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Abstract

Recurrent neural networks are often employed in the cognitive science community to process symbol sequences that represent various natural
language structures. The aim is to study possible neural mechanisms of language processing and aid in development of artificial language
processing systems. We used data sets containing recursive linguistic structures and trained the Elman simple recurrent network (SRN) for the
next-symbol prediction task. Concentrating on neuron activation clusters in the recurrent layer of SRN we investigate the network state space
organization before and after training. Given a SRN and a training stream, we construct predictive models, called neural prediction machines, that
directly employ the state space dynamics of the network. We demonstrate two important properties of representations of recursive symbol series
in the SRN. First, the clusters of recurrent activations emerging before training are meaningful and correspond to Markov prediction contexts. We
show that prediction states that naturally arise in the SRN initialized with small random weights approximately correspond to states of Variable
Memory Length Markov Models (VLMM) based on individual symbols (i.e. words). Second, we demonstrate that during training, the SRN
reorganizes its state space according to word categories and their grammatical subcategories, and the next-symbol prediction is again based on the
VLMM strategy. However, after training, the prediction is based on word categories and their grammatical subcategories rather than individual
words. Our conclusion holds for small depths of recursions that are comparable to human performances. The methods of SRN training and analysis
of its state space introduced in this paper are of a general nature and can be used for investigation of processing of any other symbol time series
by means of SRN.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A significant scientific effort is devoted to connectionist
processing of complex language structures. One of the main
driving forces behind such studies has been formulating the
models of human performance in processing linguistic patterns
of various complexity (Christiansen & Chater, 1999; Elman,
1990; Hanson & Negishi, 2002; Lawrence, Giles, & Fong,
2000). Also, the analysis of state space trajectories in recurrent
neural networks (RNNs) has provided new insights into the
types of processes which may account for the ability of learning
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devices to acquire and represent language, without appealing to
traditional linguistic concepts (Parfitt, 1997; Servan-Schreiber,
Cleeremans, & McClelland, 1989). To gain an insight into what
RNNs have learned, trained networks are used as generators
by transforming their outputs to “probabilities” of possible
sentence continuations (by normalizing the sum of outputs
to 1). One of these possible continuations is then chosen
stochastically and can be fed back as the next input to the
network to generate the next symbol (Christiansen & Chater,
1999; Elman, 1990).

Common algorithms usually used for the RNNs training
are based on gradient minimization of error. One such
algorithm, backpropagation through time (BPTT) (Werbos,
1990; Williams & Zipser, 1995), consists of unfolding a
recurrent network in time and applying the well-known
backpropagation algorithm directly. Another gradient based
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approach, where estimates of derivatives needed for evaluating
error gradient are calculated in every time step, is called
the real time recurrent learning algorithm (RTRL) (Williams
& Zipser, 1989). In Čerňanský and Beňušková (2003) we
compared two methods of training SRN, namely the RTRL
and extended Kalman filter algorithms. We have shown that an
approach of extended Kalman filter, although computationally
more expensive, yields higher robustness with respect to
the hyperparameter values, and the resulting next-symbol
prediction is better than with RTRL. This result is consistent
with the findings of Pérez-Ortiz, Gers, Eck, and Schmidhüber
(2003) with training the LSTM (long short-term memory)
network on artificial grammar sequences. Thus, in the present
paper we use the extended Kalman filter algorithm for training
the SRN.

Yet whichever the training approach, a note of caution
should be issued: when training RNNs to process any
kind of symbol time series (including language structures),
activations of recurrent units display a considerable amount
of structural differentiation even prior to learning (Hammer
& Tiňo, 2003; Tiňo & Hammer, 2003; Kolen, 1994a, 1994b).
According to Christiansen and Chater (1999) we refer to
this phenomenon as the architectural bias of RNNs. In this
paper we perform an investigation of this phenomenon using
artificial languages constructed according to Christiansen and
Chater (1999). These authors trained SRN on three artificial
languages with recursive structures reflecting those found in
human language. They showed close correspondence between
the empirically observed limited ability of humans to process
recursive structures and results obtained by experimenting with
SRN.

We study the organization of the SRN internal representa-
tions before and after learning by discretizing its state space
through clustering recurrent activations. The intuition behind
clustering is this: activation patterns across recurrent units can
be thought of as an n-dimensional spatial codes of history of
inputs seen so far. For example, when trained on symbol se-
quences to perform the next-symbol prediction, RNNs tend to
organize their state space so that close recurrent activation vec-
tors correspond to histories of symbols yielding similar next-
symbol distributions (Tiňo, 1999). We use this state space or-
ganization and the training set to extract neural predictive mod-
els that we call neural prediction machines. Based on compar-
ison with the performance of Markov prediction models of fi-
nite and variable length memories (MM and VLMM, respec-
tively), we show that neural prediction machines of non-trained
RNNs initialized with small random weights are closely related
to VLMMs (Ron, Singer, & Tishby, 1996). Previously, using
the same training sets (Tiňo, Čerňanský, & Beňušková, 2002),
we showed that neural prediction machines extracted from non-
trained RNNs are closely related to the so-called fractal predic-
tion machines (FPMs). FPMs introduced in Tiňo and Dorffner
(2001) are constructed from RNNs treated as an affine iterative
function system. Later (Tiňo, Čerňanský, & Beňušková, 2004),
we used a chaotic symbolic time sequence and one example of
context-free artificial language to demonstrate that the architec-
tural bias of RNNs has the nature of VLMM.
We would like to answer the question how the RNN
state space reorganizes during training on recursive linguistic
structures and what is the nature of the resulting internal
representation of these recursive structures. We introduce a
simple visualization approach to investigate the organization
of clusters of RNN recurrent activations. Based on comparison
with the performance of VLMMs, we show that neural
prediction machines of trained SRN are again closely related
to VLMMs, but this time based on word categories and their
grammatical subcategories rather than individual words.

2. Architecture of SRN

The architecture of the SRN is shown in Fig. 1 (Elman,
1990). Units of the input layer I and the recurrent layer R
and the output layer O are fully connected through the first
order weights WRI and WOR, respectively, as in the feedforward
multilayer perceptron (MLP). Time delay connections feed
back current activities of recurrent units R(t) to the context
layer so that C(t)

= R(t−1). Hence, every recurrent unit is
fed by activities of all recurrent units from previous time
step through recurrent weights WRC. Recurrent units’ activities
from previous time step can be viewed as an extension of
input to the recurrent layer. They represent the memory of the
network, since they hold contextual information from previous
time steps.

Given input pattern in time t , I(t)
= (I (t)

1 , . . . , I (t)
j , . . . ,

I (t)
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Output unit k calculates its net input Õ(t)
i and output activity
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where |I |, |R| and |O| are the number of input, hidden and
output units, respectively, and f stands for the activation
function. In this work we used the logistic sigmoid function
f (x) =

(
1 + e−x)−1.

In our experiments, symbols from input alphabet are
encoded using one-hot encoding scheme: all input unit’s or
target activities are fixed to be inactive but for one unit
corresponding to the input or target symbol. Hence, the number
of input and output units is equal to the number of symbols
in the alphabet of a given data set. The training sequence was
presented at a rate of one symbol per clock tick. SRN was
trained to predict the next item in a sequence given the previous
context. At the beginning of each training epoch the network
is re-set with the same initial state C(1). The initial state is
randomly chosen prior to the training session.
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Fig. 1. Simplified (a) and more detailed (b) representation of Elman’s SRN.
3. Extended Kalman filter algorithm for SRN

The Kalman filter (KF) is a set of equations describing a
recursive solution of the linear discrete-data filtering problem
(Welch & Bishop, 1995). Applying KF to the nonlinear system
can be done in several ways. Probably the most straightforward
way is to apply KF to the system linearized in every time
step using the Taylor expansion. This approach is called an
extended Kalman filter (EKF). Training of Elman SRN, and
generally any other multilayer perceptron network (recurrent
or not), can be regarded as an optimal filtering (Feldkamp,
Prokhorov, Eagen, & Yuan, 1998). The set of EKF equations
for the network training can be formulated as follows:

K(t) = P(t − 1)HT (t)[H(t)P(t − 1)HT (t) + N(t)]−1, (5)
P(t) = P(t − 1) − K(t)H(t)P(t − 1) + Q(t), (6)
W(t) = W(t − 1) + K(t)[D(t) − O(t)]. (7)

Let nw and no denote the number of all network weights
and number of output units, respectively. In terms of RNN
equations described in Section 2, W is a vector of all weights
(concatenated from matrices WRI , WRC, WOR) of the length
nw. H is the Jacobian matrix, no × nw, calculated in every time
step and containing in rows the derivatives of corresponding
output activity with respect to all weights. These derivatives
can be calculated by routines used to calculate derivatives either
for RTRL (Williams & Zipser, 1989) or for BPTT (Werbos,
1990). P is the nw × nw error covariance matrix, it holds error
covariances corresponding to each pair of network weights.
Ignoring error covariances of weights of different network units
leads to decoupled extended Kalman filter (DEKF); dividing
matrix P into smaller matrices corresponding to network units
(or groups of units) decreases computational requirements. On
the other hand, full coupling – global EKF approach (Eqs. (5)–
(7)) – can lead towards better solutions (Feldkamp et al., 1998).
The nw × no matrix K, called the Kalman gain, is used in
updating the weights W according to the difference between
the desired output vector D and actual network output O. The
no × no matrix N stands for the measurement noise covariance
matrix. Similarly to the learning rate in RTRL or BPTT, it
controls the training speed of EKF. Higher values represent
a higher amount of uncertainty attributed to the difference
D(t)−O(t) thus leading to slower training. The nw ×nw matrix
Q stands for the process noise covariance matrix. Nonzero
process noise improves convergence of the filter.
To initialize the EKF training, diagonal elements p1 of the
state error covariance matrix P were set to values of p1 = 103.
Off-diagonal elements p2 were set to values of p2 = 102.
Diagonal elements of the measurement noise covariance matrix
N were set to n = 102 and diagonal elements of the output
noise covariance matrix Q were set to q = 10−4 according to
Feldkamp et al. (1998).

In the described version of an EKF-based training, the
EKF estimated state is a concatenation of network’s weights.
Network training can be formulated as a dual estimation
problem where both network weights and activities are to be
estimated. There are several approaches to dual estimation (see
for instance Wan & Nelson, 2000). Other variations of EKF can
be based on training on multiple input streams (multi-stream
EKF, Feldkamp et al., 1998).

4. Neural prediction machines

The main aim of this work is to analyze the state space of the
RNN trained on linguistic data sets inspired by Christiansen and
Chater (1999). Techniques frequently used in RNN state space
analysis are clusterization of the recurrent unit’s activities and
attributing meaningful information to the extracted clusters.

When training the RNN on a sequence of symbols
representing the words generated by simple regular grammars,
clusters in the state space correspond to the states of finite state
machine accepting words from given language. Thus, trained
RNN state reflects the information of possible continuation of
symbol sequence.

But also the state space of an untrained RNN initialized by
small weights can reflect meaningful organization, as shown
and explained in Hammer and Tiňo (2003), Tiňo and Hammer
(2003), Tiňo et al. (2004). Recurrent units’ activities are
grouped in clusters that correspond to the symbols presented to
the network. The state of the network (recurrent unit activities)
is mostly determined by the most recent symbol presented to
the network, then by the second last presented symbol, etc.
Clusters in the state space correspond to the frequent sequences
of symbols from the symbol dataset presented to the network
and can be used to create prediction machines.

Neural prediction machines (NPM) are similar to MMs
in a way they use predictive contexts. In fixed order MMs
of order n, all n A strings of length n created from alphabet
A = {1, 2, . . . , A} are predictive contexts. VLMMs use
more sophisticated methods for creating contexts: only relevant
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contexts (substrings of variable length) are kept by the model
(see the section Markov Models). Contexts of NPM are clusters
extracted from the RNN state space. The symbol just presented
to the network corresponds to some cluster if and only if the
RNN state belongs to this cluster. The next-symbol probabilities
for all A symbols from alphabet A can be calculated and
attributed for every cluster in the same way as in MMs.

The next-symbol probability of a symbol a ∈ A for
a cluster c is calculated by relating the number of times
(counter N a

c ) when symbol a follows a symbol driving the
RNN to a given cluster c with the number of times the RNN
state belongs to the cluster c (

∑
b∈A N b

c ). The next-symbol
probability distributions are smoothed by applying Laplace
correction parameter γ , hence the probability of predicting
symbol a when in cluster c can be calculated as:

PNPM(a|c) =
P(a, c)

P(c)
.
=

γ + N a
c

γ A +
∑

b∈A
N b

c
. (8)

We set the Laplace correction parameter γ to the value of
A−1. This can be seen as if we initialized counters to the value
γ prior to counting any symbol occurrences thus attributing
some probabilities also to symbols not present in the training
sequence. The more important the context, the less smoothing
is performed. On the other hand, the probability distribution
of rare (statistically less convincing) context is smoothed more
heavily.

5. Markov models

In MM of fixed order L , the next-symbol distribution in
sequence of t symbols a1a2..at ∈ At from alphabet A =

{1, 2, . . . , A} is written in the terms of the last L symbols

P(at+1|a1..at ) = P(at+1|at−L ..at ). (9)

Building a Markov next-symbol prediction model over symbol
sequence is straightforwardly based on empirical estimation of
prediction probability such that

PMM(a|w) =
P(wa)

P(w)

.
=

γ + N a
w

γ A +
∑

b∈A
N b

w

, (10)

where a ∈ A is the next symbol and w ∈ AL is called
a prediction context. Probability distribution PMM(a|w) is
estimated by counting occurrences of sequence w followed by
symbol a in the training sequence, i.e. N a

w. Similar to NPMs,
we perform smoothing by Laplace correction with γ = 1/A.
However, for large memory lengths L , the estimation can be
infeasible because the number of different prediction contexts
w ∈ AL increases exponentially by factor A. Using of large
order MMs thus results in highly variable estimates.

On the other hand, VLMM use prediction contexts of
variable length, and thus make use of deeper temporal
information represented by longer prediction context only when
it is really necessary. Creating VLMM is an iterative process,
in which prediction contexts are systematically extended in
the following manner. Let us suppose a candidate prediction
context w ∈ Am of length m with empirical next-symbol
probability P(a|w). If for a symbol u ∈ A the probability
P(a|uw) defined as

P(a|uw) =
P(uwa)

P(uw)
, (11)

differs significantly from P(a|w), then extending the prediction
context w by symbol u ∈ A improves the next-symbol predic-
tion. A typical decision criterion used for extending the can-
didate prediction context is the Kullback–Leibler divergence
between the next-symbol distributions P(a|w) and P(a|uw)

expressed through parameter ε1. Once appropriate prediction
contexts are chosen according to the foregoing formalism, the
next-symbol probabilities are estimated similarly to MM, i.e.:

PVLMM(a|w) =
P(wa)

P(w)

.
=

γ + N a
w

γ A +
∑

b∈A
N b

w

, (12)

where Laplace correction parameter γ is equal to 1/A. For
practical reasons the size of VLMM is usually limited by
maximal length of prediction context |w| < L or the minimal
probability P(w) > ε2.

6. Description of data sets

We performed experiments on three artificial languages
constructed according to Christiansen and Chater (1999).
Each language involves one of the three complex recursions
taken from Chomsky (1957), interleaved with right-branching
recursions (RBR). Language symbols belong to four categories:
n, v, N , V , where n stands for a singular noun, N for a plural
noun, v for a singular verb and V for a plural verb. Let e be the
empty string. The four complex recursions are:

(1) Center-embedding (mirror) recursion (CER), where the
strings exhibit mirror symmetry around the midpoint. Example:
“the boy girls like runs”. CER can be defined by the following
production rule: X → N X V |nXv|e. Starting with X we can
generate the strings like e, . . . , nN V v, NnnN V vvV , etc. The
simplest way to process CER sentences is to develop a last-
in-first-out memory or stack to store agreement information.
CER strings form context-free language that can be processed
by push-down automata.

(2) Identity (cross-dependency) recursion (IR), where the
strings consist of the concatenation of the sequence of nouns
and the sequence of corresponding verbs. Example: “the
boy girls runs like”. IR can be defined by the following
production rule: X → NnX |V vX |e. Starting with X we can
generate the strings like e, . . . , NnV v, nNvV, . . . , etc. The
most straightforward way to process IR sentences is to develop
a first-in-first-out memory or queue. This language belongs
to the class of context-sensitive languages; linearly-bounded
automata can process such languages.

(3) Counting recursion (CR), where in order to parse
such strings from left to right it is necessary to count
the number of N ’s and note whether it equals the
number of V ’s, while ignoring singulars and plurals. IR
can be defined by the following production rule: X →

N X V |N X V |e. Starting with X we can generate the strings
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Table 1
Distribution of string lengths with examples from the CERandRBR data set

Length Percent (%) RBR examples CER examples

2 15.0 nv, NV nv, NV
4 27.5 NVnv nNVv

6 7.0 NVNVnv nNNVVv

8 0.5 nvNVNVnv nnNNVVvv

Examples are given in categories. In actual data sets, every category was
replaced by one of four “true” words.

like e, NV, NNVV, NNNVVV, . . . , etc. Correct performance of
the processing device can be achieved simply by counting
the number of occurring nouns, and then predicting the same
number of verbs, that is to develop a counter. Similarly to the
CER, this is a context-free language.

(4) Right-branching recursions (RBR), where the strings
can be generated by a simple generative process described
by the production rule X → N V X |nvX |e, to obtain
constructions like N V nv. Example: “girls like the boy that
runs”. Even processing unbounded RBR structures does not
involve unbounded memory because each noun is immediately
followed by a verb which agrees with it. Simple finite-
state automaton can be constructed to process this language
belonging to the regular languages class.

Thus, our three benchmark recursive languages were:
CERandRBR, CRandRBR, IRandRBR. Each of the three
languages involves two kinds of recursive structures: one is a
complex recursion that cannot be generated by a finite state
machine, and the other one is RBR that can be produced by a
simple iterative process carried out by a finite state machine. In
such a way, each language contains a combination of context-
sensitive or context-free and regular language features, like the
natural languages do.

Each language had a sixteen word vocabulary with four sin-
gular nouns, four plural nouns, four singular verbs and four
plural verbs. Words representing a given category were cho-
sen with equal probability. They were encoded by “one-hot”
encoding. Thus, the SRN had 17 input and output units, with
one unit devoted to the end of a string marker. The training se-
quence consisted of 5000 strings of variable length, and the test
set of 500 novel strings that were not contained in the training
set. Both sets contained 50% of RBR strings interleaved with
50% of complex recursion strings in a random way. The mean
sentence length was approximately 4.7 words. The distribution
of string lengths of both types of recursions, i.e. complex and
RBR, was the same for all three languages. It is shown in Ta-
ble 1 together with examples from CERandRBR.

The aim of the methods described in the following section is
to predict the next symbol having seen all previous symbols.
As already mentioned, we used a 17 symbols alphabet (16
symbols represent words and one symbol is the end-of-string
symbol). Since all data sets were generated stochastically with
known probability distribution (see Table 1), at every point
of the generative process the distribution of the next-symbol
probabilities is known and the entropies of symbol sequences
can be calculated. The entropy of the data sets was estimated
by Monte Carlo method.
Although languages have also context-sensitive features, the
length of word strings is constrained to 8 (see Table 1). Hence,
languages were generated by grammars with only regular and
some context-free production rules enhanced with probabilities
of applying the corresponding rule. While generating a string
from language, all sentence forms having the same prefix
of terminals are maintained together with the probabilities
of generating them. Probabilities of all symbols that can be
generated after an already generated prefix can be evaluated
easily and are used to make entropy estimation more accurate.
One symbol is then chosen with calculated probability, all
maintained sentence forms capable of generating the given
symbol are enhanced with this symbol and their generating
probabilities are updated. Sentence forms that are unable to
generate given symbols are thrown away. By this iterative
Monte Carlo method normalized entropies were estimated as
0.595 for the CERandRBR data set, 0.647 for CRandRBR and
0.595 for IRandRBR.

7. Training and evaluation

An EKF was used to train Elman’s SRN as described in
Section 3. We trained a SRN to predict the next symbol in
a sequence given previous context. That is, the SRN gets
a word as an input at time t and has to predict the next
word at time t + 1. During the test phase, test symbol
series were presented to the network and the predictive
performance evaluated while the weights remained frozen. The
SRN weights and initial state (starting activation of the context
layer) were randomly initialized from intervals (−0.5, 0.5) and
(0.0, 1.0), respectively, for each simulation run. The SRN state
(i.e. context) units were reset before training or testing epoch to
the initial state and 30 dummy steps were performed (no error
calculation or weight updates were done during dummy steps).
Recurrent units’ count varied from 4 to 32 but the performance
was not getting better for more than 16 hidden units. The
number of input and output units corresponded to the symbol
count in an alphabet of a given data set. Unipolar 0–1 sigmoid
activation function was used. Diagonal elements of the state
error covariance matrix P in the EKF training were initialized
to the value of p1 and off-diagonal elements were set to p2
with p1 = 103 and p2 = 102. The diagonal elements of the
measurement noise covariance matrix N were set to n, where
n = 102 and diagonal elements of the output noise covariance
matrix Q were set to q, where q = 10−4 (Feldkamp et al.,
1998).

Before and after training, NPMs were constructed based
on recurrent state activations. K-means clusterization was used
with center counts varying from 5 to 300.

Multiple VLMMs with L varying from 1 to 7 and with
different ε parameters were built and the best results for a given
number of prediction contexts were chosen.

Predictive performance of all methods (RNNs output, NPMs
and VLMMs) was evaluated by means of a normalized negative
log-likelihood (NNL) calculated over the test symbol sequence
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Fig. 2. NNL achieved on Christiansen and Chater recursion data sets by (a) VLMM based on individual words (i.e. symbols), (b) NPM of the naive SRN and
VLMM based on individual words for the CERandRBR language, (c) VLMMs based on word categories and their grammatical subcategories, (d) NPM of the
trained SRN and VLMM based on word categories and their grammatical subcategories for the CERandRBR language.
from time step t = 1 to T as

NNL = −
1
T

T∑
t=1

logA pt (at ), (13)

where the base of the logarithm A is the number of symbols
in the alphabet A = {1, 2, . . . , A}, and the pt (at ) is the
probability of predicting symbol at in the time step t . Value
pt (at ) is equal either to PRNN (Eq. (14)), PNPM (Eq. (8))
or PVLMM (Eq. (12)), depending on whether we evaluate
the predictive performance of the RNN output, NPM or
VLMM, respectively. PRNN was calculated by normalizing
output neurons activations as:

PRNN(a|R(t)) =
O(t)

a∑
b∈A

O(t)
b

, a ∈ A. (14)

8. Results

In Fig. 2 we show NNL achieved by VLMMs based on single
words (a) and grammatical subcategories of word categories
(c). These results are for the CERandRBR language compared
with NPM results (b), (d). NNL results based on the RNN
output and corresponding standard deviations are shown in
Fig. 3(a) together with NPMs (b)–(d). Standard deviations in
the 3-D plots are not shown but generally they are smaller than
5% of the mean value.

Compare the NPM performances for 0 training epochs in
Fig. 3(b)–(d) with the VLMM performance in Fig. 2(a). These
results for CERandRBR language are plotted in Fig. 2(b).
NPMs extracted from untrained networks achieved NNL
comparable with NNL given by VLMM. This phenomenon,
called Markovian architectural bias of RNNs, has been
thoroughly investigated and explained elsewhere (Hammer &
Tiňo, 2003; Tiňo & Hammer, 2003; Tiňo et al., 2004).

However, comparing the results of trained SRN with
the results obtained with VLMM reveals that SRN can
acquire some amount of information during training. Not only
the predictive performance of RNN outputs improves (see
Fig. 3(a)), but also the predictive results of NPMs extracted
from the recurrent layer improve consistently (Fig. 3(b)–(d)).
For instance, the final NNL performance of NPM trained on
CERandRBR (i.e. 0.60) decreases almost down to an ideal NNL
of 0.59. Likewise with the other languages (NNL of 0.59 for
CRandRBR and 0.69 for IRandRBR).

It means that the training has led to a better reorganization
of the SRN state space. The dynamics of RNNs initialized with
small weights is trivial. With a fixed input, it is completely
dominated by a single attractive fixed point in the recurrent
activation space (the RNN state space). Different input codes
of symbols 1, 2, . . . , A, from A correspond to A different
attractive fixed points in the RNN state space. Distances
between these point attractors are random (see Fig. 4(a)).
During training, the point attractors for symbols (words) have
clustered together according to the word categories and their
grammatical subcategories (i.e. singular nouns, singular verbs,
plural nouns and plural verbs) as can be seen in Fig. 4(b). The
same reorganization happens in the state space of SRNs trained
on IRandRBR and CRandRBR. Thus, in the trained dynamics,
we still have fixed point attractors, each for each input symbol,
but their positions in the state space are no longer random.
Instead these positions depend on the word category and its
grammatical subcategory, i.e. one place (cluster) is occupied
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Fig. 3. NNL achieved on Christiansen and Chater recursion data sets before and during training by (a) SRN output, (b) NPM on CERandRBR, (c) NPM on
CRandRBR, and (d) NPM on IRandRBR.

Fig. 4. Euclidean distances among fixed point attractors belonging to 17 input symbols in the SRN state space (a) before training and (b) after training on
CERandRBR. Note that during training, the symbols (words) have clustered according to the word categories and their grammatical subcategories (i.e. singular
nouns, singular verbs, etc). The same reorganization emerges after training on IRandRBR and CRandRBR.
by attractors for all four singular nouns from the language
vocabulary, another cluster is occupied by all four attractors for
singular verbs, etc.

Such a reorganization according to word categories and
their grammatical subcategories leads us to the proposal that
a SRN after training still builds its predictions for language
recursions upon Markovian principles, but this time based on
word categories and their grammatical subcategories. Thus,
we calculated NNLs for VLMMs based on word categories
in singular and plural (four categories) for prediction of the
next symbol, for all three languages, see figure Fig. 2(c). We
compared these NNLs with final best NNLs achieved by NPMs
after training. Results for the CERandRBR language are shown
in Fig. 2(d) and they are the same for all three languages.
By taking into account the fixed point attractor state space
dynamics, we can conclude that for achieving ideal possible
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predictions on these recursive languages with a small depth of
recursion, it is sufficient to work with a Markovian approach
with variable length of memory based on word categories and
their grammatical subcategories.

9. Discussion

RNNs initialized with small weights are biased towards the
class of Markov models known as variable memory length
Markov models (Tiňo et al., 2004; Hammer & Tiňo, 2003;
Tiňo & Hammer, 2003). We constructed predictive models,
called neural prediction machines, that share the state space
dynamics of RNNs, but are not dependent on the RNN output
map. Generally, an NPM seeks state clusters in a network state
space and associates them with conditional probabilities for the
next-symbol prediction. Each quantization center is identified
with the prediction context for the next-symbol prediction.
Using NPMs we were able to test the usefulness of state space
representations in RNNs for building probabilistic models of
recursive linguistic data. Experiments on recursion data of
Christiansen and Chater confirmed our Markovian architectural
bias hypothesis.

When RNNs with sigmoid activation functions are
initialized with small weights, the clusters of recurrent
activations emerging before training are meaningful and
correspond to Markov prediction contexts. In this case the
extracted NPMs correspond to a class of Markov models,
called variable memory length Markov models. The basic
property of classical fixed order Markov models of the order
m is that distribution of probabilities for each next symbol
in the sequence depends on the immediate predecessors of
that symbol. Thus, only sufficient number of symbols (i.e. m)
is relevant for the next-symbol prediction. VLMM approach
does not use fixed memory depth, but instead it uses deeper
memory for suffixes only when it is really needed. In order
to appreciate how much information has really been induced
during the training, the RNN performance should always be
compared with that of VLMMs and NPMs extracted before
training as the “null” base models.

However, comparing the results of trained SRN with the
results obtained with VLMM reveals that SRN and NPMs can
acquire some amount of information during training. Dynamics
of randomly initialized RNN with small weights is quite simple.
It contains a set of fixed point attractors, each for one input
symbol. By visualization of distances between fixed point
attractors before and after learning we have revealed that in
the trained dynamics, we still have fixed point attractors, each
for each input symbol, but their positions in the state space
are no longer random. Instead these positions depend on the
word category and its grammatical subcategory, i.e. one place
(cluster) is occupied by attractors for all four singular nouns
from the language vocabulary, another cluster is occupied by
all four attractors for singular verbs, etc.

Such a reorganization according to the word categories and
their grammatical subcategories has led us to the proposal that
a SRN after training still builds its predictions for language
recursions upon Markovian principles, but this time based on
the word categories in singular and plural. Thus, we calculated
NNLs for VLMMs based on word categories in singular and
plural, for all three languages. By comparing these NNLs with
final best NNLs achieved by NPMs, and taking into account
the fixed point attractor state space dynamics, we can conclude
that for achieving ideal possible predictions on these recursive
languages with a small depth of recursion, it is sufficient to
work with the Markovian approach with variable length of
memory based on the word categories and their grammatical
subcategories, like plural and singular.

If we want to understand the strategy SRN and RNNs in
general use for predictive tasks, our approach demonstrates
the usefulness of building NPMs using clustering the state
space and comparing the performance with suitable statistical
models. This can aid the choice of an appropriate artificial
neural network architecture for a given task and show how
much have RNNs actually learned during the training.
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244 M. Čerňanský et al. / Neural Networks 20 (2007) 236–244
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Tiňo, P., Čerňanský, M., & Beňušková, L. (2004). Markovian architectural
bias of recurrent neural networks. IEEE Transactions on Neural Networks,
15(1), 6–15.
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