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Abstract

Recurrent neural networks have much larger potential than classical
feed-forward neural networks. Their output responses depend also on
time position of given input and they can be successfully used in spatio-
temporal task processing. Recurrent neural networks are often used in
cognitive science community to process symbol sequences that represents
various real language structures. Usually they are trained by common
gradient-based algorithms such as real time recurrent learning or back-
propagation through time. This work compare real time recurrent learn-
ing algorithm that represents gradient based approaches with extended
Kalman filter methodology adopted for training Elman’s simple recur-
rent network. We used datasets containing recursive structures inspired
by studies of cognitive science community and trained simple recurrent
network for the next symbol prediction task. Extended Kalman filter ap-
proach, although computationally more expensive shows higher robustness
and resulting next symbol prediction performance is higher.

1 Introduction

Feedforward neural networks are unable to process data with time dependant
information. Network has to be provided with some kind of memory. One
possibility how to accomplish this task is to incorporate feedback connection
between units. Network’s units can be provided with extended input that is
composed of current input activities together with activities from previous time
steps. Because of these recurrent feedback connections we call this type of
dynamical neural networks recurrent neural networks (RNNs).

Common algorithms usually used for RNNs training are based on gradient
minimization of the error. One such algorithm, backpropagation through time
(BPTT) [14, 18], consist of unfolding recurrent network in time and to directly
apply well-known backpropagation algorithm. Extensions of this method can
be used to train networks on infinite input sequences. Partial derivatives needed
for evaluating error gradient are calculated over given interval of time. Another
gradient based approach where estimates of derivatives and weight changes are
calculated in every time step is called real time recurrent learning algorithm
(RTRL) [17].
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In cognitive science community researchers often get use of recurrent neural
networks and try to establish links between human ability to process linguistic
structures and the potential of RNNs [1, 2, 3, 6]. General believe behind this
approach of studying human behavior is usually not to directly compare artificial
units with neurons in human brain nor to completely simulate areas in brain
by means of RNN’s. Highly simplified models of biological neural networks can
hardly ever mimic complex behavior of even very simple animals. Nevertheless
researches believes that studying these simple artificial connectionist models
can help to understand some aspects of the functioning of the human brain that
power also comes from massive parallel computation of relatively very simple
biological neurons.

One example of connectionist processing of artificial languages reflecting
recursive real-language structures can be found in the work of Christiansen and
Charter [1]. Authors trained SRN on three simple artificial languages with
recursive structures similar to those found in human speech. They showed
correspondence between empirically observed people’s limited ability to process
recursive structures and results obtained by experimenting with SRN.

Datasets used in our work are inspired by these artificial languages. We
compare two methods of training recurrent neural networks. RTRL represents
common gradient-based approaches to weight modification. Other approach
is the adaptation of extended Kalman filter into the neural network’s training
framework.

2 Recurrent Neural Network Architecture

In this work we used first order simple recurrent network SRN [2]. It is
an example of multilayer preceptron with feedback connections. Network is
composed of four layers. In our experiments, symbols from input alphabet are
encoded using one-hot encoding scheme: all input unit’s or target activities are
fixed to be inactive but one unit corresponding to input or target symbol, that
is highly active. Hence, the number of the input and output units is equal to the
number of the symbols in the alphabet of a given data set. Network hidden layer
is fed through recurrent connections by activities of context layer. Context units
hold activities of hidden layer from previous time step. In this way SRN and
generally all recurrent neural networks are provided by contextual information
and cen process input data with time structure.
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Figure 1: Simplified and more detailed representation of Elman’s SRN.



SRN was proposed by Elman [2]. Units between input layer I and hidden
layer R and between hidden layer and output layer O are fully connected through
weights WO as in the feedforward MLP. Feedback time delay connections link
current hidden units R with previous time step hidden units Rt=1 = C®).
Hence every hidden unit is fed through recurrent weights W by activities of
all hidden units from previous time step. Hidden layer is also called recurrent
layer. Hidden units’ activities from previous time step can be viewed as extended
inputs to the recurrent layer. They represent the memory of the network, they
hold contextual information from previous time steps and can be represented
by context layer C'. Simplified and also more detailed representations of SRN
are shown in figure 1.
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where |I|, |R| and |O] is the number of input, hidden and output units respec-
tively. W3 represent weight connecting output unit ¢ with hidden unit j, W}’
and Wilfc are weights connecting hidden unit 7 with jth input or context unlt
f stand for activation function. In this work we used logistic sigmoid function
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3 Real Time Recurrent Learning (RTRL) algo-
rithm

Real Time Recurrent Learning is on-line algorithm for training recurrent
networks. It is based on approximate on-line gradient computation and was
described in details in [17]. Network weights are updated in every time step in
order to minimize current output error with respect to the calculated approxi-
mate gradient. In given ¢ time, modifications of weights connecting output and
recurrent units are defined as:

AWERE = oD — 0 ' (O{)RY, (5)

where D) = (D%t), - Dg-t), DI(;\)) is the desired output pattern and « is the
learning speed. Modifications of weights connecting recurrent and input units

are defined as:
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In similar way one can calculate the modifications of weights connecting context
and recurrent units:
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6’"0” is the Kroneckers delta and 6’"0” =1if h = 1, otherwise 6’"0” =0.

4 Extended Kalman Filter Algorithm

Kalman filter is a set of equations describing a recursive solution of the
discrete-data linear filtering problem. It is an effective solution to the least-
square estimation problem. Good tutorials covering this topic are [13] and the
first chapter of [8].

Suppose system governed by linear stochastic difference equation called state
equation

Tr = Frop + wi—1.- (10)

Unobservable state of the system in step zj is calculated by applying known
state transition matrix Fj to the previous state zx—1; and white gaussian noise
wg—1 is added. Measurement equation is given by

zr = Hpxyp + vy, (11)

where z;, stands for observed measurement, Hj, for known measurement matrix
and vy, is white gaussian noise. Covariance matrices R and @ of process and
measurement noise have zero off-diagonal elements.

R=E [wyw]], (12)

Q=E [vv}]. (13)

Note, that state matrix Fj, and measurement matrix Hy can change over time.

The aim of the Kalman filter is to obtein the best state estimate % from
observed noisy measurements z. We can define the state estimate error e, and
estimate error covariance P as

e = T — i‘k, (14)

Pk =F [eke;‘g] . (15)

Kalman filter works in two step cycle. The first step, time updates is simple
prediction of so called a priori state estimate £, and estimate error covariance



P_ based on previous #_; and Pj_;. Superscript — indicates the a priori
estimates.
z, = Fiy 1, (16)
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The second, measurement update step performs corrections of state estimate
and estimate error covariance based on actual measurement. Kalman gain K is

calculated as
Ky=P,H'(HP, H" + R;,)™", (18)

and a posteriori state estimate Z; and estimate error covariance P are calcu-
lated
P, =P, — K H,P,, (19)

Ty Zﬁ,; +Kk(zk—Hki”];). (20)

Standard Kalman filter can be applied to linear system affected by white
Gaussian zero mean noise. If we loosen this assumption and consider nonlinar
system such as SRN with sigmoidal units, Kalman filter looses its optimality
properties and so call extended Kalman filter can be applied as a sub-optimal
filter. Consider time update and measurement update equations described by

zp = fr(Trp—1) + wi—1, (21)

2k = hi(x) + g, (22)

where f and h are nonlinear functions. By linearisation of these equations we
can derive time update eqations

&y = f(@r-), (23)

P, =FP_ F" +Q, (24)

and measurement update equations

Ky=P,H'(HP, H" + R;,)™", (25)
P, =P, — K HyP, , (26)
Tp = 7, + Ki(zr — hi(2y))- (27)

where Fj and Hj are Jacobian matrices

F, = 20, (23)
P ”

Elman’s SRN and generally any other feedforward or recurrent multilayer
perceptron network can be described as nonlinear system by

Tp = Tp-1, (30)

2 = hi(zr, up) + vg, (31)



where state zj, is vector of network weights. Weights of trained network do not
change and so state transition matrix F' = I where [ is identity matrix. Mea-
surement z;, stands for desired values and measurement function h;, is nonlinear
function of network weights x; and input ug. Jacobian matrix Hy is calculated
in every time step k as

H,=—~—"- 32
k O ) ( )
and extended Kalman functions are simplified into
Ky=P, ((HP, H" + R,)™", (33)
Py =Pe1 + Qr — Ky Hp P—1, (34)
Ty = Tr—1 + Ki(2zr — hie(Er—1))- (35)

Note, that small state transition noise with covariance matrix @ is still consid-
ered. In described version of EKF-based training algorithm state x is concate-
nation of network’s weighs. State x can also include activities on context units
as described in [15, 16].

5 Description of Dataset

5.1 Center-Embedding and Right-Branching Recursion
Data Set

We performed experiments on two artificial languages that exhibit recursive
structures found in natural languages. The first language is taken from the work
of Christiansen and Charter [1]. Language symbols belong to four categories:
Np,Vp,Ng, Vg, where N stands for a noun, V for a verb P for a plural and
S for a singular. Language involves two kinds of recursive structures: one is
a complex center-embedding recursion (CER) that cannot be generated by a
finite state machine, and the other one is a right-branching recursion (RBR)
that can be produced by a simple iterative process carried out by a finite state
machine. Thus, this language contains the combination of context-free and
regular languages features, similarly like the natural languages do. An RBR
can be generated by a simple generative process described by the production
rule X — NpVpX|NsVsX |e where e is the empty string to obtain constructions
like NpVpNgVs. The center embedding recursion (CER) can be defined by the
following Production rule: X — NpXVp|NgXVg|e. Starting with X we can
generate the strings like NpNgVsVp, NpNgNsNpVpVsVsVp etc. The strings
of this first language contained either CER or RBR structures. At the beginning
of a string it is impossible to know whether the string will involve CER or RBR.
Once the second word is encountered, a verb indicates a RBR whereas another
noun indicates a CER. A CER structure may end after the first noun/verb pair,
or continue with one or more embeddings. With another noun, it is not possible
to predict how many nouns will follow. However, after encountering the first
verb, it is possible to predict the number and type of verbs, provided the system
can learn the number and the type of nouns.

We use a sixteen word vocabulary with four singular nouns, for plural nouns,
four singular verbs and four plural verbs. Words representing given cathegory
were choosen with eqal probability. They were encoded by ”one-hot” encoding.



Thus, SRN had 17 input and output units, with one unit devoted to the end of
string marker. The training sequence consisted of 5000 strings of variable length,
and the test set of 500 novel strings that were not contained in the training set.
Sets contained 50 % of RBR. strings interleaved with 50 % of CER strings in a
random way. The distribution of embedding of both types of recursion was the
same and is described in the table.

Length | Percent | RBR Examples CER Examples
2 15.0% | NsVs,NpVp NgVsg, NpVp
4 275 % | NpVpNsVs NgNpVpVg
6 7.0% | NpVpNpVpNsVs NsNpNpVpVpVs
8 1.5 % NgVsNpVpNpVpNsVs | NsNsNpNpVpVpVsVyg

Table 1: Distribution of string in CERandRBR dataset. Examples are given in
categories. In final datasets every category was replaced by one of four words
that represent given gathegory.

Since in this, though quite complex, language the maximal depth of embed-
ding within a string was 3, we have decided to employ a purely context-free
artificial language with larger maximal embedding equal to 10.

5.2 Deep Recursion Data Set

Deep recursion data set is composed of strings of context-free language L.
Its generating grammar is G = (R, {R},{a,b, A, B}, P), where R is the single
non-terminal symbol that is also the starting symbol, and a, b, A, B are terminal
symbols. The set of production rules P is composed of a single rule: R —
aRb|R — ARB|R — e where e is the empty string. This language is in [9]
called palindrome language.

The training and testing data sets consist of 1000 randomly generated con-
catenated strings. No end-of-string symbol was used. Shorter strings were more
frequent in the training set then the longer ones as shown in the table. The
total length of the training set was 6156 symbols and the length of the testing
set was 6190 symbols.

Length | Percent | Example
2 35.0% | ab, AB
4 20.0 % | aABb,aabb
6 140 % | aAABBb, AaabBB
8 100 % | AAAabBBB
10 3.5 % aAAAABBBBb
12 3.5 % AAaAAabBBbLBB
14 3.5 % AaaaAaabbBbbbB
16 3.5 % aaAaAAaABbBBbLBbb
18 3.5 % aAAAaaaaabbbbbB BBb
20 3.5 % aaAaAaAaaabbbBbBbBbb

Table 2: Distribution of string in DeepRec dataset.



6 Method

Real Time Recurrent Learning (RTRL) and extended Kalman Filtering
(EKF) have been used to train Elman’s simple recurrent network (SRN). Nu-
merous simulations were performed with different parameters.

SRN weights and initial state (starting activation of state units) were ran-
domly initialized from interval (—0.5,0.5) and (0.0, 1.0) respectively for each
simulation. 10 training epochs (one epoch - one presentation of the training
set) for EKF and 100 epochs for RTRL were done for each simulation. SRN
state units were reset before training or testing epoch to initial state and 30
dummy steps were performed (no error calculation or weight updates were done
during dummy steps).

Hidden unit count varied from 4 to 32 but we present simulation results
only for 8 and 16 hidden units. Number of input and output units corresponded
to the symbol count in alphabet of a given data set. Unipolar 0-1 sigmoid
activation function was used.

The predictive performance was evaluated by means of normalized negative
log-likelihood (NNL) calculated over symbolic sequence from time step ¢t = 1 to
T as

T
NNL = —% 3" log 4 p (s(t)), (36)
t=1

where the base of he logarithm |A] is the number of symbol in the alphabet
A and the p® (s®) is the probability of predicting symbol s(*) in time step
t. Value p® (s(t)) is obtained by normalizing activities of output units and
choosing normalized output activity corresponding to symbol s(*).

EKF training wasn’t as sensitive to initial parameters as RTRL was. Diag-
onal elements of state error covariance matrix P were initialized to value 1000,
all other elements were set to 100. measurement noise covariance matrix R was
set to R = 1/Prx I where Pr = 0.01 and output noise covariance matrix () was
set to Q = Pg I where Pq = 0.0001. These values were used throughout all
experiments. 10 training epochs were sufficient for acquiring steady state, no
significant NNL improvement occurs after 10 epochs in any experiment. Par-
tial derivatives needed for Jacobian matrix H were calculated by the RTRL
algorithm. Although standalone RTRL doesn’t follow the true gradient and
should be used with small learning rate [17], EKF with RTRL Jacobian matrix
calculation worked fine.

Different training algorithm parameters were used for each data set to ob-
tain the best results. Using high momentum and learning rate causes faster
convergence but significant error increases occur frequently and NNL fluctua-
tion is high. On the other hand using smaller values makes training slow and
susceptible to local minima. We tried to avoid these problems by using some of
methods used by Lawrence, Giles and Fong [6], but the improvements weren’t
significant and didn’t made RTRL training as stable and fast as EKF training
(taking into account number of epochs). Momentum rate for Context-Free Lan-
guage with Deep Recursion Deep Recursion was disabled (set to 0) and learning
rate was set to initial value of 0.05. It decreased linearly during presentation of
first 600000 symbols until it reached value of 0.001. For CERandRBR Data Set
momentum rate was set to 0.90 and learning rate to 0.05.



7 Results

We present results of 10 simulations performed with best parameters. In this
work we present mean and st. dev. of NNL results of 10 simulations with fixed
parameters and different initial values. Although few simulations have been
suppressed because of high NNL fluctuation (some RTRL and also EKF simu-
lations), final results represents general behavior for the parameters described
in the previous section. Figure 3 and 2 shows results obtained on CERandRBR
and Deep Recursion data set respectively. Generally, NNL performances of net-
works trained by EKF are better. We were able to train few networks by RTRL
to have similar performance as the networks trained by EKF, but it usually re-
quired much more overhead (i.e. choosing only few from meny networks, more
then thousand of training epochs, extensive experimenting with learning and
momentum rate for individual simulation).

Recurrent neural networks (RNNs) behave as iterated function system [4, 5]
and have properties of Markov model (MM) even before training [7, 11, 12]. It
is important to compare results obtained by RNNs with results given by fixed
order Markov models or variable length Markov models [10]. Markov models
NNL results as a function of numer of context are shown in figure 4.

For CERandRBR dataset, both RTRL and EKF training were insensitive
to training parameters and acquired similar results. This data set is inspired
by Christiansen and Cahrter’s simulations in cognitive field. If we take into
account the size of the input alphabet (17 symbols), length of the training data
set (23366 symbols) is small. Although NNL performance of trained SRN is
better then NNL obtained by Markov models, the improvement is small and
the amount of information obtained during training is small. > 20.

Training SRN on Deep Recursion data set significantly improves NNL per-
formance. Deep recursions require sort of counting mechanisms that are not
present in MMs. Comparing results of trained SRN with results obtained with
Markov models reveals that SRN acquired significant amount of information
during training. Actually resulting NNLs are similar to analytically calculated
ones.
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Figure 2: NNL performance of SRN output layer on Deep Recursion data set.
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Figure 3: NNL performance of SRN output layer on Deep Cristiansen and
Charter’s data set.
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Figure 4: NNL performance of Markov models with fixed and variable length
memory.

8 Conclusion

Extended Kalman filter shows significantly faster convergence in terms of
number of epochs and resulting NNLs are better. Standard devitaion of results
obtained by RTRL algorithm are high revealing RTRL’s sensitivity to initial
weight setting. Although computationally more difficult, extended Kalman fil-
ter approach to trainig recurrent networks on symbolic sequencies shows higher
robustness and better resulting performance. It is easy to implement and should
be considered when choosing approprieate algorithm for recurrent neural net-
work training.
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