Training Recurrent Neural Network Using Multistream
Extended Kalman Filter on Multicore Processor and
Cuda Enabled Graphic Processor Unit

Michal Ceriansky

Faculty of Informatics and Information Technologies, STtatslava, Slovakia
cernansky@iit. stuba. sk

Abstract. Recurrent neural networks are popular tools used for magléime
series. Common gradient-based algorithms are frequesdlgt for training recur-
rent neural networks. On the other side approaches basée étatman filtration
are considered to be the most appropriate general-purpaiggny algorithms
with respect to the modeling accuracy. Their main drawbackshigh compu-
tational requirements and difficult implementation. Irsthiork we first provide
clear description of the training algorithm using simpleydo-language. Prob-
lem with high computational requirements is addresses Hgpaing calculation
on Multicore Processor and CUDA-enabled graphic procassior\We show that
important execution time reduction can be achieved by peiifagy computation
on manycore graphic processor unit.

1 Introduction

To process data with spatio-temporal structure recurremtai networks (RNNs) were
suggested. RNNs were successfully applied in many reahbliplications where pro-
cessing time-dependent information was necessary. Ulglédforward neural networks,
units in RNNSs are fed by activities from previous time stédp®tigh recurrent connec-
tions. In this way contextual information can be kept in srattivities, enabling RNNs
to process time series. Common algorithms usually usedit Raining are based on
gradient minimization of the output error. Backpropagatiorough time (BPTT) [1]
consists of unfolding a recurrent network in time and appiythe well-known back-
propagation algorithm directly. Another gradient des@pyroach, where estimates of
derivatives needed for evaluating error gradient are ¢atled in every time step in for-
ward manner, is the real-time recurrent learning (RTRL) [2]

Probably the most successful training algorithms are base¢be Kalman filtration
(KF) [3-5]. The standard KF can be applied to a linear systath @aussian noise.
A nonlinear system such as RNNs with sigmoidal units can bellea by extended
KF (EKF). In EKF, linearization around current working pbia performed and then
standard KF is applied. In case of RNNSs, algorithms simdaBPTT or RTRL can be
used for linearization. Methods based on the Kalman fitiratiften outperform com-
mon gradient-based algorithms. Multistream EKF trainingved to be very successful
approach for training relatively large recurrent neuralwmeks to the complex real-
life tasks from industry [6, 7]. Multiple instances of thensa network are trained on
different data streams in the same time and coordinate welginges are performed.



Here we address the problem of high computational requinésiy using high per-
formance of many-core processor of graphic unit. We use @oeripnified Device Ar-
chitecture (CUDA) which is general purpose parallel corimmarchitecture enabling
developers to use NVIDIA's graphic processor units (GPWUJs¥sblving complex com-
putational problems [8]. GPUs are now highly parallel nithit#aded many-core pro-
cessors with high memory bandwidth capable to perform mwae0'? floating point
operations per second. GPUs are well suited to addressgpnslthat can be expressed
as data parallel computations - the same program is exeout@thny data elements
in parallel. CUDA has been already applied in many applicetisuch as video pro-
cessing, pattern recognition or physics simulations. Jm{@hors used CUDA CBLAS
library for linear algebra operations of RNN EKF training.

In this work we provide experiments with RNNs trained by risfittam extended
Kalman filter (MSEKEF). This algorithm was successfully ugedeveral real world ap-
plications and is considered to be the state-of-the-ahnigeie for training recurrent
networks. We first describe simple and elegant way of encpdinurrent neural net-
work into data structures inspired by [1, 10]. Then we preS48EKF in the form of
simple algorithm in pseudo-language similar to PascalhBmtward propagation of the
signal and MSEKF training algorithms are given in almostycapd paste form. We dis-
cuss details of two implementations: the first using stash@U and the second using
CUDA enabled GPU. Finally we compare executions times ofi implementations
for different number of hidden units and different numbestwéams.

2 Encoding Recurrent Neural Network into Data Structures

Elman’s simple recurrent network (SRN) proposed in [11]rsh@ably the most widely
used RNN architecture. Context layer keeps activities dflén (recurrent) layer from
previous time step. Input layer together with context lapem extended input to the
hidden layer. EIman’s SRN composedsofput, 4 hidden a3 output units is shown in
Fig. 1a. Context units C6 to C9 hold activities of hidden sili6 to H9 from previous
time step and together with input layer activities 11 to |Bylserve as extended input
to the hidden units H6 to H9. All hidden and output (010 to Odgis are connected
to the special input unit TO through threshold connectidiseshold unit TO is set to
constant value of.

In general, units of a neural network need not to be orgariizéayers. They can
be randomly interconnected as soon as the directed grapFseegation of the network
having vertices as units and edges as connections doeschalés any cycle. In other
words, activity of a unit can be calculated knowing activifyeach unit from which a
weight connection exist to the given unit. Since no cyclipeledencies exist, activities
of all units can be calculated. This notion also holds for RINBIthough recurrent
connections form a kind of cycle in the network. But recuti@mnections are sourced
by activities already calculated in previous time steps laedce pose no problem in
calculating actual activities. Only non-recurrent fordr@onnections must not form a
cycle in the graph representation of an RNN. Although thisditton may seem to
be restrictive, it is met in all commonly used feed-forwardiaecurrent multilayer
perceptron architectures.



a) Elman's SRN - Layered Structure b) EIman’s SRN - Werbos Representation

forward weights

recurrent weights
‘T‘ ‘ I, ‘ I, ‘ I, ‘ l, ‘ I, ‘HS‘H7

H, \ Hg\o, \ou\o‘,

t-1

c) Weight Connections

Weight Index o[ 12
Source Unit | wSource | 0 | 1

Destination U. | wDest 6|6
Time Delay wDelay ol o

Value wValue

olo|w|w
SIEYINIS
<lolo|e
NEIE
~o|e|e
~lo|o|e
o
o
N
£
o
o
=
o

2
6
0

Weight Index 30 [31]32]|33[34]35|36[37]|38]39]40]|a1[a2[as]aafas[a6|ar[as]a0fs0]51]52]53]54
Source Unit | wSource ol1]2|3]als|e|7]|8fofJofef|7]8flo]Jolef[7]a|]oflole|[7]s

Destination U. wDest ololoflofolofololofoftoftofto]toftofr|mf]1]|]t2]12[12][12]12
Time Delay wDelay ofoJofJofoJol [ 1]+l 1JoflofoJoloJoJoJofoJofJofolofolo

Value wValue

d) Units
Unit Index 0 1 2 3 4 5
First Weight | uFirstWeight
Last Weight | uLastWeight
Type uType
Act. Function uActFunc LIN| LIN| LIN

10|20 [ 30] 40 45 50
19| 29[ 30| 4a [ a9 54

-
T[o|o|o

Fig.1. a) Layered structure of Elman’s SRN. b) Werbos represamtaif the Elman’s SRN. ¢)
Table gathering information on weight connections. d) &ajathering information on units.

Werbos representation of the Emnan’s SRN is shown in FigAlLhnits of the net-
work can be indexed frofdito NU — 1, whereNU is the number of all units. The first
unit - special input unit corresponding to the bias weightfollowed by input units,
than by hidden and output units. Arranging hidden and outipits is not necessary,
every non-input unit can be output unit and desired aotigittan be specified during
training phase for that unit. Unit with indexcan have forward connections starting
only from units with smaller indices (from index 0 t6- 1). Hence edges correspond-
ing to forward weights in the Fig. 1b are oriented from lefright. For every weight,
indices of the source and destination unit are kept (an&gmur ce andwbDest ), to-
gether with the time delaywDel ay) related to the weight connection. Weights can be
also sorted, first by corresponding destination unit inthextby connection time delay
and finally by source unitindex in ascending order (Fig. Eoyward weights have time
delay of(0, what means that the actual stepctivity of the source unit is fed through
this connection to the destination unit. Recurrent coriapdtave time delay, grater
than0 and activity from previous time step— t, is fed through this connections. For
every non-input unit the first and the last weight indicesstioeed (IFi r st Wei ght ,
uLast Wei ght)) together with other useful information such as unit'seypType)
and unit’s activation functionuAct Func) (Fig. 1d). Usufulness of this network en-
coding can be seen in algorithmic description for forwarogamgation of the signal in
custom RNN for mulistream EKF (Fig. 2).



3 Multistream Extended Kalman Filter

Training of Elman’s SRN, and generally any other multilagerceptron network (re-
current or not), can be regarded as an optimal filtering [IB¢ set of EKF equations
for the network training can be formulated as follows:

K(t) = P(t - HHT()[HOP( — DHT (1) + R(1)] 7, (1)
P(t) = P(t - 1) - K(OH(P(t — 1) + Q(1), (2)
W(t) = W(t - 1) + K(t)[D(t) - O(1)]. 3)

Let n,, andn, denote the number of all network weights and number of ouipiis,
respectively.W is a vector of all weights of the length,,. H is the Jacobian ma-
trix, n, X n,,, calculated in every time step and containing in rows thévdeves of
corresponding output activity with respect to all weightsese derivatives can be cal-
culated similarly to the RTRL or BPTT algorithmB.is then,, x n,, error covariance
matrix, it holds error covariances corresponding to eadhgianetwork weights. The
n., X n, MatrixK called the Kalman gain is used in updating the weightaccording
to the difference between the desired output veEx@nd actual network outp@. The
n, X n, matrix R stands for the measurement noise covariance matrix anthgiynb
the learning rate in RTRL or BPTT can control the trainingespef EKF. Note, that
small process noise is still considered: thg x n,, matrix Q stands for the process
noise covariance matrix. Nonzero process noise improvegrgence of the filter.

For multistream EKF training the training dataset shouldbié into several parts
[10]. Training dataset in practical application is freqthgalready naturally partitioned,
since it often consists of multiple subsets of differenunatorresponding to different
working conditions. For a chosen number of streafghe training sequences of the
same length for each stream are selected from the diffeats pf the training set.
For each stream the different instance of the same netwgrkesented with the ac-
tual input-output pattern from the corresponding strearap&gation for each stream
is performed as in the case of several single networks tlaimedifferent patterns.
Also derivatives of network outputs with respect to netwankight are calculated in
the same way as for independent networks. The procedurd ¢olidw by perform-
ing N, independent EKF steps and by calculating overall weightgba by averaging
partially calculated weigh changes from each stream. Bstigmot the case of multi-
stream EKF. Instead calculated derivatives of each netinstiince are concatenated
into the singe measurement update makHig). If H;(¢) would be matrix of partial
derivatives of output units with respect to weight for sirgjeeam EKF training corre-
sponding to the streamin time stept, the matrixH(¢) can be expressed &§(¢t) =
(H1(t)Ha(t) ... Hn, (t)). Inthe similar way vector of desired vali¥t) and vector of
calculated output activitie®(t) are formed by concatenating corresponding elements,
D(t) = (Di(t)"D (1) ... DL ()T andO(t) = (0O1(t)TO02(t)" ... 0% (1))
Except for these changes the EKF equations remain the saméd. @ Eq. 3). Mul-
tistream EKF approach with BPTT routine for the derivatie¢calation is provided to
make this approach clearer. First, the forward propagationultiple streams is given
in Fig. 2 and then multistream EKF training step is decribeHig. 3.



NS - number of streams

NW - number of weight connections

NU - number of units (threshold unit and input units also count)
wSour ce[ 0. . NW 1] - source node indices

wDest [ 0. . NW 1] - destination node indices

wDel ay[ 0. . NW 1] - connection time delays

wVal ue[ 0. . NW 1] - weight connection strengths

uFi rstWei ght[0..NU 1] - indices of the first weight connection associated with thi¢ u
uLast Wi ght [ 0. . NU- 1] - indices of the last weight connection associated with thie u
uType[ 0. . NU-1] - unit types THRESHOLD, | NPUT, HI DDEN andOUTPUT)
uAct Func[ 0. . NU- 1] - unit activation-function typesSGM LI N, .. .)

ACT[ 0. .NU1,0..NSTEPS-1, 0. . NS-1] - all unit activities in all time steps for all streams
ACTD[ 0. . NU- 1, 0. . NSTEPS- 1, 0. . NS- 1] - act. func. derivatives in all time steps for all streams

Act Func(i act, actf) - activation function calculation based on the act. funpety
Act FuncDer (i act, actf) - derivative of the activation function
ts - actual time step
I nput (ui, ts,si) - returns value for the input uniti in time stept s for streansi
Qut put (ui, act, ts, si) -setnetwork output to the valweet for streanmsi
Target (ui,ts,si) - returns desired output unit activity in time stegt s for streamsi
1 for si=0 to NS-1 do
2 for ui=0 to NU-1 do
3 begi n
4 if uType[ui] = THRESHOLD then ACT[ui,ts,si] := 1.0;
5 else if uType[ui] = INPUT then ACT[ui,ts,si] := Input(ui,ts,si);
6 el se
7 begi n
8 iact := 0.0;
9 for wi := uFirstWeight[ui] to uLastWight[ui] do
10 iact +:= wal ue[w ] *ACT[wSource[wi ], ts-wDel ay[wi],si];
11 ACT[ui, ts,si] := Sgn(iact);
12 ACTD[ ui , ts,si] := SgnDer(iact);
13 end;
14 if uType = OQUTPUT then Qutput(ui,ACT[ui],ts,si);
15 end;

Fig. 2. Forward propagation for multistream EKF.

Multistream forward propagation consistad8 consecutive single-stream propaga-
tions (cycle on lined to 15). The first unit with index O correspond to the bias weight,
its activity is always set to the value of 1 (lidg. Activities of input units are set to the
actual input to the network (linB). Internal activities of hidden and output units are
calculated by multiplying unit's weights with source adi®s from corresponding time
step (linesB to 10), operator "+:=" stand for addition of the right-hand sidgeession
to the variable on the left-hand side. For forward weightargtime delay of 0 already
calculated activity from actual time step are used, for remt weights activities calcu-
lated in past time steps are used. Unit's activity is caleldy passing internal activity
to the activation function (lind1). The derivative (linel2) calculation is only needed
when gradient-based adaptation step such as backpropafgdkbws the forward prop-
agation. Activities calculated for the output units aretsenthe network output to the
exterior (linel4).



© ® N U N ®wWN R

BB W OWWWWWWWWWRNNNNRNNNNRNRNERERRRR R B P P
NP OO®WN0oa ~AWNRPROO©O®NOoOURWNROO® NGO AWRNEPRO

NS - number of streams

NO - number of network output units
ol ndex[ 0. . N - indices of output units
W nSi ze - unfolding window size

DO DWO0..NO1,0..NW 1, 0..NS-1] -derivatives of net. outputs with respect to all weights
DO DNA[ 0. . NU-1, 0. . wi nSi ze- 1] - backpropagated signal

H[ 0..NOxNS-1,0..NW1] - augmented Jacobian matrix

P[O..NW1,0..NW1] - error covariance matrix

Q@ 0..NW1,0..NwW1] - process noise covariance matrix

R[0..NO1,0..NO 1] - measurement noise covariance matrix
WO0..NwO..O0] - estimated vector of network weights (EKF state vector)
K[ 0..NW1,0..NO:NSs-1] - augmented Kalman gain

D[ 0..NOxNsS-1,0..0] - augmented vector of desired output values

g 0..NO:NS-1, 0..0] - augmented of calculated output values

Tr (X) - transpose of the matrix X

I nv(X) - inverse of the matrix X

for oui:=0 to NO1 do for wi:=0 to NW1 do for si:=0 to NS-1 do
DO DWoui,wi,si] := 0.0;

for si:=0 to NS-1 do
for oui:=0 to NO-1 do
begi n
for hi:=0 to winSize-1 do for ui:=0 to NU-1 do DO DNA[ui, hi] := 0.0;
DO _DNA[ ol ndex[ oui], 0] := 1.0;

for hi:=0 to winSize-1 do
for ui:=NU-1 downto O do
begi n
if uType[ui] = INPUT then break;
DO _DNA[ ui, hi] := DO _DNA[ui, hi]*ACTD[ui,ts-hi,si];
for wi := uLastWeight[ui] downto uFirstWight[ui] do
begi n
if (uType[wSource[wi]] <> I NPUT) AND
(uType[ wSource[wi ]] <> THRESHOLD) AND
(wDel ay[wi ] +hi < wi nSize)) then
DO _DNA[ wSour ce[wi ], wDel ay[wi ] +hi] +:=
wval ue[ wi ] *DO_DNA[ ui , hi];
DO DWoui ,wi,si] +: =
DO _DNA[ ui , hi ] * ACT[ wSource[wi ], ts-hi-wDelay[wi],si];
end;
end;
end;

for wi:=0 to NW1 do Ww ,0] := walue[w];

for si:=0 to NS-1 do
for oui:=0 to NO-1 do
begi n
D[ oui +si *NS, 0] := Target(ui,ts,si);
J oui +si *NS, 0] : = ACT[ol ndex[oui],tsmsi];

for wi:=0 to NW1 do H oui +si*NS,wi] := DO _DW oui,w,si];
end;
K:=Px Tr(H * Inv(H* P* Tr(H + R);
P:=P- K+ H*x P +Q
W:= W+ K=+ (D- O;

for wi:=0 to NW1 do walue[wi] := Wwi,0];

Fig. 3. Multistream EKF with derivatives calculated by BPTT.



The quantitieO_DwW(derivatives of output activities with respect to weigrdasg
initialized to 0 on linesl and2. Then for every stream and every output unit the back-
propagation through time is performed (cycle on lidgs 26). For one output unit the
“error” signal of corresponding to this output unit is setltgline 8), remaining ele-
ments of the arra}pO_DNA (derivatives of output activity with respect to the intdrna
units’ activities) were set to 0 (liné) and are to be calculated in the following cycle
of truncated backpropagation throught time (lid€sto 25). Computation of truncated
BPTT consists of backpropagating the “error” signahSi ze time steps back (lines
10 to 25). For each uniui (cycle on linesl1 to 25) and all its connections (cycle
on lines15 to 24) derivativesDO_DNA[ ui , hi ] are backpropagated through corre-
sponding connections to the derivatives in corresponding (lines20 and21). Signal
is not backpropagated to the input or threshold units (d¢@rdbn lines17 and18).
The test (linel9) is also performed to ensure, that the ardy DNA on lines20 and
21 is accessed properly. Quantitié® DWare built on line2 and23.

Augmented arrays for desired and calculated output aetb andO) are filled on
lines33 and34 and the Jacobian matrkt on line 35. EKF update is then performed
and weights are updated (li). In this section (line88 to 40) operators ,+ and
- denote matrix multiplication, addition and subtractiospectively. Since network
weights are changed only by EKF part of the algorithm they dbrreed to be filled
up in every time step and lin28 can be removed. We keep it there as a reminder than
arraywVal ueWand vectoWare the same quantities.

4 Implementation Detailes

Time complexity of the algorithm can be easily determinedrfithe pseudo-language
description of one cycle provided in Fig. 3. The trainingpstan be divided into two
parts: first truncated BPTT is done for every stream and emetput and than KF step
is performed. Hence time complexity can be estimated as:

Tasexr = Teprr + Tkr = O(NS x NO x NW x H) + O(NO x NW?). (4)

Since for huge networks number of streaMs, number of output unitév O and the
truncated BPTT window siz& are smaller than the number of weig¥$17, the time
complexity of MSEKF can be expressed as:

Owmsexr =~ O(NW?). )

Alhough in practice multiplicative constants (not revekite big-O notation) do matter
we can already see that the computation is dominated byrtteeddmplexity of the KF
part.

Standard way how implement operations with matrices is Hzgje of some linear
algebra package. All major processor vendors offer higkedparallel multithreaded
versions of BLAS (Basic Linear Algebra Subprograms). msaslution is MKL (Math
Kernel Library) offering BLAS and LAPACK (Linear Algebra R2Kage) interfaces.
Other choices are ACML (AMD Core Math Library) tailored folMD processors and
GotoBLAS library which is probably the fastest BLAS librayailable. Since the target



platform is a computer equipped with Intel Core i7 quad cooepssor and GotoBLAS
has not yet been optimized for Core i7 architecture we haesem MKL as a linear
algebra package for CPU implementation of MSEKF.

CUDA platform contains CUBLAS (CUDA BLAS) library benefitinfrom paral-
lelism of many-core GPU architecture but providing stadd3ltAS application inter-
face. Whole KF part was implemented to be performed on the @elding imple-
mentation of cholesky solver used for finding Kalman g&inOnly vectorE = D — O
and matrixH are transfered into the GPU device and weight ve®&oiis transfered
back from the CUDA device.

Other source of parallelism is the truncated BPTT step diecations are indepen-
dent. NO x NS iterations are performed in the truncated BPTT part of theEMIS
step. The only modification is th&dO DNA array cannot be shared between iterations
executed in paralel. There are several programming madd&i€an be used to improve
performance of this part of the algorithm by splitting cortgiion into multiple threads.
We have chosen Intel's Threading Building Blocks (TBBs) gmakallelfor” construct
was used in straightforward way. Implementation of BPTp sising CUDA is the task
for near future.

5 Results

Tests for both CPU and GPU implementations of MSEKF were uotatl on the same
machine running Microsoft Windows XP SP 3 equipped with lIi@tere i7 Nehalem
processor operating at 2.67GHz, 3GB of RAM and Nvidia Ge&di280 graphic card.
Intels hyperthreading technology was turned off in BIOS esommended in MKL
manual.

We performed tests with ElIman’s simple recurrent netwatd for the next value
prediction of Santa Fe laser sequence. Since RNNs are aetpadntly used by cognitive
science community for modeling symbolic sequences thenskbdataset was generated
by Elman’s grammar [12]. In this case the networks were &@ion the next symbol
prediction task. The length of both sequences was 1000@salhile training on Laser
sequence RNNs has single input and output unit, for EImazmsdét RNN'’s input and
output layer consist of 24 units.

We present simulation results for various number of streamasnumber of hidden
units. MSEKEF training run times in seconds are summarizetiénTab. 1 and corre-
spond to one epoch - one presentation of the training sequénc a given number of
streamgV S the training sequence is divided inddS parts of the same length and the
network performl0000/N S MSEKF training cycles per epoch. Hence higher number
of streams does not mean that more operations were perfatanigtd) training.

We provide results for computation performed in single f@iea only for two rea-
sons. First using double precision did not brink any diffexe considering resulting
performance (similarly to [9]). We also encountered no pents with numerical sta-
bility. The second reason is that GPUs performance in doptdeision is lower since
graphic hardware is optimized for single precision comfpoma For applications where
numerical precision is crucial performing computation tamglard multicore processor
is probably a better choice.



LASER BPTT - no TBBBPTT - TBB|EKF - CPUEKF - CUDA
MSEKF-16HU-1S 0.001 0.001 1.01 5.02
MSEKF-16HU-4S 0.25 0.004 0.51 1.51
MSEKF-16HU-16% 0.18 0.065 0.52 0.76
MSEKF-16HU-64% 0.17 0.045 0.89 0.76
MSEKF-64HU-1S 2.00 2.02 210.51 124.87
MSEKF-64HU-4S 2.25 0.51 60.16 33.63
MSEKF-64HU-16% 2.18 0.56 20.67 11.29
MSEKF-64HU-64% 2.25 0.55 21.00 8.84

ELMAN BPTT - no TBBBPTT - TBB|EKF - CPUEKF - CUDA
MSEKF-16HU-1S 11.00 3.01 46.51 35.59
MSEKF-16HU-2S 10.99 3.06 67.18 37.63
MSEKF-16HU-4S 11.49 3.02 111.74 69.21
MSEKF-16HU-8S 11.72 2.92 205.48 120.62
MSEKF-32HU-1S 27.99 7.15 184.08 95.12
MSEKF-32HU-2S 27.99 7.67 217.80 104.51
MSEKF-32HU-4S 29.00 7.42 322.48 177.40
MSEKF-32HU-8S 29.32 7.32 548.07 319.98

Table 1. Simulations times in seconds for BPTT and EKF parts of CPUGU®A implemeta-

tions of MSEKF.

We provide results for both unparallelized (no TBB) and peliaed (TBB) BPTT
part. Please note that the time requirements of BPTT pathargame for fixed number
of streams, since the same number of backward propagaltiomggh time is performed
for one epoch. Unsuprisingly parallelized version of theTBRakes much less time
than it's unparallelized counterpart. Almost 4 times heterformance was achieved,
hence the performance of this part scales well with the numbeores.

As can be seen from the table significant run time reductiotafger networks can
be obtained by performing MSEKF training on CUDA-enabledGPn the other side
standard CPU performs well for smaller networks since magsarallelism of many-
core GPUs is not used. In general smaller networks benefiterdrom multi-core nor
many core processors because of small level of parallelisenvdoing calculations
with small matrices.

6 Conclusion

Multistream extended Kalman filter is probably the most ssstul algorithm for train-
ing recurrent neural networks. The main drawback of MSEK§eMer computational
requirements in comparing with common approaches such a§ BP RTRL. This
usually prevents thorough search for better parameterther experimentation when
performing model selection. In this paper we first provideaded description of the al-
gorithm using simple pseudo-language. Algorithm is alnilost copy and paste form.
Then we provide results of implementations targeting CPtd @dDA-enabled GPU
platforms. We show that significant reduction of executiometcan be achieved by
performing calculations on graphical processing unitsmiingining large networks.



Acknowledgments. This work was supported by the grants Vega 1/0848/08, Vega
1/0822/08 and APVV-20-030204.

References

1. Werbos, P.: Backpropagation through time; what it doeshew to do it. Proceedings of
the IEEE78 (1990) 1550-1560

2. Williams, R.J., Zipser, D.: A learning algorithm for cantally running fully recurrent neural
networks. Neural Computatidh(1989) 270-280

3. Williams, R.J.: Some observations on the use of the eetdK@lman filter as a recurrent net-
work learning algorithm. Technical Report NU-CCS-92-1rtdeastern University, College
of Computer Science, Boston, MA (1992)

4, Cerhansky, M., Befiugkovd,: Simple recurrent network trained by RTRL and extended
Kalman filter algorithms. Neural Network Worlt8(3) (2003) 223-234

5. Trebaticky, P.: Recurrent neural network training vitie kalman filter-based techniques.
Neural network worldl5(5) (2005) 471-488

6. Feldkamp, L., Prokhorov, D., Eagen, C., Yuan, F.: Enhdnuelti-stream Kalman filter
training for recurrent networks. In Suykens, J., Vandesyall, eds.: Nonlinear Modeling:
Advanced Black-Box Techniques. Kluwer Academic Publisi{&898) 29-53

7. Prokhorov, D.V.: Toyota prius hev neurocontrol and dasiits. Neural Network21 (2008)

458-465

. NVIDIA: NVIDIA CUDA programming guide. Technical repo(2008)

9. Trebaticky, P.: Neural network training with extendedrkan filter using graphics process-
ing unit. In: Artificial Neural Networks - ICANN 2008, Pragu€zech Republik. Lecture
Notes in Computer Science, Springer-Verlag Berlin Heidegl{2008)

10. Prokhorov, D.V.: Kalman filter training of neural netksr Methodology and applications.
Tutorial on IJCNN 2004, Budapest, Hungary (2004)

11. Elman, J.L.: Finding structure in time. Cognitive Scet4(2) (1990) 179-211

12. Elman, J.: Distributed representations, simple recumetworks, and grammatical structure.
Machine Learning (1991) 195-225

[ee]



