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Abstract. A lot of attention is now being focused on connectionist nieéaown
under the name “reservoir computing”. The most promineah@Xe of these ap-
proaches is a recurrent neural network architecture calteeicho state network
(ESN). ESNs were successfully applied in more real-valired series modeling
tasks and performed exceptionally well. Also using ESNspimcessing sym-
bolic sequences seems to be attractive. In this work we ewpatally support
the claim that the state space of ESN is organized accorditiget Markovian
architectural bias principles when processing symboliuieaces. We compare
performance of ESNs with connectionist models explicitying Markovian ar-
chitectural bias property, with variable length Markov ratsdand with recurrent
neural networks trained by advanced training algorithmsrédver we show that
the number of reservoir units plays a similar role as the remab contexts in
variable length Markov models.

1 Introduction

Echo state network (ESN) [1, 2] is a novel recurrent neursiaek (RNN) architecture
based on a rich reservoir of potentially interesting betwaviihe reservoir of ESN is
the recurrent layer formed of a large number of sparselydntaected units with non-
trainable weights. Under certain conditions RNN state igrecfion of finite history of
inputs presented to the network - the state is the “echo’iithut history. ESN training
procedure is a simple adjustment of output weights to finirgj data. ESNs were
successfully applied in some sequence modeling tasks ardrmped exceptionally
well [3,4]. On the other side part of the community is skeptiout ESNs being used
for practical applications [5]. There are many open questias noted for example by
the author of ESNSs [6]. It is still unclear how to prepare thsearvoir with respect to
the task, what topologies should be used and how to measeiresgbrvoir quality for
example.

Many commonly used real-world data with a time structure lsarexpressed as a
sequence of symbols from finite alphabet - symbolic timeese&ince their emergence
the neural networks were applied to symbolic time serie$yaisa Especially popular
is to use connectionist models for processing of compleguage structures. Other
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works study what kind of dynamical behavior has to be acquig RNNs to solve
particular tasks such as processing strings of contertifneguages, where counting
mechanism is needed [7, 8]. Some researchers realizedvitratire an untrained ran-
domly initialized recurrent network considerable amountlastering is present. This
was first explained in [9] and correspondence to a class @harlength Markov mod-
els was shown in [10].

Some attempts were made to process symbolic time seriggESINS with interest-
ing results. ESNs were trained to stochastic symbolic sszpseand a short English text
in [2] and ESNs were compared with other approaches inciullman’s SRN trained
by simple BP algorithm in [11]. Promising resulting perfante was achieved, supe-
rior to the SRN. In both works results of ESNs weren’t comdasgth RNNs trained
by advanced algorithms.

2 Methods

2.1 Recurrent Neural Networks

RNNs were successfully applied in many real-life applimasi where processing time-
dependent information was necessary. Unlike feedforwaitdral networks, units in

RNNs are fed by activities from previous time steps througturrent connections.
In this way contextual information can be kept in units’ aigés, enabling RNNs to

process time series.

hidden layer
N-units
output layer

input layer
L-units

K-units

OZ

Fig. 1. () Elman’s SRN and (b) Jaeger’'s ESN architectures.

Elman’s simple recurrent network (SRN) proposed in [12] isbhably the most
widely used RNN architecture. Context layer keeps actigitif hidden (recurrent) layer
from previous time step. Input layer together with contayelr form extended input to
the hidden layer. EIman’s SRN composedafiput,4 hidden a3 output units is shown
in Fig. 1a.

Common algorithms usually used for RNN training are basedjm@aient mini-
mization of the output error. Backpropagation through tiBETT) [13, 14] consists of
unfolding a recurrent network in time and applying the wealbwn backpropagation



algorithm directly. Another gradient descent approachenghestimates of derivatives
needed for evaluating error gradient are calculated inydirae step in forward manner,
is the real-time recurrent learning (RTRL) [15, 14]. Prolgahe most successful train-
ing algorithms are based on the Kalman filtration (KF) [1&jeTstandard KF can be
applied to a linear system with Gaussian noise. A nonlingstesn such as RNNs with
sigmoidal units can be handled by extended KF (EKF). In EKfedrization around
current working point is performed and then standard KF diag. In case of RNNSs,
algorithms similar to BPTT or RTRL can be used for lineatizat Methods based
on the Kalman filtration outperform common gradient-badgdr¢hms in terms of in
terms of robustness, stability, final performance and cayerece, but their computa-
tional requirements are usually much higher.

2.2 Echo State Networks

Echo state networks represent a new powerful approach urret neural network
research [1, 3]. Instead of difficult learning process, ESNsbased on the property of
untrained randomly initialized RNN to reflect history of seaputs - here referred to
as “echo state property”. ESN can be considered as a SRN Jidtig@ and sparsely
interconnected recurrent layer - “reservoir” of complexiractive dynamics. Output
units are used to extract interesting features from thisagyios, thus only network’s
output connections are modified during learning processigAificant advantage of
this approach is that computationally effective linearesgion algorithms can be used
for adjusting output weights.

The network includes input, hidden and output “classicajir®id units (Fig. 1b).
The reservoir of the ESN dynamics is represented by hiddesr laith partially con-
nected hidden units. Main and essential condition for ssafetusing of the ESNs is the
“echo state” property of their state space. The networle ssatequired to be an “echo”
of the input history. If this condition is met, only networkitput weights adaptation is
sufficient to obtain RNN with high performance. However, lamge and rich reservoir
of dynamics, hundreds of hidden units are needed. Wifénis an input vector at time
stept, activations of internal units are updated according to

x(t) = f (W™ u(t) + W-x(t — 1) + WPk y(¢ — 1)), 1)

where f is the internal unit’s activation functionV, Wi and WPa<k are hidden-
hidden, input-hidden, and output-hidden connections’rices, respectively. Activa-
tions of output units are calculated as

y(t) = f (W - [u(t), (1), y(t - 1)]), (2)

whereW°ut s output connections’ matrix.

Echo state property means that for each internalajrttiere exists an echo function
e; such that the current state can be writtercg$) = e; (u(t), u(t — 1),...) [1]. The
recent input presented to the network has more influencestogbwork state than an
older input, the input influence gradually fades out. So #maes input signal history
u(t),u(t — 1), will drive the network to the same statg(¢) in time ¢ regardless the
network initial state.



2.3 VariableLength Markov Models

As pointed out in [10], the state space of RNNs initializethvamall weights is orga-
nized in Markovian way prior to any training. To assess, wWie been actually learnt
during the training process it is always necessary to coenparformance of the trained
RNNs with Markov models.

Fixed order Markov model is based on the assumption thatrtstebility of symbol
occurrence depends only on the finite humberoprevious symbols. In the case of
the predictions task all possible substrings of lengtlare maintained by the model.
Substrings are prediction contexts of the model and foryepeediction context the
table of the next symbol probabilities is associated. Heheememory requirements
grow exponentially with the model order.

To solve some limitations of fixed order Markov models valealength Markov
models (VLMMs) were proposed [17,18]. The constructionhe VLMM is a more
complex task, contexts of various lengths are allowed. Thbability of the context is
estimated from the training sequence and rare and otherpaomiemt contexts are not
included in the model.

2.4 ModelsUsing Architectural Bias Property

Several connectionist models directly using Markoviaraoigation [10] of the RNN's
state space were suggested. Activities of recurrent neuroan recurrent neural net-
work initialized with small weights are grouped in clustf} The structure of clusters
reflects the history of inputs presented to the network. Bhlsavior has led to the idea
described in [19] where prediction models called neuraliigteon machine (NPM) and
fractal prediction machine (FPM) were suggested. Both usekbVian dynamics of
untrained recurrent network. In FPM, activation functiémeurrent units is linear and
weights are set deterministically in order to create welfisted state space dynamics. In
NPM, activation functions are nonlinear and weights ar@oanly initialized to small
values as in regular RNN. Instead of using classical ougpgerl readout mechanism,
NPM and FPM use prediction model that is created by extrgdiusters from the net-
work state space. Each cluster corresponds to differedtgii@n context with the next
symbol probabilities.

More precisely, symbol presented to the network drives #tevork to some state
(activities on hidden units). The state belongs to sometefend the context corre-
sponding to this cluster is used for the prediction. The ext'g next symbol proba-
bilities are estimated during training process by relatimg number of times that the
corresponding cluster is encountered and the given nexbalisiobserved.

Described prediction model can be created also using &efvan recurrent units of
the trained RNN. In this article we will refer to this modeldBM built over the trained
RNN. RNN training process is computationally demanding ahduld be justified.
More complex dynamics than simple fixed point attractorellame should be acquired.
Hence prediction context of NPM built over the trained RNNialyy do not follow
Markovian architectural bias principles.



3 Experiments

3.1 Datasets

We present experiments with two symbolic sequences. Theofirs was created by
symbolization of activations of laser in chaotic regime &hdotic nature of the origi-
nal “real-world” sequence is also present in the symboliusace. The second dataset
contains words generated by simple context free grammarsiracture and the recur-
sion depths are fully controlled by the designer [10] in ttase.

The Laser dataset was obtained by quantizing activity chsied laser in chaotic
regime, where relatively predictable subsequences al@ned by hardly predictable
events. The original real-valued time series was compo$dd@00 differences be-
tween the successive activations of a real laser. The sedesjuantized into a sym-
bolic sequence over four symbols corresponding to low agll positive/negative laser
activity change. The first 8000 symbols are used as the nigsgt and the remaining
2000 symbols form the test data set [20].

Deep recursion data set is composed of strings of contegtléinguagé . Its gen-
erating grammar i& = ({R}, {a,b, A, B}, P, R), whereR is the single non-terminal
symbol that is also the starting symbol, and, A, B are terminal symbols. The set of
production rulesP is composed of three simple ruleR: — aRb|R — ARB|R — ¢
wheree is the empty string. This language is in [7] called palindeclanguage. The
training and testing data sets consist of 1000 randomlyrgée@ concatenated strings.
No end-of-string symbol was used. Shorter strings were rfrerpient in the training
set than the longer ones. The total length of the trainingvast6156 symbols and the
length of the testing set was 6190 symbols.

3.2 Performanceof ESNs

In this section the predictive performance of ESNs is ewalllan the two datasets.
Symbols were encoded using one-hot-encoding, i.e. alltioptarget activities were
set to0, except the one corresponding to given symbol, which wamsktPredictive
performance was evaluated by means of a normalized nedagjvékelihood (NNL)
calculated over the test symbol sequefice s;s; ... sy fromtime stepp = 1to T as

T
1
NNL =~ logp(t), (3
t=1

where the base of the logarithm is the alphabet size, ang(ihes the probability
of predicting symbok; in the time steg. For NNL error calculation the activities on
output units were first adjusted to chosen minimal activity,, set t00.001 in this
experiment, then the output probabiljiyt) for NNL calculation could be evaluated:

~ ) Omin if Oi(t) < Omin . Ai(t)
0i(t) = {oi(t) otherwise p(t) = Z 0;(t)’ (4)

whereo;(t) is the activity of the output unitin timet¢.



ESNs with hidden unit count varying from 1 to 1000 were trdinsing recursive
least squares algorithm. Symbols were encoded using arerdtoding, i.e. all input or
target activities were set t) except the one corresponding to given symbol, which was
set tol. Hidden units had sigmoidal activation function and linaetivation function
was used for output units. Reservoir weight matrix was fesicep different values of
spectral radius from 0.01 to 5. The probability of creatingut and threshold connec-
tions was set td.0 in all experiments and input weights were initialized frameirval
(—0.5,0.5). Probability of creating recurrent weights w8 for smaller reservoirs and
0.01 for larger reservoirs. It was found that this parameter teag gmall influence to
the ESN performance (but significantly affects simulatiomej).

Laser ESN DeepRec ESN

Fig. 2. Performance of ESNs with different unit counts and diffénexiues of spectral radius.

As can be seen from the plots in Fig. 2 results are very sirffilawide range of
spectral radii. More units in the reservoir results in bgttediction. To better asses the
importance of reservoir parameterization several interf@ reservoir weights’ val-
ues were tested starting frofr-0.01,0.01) and ending by(—1.0,1.0). Also several
probabilities of recurrent weight existence were testethf®.01 to 1.00. Of course no
spectral radius rescaling was done in this type of experisa&arious probabilities and
intervals for reservoir weights did not influence the rasglperformance a lot, hence
no figures are shown in the paper. For small weight range amgbtobability the in-
formation stored in the reservoir faded too quickly so tHgedéntiation between points
corresponding to long contexts was not possible. This effes more prominent for
the Laser dataset where storing long contexts is necessaghieve good prediction
and hence resulting performance of ESN with weight range-0f1,0.1) and proba-
bility 0.01 are worse for higher unit count in the reservoir. Also highhability and
wide interval are not appropriate. In this case ESN unitsnanking in the saturated
part of its working range very closed @0 and1.0. Differentiating between states is
difficult and hence for example for weight range(ef1.0, 1.0) and probability ofl.0
and higher unit count such &80 unsatisfactory performance is achieved. For higher
values of unit count the performance is worse since theatduris higher, not because
of the overtraining. But for wide range of combinations af¢k parameters very similar
results were obtained. This observation is in accordanttetive principles of Marko-



vian architectural bias. Fractal organization of the reznirneural network state space
is scale free and as long as the state space dynamics remoainaative the clusters
reflecting the history of the symbols presented to the nétwace still present.

3.3 Recurrent Neural Networks

In the experiments of this section we show how classical Riddsesented by Elman’s
SRN perform on the two datasets. Gradient descent appreaahk as backpropagation
through time or real-time recurrent learning algorithmesaidely used by researchers
working with symbolic sequences. In some cases even singukpbbopagation algo-
rithm is used to RNN adaptation [11, 21]. On the other hanthrigues based on the
Kalman filtration used for recurrent neural network tragnom real-valued time series
have already shown their potential.

We provide results for standard gradient descent traimdnlgriiques represented by
simple backpropagation and backpropagation through tigeeithms and for extended
Kalman filter adopted for RNN training with derivatives aalated by BPTT-like algo-
rithm. 10 training epochs (one epoch — one presentationeofrining set) for EKF
were sufficient for reaching the steady state, no signifibiit improvement has oc-
curred after 10 epochs in any experiment. 100 training epé@mhBP and BPTT were
done. We improved training by using scheduled learning k&esused linearly decreas-
ing learning rate in predefined intervals. But no improvetaemade the training as sta-
ble and fast as the EKF training (taking into account the nemalb epochs). Although
it may seem that further training (beyond 100 epochs) mayltresbetter performance,
most of BPTT runs started to diverge in higher epochs.

For NNL calculation the valug(t) is obtained by normalizing activities of output
units and choosing normalized output activity correspngdo the symbok;. NNL
performance was evaluated on the test dataset every 100@¢yateps.
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Fig. 3. Performance of EIman’s SRN with 16 hidden units trained by BPTT and EKF-BPTT
training algorithms.

We present mean and standard deviations of 10 simulatioridman’s SRN with
16 hidden units in Fig. 3. Unsatisfactory simulations witingficantly low performance



were thrown away. This was usually the case of BP and BPTTritlhgas that seems
to be much more influenced by initial weight setting and aresgige to get stuck in
local minima or to diverge in later training phase. Gengrfdr all architectures, NNL
performances of RNNs trained by EKF are better. It seems pmbsible to train RNN
by BPTT to have similar performance as the networks trairyelelKF, but it usually re-
quired much more overhead (i.e. choosing only few from mamyations, more than
one thousand of training epochs, extensive experimentitig@arning and momentum
rates). Also EKF approach to training RNNs on symbolic segas shows higher ro-
bustness and better resulting performance. BP algorithooigeek to give satisfactory
results. NNL performances are significantly worse in conmgawith algorithms that
take into account the recurrent nature of network architest

Extended Kalman filter shows much faster convergence ingesfmumber of
epochs and resulting NNLs are better. Standard deviatioesofts obtained by BPTT
algorithm are high revealing BPTT’s sensitivity to initi@eight setting and to get stuck
to local minimum. Although computationally more difficudtxtended Kalman filter ap-
proach to training recurrent networks on symbolic sequesbews higher robustness
and better resulting performance.

3.4 Markov Models and Methods Explicitly Using Architectural Bias Property

To assess what has been actually learnt by the recurrenbriettvs interesting to
compare the network performance with Markov models and fsadieectly using ar-
chitectural bias of RNNs. Fractal prediction machines vieimed for the next symbol
prediction task on the two datasets. Also neural prediatiachines built over the un-
trained SRN and also SRN trained by EKF-BPTT with 16 hiddeitsuare tested and
results are compared with VLMMs and ESNSs. Prediction castfex all prediction ma-
chines (FPMs and NPMs) were identified using K-means clingtavith cluster count
varying from 1 to 1000.

10 simulation were performed and mean and standard daviateshown in plots.
Neural prediction machines uses dynamics of different agta/from previous exper-
iments for each simulation. For fractal prediction machkimgernal dynamics is deter-
ministic. Initial clusters are set randomly by K-menas tdtisg hence slightly different
results are obtained for each simulation also for FPMs. VL3kre constructed with
the number of context smoothly varying from 1 context (cepanding to the empty
string) to 1000 contexts. Results are shown in Fig. 4.

The first observation is that the ESNs have the same perfaer@sother models
using architectural bias properties and that the numbeidafem units plays very sim-
ilar role as the number of contexts of FPMs and NPMs built angrained SRN. For
Laser dataset incrementing the number of units resulteteidigtion improvement. For
Deep recursion dataset and higher units count (unit counigea300) ESN model is
overtrained exactly as other models. ESN uses linear reéadechanism and the more
dimensional state space we have the better hyper-planeedanibd with respect to the
desired output.

Training can improve the state space organization so b1 models can be
extracted form the recurrent part of the SRN. For Laser éatide improvement is
present for models with small number of context. For high#u@s of context count
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Fig. 4. Performance of ESNs compared to FPMs, NPMs and VLMMs.

the performance of the NPMs created over the trained SRNeisdme as for other
models. But the carefully performed training process uaiiganced training algorithm
significantly improves the performance of NPMs built ovee thained SRN for the
Deep recursion dataset.

Significantly better results were achieved by VLMMs on Deepursion dataset
than with ESN or methods based on Markovian architectues properties. The rea-
sonis in away how a VLMM tree is constructed. VLMM is built ieenentally and the
contextimportance is influenced by Kullback-Leibler diyence between the next sym-
bol distributions of the context and its parent context teatbeing extended by symbol
concatenation. No such mechanism that would take into axt¢be next symbol distri-
bution of the context exists in models based on Markoviahitactural bias. Prediction
contexts correspond to the clusters that are identified antiging the state space.
Clustering is based on vectors occurrences (or proba&sijiind the distances between
vectors. To prove this idea experiments with modified VLMMrev@erformed. Node
importance was given by its probability and its length ansgltype of VLMMs achieved
results almost identical to methods based on Markoviantathiral bias properties.

4 Conclusion

Extensive simulation using ESNs were made and ESNs were a@uipvith the care-
fully trained SRNs, with other connectionist models usingrkbvian architectural bias
property and with VLMMs. Multiple parameters for ESN res@ninitialization were
tested and the resulting performance wasn't significarftbcted. Correspondence be-
tween the number of units in ESN reservoir and the contexticolFPM, NPM mod-
els and Markov models was shown. According to our results £8i¢ not able to
beat Markov barrier when processing symbolic time seriesefdlly trained RNNs or
VLMMs can achieve better results on certain datasets. Ootther side computational
expensive training process may not be justified on othersdtgaand models such as
ESNs can perform just as well as thoroughly trained RNNSs.
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