
Training Recurrent Connectionist Models
on Symbolic Time Series ?

Michal Čerňanský1 andĽubica Beňušková2

1 Faculty of Informatics and Information Technologies, STU Bratislava, Slovakia
2 Department of Computer Science, University of Otago, Dunedin, New Zealand

cernansky@fiit.stuba.sk, lubica@cs.otago.ac.nz

Abstract. This work provide a short study of training algorithms useful for adap-
tation of recurrent connectionist models for symbolic timeseries modeling tasks.
We show that approaches based on Kalman filtration outperform standard gradinet
based training algorithms. We propose simple approximation to the Kalman fil-
tration with favorable computational requirements and on several linguistic time
series taken from recently published papers we demonstratesuperior ability of
the proposed method.

1 Introduction

To process data with spatio-temporal structure recurrent neural networks (RNNs) were
suggested. RNNs were successfully applied in many real-life applications where pro-
cessing time-dependent information was necessary. Unlikefeedforward neural networks,
units in RNNs are fed by activities from previous time steps through recurrent connec-
tions. In this way contextual information can be kept in units’ activities, enabling RNNs
to process time series.

Many commonly used real-world data with time structure can be expressed as a
sequence of symbols from finite alphabet - symbolic time series. Since their emergence
neural networks were applied to symbolic time series analysis. Especially popular is
to use connectionist models for processing of complex language structures. One of the
main driving forces behind such studies has been formulating the models of human
performance in processing linguistic patterns of various complexity [1, 2]. Other works
study what kind of dynamical behavior has to be acquired by RNNs to solve particular
tasks such as processing strings of context-free languages, where counting mechanism
is needed [3, 4].

Gradient descent approaches such as backpropagation through time or real-time
recurrent learning algorithms are widely used by researchers working with symbolic
sequences. The aim of this paper is to show how KF-based techniques used for train-
ing RNNs can deal with symbolic time series. We also compare standard means square
error cost function with cost function based on the entropy.Simple approximation sig-
nificantly reducing the complexity of the Kalman filtration is proposed and results on
the linguistic datasets taken from recently published paper are shown.

? This work was supported by the grants VG-1/0848/08 and VG-1/0822/08

2 Recurrent Neural Network Training

Elman’s simple recurrent network (SRN) proposed in [1] is probably the most widely
used RNN architecture.

It was trained using well-known error backpropagation algorithm. Although simple
backpropagation is not appropriate algorithm for trainingrecurrent networks it can be
used for simple tasks or as a reference method for other approaches.

Backpropagation Through Time

Backpropagation through time algorithm (BPTT) provides precise error gradient com-
putation for RNNs training. The trick consists of unfoldingan RNN in time into regular
feedforward network and then apply standard backpropagation directly. Usually ap-
proximation to the precise calculation is performed and recurrent network is unfolded
into feedforward network only for several time steps calledtime window. Later theoret-
ical results revealed that when acquiring long-term dependencies the error information
of gradient-based training algorithms tends to vanish or blow up, therefore unfolding
the recurrent network backwards for long time interval is not necessary [5]. Probably
the most contributive article regarding BPTT is [6].

Adaptation of Extended Kalman Filter to Neural Network Training

Training of Elman’s SRN, and generally any other multilayerperceptron network (re-
current or not), can be regarded as an optimal filtering problem [7]. Multilayer percep-
tron network can be described as nonlinear system by

x(t) = x(t − 1), (1)

z(t) = h(x(t),u(t)) + v(t), (2)

where statex(t) is vector of network weights. Weights of trained network do not change
and so state transition matrixF = I whereI is identity matrix. Measurementz(t) stands
for desired values and measurement functionH(t) is nonlinear function of network
weightsx(t) and inputu(t). Jacobian matrixH(t) is calculated in every time stepk as

H(t) =
∂H(x̂(t),u(t))

∂x
. (3)

The set of EKF equations for the network training can be formulated as follows:

K(t) = P(t − 1)HT (t)[H(t)P(t − 1)HT (t) + R(t)]−1, (4)

P(t) = P(t − 1) − K(t)H(t)P(t − 1) + Q(t), (5)

W(t) = W(t − 1) + K(t)[D(t) − O(t)]. (6)

Let nw andno denote the number of all network weights and number of output
units, respectively.W is a vector of all weights (concatenated from matricesWRI ,
WRC , WOR) of the lengthnw. H is the Jacobian matrix,no ×nw, calculated in every

time step and containing in rows the derivatives of corresponding output activity with
respect to all weights. These derivatives can be calculatedby routines similar to BPTT
[6]. P is thenw ×nw error covariance matrix, it holds error covariances corresponding
to each pair of network weights. Thenw×no matrixK called the Kalman gain is used in
updating the weightsW according to the difference between the desired output vector
D and actual network outputO. Theno×no matrixR stands for the measurement noise
covariance matrix and similarly to the learning rate in RTRLor BPTT can control the
training speed of EKF. Higher values represent higher amount of uncertainty attributed
to the differenceD(t)−O(t) leading to slower training. Note, that small process noise
is still considered: thenw×nw matrixQ stands for the process noise covariance matrix.
Nonzero process noise improves convergence of the filter.

Entropy Cost Function Training Algorithms

Output units of RNNs are often equiped with logistic sigmoidor linear activation func-
tion and quadratic-error cost function was minimized in order to derive equations for
weight adaptation. Alternative approach better suited to the symbolic time series pro-
cessing scenario is to use output units with linear activation function and soft-max
combining function. Predictive performance is evaluated using the probabilitiesp(t)
calculated using soft-max combining function:

p(t) =
exp

(

oi(t)
)

∑

j

exp
(

oj(t)
) , (7)

whereoi is the activation of output unit corresponding to the observed target symbol.
Training algorithms are modified in order to minimize entropy cost functionE(t) in
each weight update stept:

E(t) = − log|A| p(t). (8)

Entropy Cost Function KF Approximation

Kalman filter is derived to minimize quadratic error cost function. Approximation tech-
nique is proposed to minimize the entropy. Neural network can be considered as a sys-
tem with a single output of− log p(t) where the probabilityp(t) is calculated from
output unit activities by soft-max combining function (Eq.7). Advantage of the single
output system is that no matrix inversion need to be calculated what can significantly
reduce the time complexity of the algorithm. The price for reducing the computational
complexity may be poorer training performance. In this workthis approximation to the
Kalman filtration for RNN training will be called SM-EKF (soft-max EKF). Similar KF
approximation as SM-EKF called “scalar error training” wasproposed in [7].

3 Experiments

Standard gradient descent training techniques represented by simple backpropagation
and backpropagation through time algorithms are first compared with standard extended

Kalman filter adopted for RNN training with derivatives calculated by BPTT-like algo-
rithm. Standard versions of algorithms derived using qudratic-error cost function and
also versions using soft-max combining function minimizing entropy cost function were
compared on simple symbolic dataset: sequence of quantizedactivations of real laser
and the sequence generated by context free grammar. Then proposed approximation
to the Kalman filtration is used for processing linguistic datasets and resulting perfor-
mance is compared to published results.

Simple Symbolic Datasets

The Laser dataset was obtained by quantizing activity changes of laser in chaotic regime,
where relatively predictable subsequences are followed byhardly predictable events.
The original real-valued time series was composed of 10000 differences between the
successive activations of a real laser. The series was quantized into a symbolic sequence
over four symbols corresponding to low and high positive/negative laser activity change.
The first 8000 symbols are used as the training set and the remaining 2000 symbols form
the test data set [8].

Deep Recursion data set is composed of strings of context-free languageLG. The
set of production rules is composed of three simple rules:R → aRb|R → ARB|R → e

wheree is the empty string. This language is in [3] called palindrome language. The
training and testing data sets consist of 1000 randomly generated concatenated strings.
No end-of-string symbol was used. Shorter strings were morefrequent in the training
set than the longer ones. The total length of the training setwas 6156 symbols and the
length of the testing set was 6190 symbols.

Linguistic Datasets

For our experiments we have chosen two languages from recently published papers. The
first language (labeled EG) was generated by Elman’s grammar[9] and was also used
in [10]. Dataset alphabet consists of 24 words including end-of-sentence marker. The
second dataset (labeled CG) was generated using the grammarfrom [11]. Language was
composed of 72 words including end-of-sentence marker. Forboth tasks the training and
the test set were composed of 10000 words. Ground true probabilities were recorded
during datasets creation.

Language entropyH can be estimated using generated samples from the probabilis-
tic grammars:

H = −
1

T

T
∑

t=1

∑

a∈A

Gt(a) log|A| Gt(a), (9)

whereGt(a) is the ground true probability of generating symbola in time stept and
|A| is the size of the language alphabetA. The longer the sample, the more accurate the
entropy estimation, nevertheless we have used test sets to provide entropy estimations:
0.535 for EG dataset and 0.398 for CG dataset.

Method

First BP, BPTT and standard EKF with both quadratic error cost function and entropy
cost function (prefix SM: SM-BP, SM-BPTT and SM-EKF-BPTT, where SM is an ab-
breviation for soft-max) were used to train Elman’s SRN on Laser and Deep Recursion
datasets. 10 training epochs for EKF and up to 100 epochs for BP and BPTT were done.
Symbols were encoded using one-hot-encoding, i.e. all input or target activities were
set to0, except the one corresponding to given symbol, which was setto 1. Unipolar
0-1 sigmoidal activation function was used.

Different parameters for BP and BPTT were used for each data set to obtain the
best results. We improved training by using scheduled learning rate. We used linearly
decreasing learning rate in predefined intervals. But no improvements made the training
as stable and fast as the EKF training (taking into account the number of epochs). For
EKF training, error covariance matrixP was set toP = 1000 ∗ I, the measurement
noise covariance matrixR was set toR = 100 ∗ I, and the process noise covariance
matrix Q was set toQ = 0.0001 ∗ I, whereI stands for the identity matrix. These
values were used throughout all experiments. MatricesQ andR remained fixed during
training. Measurement matrixH was calculated in every time step using algorithm
almost identical to BPTT with window size set to 10 [7].

Predictive performance was evaluated using a normalized negative log-likelihood
(NNL) calculated over symbolic sequences1s2 . . . st . . . sT used for testing as

NNL = −
1

T

T
∑

t=1

log|A| Pt(st+1) ≈ −
1

T

T
∑

t=1

∑

a∈A

Gt(a) log|A| Pt(a), (10)

where the base of the logarithm|A| is the number of symbols in the alphabetA and the
Pt(a) is the probability of predicting symbola in the time stept. NNL = 0 corresponds
to the 100% next-symbol prediction.

We also trained SRN on linguistic dataset using SM-BP, SM-BPTT and SM-EKF-
BPTT. 10 training epochs were performed for all algorithms.The same parameters as
in the previous experiments were used for SM-EKF-BPTT. For SM-BP and SM-BPTT
exponencially decaying learning rate was used. We also provide results for alternative
performance criteria used by the cognitive science community, such as cosine scores
defined as:

COS =
1

T

T
∑

t=1

cos (Gt(st), Pt(st)) , (11)

wherecos is the cosine between two (in our case normalized) vectorsx andy:

cos(x,y) =
x · y

|x||y|
. (12)

Another alternative measure is averaged Kullback-Leiblerdivergence defined as:

KLD =
1

T

T
∑

t=1

∑

a∈A

Gt(a) log|A|

Gt(a)

Pt(a)
. (13)

There is a strong correspondence between measures KLD and NNL: KLD ≈ NNL−H,
whereH is the language entropy.

Results

For simple symbolic datasets we present mean and standard deviations of 10 simu-
lations. Results for both Laser dataset and Deep Recursion are shown in Fig. 1. Un-
satisfactory simulations with significantly low performance were thrown away for BP
and BPTT algorithms, which seems to be sensitive to get stuckin local minima or to
diverge. EKF approach to training RNNs on symbolic sequences shows higher robust-
ness and better resulting performance. BP algorithm is too week to give satisfactory

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1e61e51e41e30

N
N

L

Step

Laser - SRN - 16 HU

SM-BP
SM-BPTT

SM-EKF-BPTT
BP

BPTT
EKF-BPTT

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1e71e61e51e41e30

N
N

L

Step

DeepRec - SRN - 16 HU

SM-BP
SM-BPTT

SM-EKF-BPTT
BP

BPTT
EKF-BPTT

Fig. 1. Performance of Elman’s SRN with 16 hidden units trained on Laser and DeepRec dataset.

results. NNL performances are significantly worse in comparing with algorithms that
take into account the recurrent nature of network architectures. SMNNL version of BP
and BPTT algorithms converge faster and finally better NNL error is usually achieved
in comparing with standard BP pr BPTT. On the other hand SMNNLversion of EKF
shows slightly inferior NNL results in comparing with EKF-BPTT.

For linguistic datasets we provide results of SRN trained bythe proposed approxi-
mation to the Kalman filtration - SM-EKF-BPTT. Computational requirements of stan-
dard EKF RNN training are very high because of high number of output units. Proposed
approximation SM-EKF-BPTT helped us to obtain results in reasonable time.

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0 1e3 1e4 1e5

N
N

L

Step

EG - SRN - 16 HU

SM-BP
SM-BPTT

SM-EKF-BPTT

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0 1e3 1e4 1e5

N
N

L

Step

CG - SRN - 16 HU

SM-BP
SM-BPTT

SM-EKF-BPTT

Fig. 2. Performance of Elman’s SRN with 16 hidden units trained on EGdataset and CG dataset.

The Tab. 1 summarizes results obtained by training SRNs using SM-BP, SM-BPTT
and SM-EKF-BPTT on linguistic datasets. We also provide results using variable length
Markov models (VLMMs), since RNNs and VLMMs are similar [12]. Results reported
here are not directly comparable to [10, 11], nevertheless we have also conducted ex-
periments with modifications such as limiting maximal sequence length to 11 words for
EG dataset, using 10 datasets and removing duplicated sentences from test sets for CG
dataset and better results than reported were achieved using SM-EKF-BPTT algorithm.

EG Dataset CG Dataset
NNL KLD COS NNL KLD COS

VLMM 0.63 0.097 0.91 0.51 0.114 0.86
SM-BP 0.60 0.070 0.93 0.48 0.084 0.90
SM-BPTT 0.58 0.046 0.96 0.47 0.072 0.92
SM-EKF-BPTT 0.56 0.031 0.96 0.45 0.053 0.93

Table 1. Summary of achieved results on linguistic datasets.

4 Conclusion

Significantly better results can be achieved by algorithms based on the Kalman filtra-
tion. Extended Kalman filter shows much faster convergence in terms of number of
epochs and resulting performance is better. Results obtained with architectures with
soft-max combining function and gradient-based algorithms minimizing the entropy
proved to be better alternative than their standard counterparts based on quadratic error
cost function. Faster convergence and better resulting performance was obtained. SM-
EKF-BPTT did not achieve the same performance as standard EKF, the resulting NNL
errors were slightly higher. On the other side the computational requirements of this
algorithm are very favorable, comparable to the standard BPTT algorithm.

References

1. Elman, J.L.: Finding structure in time. Cognitive Science 14(2) (1990) 179–211
2. Christiansen, M., Chater, N.: Toward a connectionist model of recursion in human linguistic

performance. Cognitive Science23 (1999) 417–437
3. Rodriguez, P.: Simple recurrent networks learn contex-free and contex-sensitive languages

by counting. Neural Computation13 (2001) 2093–2118
4. Bodén, M., Wiles, J.: On learning context free and context sensitive languages. IEEE Trans-

actions on Neural Networks13(2) (2002) 491–493
5. Hochreiter, J., Schmidhuber, J.: Long short term memory.Neural Computation9(8) (1997)

1735–1780
6. Werbos, P.: Backpropagation through time; what it does and how to do it. Proceedings of

the IEEE78 (1990) 1550–1560
7. Prokhorov, D.V.: Kalman filter training of neural networks: Methodology and applications.

Tutorial on IJCNN 2004, Budapest, Hungary (2004)
8. Tiňo, P., Dorffner, G.: Predicting the future of discrete sequences from fractal representations

of the past. Machine Learning45(2) (2001) 187–218
9. Elman, J.: Distributed representations, simple recurrent networks, and grammatical structure.

Machine Learning7 (1991) 195–225
10. Tong, M.H., Bickett, A.D., Christiansen, E.M., Cottrell, G.W.: Learning grammatical struc-

ture with Echo State Networks.20 (2007) 424–432
11. Farkaš, I., Crocker, M.: Recurrent networks and natural language: exploiting self-

organization. In: Proceedings of the 28th Cognitive Science Conference, Vancouver, Canada.
(2006) 1275–1280

12. Tiňo, P.,Čerňanský, M., Beňušková,̌L.: Markovian architectural bias of recurrent neural
networks. IEEE Transactions on Neural Networks15(1) (2004) 6–15

