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Abstract. A lot of attention is now being focused on connectionist models known
under the name “reservoir computing”. The most prominent example of these ap-
proaches is a recurrent neural network architecture calledan echo state network
(ESN). ESNs were successfully applied in more real-valued time series modeling
tasks and performed exceptionally well. Also using ESNs forprocessing sym-
bolic sequences seems to be attractive. In this work we experimentally support
the claim that the state space of ESN is organized according to the Markovian
architectural bias principles when processing symbolic sequences. We compare
performance of ESNs with connectionist models explicitly using Markovian ar-
chitectural bias property, with variable length Markov models and with recurrent
neural networks trained by advanced training algorithms. Moreover we show that
the number of reservoir units plays a similar role as the number of contexts in
variable length Markov models.

1 Introduction

Echo state network (ESN) [1, 2] is a novel recurrent neural network (RNN) architecture
based on a rich reservoir of potentially interesting behavior. The reservoir of ESN is
the recurrent layer formed of a large number of sparsely interconnected units with non-
trainable weights. Under certain conditions RNN state is a function of finite history of
inputs presented to the network - the state is the “echo” of the input history. ESN training
procedure is a simple adjustment of output weights to fit training data. ESNs were
successfully applied in some sequence modeling tasks and performed exceptionally
well [3, 4]. On the other side part of the community is skepticabout ESNs being used
for practical applications [5]. There are many open questions, as noted for example by
the author of ESNs [6]. It is still unclear how to prepare the reservoir with respect to
the task, what topologies should be used and how to measure the reservoir quality for
example.

Many commonly used real-world data with a time structure canbe expressed as a
sequence of symbols from finite alphabet - symbolic time series. Since their emergence
the neural networks were applied to symbolic time series analysis. Especially popular
is to use connectionist models for processing of complex language structures. Other
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works study what kind of dynamical behavior has to be acquired by RNNs to solve
particular tasks such as processing strings of context-free languages, where counting
mechanism is needed [7, 8]. Some researchers realized that even in an untrained ran-
domly initialized recurrent network considerable amount of clustering is present. This
was first explained in [9] and correspondence to a class of variable length Markov mod-
els was shown in [10].

Some attempts were made to process symbolic time series using ESNs with interest-
ing results. ESNs were trained to stochastic symbolic sequences and a short English text
in [2] and ESNs were compared with other approaches including Elman’s SRN trained
by simple BP algorithm in [11]. Promising resulting performance was achieved, supe-
rior to the SRN. In both works results of ESNs weren’t compared with RNNs trained
by advanced algorithms.

2 Methods

2.1 Recurrent Neural Networks

RNNs were successfully applied in many real-life applications where processing time-
dependent information was necessary. Unlike feedforward neural networks, units in
RNNs are fed by activities from previous time steps through recurrent connections.
In this way contextual information can be kept in units’ activities, enabling RNNs to
process time series.
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Fig. 1. (a) Elman’s SRN and (b) Jaeger’s ESN architectures.

Elman’s simple recurrent network (SRN) proposed in [12] is probably the most
widely used RNN architecture. Context layer keeps activities of hidden (recurrent) layer
from previous time step. Input layer together with context layer form extended input to
the hidden layer. Elman’s SRN composed of5 input,4 hidden a3 output units is shown
in Fig. 1a.

Common algorithms usually used for RNN training are based ongradient mini-
mization of the output error. Backpropagation through time(BPTT) [13, 14] consists of
unfolding a recurrent network in time and applying the well-known backpropagation



algorithm directly. Another gradient descent approach, where estimates of derivatives
needed for evaluating error gradient are calculated in every time step in forward manner,
is the real-time recurrent learning (RTRL) [15, 14]. Probably the most successful train-
ing algorithms are based on the Kalman filtration (KF) [16]. The standard KF can be
applied to a linear system with Gaussian noise. A nonlinear system such as RNNs with
sigmoidal units can be handled by extended KF (EKF). In EKF, linearization around
current working point is performed and then standard KF is applied. In case of RNNs,
algorithms similar to BPTT or RTRL can be used for linearization. Methods based
on the Kalman filtration outperform common gradient-based algorithms in terms of in
terms of robustness, stability, final performance and convergence, but their computa-
tional requirements are usually much higher.

2.2 Echo State Networks

Echo state networks represent a new powerful approach in recurrent neural network
research [1, 3]. Instead of difficult learning process, ESNsare based on the property of
untrained randomly initialized RNN to reflect history of seen inputs - here referred to
as “echo state property”. ESN can be considered as a SRN with alarge and sparsely
interconnected recurrent layer - “reservoir” of complex contractive dynamics. Output
units are used to extract interesting features from this dynamics, thus only network’s
output connections are modified during learning process. A significant advantage of
this approach is that computationally effective linear regression algorithms can be used
for adjusting output weights.

The network includes input, hidden and output “classical” sigmoid units (Fig. 1b).
The reservoir of the ESN dynamics is represented by hidden layer with partially con-
nected hidden units. Main and essential condition for successful using of the ESNs is the
“echo state” property of their state space. The network state is required to be an “echo”
of the input history. If this condition is met, only network output weights adaptation is
sufficient to obtain RNN with high performance. However, forlarge and rich reservoir
of dynamics, hundreds of hidden units are needed. Whenu(t) is an input vector at time
stept, activations of internal units are updated according to

x(t) = f
(

Win · u(t) + W · x(t − 1) + Wback · y(t − 1)
)

, (1)

wheref is the internal unit’s activation function,W, Win andWback are hidden-
hidden, input-hidden, and output-hidden connections’ matrices, respectively. Activa-
tions of output units are calculated as

y(t) = f
(

Wout · [u(t),x(t),y(t − 1)]
)

, (2)

whereWout is output connections’ matrix.
Echo state property means that for each internal unitxi there exists an echo function

ei such that the current state can be written asxi(t) = ei(u(t), u(t − 1), . . .) [1]. The
recent input presented to the network has more influence to the network state than an
older input, the input influence gradually fades out. So the same input signal history
u(t), u(t − 1), will drive the network to the same statexi(t) in time t regardless the
network initial state.



2.3 Variable Length Markov Models

As pointed out in [10], the state space of RNNs initialized with small weights is orga-
nized in Markovian way prior to any training. To assess, whathas been actually learnt
during the training process it is always necessary to compare performance of the trained
RNNs with Markov models.

Fixed order Markov model is based on the assumption that the probability of symbol
occurrence depends only on the finite number ofm previous symbols. In the case of
the predictions task all possible substrings of lengthm are maintained by the model.
Substrings are prediction contexts of the model and for every prediction context the
table of the next symbol probabilities is associated. Hencethe memory requirements
grow exponentially with the model orderm.

To solve some limitations of fixed order Markov models variable length Markov
models (VLMMs) were proposed [17, 18]. The construction of the VLMM is a more
complex task, contexts of various lengths are allowed. The probability of the context is
estimated from the training sequence and rare and other unimportant contexts are not
included in the model.

2.4 Models Using Architectural Bias Property

Several connectionist models directly using Markovian organization [10] of the RNN’s
state space were suggested. Activities of recurrent neurons in an recurrent neural net-
work initialized with small weights are grouped in clusters[9]. The structure of clusters
reflects the history of inputs presented to the network. Thisbehavior has led to the idea
described in [19] where prediction models called neural prediction machine (NPM) and
fractal prediction machine (FPM) were suggested. Both use Markovian dynamics of
untrained recurrent network. In FPM, activation function of recurrent units is linear and
weights are set deterministically in order to create well-defined state space dynamics. In
NPM, activation functions are nonlinear and weights are randomly initialized to small
values as in regular RNN. Instead of using classical output layer readout mechanism,
NPM and FPM use prediction model that is created by extracting clusters from the net-
work state space. Each cluster corresponds to different prediction context with the next
symbol probabilities.

More precisely, symbol presented to the network drives the network to some state
(activities on hidden units). The state belongs to some cluster and the context corre-
sponding to this cluster is used for the prediction. The context’s next symbol proba-
bilities are estimated during training process by relatingthe number of times that the
corresponding cluster is encountered and the given next symbol is observed.

Described prediction model can be created also using activities on recurrent units of
the trained RNN. In this article we will refer to this model asNPM built over the trained
RNN. RNN training process is computationally demanding andshould be justified.
More complex dynamics than simple fixed point attractor-based one should be acquired.
Hence prediction context of NPM built over the trained RNN usually do not follow
Markovian architectural bias principles.



3 Experiments

3.1 Datasets

We present experiments with two symbolic sequences. The first one was created by
symbolization of activations of laser in chaotic regime andchaotic nature of the origi-
nal “real-world” sequence is also present in the symbolic sequence. The second dataset
contains words generated by simple context free grammar. The structure and the recur-
sion depths are fully controlled by the designer [10] in thiscase.

The Laser dataset was obtained by quantizing activity changes of laser in chaotic
regime, where relatively predictable subsequences are followed by hardly predictable
events. The original real-valued time series was composed of 10000 differences be-
tween the successive activations of a real laser. The serieswas quantized into a sym-
bolic sequence over four symbols corresponding to low and high positive/negative laser
activity change. The first 8000 symbols are used as the training set and the remaining
2000 symbols form the test data set [20].

Deep recursion data set is composed of strings of context-free languageLG. Its gen-
erating grammar isG = ({R}, {a, b, A, B}, P, R), whereR is the single non-terminal
symbol that is also the starting symbol, anda, b, A, B are terminal symbols. The set of
production rulesP is composed of three simple rules:R → aRb|R → ARB|R → e

wheree is the empty string. This language is in [7] called palindrome language. The
training and testing data sets consist of 1000 randomly generated concatenated strings.
No end-of-string symbol was used. Shorter strings were morefrequent in the training
set than the longer ones. The total length of the training setwas 6156 symbols and the
length of the testing set was 6190 symbols.

3.2 Performance of ESNs

In this section the predictive performance of ESNs is evaluated on the two datasets.
Symbols were encoded using one-hot-encoding, i.e. all input or target activities were
set to0, except the one corresponding to given symbol, which was setto 1. Predictive
performance was evaluated by means of a normalized negativelog-likelihood (NNL)
calculated over the test symbol sequenceS = s1s2 . . . sT from time stept = 1 to T as

NNL = −
1

T

T
∑

t=1

log|A| p(t), (3)

where the base of the logarithm is the alphabet size, and thep(t) is the probability
of predicting symbolst in the time stept. For NNL error calculation the activities on
output units were first adjusted to chosen minimal activityomin set to0.001 in this
experiment, then the output probabilityp(t) for NNL calculation could be evaluated:

ôi(t) =

{

omin if oi(t) < omin

oi(t) otherwise
, p(t) =

ôi(t)
∑

j

ôj(t)
, (4)

whereoi(t) is the activity of the output uniti in time t.



ESNs with hidden unit count varying from 1 to 1000 were trained using recursive
least squares algorithm. Symbols were encoded using one-hot-encoding, i.e. all input or
target activities were set to0, except the one corresponding to given symbol, which was
set to1. Hidden units had sigmoidal activation function and linearactivation function
was used for output units. Reservoir weight matrix was rescaled to different values of
spectral radius from 0.01 to 5. The probability of creating input and threshold connec-
tions was set to1.0 in all experiments and input weights were initialized from interval
(−0.5, 0.5). Probability of creating recurrent weights was1.0 for smaller reservoirs and
0.01 for larger reservoirs. It was found that this parameter has very small influence to
the ESN performance (but significantly affects simulation time).
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Fig. 2. Performance of ESNs with different unit counts and different values of spectral radius.

As can be seen from the plots in Fig. 2 results are very similarfor wide range of
spectral radii. More units in the reservoir results in better prediction. To better asses the
importance of reservoir parameterization several intervals for reservoir weights’ val-
ues were tested starting from(−0.01, 0.01) and ending by(−1.0, 1.0). Also several
probabilities of recurrent weight existence were tested from0.01 to 1.00. Of course no
spectral radius rescaling was done in this type of experiments. Various probabilities and
intervals for reservoir weights did not influence the resulting performance a lot, hence
no figures are shown in the paper. For small weight range and low probability the in-
formation stored in the reservoir faded too quickly so the differentiation between points
corresponding to long contexts was not possible. This effect was more prominent for
the Laser dataset where storing long contexts is necessary to achieve good prediction
and hence resulting performance of ESN with weight range of(−0.1, 0.1) and proba-
bility 0.01 are worse for higher unit count in the reservoir. Also high probability and
wide interval are not appropriate. In this case ESN units areworking in the saturated
part of its working range very closed to0.0 and1.0. Differentiating between states is
difficult and hence for example for weight range of(−1.0, 1.0) and probability of1.0
and higher unit count such as300 unsatisfactory performance is achieved. For higher
values of unit count the performance is worse since the saturation is higher, not because
of the overtraining. But for wide range of combinations of these parameters very similar
results were obtained. This observation is in accordance with the principles of Marko-



vian architectural bias. Fractal organization of the recurrent neural network state space
is scale free and as long as the state space dynamics remains contractive the clusters
reflecting the history of the symbols presented to the network are still present.

3.3 Recurrent Neural Networks

In the experiments of this section we show how classical RNNsrepresented by Elman’s
SRN perform on the two datasets. Gradient descent approaches such as backpropagation
through time or real-time recurrent learning algorithms are widely used by researchers
working with symbolic sequences. In some cases even simple backpropagation algo-
rithm is used to RNN adaptation [11, 21]. On the other hand, techniques based on the
Kalman filtration used for recurrent neural network training on real-valued time series
have already shown their potential.

We provide results for standard gradient descent training techniques represented by
simple backpropagation and backpropagation through time algorithms and for extended
Kalman filter adopted for RNN training with derivatives calculated by BPTT-like algo-
rithm. 10 training epochs (one epoch – one presentation of the training set) for EKF
were sufficient for reaching the steady state, no significantNNL improvement has oc-
curred after 10 epochs in any experiment. 100 training epochs for BP and BPTT were
done. We improved training by using scheduled learning rate. We used linearly decreas-
ing learning rate in predefined intervals. But no improvements made the training as sta-
ble and fast as the EKF training (taking into account the number of epochs). Although
it may seem that further training (beyond 100 epochs) may result in better performance,
most of BPTT runs started to diverge in higher epochs.

For NNL calculation the valuep(t) is obtained by normalizing activities of output
units and choosing normalized output activity corresponding to the symbolst. NNL
performance was evaluated on the test dataset every 1000 training steps.
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Fig. 3. Performance of Elman’s SRN with 16 hidden units trained by BP, BPTT and EKF-BPTT
training algorithms.

We present mean and standard deviations of 10 simulations for Elman’s SRN with
16 hidden units in Fig. 3. Unsatisfactory simulations with significantly low performance



were thrown away. This was usually the case of BP and BPTT algorithms that seems
to be much more influenced by initial weight setting and are sensitive to get stuck in
local minima or to diverge in later training phase. Generally for all architectures, NNL
performances of RNNs trained by EKF are better. It seems to bepossible to train RNN
by BPTT to have similar performance as the networks trained by EKF, but it usually re-
quired much more overhead (i.e. choosing only few from many simulations, more than
one thousand of training epochs, extensive experimenting with learning and momentum
rates). Also EKF approach to training RNNs on symbolic sequences shows higher ro-
bustness and better resulting performance. BP algorithm istoo week to give satisfactory
results. NNL performances are significantly worse in comparing with algorithms that
take into account the recurrent nature of network architectures.

Extended Kalman filter shows much faster convergence in terms of number of
epochs and resulting NNLs are better. Standard deviation ofresults obtained by BPTT
algorithm are high revealing BPTT’s sensitivity to initialweight setting and to get stuck
to local minimum. Although computationally more difficult,extended Kalman filter ap-
proach to training recurrent networks on symbolic sequences shows higher robustness
and better resulting performance.

3.4 Markov Models and Methods Explicitly Using Architectural Bias Property

To assess what has been actually learnt by the recurrent network it is interesting to
compare the network performance with Markov models and models directly using ar-
chitectural bias of RNNs. Fractal prediction machines weretrained for the next symbol
prediction task on the two datasets. Also neural predictionmachines built over the un-
trained SRN and also SRN trained by EKF-BPTT with 16 hidden units are tested and
results are compared with VLMMs and ESNs. Prediction contexts for all prediction ma-
chines (FPMs and NPMs) were identified using K-means clustering with cluster count
varying from 1 to 1000.

10 simulation were performed and mean and standard deviation are shown in plots.
Neural prediction machines uses dynamics of different networks from previous exper-
iments for each simulation. For fractal prediction machines internal dynamics is deter-
ministic. Initial clusters are set randomly by K-menas clustering hence slightly different
results are obtained for each simulation also for FPMs. VLMMs were constructed with
the number of context smoothly varying from 1 context (corresponding to the empty
string) to 1000 contexts. Results are shown in Fig. 4.

The first observation is that the ESNs have the same performance as other models
using architectural bias properties and that the number of hidden units plays very sim-
ilar role as the number of contexts of FPMs and NPMs built overuntrained SRN. For
Laser dataset incrementing the number of units resulted in prediction improvement. For
Deep recursion dataset and higher units count (unit counts above 300) ESN model is
overtrained exactly as other models. ESN uses linear readout mechanism and the more
dimensional state space we have the better hyper-plane can be found with respect to the
desired output.

Training can improve the state space organization so betterNPM models can be
extracted form the recurrent part of the SRN. For Laser dataset the improvement is
present for models with small number of context. For higher values of context count
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Fig. 4. Performance of ESNs compared to FPMs, NPMs and VLMMs.

the performance of the NPMs created over the trained SRN is the same as for other
models. But the carefully performed training process usingadvanced training algorithm
significantly improves the performance of NPMs built over the trained SRN for the
Deep recursion dataset.

Significantly better results were achieved by VLMMs on Deep recursion dataset
than with ESN or methods based on Markovian architectural bias properties. The rea-
son is in a way how a VLMM tree is constructed. VLMM is built incrementally and the
context importance is influenced by Kullback-Leibler divergence between the next sym-
bol distributions of the context and its parent context, context being extended by symbol
concatenation. No such mechanism that would take into account the next symbol distri-
bution of the context exists in models based on Markovian architectural bias. Prediction
contexts correspond to the clusters that are identified by quantizing the state space.
Clustering is based on vectors occurrences (or probabilities) and the distances between
vectors. To prove this idea experiments with modified VLMM were performed. Node
importance was given by its probability and its length and this type of VLMMs achieved
results almost identical to methods based on Markovian architectural bias properties.

4 Conclusion

Extensive simulation using ESNs were made and ESNs were compared with the care-
fully trained SRNs, with other connectionist models using Markovian architectural bias
property and with VLMMs. Multiple parameters for ESN reservoir initialization were
tested and the resulting performance wasn’t significantly affected. Correspondence be-
tween the number of units in ESN reservoir and the context count of FPM, NPM mod-
els and Markov models was shown. According to our results ESNs are not able to
beat Markov barrier when processing symbolic time series. Carefully trained RNNs or
VLMMs can achieve better results on certain datasets. On theother side computational
expensive training process may not be justified on other datasets and models such as
ESNs can perform just as well as thoroughly trained RNNs.
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