
Training Recurrent Neural Network Using Multistream
Extended Kalman Filter on Multicore Processor and

Cuda Enabled Graphic Processor Unit

Michal Čerňanský

Faculty of Informatics and Information Technologies, STU Bratislava, Slovakia
cernansky@fiit.stuba.sk

Abstract. Recurrent neural networks are popular tools used for modeling time
series. Common gradient-based algorithms are frequently used for training recur-
rent neural networks. On the other side approaches based on the Kalman filtration
are considered to be the most appropriate general-purpose training algorithms
with respect to the modeling accuracy. Their main drawbacksare high compu-
tational requirements and difficult implementation. In this work we first provide
clear description of the training algorithm using simple pseudo-language. Prob-
lem with high computational requirements is addresses by performing calculation
on Multicore Processor and CUDA-enabled graphic processorunit. We show that
important execution time reduction can be achieved by performing computation
on manycore graphic processor unit.

1 Introduction

To process data with spatio-temporal structure recurrent neural networks (RNNs) were
suggested. RNNs were successfully applied in many real-life applications where pro-
cessing time-dependent information was necessary. Unlikefeedforward neural networks,
units in RNNs are fed by activities from previous time steps through recurrent connec-
tions. In this way contextual information can be kept in units’ activities, enabling RNNs
to process time series. Common algorithms usually used for RNN training are based on
gradient minimization of the output error. Backpropagation through time (BPTT) [1]
consists of unfolding a recurrent network in time and applying the well-known back-
propagation algorithm directly. Another gradient descentapproach, where estimates of
derivatives needed for evaluating error gradient are calculated in every time step in for-
ward manner, is the real-time recurrent learning (RTRL) [2].

Probably the most successful training algorithms are basedon the Kalman filtration
(KF) [3–5]. The standard KF can be applied to a linear system with Gaussian noise.
A nonlinear system such as RNNs with sigmoidal units can be handled by extended
KF (EKF). In EKF, linearization around current working point is performed and then
standard KF is applied. In case of RNNs, algorithms similar to BPTT or RTRL can be
used for linearization. Methods based on the Kalman filtration often outperform com-
mon gradient-based algorithms. Multistream EKF training proved to be very successful
approach for training relatively large recurrent neural networks to the complex real-
life tasks from industry [6, 7]. Multiple instances of the same network are trained on
different data streams in the same time and coordinate weight changes are performed.



Here we address the problem of high computational requirements by using high per-
formance of many-core processor of graphic unit. We use Compute Unified Device Ar-
chitecture (CUDA) which is general purpose parallel computing architecture enabling
developers to use NVIDIA’s graphic processor units (GPUs) for solving complex com-
putational problems [8]. GPUs are now highly parallel multithreaded many-core pro-
cessors with high memory bandwidth capable to perform more than1012 floating point
operations per second. GPUs are well suited to address problems that can be expressed
as data parallel computations - the same program is executedon many data elements
in parallel. CUDA has been already applied in many applications such as video pro-
cessing, pattern recognition or physics simulations. In [9] authors used CUDA CBLAS
library for linear algebra operations of RNN EKF training.

In this work we provide experiments with RNNs trained by multistream extended
Kalman filter (MSEKF). This algorithm was successfully usedin several real world ap-
plications and is considered to be the state-of-the-art technique for training recurrent
networks. We first describe simple and elegant way of encoding recurrent neural net-
work into data structures inspired by [1, 10]. Then we present MSEKF in the form of
simple algorithm in pseudo-language similar to Pascal. Both forward propagation of the
signal and MSEKF training algorithms are given in almost copy and paste form. We dis-
cuss details of two implementations: the first using standard CPU and the second using
CUDA enabled GPU. Finally we compare executions times of both implementations
for different number of hidden units and different number ofstreams.

2 Encoding Recurrent Neural Network into Data Structures

Elman’s simple recurrent network (SRN) proposed in [11] is probably the most widely
used RNN architecture. Context layer keeps activities of hidden (recurrent) layer from
previous time step. Input layer together with context layerform extended input to the
hidden layer. Elman’s SRN composed of5 input,4 hidden a3 output units is shown in
Fig. 1a. Context units C6 to C9 hold activities of hidden units H6 to H9 from previous
time step and together with input layer activities I1 to I5 they serve as extended input
to the hidden units H6 to H9. All hidden and output (O10 to O12)units are connected
to the special input unit T0 through threshold connections.Threshold unit T0 is set to
constant value of1.

In general, units of a neural network need not to be organizedin layers. They can
be randomly interconnected as soon as the directed graph representation of the network
having vertices as units and edges as connections does not includes any cycle. In other
words, activity of a unit can be calculated knowing activityof each unit from which a
weight connection exist to the given unit. Since no cyclic dependencies exist, activities
of all units can be calculated. This notion also holds for RNNs, although recurrent
connections form a kind of cycle in the network. But recurrent connections are sourced
by activities already calculated in previous time steps andhence pose no problem in
calculating actual activities. Only non-recurrent forward connections must not form a
cycle in the graph representation of an RNN. Although this condition may seem to
be restrictive, it is met in all commonly used feed-forward and recurrent multilayer
perceptron architectures.



Weight Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Source Unit wSource 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Destination U. wDest 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8

Time Delay wDelay 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1

Value wValue

Weight Index 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Source Unit wSource 0 1 2 3 4 5 6 7 8 9 0 6 7 8 9 0 6 7 8 9 0 6 7 8 9

Destination U. wDest 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12

Time Delay wDelay 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Value wValue

Unit Index 0 1 2 3 4 5 6 7 8 9 10 11 12

First Weight uFirstWeight 0 10 20 30 40 45 50

Last Weight uLastWeight 9 19 29 39 44 49 54

Type uType T I I I I I H H H H O O O

Act. Function uActFunc SGM SGM SGM SGM LIN LIN LIN

z
-1

z
-1

z
-1

C6 C8C7 C9I1 I2 I4

O11

I3

O10

I5

O12

z
-1

T0

H8H7 H9H6

a) Elman's SRN - Layered Structure

c) Weight Connections

d) Units

b) Elman's SRN - Werbos Representation

I1T0 t

recurrent weights

forward weights

t-1

I2 I4 H8 O11I3 H7 O10I5 H9 O12H6

I1T0 I2 I4 H8 O11I3 H7 O10I5 H9 O12H6

Fig. 1. a) Layered structure of Elman’s SRN. b) Werbos representation of the Elman’s SRN. c)
Table gathering information on weight connections. d) Table gathering information on units.

Werbos representation of the Emnan’s SRN is shown in Fig. 1b.All units of the net-
work can be indexed from0 to NU − 1, whereNU is the number of all units. The first
unit - special input unit corresponding to the bias weight, is followed by input units,
than by hidden and output units. Arranging hidden and outputunits is not necessary,
every non-input unit can be output unit and desired activities can be specified during
training phase for that unit. Unit with indexi can have forward connections starting
only from units with smaller indices (from index 0 toi − 1). Hence edges correspond-
ing to forward weights in the Fig. 1b are oriented from left toright. For every weight,
indices of the source and destination unit are kept (arrayswSource andwDest), to-
gether with the time delay (wDelay) related to the weight connection. Weights can be
also sorted, first by corresponding destination unit index then by connection time delay
and finally by source unit index in ascending order (Fig. 1c).Forward weights have time
delay of0, what means that the actual stept activity of the source unit is fed through
this connection to the destination unit. Recurrent connection have time delaytd grater
than0 and activity from previous time stept − td is fed through this connections. For
every non-input unit the first and the last weight indices arestored (uFirstWeight,
uLastWeight)) together with other useful information such as unit’s type (uType)
and unit’s activation function (uActFunc) (Fig. 1d). Usufulness of this network en-
coding can be seen in algorithmic description for forward propagation of the signal in
custom RNN for mulistream EKF (Fig. 2).



3 Multistream Extended Kalman Filter

Training of Elman’s SRN, and generally any other multilayerperceptron network (re-
current or not), can be regarded as an optimal filtering [10].The set of EKF equations
for the network training can be formulated as follows:

K(t) = P(t − 1)HT (t)[H(t)P(t − 1)HT (t) + R(t)]−1, (1)

P(t) = P(t − 1) − K(t)H(t)P(t − 1) + Q(t), (2)

W(t) = W(t − 1) + K(t)[D(t) − O(t)]. (3)

Let nw andno denote the number of all network weights and number of outputunits,
respectively.W is a vector of all weights of the lengthnw. H is the Jacobian ma-
trix, no × nw, calculated in every time step and containing in rows the derivatives of
corresponding output activity with respect to all weights.These derivatives can be cal-
culated similarly to the RTRL or BPTT algorithms.P is thenw × nw error covariance
matrix, it holds error covariances corresponding to each pair of network weights. The
nw ×no matrixK called the Kalman gain is used in updating the weightsW according
to the difference between the desired output vectorD and actual network outputO. The
no × no matrixR stands for the measurement noise covariance matrix and similarly to
the learning rate in RTRL or BPTT can control the training speed of EKF. Note, that
small process noise is still considered: thenw × nw matrix Q stands for the process
noise covariance matrix. Nonzero process noise improves convergence of the filter.

For multistream EKF training the training dataset should besplit into several parts
[10]. Training dataset in practical application is frequently already naturally partitioned,
since it often consists of multiple subsets of different nature corresponding to different
working conditions. For a chosen number of streamsNs the training sequences of the
same length for each stream are selected from the different parts of the training set.
For each stream the different instance of the same network ispresented with the ac-
tual input-output pattern from the corresponding stream. Propagation for each stream
is performed as in the case of several single networks trained on different patterns.
Also derivatives of network outputs with respect to networkweight are calculated in
the same way as for independent networks. The procedure could follow by perform-
ing Ns independent EKF steps and by calculating overall weight changes by averaging
partially calculated weigh changes from each stream. But this is not the case of multi-
stream EKF. Instead calculated derivatives of each networkinstance are concatenated
into the singe measurement update matrixH(t). If Hi(t) would be matrix of partial
derivatives of output units with respect to weight for singe-stream EKF training corre-
sponding to the streami in time stept, the matrixH(t) can be expressed asH(t) =
(H1(t)H2(t) . . .HNs

(t)). In the similar way vector of desired valueD(t) and vector of
calculated output activitiesO(t) are formed by concatenating corresponding elements,
D(t) = (D1(t)

T D2(t)
T . . .DT

Ns

(t))T and O(t) = (O1(t)
T O2(t)

T . . .OT

Ns

(t))T .
Except for these changes the EKF equations remain the same (Eq. 1 to Eq. 3). Mul-
tistream EKF approach with BPTT routine for the derivative calculation is provided to
make this approach clearer. First, the forward propagationof multiple streams is given
in Fig. 2 and then multistream EKF training step is decribed in Fig. 3.



NS - number of streams
NW - number of weight connections
NU - number of units (threshold unit and input units also count)

wSource[0..NW-1] - source node indices
wDest[0..NW-1] - destination node indices
wDelay[0..NW-1] - connection time delays
wValue[0..NW-1] - weight connection strengths

uFirstWeight[0..NU-1] - indices of the first weight connection associated with the unit
uLastWeight[0..NU-1] - indices of the last weight connection associated with the unit
uType[0..NU-1] - unit types (THRESHOLD, INPUT, HIDDEN andOUTPUT)
uActFunc[0..NU-1] - unit activation-function types (SGM, LIN, . . . )

ACT[0..NU-1,0..NSTEPS-1,0..NS-1] - all unit activities in all time steps for all streams
ACTD[0..NU-1,0..NSTEPS-1,0..NS-1] - act. func. derivatives in all time steps for all streams

ActFunc(iact,actf) - activation function calculation based on the act. func. type
ActFuncDer(iact,actf) - derivative of the activation function

ts - actual time step

Input(ui,ts,si) - returns value for the input unitui in time stepts for streamsi
Output(ui,act,ts,si) - set network output to the valueact for streamsi
Target(ui,ts,si) - returns desired output unitui activity in time stepts for streamsi

1 for si=0 to NS-1 do
2 for ui=0 to NU-1 do
3 begin
4 if uType[ui] = THRESHOLD then ACT[ui,ts,si] := 1.0;
5 else if uType[ui] = INPUT then ACT[ui,ts,si] := Input(ui,ts,si);
6 else
7 begin
8 iact := 0.0;
9 for wi := uFirstWeight[ui] to uLastWeight[ui] do

10 iact +:= wValue[wi]*ACT[wSource[wi],ts-wDelay[wi],si];
11 ACT[ui,ts,si] := Sgm(iact);
12 ACTD[ui,ts,si] := SgmDer(iact);
13 end;
14 if uType = OUTPUT then Output(ui,ACT[ui],ts,si);
15 end;

Fig. 2. Forward propagation for multistream EKF.

Multistream forward propagation consists ofNS consecutive single-stream propaga-
tions (cycle on lines1 to 15). The first unit with index 0 correspond to the bias weight,
its activity is always set to the value of 1 (line4). Activities of input units are set to the
actual input to the network (line5). Internal activities of hidden and output units are
calculated by multiplying unit’s weights with source activities from corresponding time
step (lines8 to 10), operator ”+:=” stand for addition of the right-hand side expression
to the variable on the left-hand side. For forward weights having time delay of 0 already
calculated activity from actual time step are used, for recurrent weights activities calcu-
lated in past time steps are used. Unit’s activity is calculated by passing internal activity
to the activation function (line11). The derivative (line12) calculation is only needed
when gradient-based adaptation step such as backpropagation follows the forward prop-
agation. Activities calculated for the output units are sent as the network output to the
exterior (line14).



NS - number of streams
NO - number of network output units

oIndex[0..NO] - indices of output units
winSize - unfolding window size

DO_DW[0..NO-1,0..NW-1,0..NS-1] - derivatives of net. outputs with respect to all weights
DO_DNA[0..NU-1,0..winSize-1] - backpropagated signal

H[0..NO*NS-1,0..NW-1] - augmented Jacobian matrix
P[0..NW-1,0..NW-1] - error covariance matrix
Q[0..NW-1,0..NW-1] - process noise covariance matrix
R[0..NO-1,0..NO-1] - measurement noise covariance matrix
W[0..NW,0..0] - estimated vector of network weights (EKF state vector)
K[0..NW-1,0..NO*NS-1] - augmented Kalman gain
D[0..NO*NS-1,0..0] - augmented vector of desired output values
O[0..NO*NS-1,0..0] - augmented of calculated output values

Tr(X) - transpose of the matrix X
Inv(X) - inverse of the matrix X

1 for oui:=0 to NO-1 do for wi:=0 to NW-1 do for si:=0 to NS-1 do
2 DO_DW[oui,wi,si] := 0.0;
3

4 for si:=0 to NS-1 do
5 for oui:=0 to NO-1 do
6 begin
7 for hi:=0 to winSize-1 do for ui:=0 to NU-1 do DO_DNA[ui,hi] := 0.0;
8 DO_DNA[oIndex[oui],0] := 1.0;
9

10 for hi:=0 to winSize-1 do
11 for ui:=NU-1 downto 0 do
12 begin
13 if uType[ui] = INPUT then break;
14 DO_DNA[ui,hi] := DO_DNA[ui,hi]*ACTD[ui,ts-hi,si];
15 for wi := uLastWeight[ui] downto uFirstWeight[ui] do
16 begin
17 if (uType[wSource[wi]] <> INPUT) AND
18 (uType[wSource[wi]] <> THRESHOLD) AND
19 (wDelay[wi]+hi < winSize)) then
20 DO_DNA[wSource[wi],wDelay[wi]+hi] +:=
21 wValue[wi]*DO_DNA[ui,hi];
22 DO_DW[oui,wi,si] +:=
23 DO_DNA[ui,hi]*ACT[wSource[wi],ts-hi-wDelay[wi],si];
24 end;
25 end;
26 end;
27

28 for wi:=0 to NW-1 do W[wi,0] := wValue[wi];
29

30 for si:=0 to NS-1 do
31 for oui:=0 to NO-1 do
32 begin
33 D[oui+si*NS,0] := Target(ui,ts,si);
34 O[oui+si*NS,0] := ACT[oIndex[oui],tsm,si];
35 for wi:=0 to NW-1 do H[oui+si*NS,wi] := DO_DW[oui,wi,si];
36 end;
37

38 K := P * Tr(H) * Inv(H * P * Tr(H) + R);
39 P := P - K * H * P + Q;
40 W := W + K * (D - O);
41

42 for wi:=0 to NW-1 do wValue[wi] := W[wi,0];

Fig. 3. Multistream EKF with derivatives calculated by BPTT.



The quantitiesDO_DW (derivatives of output activities with respect to weights)are
initialized to 0 on lines1 and2. Then for every stream and every output unit the back-
propagation through time is performed (cycle on lines4 to 26). For one output unit the
“error” signal of corresponding to this output unit is set to1 (line 8), remaining ele-
ments of the arrayDO_DNA (derivatives of output activity with respect to the internal
units’ activities) were set to 0 (line7) and are to be calculated in the following cycle
of truncated backpropagation throught time (lines10 to25). Computation of truncated
BPTT consists of backpropagating the “error” signalwinSize time steps back (lines
10 to 25). For each unitui (cycle on lines11 to 25) and all its connections (cycle
on lines15 to 24) derivativesDO_DNA[ui,hi] are backpropagated through corre-
sponding connections to the derivatives in corresponding time (lines20 and21). Signal
is not backpropagated to the input or threshold units (condition on lines17 and18).
The test (line19) is also performed to ensure, that the arrayDO_DNA on lines20 and
21 is accessed properly. QuantitiesDO_DW are built on lines22 and23.

Augmented arrays for desired and calculated output activities (D andO) are filled on
lines33 and34 and the Jacobian matrixH on line35. EKF update is then performed
and weights are updated (line42). In this section (lines38 to 40) operators*,+ and
- denote matrix multiplication, addition and subtraction respectively. Since network
weights are changed only by EKF part of the algorithm they do not need to be filled
up in every time step and line28 can be removed. We keep it there as a reminder than
arraywValueW and vectorW are the same quantities.

4 Implementation Detailes

Time complexity of the algorithm can be easily determined from the pseudo-language
description of one cycle provided in Fig. 3. The training step can be divided into two
parts: first truncated BPTT is done for every stream and everyoutput and than KF step
is performed. Hence time complexity can be estimated as:

TMSEKF = TBPTT + TKF = O(NS × NO × NW × H) + O(NO × NW 2). (4)

Since for huge networks number of streamsNS, number of output unitsNO and the
truncated BPTT window sizeH are smaller than the number of weightsNW , the time
complexity of MSEKF can be expressed as:

OMSEKF ≈ O(NW 2). (5)

Alhough in practice multiplicative constants (not revealed in big-O notation) do matter
we can already see that the computation is dominated by the time complexity of the KF
part.

Standard way how implement operations with matrices is the usage of some linear
algebra package. All major processor vendors offer high-speed parallel multithreaded
versions of BLAS (Basic Linear Algebra Subprograms). Intels solution is MKL (Math
Kernel Library) offering BLAS and LAPACK (Linear Algebra PACKage) interfaces.
Other choices are ACML (AMD Core Math Library) tailored for AMD processors and
GotoBLAS library which is probably the fastest BLAS libraryavailable. Since the target



platform is a computer equipped with Intel Core i7 quad core processor and GotoBLAS
has not yet been optimized for Core i7 architecture we have chosen MKL as a linear
algebra package for CPU implementation of MSEKF.

CUDA platform contains CUBLAS (CUDA BLAS) library benefiting from paral-
lelism of many-core GPU architecture but providing standard BLAS application inter-
face. Whole KF part was implemented to be performed on the GPUincluding imple-
mentation of cholesky solver used for finding Kalman gainK. Only vectorE = D−O

and matrixH are transfered into the GPU device and weight vectorW is transfered
back from the CUDA device.

Other source of parallelism is the truncated BPTT step sinceiterations are indepen-
dent.NO × NS iterations are performed in the truncated BPTT part of the MSEKF
step. The only modification is thatNO_DNA array cannot be shared between iterations
executed in paralel. There are several programming models that can be used to improve
performance of this part of the algorithm by splitting computation into multiple threads.
We have chosen Intel’s Threading Building Blocks (TBBs) and“parallel for” construct
was used in straightforward way. Implementation of BPTT step using CUDA is the task
for near future.

5 Results

Tests for both CPU and GPU implementations of MSEKF were conducted on the same
machine running Microsoft Windows XP SP 3 equipped with Intel Core i7 Nehalem
processor operating at 2.67GHz, 3GB of RAM and Nvidia GeForce N280 graphic card.
Intels hyperthreading technology was turned off in BIOS as recommended in MKL
manual.

We performed tests with Elman’s simple recurrent network trained for the next value
prediction of Santa Fe laser sequence. Since RNNs are also frequently used by cognitive
science community for modeling symbolic sequences the second dataset was generated
by Elman’s grammar [12]. In this case the networks were trained on the next symbol
prediction task. The length of both sequences was 10000 values, while training on Laser
sequence RNNs has single input and output unit, for Elman datasets RNN’s input and
output layer consist of 24 units.

We present simulation results for various number of streamsand number of hidden
units. MSEKF training run times in seconds are summarized inthe Tab. 1 and corre-
spond to one epoch - one presentation of the training sequence. For a given number of
streamsNS the training sequence is divided intoNS parts of the same length and the
network perform10000/NS MSEKF training cycles per epoch. Hence higher number
of streams does not mean that more operations were performedduring training.

We provide results for computation performed in single precision only for two rea-
sons. First using double precision did not brink any difference considering resulting
performance (similarly to [9]). We also encountered no problems with numerical sta-
bility. The second reason is that GPUs performance in doubleprecision is lower since
graphic hardware is optimized for single precision computation. For applications where
numerical precision is crucial performing computation on standard multicore processor
is probably a better choice.



LASER BPTT - no TBBBPTT - TBB EKF - CPUEKF - CUDA
MSEKF-16HU-1S 0.001 0.001 1.01 5.02
MSEKF-16HU-4S 0.25 0.004 0.51 1.51
MSEKF-16HU-16S 0.18 0.065 0.52 0.76
MSEKF-16HU-64S 0.17 0.045 0.89 0.76
MSEKF-64HU-1S 2.00 2.02 210.51 124.87
MSEKF-64HU-4S 2.25 0.51 60.16 33.63
MSEKF-64HU-16S 2.18 0.56 20.67 11.29
MSEKF-64HU-64S 2.25 0.55 21.00 8.84

ELMAN BPTT - no TBBBPTT - TBB EKF - CPUEKF - CUDA
MSEKF-16HU-1S 11.00 3.01 46.51 35.59
MSEKF-16HU-2S 10.99 3.06 67.18 37.63
MSEKF-16HU-4S 11.49 3.02 111.74 69.21
MSEKF-16HU-8S 11.72 2.92 205.48 120.62
MSEKF-32HU-1S 27.99 7.15 184.08 95.12
MSEKF-32HU-2S 27.99 7.67 217.80 104.51
MSEKF-32HU-4S 29.00 7.42 322.48 177.40
MSEKF-32HU-8S 29.32 7.32 548.07 319.98

Table 1. Simulations times in seconds for BPTT and EKF parts of CPU andCUDA implemeta-
tions of MSEKF.

We provide results for both unparallelized (no TBB) and parallelized (TBB) BPTT
part. Please note that the time requirements of BPTT part arethe same for fixed number
of streams, since the same number of backward propagations through time is performed
for one epoch. Unsuprisingly parallelized version of the BPTT takes much less time
than it’s unparallelized counterpart. Almost 4 times better performance was achieved,
hence the performance of this part scales well with the number of cores.

As can be seen from the table significant run time reduction for larger networks can
be obtained by performing MSEKF training on CUDA-enabled GPU. On the other side
standard CPU performs well for smaller networks since massive parallelism of many-
core GPUs is not used. In general smaller networks benefit neither from multi-core nor
many core processors because of small level of parallelism when doing calculations
with small matrices.

6 Conclusion

Multistream extended Kalman filter is probably the most successful algorithm for train-
ing recurrent neural networks. The main drawback of MSEKF issever computational
requirements in comparing with common approaches such as BPTT or RTRL. This
usually prevents thorough search for better parameters or other experimentation when
performing model selection. In this paper we first provide detailed description of the al-
gorithm using simple pseudo-language. Algorithm is almostin a copy and paste form.
Then we provide results of implementations targeting CPU and CUDA-enabled GPU
platforms. We show that significant reduction of execution time can be achieved by
performing calculations on graphical processing units when training large networks.



Acknowledgments. This work was supported by the grants Vega 1/0848/08, Vega
1/0822/08 and APVV-20-030204.

References

1. Werbos, P.: Backpropagation through time; what it does and how to do it. Proceedings of
the IEEE78 (1990) 1550–1560

2. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural
networks. Neural Computation1 (1989) 270–280

3. Williams, R.J.: Some observations on the use of the extended Kalman filter as a recurrent net-
work learning algorithm. Technical Report NU-CCS-92-1, Northeastern University, College
of Computer Science, Boston, MA (1992)

4. Čerňanský, M., Beňušková,̌L.: Simple recurrent network trained by RTRL and extended
Kalman filter algorithms. Neural Network World13(3) (2003) 223–234

5. Trebatický, P.: Recurrent neural network training withthe kalman filter-based techniques.
Neural network world15(5) (2005) 471–488

6. Feldkamp, L., Prokhorov, D., Eagen, C., Yuan, F.: Enhanced multi-stream Kalman filter
training for recurrent networks. In Suykens, J., Vandewalle, J., eds.: Nonlinear Modeling:
Advanced Black-Box Techniques. Kluwer Academic Publishers (1998) 29–53

7. Prokhorov, D.V.: Toyota prius hev neurocontrol and diagnostics. Neural Networks21 (2008)
458–465

8. NVIDIA: NVIDIA CUDA programming guide. Technical report(2008)
9. Trebatický, P.: Neural network training with extended kalman filter using graphics process-

ing unit. In: Artificial Neural Networks - ICANN 2008, Prague, Czech Republik. Lecture
Notes in Computer Science, Springer-Verlag Berlin Heidelberg (2008)

10. Prokhorov, D.V.: Kalman filter training of neural networks: Methodology and applications.
Tutorial on IJCNN 2004, Budapest, Hungary (2004)

11. Elman, J.L.: Finding structure in time. Cognitive Science14(2) (1990) 179–211
12. Elman, J.: Distributed representations, simple recurrent networks, and grammatical structure.

Machine Learning7 (1991) 195–225


