
Predictive Modeling with Echo State Networks ?

Michal Čerňanský1 and Peter Tiňo2

1 Faculty of Informatics and Information Technologies, STU Bratislava, Slovakia
2 School of Computer Science, University of Birmingham, United Kingdom

cernansky@fiit.stuba.sk, P.Tino@cs.bham.ac.uk

Abstract. A lot of attention is now being focused on connectionist models known
under the name “reservoir computing”. The most prominent example of these ap-
proaches is a recurrent neural network architecture calledan echo state network
(ESN). ESNs were successfully applied in several time series modeling tasks and
according to the authors they performed exceptionally well. Multiple enhance-
ments to standard ESN were proposed in the literature. In this paper we follow
the opposite direction by suggesting several simplifications to the original ESN
architecture. ESN reservoir features contractive dynamics resulting from its’ ini-
tialization with small weights. Sometimes it serves just asa simple memory of
inputs and provides only negligible “extra-value” over much simple methods. We
experimentally support this claim and we show that many tasks modeled by ESNs
can be handled with much simple approaches.

1 Introduction

Echo state network (ESN) [1] is a novel recurrent neural network (RNN) architecture
based on a rich reservoir of potentially interesting behavior. The reservoir of ESN is
the recurrent layer formed of a large number of sparsely interconnected units with non-
trainable weights. ESN training procedure is a simple adjustment of output weights to fit
training data. ESNs were successfully applied in several sequence modeling tasks and
performed exceptionally well [2, 3]. Also some attempts were made to process symbolic
time series using ESNs with interesting results [4].

On the other side part of the community is skeptic about ESNs being used for practi-
cal applications [5]. There are many open questions, as noted by the author of ESNs [6].
It is still unclear how to prepare the reservoir with respectto the task, what topologies
should be used and how to measure the reservoir quality for example.

The key feature of ESNs is so called “echo-state” property: under certain conditions
ESN state is a function of finite history of inputs presented to the network - the state
is the “echo” of the input history. It simply means that ESNs are based on contractive
dynamics where recurrent units reflect the history of inputspresented to the network.
The most recent input has the most important influence to the current network state and
this influence gradually fades out.

To study properties responsible for excellent performanceof ESN architecture we
propose several simplified models. The first we call “feedforward echo state network”

? This work was supported by the grants VG-1/0848/08 and VG-1/0822/08

(FF-ESN). In FF-ESN, a cascaded reservoir topology with triangular recurrent weight
matrix is employed and so each FF-ESN can be unfolded into an equivalent feedfor-
ward network. By using this architecture we try to reveal that recurrent nature of the
ESN reservoir is not the key architectural feature, as it usually is in recurrent multi-
layer perceptron trained by common algorithm such as backpropagation through time.
The next simplified model is ESN-like architecture with reservoir composed of units
organized in one chain, hence only elements on recurrent weight matrix subdiagonal
have nonzero values. This model benefits from the nonlinear combination of network
inputs and this combination is achieved by a very straightforward manner. Finally we
have tested performance of linear autoregressive model represented by architecture with
linear hidden units organized in chain and thus forming tapped delay line.

2 Models

2.1 Echo State Networks

Echo state networks represent a new powerful approach in recurrent neural network
research [1, 3]. They belong to the class of methods known under the name “reservoir
computing”. Reservoir of ESN is formed of large sparsely interconnected and randomly
initialized recurrent layer composed of huge number of standard sigmoid units. As a
readout mechanism ESN uses standard output layer and to extract interesting features
from dynamical reservoir only output connections are modified during learning pro-
cess. A significant advantage of this approach over standardRNNs is that simple linear
regression algorithms can be used for adjusting output weights. Whenu(t) is an input
vector at time stept, activations of hidden unitsx(t) are updated according to

x(t) = f
(

Win · [u(t), 1] + W · x(t − 1) + Wback · y(t − 1)
)

, (1)

wheref is the hidden unit’s activation function,W, Win and Wback are hidden-
hidden, input-hidden, and output-hidden connections’ matrices, respectively. Activa-
tions of utput units are calculated as

y(t) = f
(

Wout · [u(t),x(t), 1]
)

, (2)

whereWout is output connections’ matrix.
Echo state property means that for each internal unitxi there exists an echo function

ei such that the current state can be written asxi(t) = ei(u(t), u(t − 1), . . .), the
network state is an “echo” of the input history [1]. The recent input presented to the
network has more influence to the network state than an older input, the input influence
gradually fades out. So the same input signal historyu(t), u(t − 1), will drive the
network to the same statexi(t) in time t regardless the network initial state. Echo
states are crucial for successful operation of ESNs, their existence is usually ensured
by rescaling recurrent weight matrixW to specified spectral radiusλ. This can be
achieved by simply multiplying all elements of a randomly generated recurrent weight
matrix withλ/λmax, whereλmax is the spectral radius of the original matrix.

2.2 Feed-Forward ESN Model

Taking into account the contractive dynamics of ESN exhibited through existence of
“echo states”, the network output can be seen as a complex nonlinear function of the
input history with finite length since the influence of inputsfades out exponentially in
time and inputs presented in earlier time steps can be ignored. By removing recurrent
connections we propose modified model with the reservoir of units connected in a feed-
forward manner. Units in a reservoir can be indexed and theiractivities depend only on
activities of units with smaller indices. No cycles are present in the graph with nodes
representing units and edges representing connections. FF-ESN is shown in the Fig. 1a.
Technically these connections are still recurrent ones because units are fed by activities

input

unit

hidden

units

output

unit

)(tx

)(tu)(ty

)1(+− �tu)(tu

output

unit

)(ty

Fig. 1. (a) Modified “feed-forward” ESN architecture. (b) Feed-forwad ESN unfolded in time into
regular feed-forward network.

from previous time steps. But this network can be easily transformed into regular feed-
forward network by the process identical to the RNN unfolding in time when using
backpropagation through time learning algorithm (see Fig.1b).

Exactly the same training process as is commonly used in training regular ESNs
can be used. The only difference is how a recurrent weight matrix is generated. Initial
values for biases, recurrent and backward weights falls to the same ranges as described
for regular ESNs. Recurrent weight matrix is rescaled to therequired spectral radiusλ
and the matrix is then made lower triangular by keeping only elements below diagonal.
To force the ESN to keep longer history of inputs in activities every uniti was connected
to the previous onei − 1 through the weightwi,i−1 of chosen constant value, in our
experiments we used the value of spectral radiusλ.

2.3 Tapped Delay Line Models

Further simplification of ESN architecture resulted in the model with hidden unites or-
ganized into a tapped delay line. Hence the only existing recurrent weights arewi,i−1

connecting every hidden unit to its predecessor, excludingthe first hidden unit. The
first tapped delay line model variant labeled TDL-I (tapped delay line with inputs) also
allows input and threshold connections for hidden units. TDL-I uses hidden units with

nonlinear activation function and was constructed in orderto prove our supposition that
very simple nonlinear combination of inputs can be responsible for stunning perfor-
mance of ESNs on some tasks. The second variant is even greater simplification. Its a
TDL with linear hidden units and only the first hidden unit is connected to the input. All
connections are set to 1.0. It supposes that the process being modeled can be handled
with auto-regressive model. Both models are represented inFig. 2

input

unit

hidden

units

output

unit

)(tx

)(tu)(ty

input

unit

hidden

units

output

unit

)(tx

)(tu)(ty

Fig. 2. (a) Architecture with reservoir orginized as TDL with nonlinear units connected to input.
(b) Architecture with reservoir formed of linear units organized to TDL.

3 Method

We trained ENS, FF-ESN, TDL-I and TDL models on several time series modeling
tasks. We provide mean square error (MSE) results for several datasets taken from pub-
lished works. For each model and each dataset we have calculated means and standard
deviations over 10 simulation runs with the best meta-parameters we were able to find
(only number of reservoir units was chosen to match the published experiments).

We used both standard training as proposed in [1] and training using recursive least
squares [3] for each of four architectures and each dataset.Since we used output units
with linear activation function for all architectures target values were directly used in
the least squares fit. All time series are single-dimensional hence all architectures had
only one input and one output unit.

The standard training consists of first running the network on the train set and
collecting activities of input and hidden units. Initial “washout” activities are thrown
away and remaining values forming matrixX are used for least squares fitting. Output
weights are found by solvingXw = ŷ for w using singular value decomposition.w

stands for the vecor of output unit weights. It is formed by concatenating output unit
threshold, input-output weights and hidden-output weights. MatrixX has rows corre-
sponding to time steps. The first value in each row is the constant1.0 corresponding to
the output unit threshold followed first by input values and then hidden activities col-
lected from the corresponding time step. Vectorŷ is the vector of target values from the
training set.

Recursive least squares training starts after initial “washout” steps. Output weights
are updated every time step according to the following equations:

k(t) =
P(t − 1)v(t)

vT (t)P(t − 1)v(t) + γ
, (3)

P(t) = γ−1

(

P(t − 1) − k(t)vT (t)P(t − 1)
)

, (4)

w(t) = w(t − 1) + k(t)[ŷ(t) − y(t)], (5)

wherek stands for the innovation vector calculated in every time step. ŷ andy cor-
respond to the desired and calculated output unit activities. w is the vector of output
weights (threshold, weights from input and hidden units).P is error covariance matrix
initialized with large diagonal values and updated in everytime step. Forgetting param-
eterγ is usually set to the value smaller or equal to1.0. v is the vector of activities
of input and hidden units form actual time step. The first value of v is constant1.0
corresponding to the threshold of the output unit.

4 Results

4.1 Mackey-Glass Chaotic Time Series

Mackey-Glass (MG) system is a chaotic time series where ESNsshowed excellent per-
formance exceeding other approaches by several orders [1, 3]. MG system is defined by
the differential equations∂x/∂t =

(

0.2(x − τ)
)

/
(

1 + x(t − τ)10 − 0.1x(t)
)

and we
usedτ = 17 as in [3]. We have generated 10000 values using MG system. Than values
were shifted by adding -1 and tanh function was used to squashvalues into appropriate
interval as in [3]. The first 5000 values were used for the training set and remaining
5000 values were used for testing. Initial 1000 from the training set were used only for
forward propagation and corresponding hidden units activities were discarded from the
adaptation process.

Models with 1000 hidden units were trained for the next valueprediction task. Input
weights and thresholds for ESN, FF-ESN and TDL-I were initialized from(−0.2, 0.2)
interval. Recurrent weights for ESN and FF-ESN were createdwith 1.0% probability
and then recurrent weight matrix was rescaled to spectral radiusλ = 0.70 for ESN and
0.65 for FF-ESN. “Backbone” recurrent connectionswi,i−1 were set to 0.65 for both
FF-ESN and TDL-I model. RLS forgetting parameterγ was set to 1.0. Resulting MSE
means together with standard deviations in parenthesis areshown in the Tab. 1. The
best performance was achieved using ESN, with FF-ESN and TDL-I models inferior
performance was obtained, but within the same order of magnitude. This is in slight
contrast from our previous findings, where FF-ESNs performed comparably well on
MG generation task [7]. FF-ESN architecture is more sensitive to the network initial-
ization parameters and more thorough parameter searching process could result in some
performance improvement. Quite surprising is a very good prediction performance of
TDL-I model. Although this model is extremely simple and hasfar less connections
than ESN or FF-ESN, its resulting performance was comparable. Simple linear TDL

One Step Least Square Fit Recursive Least Squares
ESN 9.82 × 10−16 (9.02 × 10−17) 3.30 × 10−9 (1.95× 10−10)

FF-ESN 1.84 × 10−15 (2.13 × 10−16) 1.77 × 10−9 (1.62× 10−10)

TDL-I 1.88 × 10−15 (2.49 × 10−16) 3.74 × 10−9 (1.19× 10−10)

TDL 1.18× 10−8 1.32× 10−8

Table 1. The next value prediction results for Mackey-Glass time series.

model is not able to achieve comparable performance to othermodels that can exploit
nonlinearity through hidden units’ activation functions when combining inputs. RLS
results for all models are severely inferior to results obtained by standard training, since
numerical accuracy is a key factor to achieve results of10−15 order. The required preci-
sion is lost when doing recursive updates. On the other hand it’s hard to imagine real-life
application where results of similar precision would be achievable.

4.2 Nonlinear Communication Channel

We used the same nonlinear channel model as in [3]. First the asequenced(n) of
symbols transmitted through the channel was generated by randomly choosing values
from {−3,−1, 1, 3}. Thend(n) values were used to formq(n) sequence byq(n) =
0.08d(n + 2)− 0.12d(n + 1) + d(n) + 0.18d(n− 1)− 0.1d(n− 2) + 0.09d(n− 3)−
−0.05d(n− 4) + 0.04d(n− 5) + 0.03d(n− 6) + 0.01d(n− 7) what represents linear
filter equation. Nonlinear transformation is then applied to q(n) sequence to produce
row corrupted signalu(n) by u(n) = q(n) + 0.0036q(n)2 − 0.11q(n3) + v(n) where
v(n) represents the zero mean Gaussian noise. In our experimentsno noise was added.
The task was to predict valued(n − 2) whenu(n) was presented to the network. We
also shiftedu(n) signal by adding value of 30 like in [3].

Models were trained on 4000 values and then the performance was evaluated on the
next 6000 values. Initial 100 values from the training set were not used in adaptation
process. All models had 47 hidden units (as in [3]), input weights for ESN, FF-ESN
and TDL-I models were generated from(−0.025, 0.025) interval. Recurrent weight
were generated with 20% probability and the recurrent weight matrix was then rescaled
to spectral radiusλ = 0.5. The same value was used for FF-ESN and TDL-I back-
bone connections. RLS forgetting parameterγ was set to 1.0. Results are given in the
Tab. 2. Results for ESN, FF-ESN and TDL-I models are very similar for both standard

One Step Least Square Fit Recursive Least Squares
ESN 0.022 (0.0016) 0.028 (0.010)

FF-ESN 0.022 (0.0017) 0.025 (0.0039)

TDL-I 0.018 (0.0024) 0.026 (0.0027)

TDL 0.052 0.053
Table 2. The next value prediction results for nonlinear communication channel.

training and RLS training, although slight degradation of performance can be observed

for RLS. Simple architecture of TDL-I model is sufficient to obtain good results. Al-
though performance of linear TDL model is much inferior, it is still comparable to other
models.

4.3 NARMA System

The 10th order nonlinear autoregressive moving average (NARMA) system from [8]

defined asd(n+1) = 0.3d(n)+0.05d(n)
[

∑

9

i=0
d(n−i)

]

+1.5u(n−9)u(n)+0.1 was

used. Values for input sequenceu(n) were generated uniformly from interval[0, 0.5]
and the task was to predictd(n). Training set was composed of 2200 values and first 200
values were used as initial washout steps. Next 2000 values were used to train models.
Testing was performed on the next 2000 values. No noise was added to the sequence.

We trained models with hidden layer formed of 100 units. Input weight were ini-
tialized from(−0.1, 0.1) interval. Recurrent weights were created with 5% probability
and recurrent weight matrix was rescaled to have spectral radiusλ = 0.95 (for ESN
and FF-ESN model). Backbone connections (for FF-ESN and TDL-I models) were set
to the same value. RLS forgetting factor was set toγ = 1.0. Results are shown in
Tab. 3. Results reveal only slight differences between standard and RLS training. Both

One Step Least Square Fit Recursive Least Squares
ESN 0.00091 (0.00017) 0.00084 (0.000084)

FF-ESN 0.00090 (0.00011) 0.00096 (0.00027)

TDL-I 0.00132 (0.00021) 0.00141 (0.00023)

TDL 0.00189 0.00189
Table 3. Prediction results for NARMA system.

ESN and FF-ESN models achieved similar performance. Significantly worse but yet
comparable performance was achieved with TDL-I and TDL models.

4.4 Predictive Modeling Problem

The next task is called predictive modeling taken form [9]. Time series of 10000 values
was generated usingsin(n + sin(n)) for n = 1, 2, . . ., the first 1000 values initial
transient activities are thrown away, training is performed on the next 4000 values and
predictive performance is evaluated on the next 5000 values.

Models with 600 units were tested, smallλ = 0.35 value was used to rescale re-
current weight matrix for ESN and FF-ESN models. The same value was also used
for backbone connections of FF-ESN and TDL-I models. Recurrent weights for ESN
and FF-ESN were created with 10% probability. Input weightsfor ESN, FF-ESN and
TDL-I were created from(−0.25, 0.25) interval. Hidden units had no threshold con-
nections. Results are shown in Tab. 4. We were able to train models using nonlinear
activation function to the same level of performance. Linear TDL showed significantly
poorer performance. ESN model in [9] was trained with suboptimal parameters, scaling

One Step Least Square Fit Recursive Least Squares
ESN 0.00046 (5.20 × 10−5) 0.018 (0.0019)

FF-ESN 0.00055 (6.22 × 10−5) 0.0074 (0.00066)

TDL-I 0.00058 (6.52 × 10−5) 0.015 (0.00081)

TDL 0.056 0.056
Table 4. The next value prediction results for predictive modeling problem.

recurrent weights to relatively small spectral radius resulted into significant prediction
improvement. We were not able to train models to the comparable level of performance
with RLS, much better results were obtained using standard one-step linear regression.

4.5 Multiple Superimposed Ocillator

Multiple superimposed oscillators time series was used forthe next value prediction
problem in [9, 10]. Dataset values are created assin(0.2n) + sin(0.311n) for n =
1, 2, Sequence of 1000 values was generated, the first 100 values were used for ini-
tial transient steps. Training was performed on the following 600 values and predictive
performance was evaluated on the next 300 values.

We provide results for models with 400 hidden units. Input weight were initialized
from (−0.2, 0.2) interval. Recurrent weights were created with 10% probability and
recurrent weight matrix was rescaled to have spectral radius λ = 0.5 for ESN for FF-
ESN models. Also backbone connections for FF-ESN and TDL-I models were set to
0.5. RLS forgetting factor was set toγ = 1.0. Results are shown in Tab. 5. Results

One Step Least Square Fit Recursive Least Squares
ESN 1.30 × 10−26 (1.11× 10−26) 5.64 × 10−12 (2.27× 10−12)

FF-ESN 6.30 × 10−27 (4.79× 10−27) 1.34 × 10−12 (3.14× 10−13)

TDL-I 7.45 × 10−27 (3.59× 10−26) 5.35 × 10−12 (1.37× 10−12)

TDL 1.04 × 10−28 1.90 × 10−24

Table 5. The next value prediction results for multiple superimposed oscillator problem.

reveal that MSO problem can be modeled by simple linear autoregressive model and
hence linear TDL outperforms other models exploiting nonlinearity by several orders
of magnitude. All models were trained to significantly better performance than in [9]
since they are equipped with linear output units. Because ofsmallerλ values hidden
units operate in linear part of their activation functions and models achieve better results
than if higherλ values were used.

4.6 IPIX Radar

IPIX radar data are taken from [9] where the dataset of 2000 values was used as noisy
nonlinear real-life prediction task. The first 200 values were used as initial transient

inputs, the training was performed using the next 800 valuesand predictive performance
was evaluated on the remaining 1000 values.

Models of 80 units were tested. Input weight were initialized from(−0.2, 0.2) inter-
val. Recurrent weights were created with 10% probability and recurrent weight matrix
was rescaled to have spectral radiusλ = 0.9 (for ESN and FF-ESN model). Backbone
connections (for FF-ESN and TDL-I models) were set to the same value. RLS forget-
ting factor was set toγ = 1.0. Results are shown in Tab. 6. We have achieved slightly

One Step Least Square Fit Recursive Least Squares
ESN 0.00079 (0.000043) 0.00071 (0.000039)

FF-ESN 0.00074 (0.000052) 0.00070 (0.000019)

TDL-I 0.00075 (0.000051) 0.00073 (0.000016)

TDL 0.00084 0.00079
Table 6. The next value prediction results for IPIX Radar data.

better accuracy as in [9] for ESN, FF-ESN and TDL-I models. Also there was no dif-
ference between standard training and RLS training performance. Linear TDL model
achieved slightly worse results, but still comparable to results of other models.

5 Conclusion

Several ESN model simplifications were suggested in this work and multiple simula-
tions of different tasks taken from literature were performed. Summary of results is
shown in Tab. 7. FF-ESN architecture with lower-triangularrecurrent weight matrix is
only a minor modification to ESN and on most datasets achievedcomparable results
to standard ESN. Surprisingly this is also the case of TDL-I model with hidden units
organized into tapped delay line. This model is based on moresimple and more straight-
forward way of combining inputs presented to the network andperformed very well in
comparing with standard ESN on multiple tasks. Experimentswith TDL model with
linear hidden units forming tapped delay line revealed thatsome tasks used in the com-
munity can be simply handled as linear autoregressive models. One should be aware that
for some tasks ESN reservoir can serve just as simple memory of inputs. We encourage
researchers to compare results obtained using ESN models with standard techniques
such as autoregressive moving average model. Using appropriate parameters for ESN
reservoir preparation can result into important performance improvement. For most of
the tasks from [9] we were able to find better parameters and results differ significantly.
Nevertheless searching for good parameters is difficult andtime demanding process and
more appropriate parameters may still remain undiscovered.

Many improvements were suggested for ESNs in the literature: decoupled echo state
networks [9], refined version of the training algorithm [3],working with enhanced states
[8], using leaky-integrator units [1] etc. In this work we have tried to simplify ESN
architecture to better understand where the performance gains originate. It seems that
for some of tasks taken from other papers, no complex reservoir architecture is required

One Step Least Squares Fit ESN FF-ESN TDL-I TDL
Mackey Glass Chaotic Time Series9.82 × 10−16 1.84 × 10−15 1.88 × 10−15 1.18× 10−8

Nonlinear Communication Channel 0.022 0.022 0.018 0.052
NARMA System 0.00091 0.00090 0.00132 0.00189
Predictive Modeling Problem 0.00047 0.00055 0.00058 0.056
Multiple Superimposed Oscillators1.30 × 10−26 6.30 × 10−27 7.47 × 10−27 1.04 × 10−28

IPIX Radar 0.00079 0.00074 0.00075 0.00084

Recursive Least Squares ESN FF-ESN TDL-I TDL
Mackey Glass Chaotic Time Series3.30 × 10−9 1.77× 10−9 3.74 × 10−9 1.32× 10−8

Nonlinear Communication Channel 0.028 0.025 0.026 0.053
NARMA System 0.00084 0.00096 0.00141 0.00189
Predictive Modeling Problem 0.018 0.0074 0.015 0.056
Multiple Superimposed Oscillators5.64 × 10−12 1.34 × 10−12 5.35 × 10−12 1.90 × 10−34

IPIX Radar 0.00071 0.00070 0.00073 0.00079
Table 7. Summary of MSE results.

to achieve comparable results. Interestingly enough, iterative RLS training was not as
accurate as standard one-step training algorithm. Extremely high precision observed
when using ESNs on some tasks is achieved by using one step linear regression for
training.

References

1. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks.
Technical Report GMD 148, German National Research Center for Information Technology
(2001)

2. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In Becker,
S., Thrun, S., Obermayer, K., eds.: Advances in Neural Information Processing Systems 15,
MIT Press, Cambridge, MA (2003) 593–600

3. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy
in wireless communication. Science304(5667) (2004) 78–80

4. Frank, S.L.: Learn more by training less: Systematicity in sentence processing by recurrent
networks. Connection Science, in press (2006)

5. Prokhorov, D.: Echo state networks: Appeal and challenges. In: Proceedings of International
Joint Conference on Neural Networks IJCNN 2005, Montreal, Canada. (2005) 1463–1466

6. Jaeger, H.: Reservoir riddles: Suggestions for echo state network research. In: Proceedings of
International Joint Conference on Neural Networks IJCNN 2005, Montreal, Canada. (2005)
1460–1462

7. Čerňanský, M., Makula, M.: Feed-forward echo state networks. In: Proceedings of In-
ternational Joint Conference on Neural Networks IJCNN 2005, Montreal, Canada. (2005)
1479–1482

8. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Proceed-
ings of Neural Information Processing Systems NIPS 2002, Vancouver, Canada. (2002)

9. Xue, Y., Yang, L., Haykin, S.: Decoupled echo state network with lateral inhibition. IEEE
Transactions on Neural Network, in press (2007)

10. Wierstra, D., Gomez, F.J., Schmidhuber, J.: Modeling systems with internal state using
evolino. In: GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary
computation, New York, NY, USA, ACM (2005) 1795–1802

