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Abstract. This work provide a short study of training algorithms uséuadap-
tation of recurrent connectionist models for symbolic tisegies modeling tasks.
We show that approaches based on Kalman filtration outper$tendard gradinet
based training algorithms. We propose simple approximatathe Kalman fil-
tration with favorable computational requirements anderesal linguistic time
series taken from recently published papers we demonstugterior ability of
the proposed method.

1 Introduction

To process data with spatio-temporal structure recurremtai networks (RNNs) were
suggested. RNNs were successfully applied in many reahliplications where pro-
cessing time-dependent information was necessary. Ulelédforward neural networks,
units in RNNSs are fed by activities from previous time stédp®tigh recurrent connec-
tions. In this way contextual information can be kept in srattivities, enabling RNNs
to process time series.

Many commonly used real-world data with time structure carekpressed as a
sequence of symbols from finite alphabet - symbolic timeese&ince their emergence
neural networks were applied to symbolic time series amal{specially popular is
to use connectionist models for processing of complex laggstructures. One of the
main driving forces behind such studies has been formgjdtia models of human
performance in processing linguistic patterns of variaraglexity [1, 2]. Other works
study what kind of dynamical behavior has to be acquired biNRb solve particular
tasks such as processing strings of context-free languatyese counting mechanism
is needed [3, 4].

Gradient descent approaches such as backpropagatiomgythtione or real-time
recurrent learning algorithms are widely used by reseaschverking with symbolic
sequences. The aim of this paper is to show how KF-baseditp@®mused for train-
ing RNNs can deal with symbolic time series. We also comparedsird means square
error cost function with cost function based on the entr&ayple approximation sig-
nificantly reducing the complexity of the Kalman filtratios proposed and results on
the linguistic datasets taken from recently published papeshown.
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2 Recurrent Neural Network Training

Elman’s simple recurrent network (SRN) proposed in [1] iskiably the most widely
used RNN architecture.

It was trained using well-known error backpropagation atpm. Although simple
backpropagation is not appropriate algorithm for trainiegurrent networks it can be
used for simple tasks or as a reference method for other apipes.

Backpropagation Through Time

Backpropagation through time algorithm (BPTT) providesqise error gradient com-
putation for RNNSs training. The trick consists of unfoldiagg RNN in time into regular
feedforward network and then apply standard backpropagalirectly. Usually ap-

proximation to the precise calculation is performed andimemnt network is unfolded
into feedforward network only for several time steps catlede window. Later theoret-
ical results revealed that when acquiring long-term depeois the error information
of gradient-based training algorithms tends to vanish owhlip, therefore unfolding
the recurrent network backwards for long time interval i mecessary [5]. Probably
the most contributive article regarding BPTT is [6].

Adaptation of Extended Kalman Filter to Neural Network Training

Training of ElIman’s SRN, and generally any other multilaperceptron network (re-
current or not), can be regarded as an optimal filtering j@mkjl7]. Multilayer percep-
tron network can be described as nonlinear system by

x(t) = x(t — 1), 1)
z(t) = h(x(t), u(t)) + v(1), (@)

where state(¢) is vector of network weights. Weights of trained network dbechange
and so state transition mat# = I wherel is identity matrix. Measurementt) stands
for desired values and measurement funcli®ft) is nonlinear function of network
weightsx(t) and inputu(¢). Jacobian matri#H (¢) is calculated in every time stépas

OH(x(1), u(t)

H(t) = ——~ 3)
The set of EKF equations for the network training can be fdatedl as follows:

K(t) = P(t — DH () [HO)P(t - DHT (1) + R(1)] ", (4)

P(t) =P(t - 1) - K(OH@)P(t — 1) + Q(1), (5)

W(t) = W(t — 1) + K(t)[D(t) — O(t)]. (6)

Let n,, andn, denote the number of all network weights and number of output
units, respectivelyW is a vector of all weights (concatenated from matrid&gt/,
WEC WOR) of the lengthn,,. H is the Jacobian matrix,, x n,,, calculated in every



time step and containing in rows the derivatives of corresiitg output activity with
respect to all weights. These derivatives can be calculatedutines similar to BPTT
[6]. P is then,, x n,, error covariance matrix, it holds error covariances cqoesling

to each pair of network weights. Thg, x n, matrixK called the Kalman gainis used in
updating the weight8V according to the difference between the desired outpubvect
D and actual network outp@. Then, x n, matrixR stands for the measurement noise
covariance matrix and similarly to the learning rate in RT®RLBPTT can control the
training speed of EKF. Higher values represent higher armafiumcertainty attributed

to the differencé(t) — O(t) leading to slower training. Note, that small process noise
is still considered: the,,, x n,, matrix Q stands for the process noise covariance matrix.
Nonzero process noise improves convergence of the filter.

Entropy Cost Function Training Algorithms

Output units of RNNSs are often equiped with logistic sigmoidinear activation func-
tion and quadratic-error cost function was minimized inesrtb derive equations for
weight adaptation. Alternative approach better suitechéostymbolic time series pro-
cessing scenario is to use output units with linear activafunction and soft-max
combining function. Predictive performance is evaluatethg the probabilities(t)
calculated using soft-max combining function:

exp (oi(t))
i) = =—7 " (7)
> exp (05(1))
J
whereo; is the activation of output unit corresponding to the obedrtarget symbol.
Training algorithms are modified in order to minimize eny@wst functionE(t) in
each weight update step

E(t) = —log 4 p(t). (8)

Entropy Cost Function KF Approximation

Kalman filter is derived to minimize quadratic error costdtion. Approximation tech-
nique is proposed to minimize the entropy. Neural networklmaconsidered as a sys-
tem with a single output of logp(t) where the probability(¢) is calculated from
output unit activities by soft-max combining function (E€). Advantage of the single
output system is that no matrix inversion need to be caledlathat can significantly
reduce the time complexity of the algorithm. The price fatueing the computational
complexity may be poorer training performance. In this witwik approximation to the
Kalman filtration for RNN training will be called SM-EKF (semax EKF). Similar KF
approximation as SM-EKEF called “scalar error training” vgaieposed in [7].

3 Experiments

Standard gradient descent training techniques reprasbgtsimple backpropagation
and backpropagation through time algorithms are first coetpaith standard extended



Kalman filter adopted for RNN training with derivatives aalated by BPTT-like algo-

rithm. Standard versions of algorithms derived using gticherror cost function and

also versions using soft-max combining function minimggzamtropy cost function were
compared on simple symbolic dataset: sequence of quara@etions of real laser
and the sequence generated by context free grammar. Thposga approximation
to the Kalman filtration is used for processing linguisti¢ad®ts and resulting perfor-
mance is compared to published results.

Simple Symbolic Datasets

The Laser dataset was obtained by quantizing activity chsnflaser in chaotic regime,
where relatively predictable subsequences are followetargly predictable events.
The original real-valued time series was composed of 100f@€reinces between the
successive activations of a real laser. The series wasigadiirito a symbolic sequence
over four symbols correspondingto low and high positivgative laser activity change.
The first 8000 symbols are used as the training set and thenieim2000 symbols form
the test data set [8].

Deep Recursion data set is composed of strings of contegtlinguagd.;. The
set of production rules is composed of three simple rutes: aRb|R — ARB|R — e
wheree is the empty string. This language is in [3] called palindeolanguage. The
training and testing data sets consist of 1000 randomlyrgée@ concatenated strings.
No end-of-string symbol was used. Shorter strings were rfrerpient in the training
set than the longer ones. The total length of the trainingvast6156 symbols and the
length of the testing set was 6190 symbols.

Linguistic Datasets

For our experiments we have chosen two languages from tgqpertished papers. The
first language (labeled EG) was generated by Elman’s grarffhand was also used
in [10]. Dataset alphabet consists of 24 words including-efigentence marker. The
second dataset (labeled CG) was generated using the grdromdf. 1]. Language was
composed of 72 words including end-of-sentence markebéirtasks the training and
the test set were composed of 10000 words. Ground true pititiesbwere recorded
during datasets creation.

Language entrop§Z can be estimated using generated samples from the prababili
tic grammars:

T
H= —% Z Z Gi(a)log 4 Gi(a), )

t=1acA

whereG,(a) is the ground true probability of generating symhdh time stept and

| Al is the size of the language alphabetThe longer the sample, the more accurate the
entropy estimation, nevertheless we have used test seteuiml@ entropy estimations:
0.535 for EG dataset and 0.398 for CG dataset.



M ethod

First BP, BPTT and standard EKF with both quadratic errot &rsction and entropy
cost function (prefix SM: SM-BP, SM-BPTT and SM-EKF-BPTT,evke SM is an ab-
breviation for soft-max) were used to train EIman’s SRN osdraand Deep Recursion
datasets. 10 training epochs for EKF and up to 100 epochdH@r8l BPTT were done.
Symbols were encoded using one-hot-encoding, i.e. alltioptarget activities were
set to0, except the one corresponding to given symbol, which wasosetUnipolar
0-1 sigmoidal activation function was used.

Different parameters for BP and BPTT were used for each ddtéosobtain the
best results. We improved training by using scheduled iegmrate. We used linearly
decreasing learning rate in predefined intervals. But noargments made the training
as stable and fast as the EKF training (taking into accounhtimber of epochs). For
EKF training, error covariance matriR was set taP = 1000 * I, the measurement
noise covariance matriR was set taR = 100 * I, and the process noise covariance
matrix Q was set toQ = 0.0001 % I, wherel stands for the identity matrix. These
values were used throughout all experiments. MatrigemdR remained fixed during
training. Measurement matrikk was calculated in every time step using algorithm
almost identical to BPTT with window size set to 10 [7].

Predictive performance was evaluated using a normalizgdtive log-likelihood
(NNL) calculated over symbolic sequengess . . . s; . . . sy used for testing as

T

NNL = ——= Zlogw Pi(st41) = —= Z Z Gi(a)loga Pi(a),  (10)

t lacA

where the base of the logarithm| is the number of symbols in the alphabeand the
P, (a) is the probability of predicting symbalin the time step. NNL = 0 corresponds
to the 100% next-symbol prediction.

We also trained SRN on linguistic dataset using SM-BP, SM-BBnd SM-EKF-
BPTT. 10 training epochs were performed for all algorithifise same parameters as
in the previous experiments were used for SM-EKF-BPTT. RdrE° and SM-BPTT
exponencially decaying learning rate was used. We alsoigeaesults for alternative
performance criteria used by the cognitive science comipusiich as cosine scores
defined as:

T
1
COS = = t; cos (Gy(s¢), Pi(st)) (11)
wherecos is the cosine between two (in our case normalized) vest@isdy:
cos(x,y) = x Y (12)
[x[lyl
Another alternative measure is averaged Kullback-Leithlegrgence defined as:
Gi(a)
KLD = — Z > Gila)log 4 Pt (13)

tlaEA ()

There is a strong correspondence between measures KLD abdiNND =~ NNL —H,
whereH is the language entropy.



Results

For simple symbolic datasets we present mean and standaiatidies of 10 simu-
lations. Results for both Laser dataset and Deep Recurseosheown in Fig. 1. Un-
satisfactory simulations with significantly low perforntawere thrown away for BP
and BPTT algorithms, which seems to be sensitive to get stutdkcal minima or to
diverge. EKF approach to training RNNs on symbolic sequestews higher robust-
ness and better resulting performance. BP algorithm is teekwo give satisfactory
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Fig. 1. Performance of EIman’s SRN with 16 hidden units trained oset@nd DeepRec dataset.

results. NNL performances are significantly worse in cormgawith algorithms that
take into account the recurrent nature of network architest SMNNL version of BP
and BPTT algorithms converge faster and finally better NNioreis usually achieved
in comparing with standard BP pr BPTT. On the other hand SMNHitsion of EKF

shows slightly inferior NNL results in comparing with EKFPBT.



For linguistic datasets we provide results of SRN trainedh@yproposed approxi-
mation to the Kalman filtration - SM-EKF-BPTT. Computatibrequirements of stan-
dard EKF RNN training are very high because of high numbeutifat units. Proposed
approximation SM-EKF-BPTT helped us to obtain results asmnable time.
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Fig. 2. Performance of Elman’s SRN with 16 hidden units trained onda@set and CG dataset.

The Tab. 1 summarizes results obtained by training SRNg &ihBP, SM-BPTT
and SM-EKF-BPTT on linguistic datasets. We also providaltesising variable length
Markov models (VLMMSs), since RNNs and VLMMs are similar [1Results reported
here are not directly comparable to [10, 11], neverthelessave also conducted ex-
periments with modifications such as limiting maximal seweelength to 11 words for
EG dataset, using 10 datasets and removing duplicatedheestérom test sets for CG
dataset and better results than reported were achievegl BMIFEKF-BPTT algorithm.



EG Dataset CG Dataset

NNL KLD COSs NNL KLD COoSs
VLMM 0.63 0.097 0.91 0.51 0.114 0.86
SM-BP 0.60 0.070 0.93 0.48 0.084 0.90
SM-BPTT 0.58 0.046 0.96 0.47 0.072 0.92
SM-EKF-BPTT 0.56 0.031 0.96 0.45 0.053 0.93

4

Table 1. Summary of achieved results on linguistic datasets.

Conclusion

Significantly better results can be achieved by algorithased on the Kalman filtra-
tion. Extended Kalman filter shows much faster convergenderms of number of
epochs and resulting performance is better. Results aataiith architectures with
soft-max combining function and gradient-based algorghminimizing the entropy
proved to be better alternative than their standard copateyr based on quadratic error
cost function. Faster convergence and better resultinigieance was obtained. SM-
EKF-BPTT did not achieve the same performance as standaFgdtB& resulting NNL
errors were slightly higher. On the other side the componati requirements of this
algorithm are very favorable, comparable to the standarfiiBitgorithm.
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