx

Ci

γ|A| +
∑

a∈A Na
Ci

, (12)

where Laplace correction parameterγ was set to
|A|−1.

The last step of creating observation symbol probabil-
ities is almost identical to the process of finding the next
symbol probabilities for the prediction model as described
in the previous section. Although probability distributions
over all possible symbols are considered, in great majority
of cases only one symbol is strongly predominant respect-
ing the principles of architectural bias. For PFA having sig-
nificantly more states than the number of symbols in alpha-
bet only this predominant symbol can be kept with the state

and the version of Viterbi algorithm described later can be
used for the text correction. Similar approach of extracting
stochastic machines from RNN was desribed in [9].

4.3 Viterbi Algorithm

The task of repairing corrupted text (sequence of sym-
bols) means to find the most likely state sequence that gen-
erated the original text [10]. We assume that the text was
created by the same stochastic process which created train-
ing data and that the corrupting independent identically dis-
tributed noise probability is known.

Then we can solve this task using a well known dynamic
programming algorithm in signal processing called Viterbi
algorithm [11]. The algorithm is presented by the following
code in pseudo-language:

SEQUENCE - corrupted sequence of symbols
STATES - set of states of PFA
PS - vector of probabilities of being ini’s state
PSN - newly constructed vectorPS
ErrorMatrix - probability of changing symboli to j

Transitions(T) - set of transitions from stateT
NextState(N) - next state corresponding to transitionN
Symbol(N) - symbol corresponding to transitionN
Prob(N) - probability of transitionN

TabPrev - previous state for statei andj’s symbol in
sequence

1 PS := initial probabilities of states
2

3 foreach Sj from SEQUENCE do
4 begin
5 PSN := Zeros;
6 foreach T from STATES do
7 begin
8 foreach N from Transitions(T) do
9 begin

10 K := NextState(N);
11 P := ErrorMatrix [Sj, Symbol(N)];
12 if PSN [K] < P * PS [T] * Prob(N) then
13 begin
14 PSN [K] := P * PS [T] * Prob(N);
15 TabPrev [K,j] := T;
16 end;
17 end;
18 end;
19 PS := PSN;
20 end;
21

22 ReconstructCorrectedSequence(TabPrev);

Figure 8. Viterbi algorithm for text correction

In order to reconstruct the corrected sequence one has to
find maximum value in the vectorPS. Thus we obtain the
state in which the most likely state sequence we are looking

for ends. Previous state is in theTabPrev[K,j], where
K is our most recently obtained state andj the position of
symbol in the sequence we are correcting. This step is re-
peated for every symbol from the sequence, going from end.

Now that we have the most likely state sequence, we take
the last symbol from context of each state, thus obtaining
the repaired symbol sequence.

The overall complexity of this algorithm isO(NTS),
whereN is the number of symbols in alphabet,T number
of states andS length of sequence to be corrected.

4.4 Text Correction Using Greedy Search

Models based on chaos game representation have more
complicated dynamics comparing to VLMM and some in-
formation might be lost during conversion to PFA. This is
due to the fact that NPM and FPM are not finite state predic-
tors and their dynamics is completely equal to the dynamics
of original underlying neural network. The most likely state
sequence can therefore be found only by examining proba-
bilities of all possible27T state trajectories.

To find solution in reasonable time we have decided to
reduce search space by Greedy search (GS), which trace
only limited number of most probable candidate trajecto-
ries. At every step all possible continuations of candidate
trajectories were examined and only the most likely contin-
uations were taken to the next step. Probability of state tra-
jectory was calculated similarly to Viterbi algorithm, while
taking into account both initial probability of state trajectory
and probability of transition with respect to the observation.
Finally, the most probable state trajectory was chosen as a
winner and original sequence was reconstructed.

4.5 Experimental Results

To test the text correction capabilities of VLMM the pre-
diction suffix tree was constructed using the learning al-
gorithm on training part of the bible with parametersǫ =
0.0001 andL = 30, resulting in PST having 1790 nodes.
PST was then transformed into PFA with13911 states. Text
correction capabilities of models based on chaos game rep-
resentation were tested using NPM5 with 30000 prediction
contexts. Input and recurrent weights of underlying net-
work were initialized to small values drawn from symmet-
ric interval(−1, 1). Clusters from network state space were
extracted by K-means clustering algorithm. Text correction
was performed by either greedy search of 100 most proba-
ble state trajectories or by Viterbi algorithm applied to PFA
extracted from NPM5 state space.

We tested the text correcting algorithm on text of length
1000 taken from the beginning of the book Genesis. We
changed each symbol into some other one from alphabet
with probability 0.1. As a measure we took the ratio of

corrected symbols to originally corrupted ones, as well as
the number of corrupted symbols still remaining in the cor-
rected text, because the process can also corrupt some orig-
inally uncorrupted symbols.

We performed10 such experiments and took average of
both measures. The results show that the VLMM success-
fully corrected77.7% of originally corrupted100.4 sym-
bols and that26.8 symbols still remained in the corrected
text. The greedy search applied on CGR successfully cor-
rected85.2% of originally corrupted98.6 symbols, while
20.2 of misclassified symbols still remained in the corrected
text. The best results were achieved by PFA extracted from
CGR state space with correction ratio of87.5%. Gener-
ally, the majority of errors was removed, but some remained
uncorrected and some were introduced. This is due to the
fact e.g. that the process found another word that was more
probable than the original uncorrupted one.

corrupted corrected ratio remaining

VLMM / PFA 100.4 78.0 0.7769 26.8
CGR / PFA 101.9 88.8 0.8748 18.3
CGR / GS 98.6 83.8 0.8516 20.2

5 Conclusion

In our work we have studied approaches based on
Markovian architectural bias for modeling of symbolic se-
quences. These approaches use multidimensional RNN-
like state space with contractive dynamics that serves as
the base for the creation of probabilistic models. Models
with dynamics created randomly (NPM) and deterministi-
cally (FPM) were compared with finite state VLMM pre-
dictor. First the predictive performance was evaluated and
compared. Created models were then used in application of
the text correction.

All approaches gave similar results on the task of the next
symbol prediction, although VLMM slightly outperforms
CGR based models. The key part of CGR model creation
is the quantization step that is computationally demanding
and significantly limits overall model performance. VLMM
based approach was compared with two techniques based
on CGR on the text correction task. The VLMM predic-
tion suffix tree was converted into PFA and the text was
corrected using Viterbi algorithm. The first technique based
on CGR consisted of extracting PFA from CGR represen-
tation and application of classical Viterbi algorithm for text
correction.

The second approach directly uses the state space dy-
namics of CGR representation and original text was recon-
structed by greedy version of Viterbi algorithm. The cor-
rection performance of CGR models was better since they
could be based on better predictive models, because the pro-
cess of converting VLMM prediction suffix tree to PFA re-

sults in significant increase in PFA states (in comparison to
the PST nodes). In the case of CGR models the conver-
sion was straightforward (CGR/PFA) or not needed at all
(CGR/GS).

The main drawback of models based on the CGR, that
can significantly reduce their applicability, is the high com-
putational requirements mostly due to the quantization step.
Various dynamic programming techniques significantly re-
duce computational requirements when working with PST.
Other quantization methods e.g. based on hierarchical clus-
tering or other ways of exploitation of RNN-like state space
may improve model quality.

Acknowledgment

This work was supported by the grants APVT-20-030204
and APVT-20-002504.

References

[1] M. Christiansen and N. Chater. Toward a connectionist
model of recursion in human linguistic performance.Cog-
nitive Science, 23:417–437, 1999.

[2] H. Jaeger. The ”echo state” approach to analysing and train-
ing recurrent neural networks. Technical Report GMD Re-
port 148, German National Research Center for Information
Technology, 2001.

[3] H. Jaeger and H. Haas. Harnessing nonlinearity: predicting
chaotic systems and saving energy in wireless communica-
tion. Science, 304(5667):78–80, 2004.

[4] J. F. Kolen. The origin of clusters in recurrent neural net-
work state space. InProceedings from the Sixteenth Annual
Conference of the Cognitive Science Society, pages 508–
513. Hillsdale, NJ: Lawrence Erlbaum Associates, 1994.

[5] M. Machler and P. Buhlmann. Variable length markov
chains: methodology, computing and software.Journal of
Computational and Graphical Statistics, 13:435–455, 2004.

[6] P. Tiňo. Spatial representation of symbolic sequences
through iterative function system.IEEE Transactions on
Systems, Man, and Cybernetics Part A: Systems and Hu-
mans, 29(4):386–392, 1999.

[7] P. Tiňo and G. Dorffner. Recurrent neural networks
with iterated function systems dynamics. InInternational
ICSC/IFAC Symposium on Neural Computation, 1998.

[8] P. Tiňo, M. Čerňanský, and L. Beňušková. Markovian ar-
chitectural bias of recurrent neural networks.IEEE Trans-
actions on Neural Networks, 15(1):6–15, 2004.

[9] P. Tiňo and V. Vojtek. Extracting stochastic machines from
recurrent neural networks trained on complex symbolic se-
quences.Neural Network World, 8(5):517–530, 1998.

[10] D. Ron, Y. Singer, and N. Tishby. The power of amnesia.
Machine Learning, 25, 1996.

[11] A. Viterbi. Error bounds for convolutional codes and an
asymptotically optimal decoding algorithm.IEEE Transac-
tions on Information Theory, 13:260–269, 1967.

