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Abstract. A lot of attention is now being focused on connectionist niséaown
under the name “reservoir computing”. The most promineahgXe of these ap-
proaches is a recurrent neural network architecture caltegicho state network
(ESN). ESNs were successfully applied in several time seniedeling tasks and
according to the authors they performed exceptionally vWéilitiple enhance-
ments to standard ESN were proposed in the literature. snpéper we follow
the opposite direction by suggesting several simplificegtito the original ESN
architecture. ESN reservoir features contractive dynamgsulting from its’ ini-
tialization with small weights. Sometimes it serves jusaasmple memory of
inputs and provides only negligible “extra-value” over rhgimple methods. We
experimentally support this claim and we show that manystastideled by ESNs
can be handled with much simple approaches.

1 Introduction

Echo state network (ESN) [1] is a novel recurrent neural ngtwWyRNN) architecture
based on a rich reservoir of potentially interesting betwaviihe reservoir of ESN is
the recurrent layer formed of a large number of sparselydntaected units with non-
trainable weights. ESN training procedure is a simple adjast of output weights to fit
training data. ESNs were successfully applied in severplagce modeling tasks and
performed exceptionally well [2, 3]. Also some attemptsewmade to process symbolic
time series using ESNs with interesting results [4].

On the other side part of the community is skeptic about ESsused for practi-
cal applications [5]. There are many open questions, asligtéhe author of ESNs [6].
It is still unclear how to prepare the reservoir with resgedhe task, what topologies
should be used and how to measure the reservoir quality fomple.

The key feature of ESNs is so called “echo-state” propernyan certain conditions
ESN state is a function of finite history of inputs presentethe network - the state
is the “echo” of the input history. It simply means that ESMes based on contractive
dynamics where recurrent units reflect the history of inpuesented to the network.
The most recent input has the most important influence toutrest network state and
this influence gradually fades out.

To study properties responsible for excellent performafdeSN architecture we
propose several simplified models. The first we call “feedfod echo state network”
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(FF-ESN). In FF-ESN, a cascaded reservoir topology witmgular recurrent weight
matrix is employed and so each FF-ESN can be unfolded intajaivaent feedfor-
ward network. By using this architecture we try to reveal tleurrent nature of the
ESN reservoir is not the key architectural feature, as iallgus in recurrent multi-
layer perceptron trained by common algorithm such as baggwation through time.
The next simplified model is ESN-like architecture with m¥e& composed of units
organized in one chain, hence only elements on recurremghivenatrix subdiagonal
have nonzero values. This model benefits from the nonlineabimation of network
inputs and this combination is achieved by a very straighi#od manner. Finally we
have tested performance of linear autoregressive modasepted by architecture with
linear hidden units organized in chain and thus forming ¢abgelay line.

2 Modes

2.1 Echo State Networks

Echo state networks represent a new powerful approach urreedt neural network
research [1, 3]. They belong to the class of methods knowethé name “reservoir
computing”. Reservoir of ESN is formed of large sparselgiobnnected and randomly
initialized recurrent layer composed of huge number ofddath sigmoid units. As a
readout mechanism ESN uses standard output layer and txeitteresting features
from dynamical reservoir only output connections are medifiluring learning pro-
cess. A significant advantage of this approach over stariRldidk is that simple linear
regression algorithms can be used for adjusting outputit®igVhenu(t) is an input
vector at time step, activations of hidden units(¢) are updated according to

x(t) = f (W™ [u(t), 1] + W - x(t — 1) + WPak . y(t — 1)), (1)

where f is the hidden unit's activation function, Wi and Wba<k are hidden-
hidden, input-hidden, and output-hidden connections'rives, respectively. Activa-
tions of utput units are calculated as

y(t) = f (W - [u(t), x(t),1]) , (2)

whereWeut is output connections’ matrix.

Echo state property means that for each internaljrttiere exists an echo function
e; such that the current state can be writtenza8) = e;(u(t),u(t — 1),...), the
network state is an “echo” of the input history [1]. The reicEmput presented to the
network has more influence to the network state than an aigeit,ithe input influence
gradually fades out. So the same input signal histof), w(t — 1), will drive the
network to the same state (¢) in time ¢ regardless the network initial state. Echo
states are crucial for successful operation of ESNs, théstance is usually ensured
by rescaling recurrent weight matri® to specified spectral radius This can be
achieved by simply multiplying all elements of a randomlygeted recurrent weight
matrix with A/ Apq., where,,.. is the spectral radius of the original matrix.



2.2 Feed-Forward ESN Model

Taking into account the contractive dynamics of ESN exhibithrough existence of
“echo states”, the network output can be seen as a compldinaanfunction of the

input history with finite length since the influence of inptages out exponentially in
time and inputs presented in earlier time steps can be ign8yeremoving recurrent
connections we propose modified model with the reservoindéwwonnected in a feed-
forward manner. Units in a reservoir can be indexed and #utivities depend only on
activities of units with smaller indices. No cycles are grasin the graph with nodes
representing units and edges representing connectiofisSINHs shown in the Fig. 1a.
Technically these connections are still recurrent oneatms units are fed by activities

hidden
units
x(t) u(t-N+1)

Fig. 1. (a) Modified “feed-forward” ESN architecture. (b) Feedviad ESN unfolded in time into
regular feed-forward network.

from previous time steps. But this network can be easilysfiemed into regular feed-
forward network by the process identical to the RNN unfoddin time when using
backpropagation through time learning algorithm (see Hij.

Exactly the same training process as is commonly used initigairegular ESNs
can be used. The only difference is how a recurrent weightixnatgenerated. Initial
values for biases, recurrent and backward weights fallsesame ranges as described
for regular ESNs. Recurrent weight matrix is rescaled tadugiired spectral radius
and the matrix is then made lower triangular by keeping oldgnents below diagonal.
To force the ESN to keep longer history of inputs in actigt®ery unit was connected
to the previous one — 1 through the weightv; ,_; of chosen constant value, in our
experiments we used the value of spectral radius

2.3 Tapped Delay Line Models

Further simplification of ESN architecture resulted in thedwl with hidden unites or-
ganized into a tapped delay line. Hence the only existingrreat weights arey; ;1

connecting every hidden unit to its predecessor, excluthegfirst hidden unit. The
first tapped delay line model variant labeled TDL-I (tappethgt line with inputs) also
allows input and threshold connections for hidden unitsLAMDses hidden units with



nonlinear activation function and was constructed in otd@rove our supposition that
very simple nonlinear combination of inputs can be resgmedor stunning perfor-
mance of ESNs on some tasks. The second variant is evenmgseapdification. Its a
TDL with linear hidden units and only the first hidden unit @oected to the input. All
connections are set to 1.0. It supposes that the process imeideled can be handled
with auto-regressive model. Both models are representEwir?

hidden
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N

Fig. 2. (a) Architecture with reservoir orginized as TDL with nardar units connected to input.
(b) Architecture with reservoir formed of linear units ongged to TDL.

3 Method

We trained ENS, FF-ESN, TDL-I and TDL models on several tirmges modeling
tasks. We provide mean square error (MSE) results for skedetasets taken from pub-
lished works. For each model and each dataset we have daltueeans and standard
deviations over 10 simulation runs with the best meta-patars we were able to find
(only number of reservoir units was chosen to match the phobll experiments).

We used both standard training as proposed in [1] and tgiming recursive least
squares [3] for each of four architectures and each datasete we used output units
with linear activation function for all architectures tatgralues were directly used in
the least squares fit. All time series are single-dimensio@ace all architectures had
only one input and one output unit.

The standard training consists of first running the netwarkttee train set and
collecting activities of input and hidden units. Initial &shout” activities are thrown
away and remaining values forming matiXxare used for least squares fitting. Output
weights are found by solvinkw = ¥ for w using singular value decomposition.
stands for the vecor of output unit weights. It is formed byaatenating output unit
threshold, input-output weights and hidden-output weighMatrix X has rows corre-
sponding to time steps. The first value in each row is the em$t0 corresponding to
the output unit threshold followed first by input values ahdrt hidden activities col-
lected from the corresponding time step. Vegtas the vector of target values from the
training set.



Recursive least squares training starts after initial tveagt” steps. Output weights
are updated every time step according to the following égnsit

Pt —1)v(b)
kKO = Topa— vy ®)
P(t) =7 (P(t—1) — k(v ()P(t — 1)), (4)
wit) = w(t = 1) + k(O[3(t) ~y() (5)

wherek stands for the innovation vector calculated in every tinepsj andy cor-
respond to the desired and calculated output unit actvitieis the vector of output
weights (threshold, weights from input and hidden unijs error covariance matrix
initialized with large diagonal values and updated in ex@ng step. Forgetting param-
eter+ is usually set to the value smaller or equalit6. v is the vector of activities
of input and hidden units form actual time step. The first gadfiv is constantl.0
corresponding to the threshold of the output unit.

4 Results

4.1 Mackey-Glass Chaotic Time Series

Mackey-Glass (MG) system is a chaotic time series where EBN&ed excellent per-
formance exceeding other approaches by several ordefs [AG3system is defined by
the differential equation8z /9t = (0.2(z — 7)) /(1 4+ z(t — 7)1° — 0.1z(¢)) and we
usedr = 17 as in [3]. We have generated 10000 values using MG systenm Vdlaes
were shifted by adding -1 and tanh function was used to squadgks into appropriate
interval as in [3]. The first 5000 values were used for thentregj set and remaining
5000 values were used for testing. Initial 1000 from thenirag set were used only for
forward propagation and corresponding hidden units digts/ivere discarded from the
adaptation process.

Models with 1000 hidden units were trained for the next valegliction task. Input
weights and thresholds for ESN, FF-ESN and TDL-I were itiitél from (—0.2,0.2)
interval. Recurrent weights for ESN and FF-ESN were creafi¢id 1.0% probability
and then recurrent weight matrix was rescaled to speciaisa = 0.70 for ESN and
0.65 for FF-ESN. “Backbone” recurrent connectians,_; were set to 0.65 for both
FF-ESN and TDL-1 model. RLS forgetting parametewas set to 1.0. Resulting MSE
means together with standard deviations in parenthesistem@n in the Tab. 1. The
best performance was achieved using ESN, with FF-ESN and-MBDadels inferior
performance was obtained, but within the same order of nbagdgi This is in slight
contrast from our previous findings, where FF-ESNs perfaric@mparably well on
MG generation task [7]. FF-ESN architecture is more semstt the network initial-
ization parameters and more thorough parameter searctongss could resultin some
performance improvement. Quite surprising is a very goaalistion performance of
TDL-I model. Although this model is extremely simple and Hasless connections
than ESN or FF-ESN, its resulting performance was compar&imple linear TDL



One Step Least SquareFit

Recursive Least Squares

ESN

9.82 x 10719 (9.02 x 107 '7)

3.30 x 1077 (1.95 x 10~ 19)

FF-ESN

1.84 x 10~ (2.13 x 10717

1.77 x 1077 (1.62 x 10~ '7)

TDL-I

188 x 10 ™ (2.49 x 107 9)

374 % 10 ° (1.19 x 10 ™7)

1.18 x 10°° 1.32x 10°°
[he next value prediction results for Mackey-Glass timéser

TDL
Tablel. T

model is not able to achieve comparable performance to otloelels that can exploit
nonlinearity through hidden units’ activation functiondien combining inputs. RLS
results for all models are severely inferior to results oied by standard training, since
numerical accuracy is a key factor to achieve result€of'®> order. The required preci-
sion is lost when doing recursive updates. On the other hartdard to imagine real-life
application where results of similar precision would beiechble.

4.2 Nonlinear Communication Channel

We used the same nonlinear channel model as in [3]. First theqaencel(n) of
symbols transmitted through the channel was generatednulonaly choosing values
from {—3,—1,1,3}. Thend(n) values were used to forg(n) sequence by(n) =
0.08d(n+2) — 0.12d(n+ 1) + d(n) + 0.18d(n — 1) — 0.1d(n — 2) + 0.09d(n — 3) —
—0.05d(n — 4) 4+ 0.04d(n — 5) + 0.03d(n — 6) + 0.01d(n — 7) what represents linear
filter equation. Nonlinear transformation is then appliedtr) sequence to produce
row corrupted signak(n) by u(n) = q(n) + 0.0036¢(n)? — 0.11¢(n3) + v(n) where
v(n) represents the zero mean Gaussian noise. In our experimentise was added.
The task was to predict valukn — 2) whenw(n) was presented to the network. We
also shiftedu(n) signal by adding value of 30 like in [3].

Models were trained on 4000 values and then the performaasewvaluated on the
next 6000 values. Initial 100 values from the training setemeot used in adaptation
process. All models had 47 hidden units (as in [3]), inputghies for ESN, FF-ESN
and TDL-I models were generated frofr-0.025,0.025) interval. Recurrent weight
were generated with 20% probability and the recurrent waitgtrix was then rescaled
to spectral radiuss. = 0.5. The same value was used for FF-ESN and TDL-I back-
bone connections. RLS forgetting parametavas set to 1.0. Results are given in the
Tab. 2. Results for ESN, FF-ESN and TDL-I models are verylsinfior both standard

One Step Least Square Fit|Recursive Least Squares
ESN 0.022 (0.0016) 0.028 (0.010)
FF-ESN 0.022 (0.0017) 0.025 (0.0039)
TDL-I 0.018 (0.0024) 0.026 (0.0027)
TDL 0.052 0.053

Table 2. The next value prediction results for nonlinear commumicathannel.

training and RLS training, although slight degradation @ffprmance can be observed



for RLS. Simple architecture of TDL-I model is sufficient tbtain good results. Al-
though performance of linear TDL model is much inferiorsistill comparable to other
models.

43 NARMA System

The 10th order nonlinear autoregressive moving averageR(MA) system from [8]
defined asi(n-+1) = 0.3d(n)+0.05d(n) | _y d(n—i)| +1.5u(n—9)u(n)+0.1 was
used. Values for input sequenegén) were generated uniformly from intervgl, 0.5]
and the task was to predi¢fn). Training set was composed of 2200 values and first 200
values were used as initial washout steps. Next 2000 valees used to train models.
Testing was performed on the next 2000 values. No noise wderdd the sequence.
We trained models with hidden layer formed of 100 units. lnpaight were ini-
tialized from(—0.1,0.1) interval. Recurrent weights were created with 5% probgbili
and recurrent weight matrix was rescaled to have spectiaisa = 0.95 (for ESN
and FF-ESN model). Backbone connections (for FF-ESN and-Tibbdels) were set
to the same value. RLS forgetting factor was setyte= 1.0. Results are shown in
Tab. 3. Results reveal only slight differences betweendstathand RLS training. Both

One Step Least Square Fit|Recursive Least Squares
ESN 0.00091 (0.00017) 0.00084 (0.000084)
FF-ESN|  0.00090 (0.00011) 0.00096 (0.00027)
TDL-I 0.00132 (0.00021) 0.00141 (0.00023)
TDL 0.00189 0.00189
Table 3. Prediction results for NARMA system.

ESN and FF-ESN models achieved similar performance. Sogmifiy worse but yet
comparable performance was achieved with TDL-I and TDL ni&de

4.4 Predictive Modeling Problem

The next task is called predictive modeling taken form [9nd@ series of 10000 values
was generated usingn(n + sin(n)) forn = 1,2,..., the first 1000 values initial
transient activities are thrown away, training is perfodnoa the next 4000 values and
predictive performance is evaluated on the next 5000 values

Models with 600 units were tested, small= 0.35 value was used to rescale re-
current weight matrix for ESN and FF-ESN models. The sameevalas also used
for backbone connections of FF-ESN and TDL-I models. Rexurweights for ESN
and FF-ESN were created with 10% probability. Input weidgbtsESN, FF-ESN and
TDL-I were created fron{—0.25,0.25) interval. Hidden units had no threshold con-
nections. Results are shown in Tab. 4. We were able to traietaaising nonlinear
activation function to the same level of performance. LmEAL showed significantly
poorer performance. ESN model in [9] was trained with suinagitparameters, scaling



One Step Least Square Fit|Recursive Least Squares
ESN | 0.00046 (5.20 x 10~ ") 0.018 (0.0019)
FF-ESN| 0.00055 (6.22 x 10~°) 0.0074 (0.00066)
TDL-I | 0.00058 (6.52 x 10~7) 0.015 (0.00081)
TDL 0.056 0.056

Table 4. The next value prediction results for predictive modelimglppem.

recurrent weights to relatively small spectral radius ltesLinto significant prediction
improvement. We were not able to train models to the compatabel of performance
with RLS, much better results were obtained using standagedsbtep linear regression.

45 Multiple Superimposed Ocillator

Multiple superimposed oscillators time series was usedternext value prediction
problem in [9, 10]. Dataset values are created@ag0.2n) + sin(0.311n) for n =
1,2,.... Sequence of 1000 values was generated, the first 100 vakresused for ini-
tial transient steps. Training was performed on the foltan600 values and predictive
performance was evaluated on the next 300 values.

We provide results for models with 400 hidden units. Inpuighiewere initialized
from (—0.2,0.2) interval. Recurrent weights were created with 10% prolitstaind
recurrent weight matrix was rescaled to have spectral sadig 0.5 for ESN for FF-
ESN models. Also backbone connections for FF-ESN and TDlodlels were set to
0.5. RLS forgetting factor was set to = 1.0. Results are shown in Tab. 5. Results

One Step Least Square Fit Recursive Least Squares
ESN [1.30 x 107 %% (1.11 x 10~%)[5.64 x 10~ ™% (2.27 x 10~ %)
FF-ESN|6.30 x 10~27 (4.79 x 10~ °7)|1.34 x 10~ % (3.14 x 10~ %)
TDL-I |7.45 x 10727 (3.59 x 10~ 2%)[5.35 x 10~ 12 (1.37 x 10~ %)
TDL 1.04 x 10°%® 1.90 x 10~
Table5. The next value prediction results for multiple superimpbsscillator problem.

reveal that MSO problem can be modeled by simple linear agtessive model and
hence linear TDL outperforms other models exploiting noedirity by several orders
of magnitude. All models were trained to significantly betterformance than in [9]
since they are equipped with linear output units. Becausamafller \ values hidden
units operate in linear part of their activation functionslanodels achieve better results
than if higher\ values were used.

4.6 |PIX Radar

IPIX radar data are taken from [9] where the dataset of 2008egavas used as noisy
nonlinear real-life prediction task. The first 200 valuesavased as initial transient



inputs, the training was performed using the next 800 vednelpredictive performance
was evaluated on the remaining 1000 values.

Models of 80 units were tested. Input weight were initiadizem (—0.2, 0.2) inter-
val. Recurrent weights were created with 10% probability eecurrent weight matrix
was rescaled to have spectral radlus: 0.9 (for ESN and FF-ESN model). Backbone
connections (for FF-ESN and TDL-I models) were set to theesaatue. RLS forget-
ting factor was set tey = 1.0. Results are shown in Tab. 6. We have achieved slightly

One Step Least Square Fit|Recursive Least Squares
ESN 0.00079 (0.000043) 0.00071 (0.000039)
FF-ESN|  0.00074 (0.000052) 0.00070 (0.000019)
TDL-I 0.00075 (0.000051) 0.00073 (0.000016)
TDL 0.00084 0.00079

Table 6. The next value prediction results for IPIX Radar data.

better accuracy as in [9] for ESN, FF-ESN and TDL-I modelscAthere was no dif-
ference between standard training and RLS training pedaca. Linear TDL model
achieved slightly worse results, but still comparable sutes of other models.

5 Conclusion

Several ESN model simplifications were suggested in thikwod multiple simula-
tions of different tasks taken from literature were perfednSummary of results is
shown in Tab. 7. FF-ESN architecture with lower-trianguéurrent weight matrix is
only a minor modification to ESN and on most datasets achievetparable results
to standard ESN. Surprisingly this is also the case of TDLetei with hidden units
organized into tapped delay line. This model is based on siorple and more straight-
forward way of combining inputs presented to the network pedormed very well in
comparing with standard ESN on multiple tasks. Experimayitis TDL model with
linear hidden units forming tapped delay line revealed soate tasks used in the com-
munity can be simply handled as linear autoregressive rso@ale should be aware that
for some tasks ESN reservoir can serve just as simple menfigrguts. We encourage
researchers to compare results obtained using ESN modiisstandard techniques
such as autoregressive moving average model. Using apgi®parameters for ESN
reservoir preparation can result into important perforagaimprovement. For most of
the tasks from [9] we were able to find better parameters adtsdiffer significantly.
Nevertheless searching for good parameters is difficultiameldemanding process and
more appropriate parameters may still remain undiscovered

Many improvements were suggested for ESNs in the literati@@upled echo state
networks [9], refined version of the training algorithm [@hrking with enhanced states
[8], using leaky-integrator units [1] etc. In this work weueatried to simplify ESN
architecture to better understand where the performarios gaginate. It seems that
for some of tasks taken from other papers, no complex resemahitecture is required



One Step L east SquaresFit ESN FF-ESN TDL-I TDL
Mackey Glass Chaotic Time Serif8.82 x 10~ °[1.84 x 10~ ™[1.88 x 10~ ™°|{ 1.18 x 10~®
Nonlinear Communication ChaaneI 0.022 0.022 0.018 0.052
NARMA System 0.00091 0.00090 0.00132 0.00189
Predictive Modeling Problem 0.00047 0.00055 0.00058 0.056
Multiple Superimposed Oscillatorl.30 x 1072(6.30 x 10727|7.47 x 10727|1.04 x 10~28
IPIX Radar 0.00079 0.00074 0.00075 0.00084
Recursive Least Squares | ESN FF-ESN TDL-I TDL
Mackey Glass Chaotic Time Seri$.30 x 1077 [ 1.77 x 10 ° [3.74 x 107 | 1.32 x 10~ °
Nonlinear Communication Channel 0.028 0.025 0.026 0.053
NARMA System 0.00084 0.00096 0.00141 0.00189
Predictive Modeling Problem 0.018 0.0074 0.015 0.056
Multiple Superimposed Oscillatorg.64 x 10712]1.34 x 107'?|5.35 x 10~ *%{1.90 x 10734
IPIX Radar 0.00071 0.00070 0.00073 0.00079

Table 7. Summary of MSE results.

to achieve comparable results. Interestingly enoughgtiter RLS training was not as
accurate as standard one-step training algorithm. Extyehigh precision observed
when using ESNs on some tasks is achieved by using one sty liagression for
training.
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