
Recurrent Neural Networks trained by RTRL andKalman Filter AlgorithmsMichal �Cer�nansk�y � �Lubica Be�nu�skov�a yAbstractRecurrent neural networks have much larger potential than classicalfeed-forward neural networks. Their output responses depend also ontime position of given input and they can be successfully used in spatio-temporal task processing. Recurrent neural networks are often used incognitive science community to process symbol sequences that representsvarious real language structures. Usually they are trained by commongradient-based algorithms such as real time recurrent learning or back-propagation through time. This work compare real time recurrent learn-ing algorithm that represents gradient based approaches with extendedKalman �lter methodology adopted for training Elman's simple recur-rent network. We used datasets containing recursive structures inspiredby studies of cognitive science community and trained simple recurrentnetwork for the next symbol prediction task. Extended Kalman �lter ap-proach, although computationally more expensive shows higher robustnessand resulting next symbol prediction performance is higher.1 IntroductionFeedforward neural networks are unable to process data with time dependantinformation. Network has to be provided with some kind of memory. Onepossibility how to accomplish this task is to incorporate feedback connectionbetween units. Network's units can be provided with extended input that iscomposed of current input activities together with activities from previous timesteps. Because of these recurrent feedback connections we call this type ofdynamical neural networks recurrent neural networks (RNNs).Common algorithms usually used for RNNs training are based on gradientminimization of the error. One such algorithm, backpropagation through time(BPTT) [14, 18], consist of unfolding recurrent network in time and to directlyapply well-known backpropagation algorithm. Extensions of this method canbe used to train networks on in�nite input sequences. Partial derivatives neededfor evaluating error gradient are calculated over given interval of time. Anothergradient based approach where estimates of derivatives and weight changes arecalculated in every time step is called real time recurrent learning algorithm(RTRL) [17].�Department of Computer Science and Engineering, Slovak Technical University,Ilkovi�cova 3, 812 19 Bratislava, Slovak Republic, E{mail: cernansky@dcs.elf.stuba.skyInstitute of Informatics, Faculty of Mathematics, Physics and Informatics, Comenius Uni-versity, Mlynsk�a dolina, 842 48 Bratislava, Slovak Republic, E{mail: benus@ii.fmph.uniba.sk1



In cognitive science community researchers often get use of recurrent neuralnetworks and try to establish links between human ability to process linguisticstructures and the potential of RNNs [1, 2, 3, 6]. General believe behind thisapproach of studying human behavior is usually not to directly compare arti�cialunits with neurons in human brain nor to completely simulate areas in brainby means of RNN's. Highly simpli�ed models of biological neural networks canhardly ever mimic complex behavior of even very simple animals. Neverthelessresearches believes that studying these simple arti�cial connectionist modelscan help to understand some aspects of the functioning of the human brain thatpower also comes from massive parallel computation of relatively very simplebiological neurons.One example of connectionist processing of arti�cial languages re
ectingrecursive real-language structures can be found in the work of Christiansen andCharter [1]. Authors trained SRN on three simple arti�cial languages withrecursive structures similar to those found in human speech. They showedcorrespondence between empirically observed people's limited ability to processrecursive structures and results obtained by experimenting with SRN.Datasets used in our work are inspired by these arti�cial languages. Wecompare two methods of training recurrent neural networks. RTRL representscommon gradient-based approaches to weight modi�cation. Other approachis the adaptation of extended Kalman �lter into the neural network's trainingframework.2 Recurrent Neural Network ArchitectureIn this work we used �rst order simple recurrent network SRN [2]. It isan example of multilayer preceptron with feedback connections. Network iscomposed of four layers. In our experiments, symbols from input alphabet areencoded using one-hot encoding scheme: all input unit's or target activities are�xed to be inactive but one unit corresponding to input or target symbol, thatis highly active. Hence, the number of the input and output units is equal to thenumber of the symbols in the alphabet of a given data set. Network hidden layeris fed through recurrent connections by activities of context layer. Context unitshold activities of hidden layer from previous time step. In this way SRN andgenerally all recurrent neural networks are provided by contextual informationand cen process input data with time structure.
Figure 1: Simpli�ed and more detailed representation of Elman's SRN.2



SRN was proposed by Elman [2]. Units between input layer I and hiddenlayerR and between hidden layer and output layerO are fully connected throughweights WOR as in the feedforward MLP. Feedback time delay connections linkcurrent hidden units R(t) with previous time step hidden units R(t�1) = C(t).Hence every hidden unit is fed through recurrent weights WRC by activities ofall hidden units from previous time step. Hidden layer is also called recurrentlayer. Hidden units' activities from previous time step can be viewed as extendedinputs to the recurrent layer. They represent the memory of the network, theyhold contextual information from previous time steps and can be representedby context layer C. Simpli�ed and also more detailed representations of SRNare shown in �gure 1.Given input patter in time t I(t) = (I(t)1 ; :::; I(t)j ; :::; I(t)jIj ) and hidden activitiesfrom previous time steps t�1 R(t�1) = (R(t)1 ; :::; R(t)j ; :::; R(t)jRj) hidden unit's netinput ~R(t)i and output activity R(t)i are calculated as~R(t)i =Xj WRIij I(t)j +Xj WRCij R(t�1)j ; (1)R(t)i = f( ~R(t)i ): (2)Output unit k calculates its net input ~O(t)i and output activity O(t)i as:~O(t)i =Xj WORij R(t)j ; (3)O(t)i = f( ~O(t)i ); (4)where jI j, jRj and jOj is the number of input, hidden and output units respec-tively. WORij represent weight connecting output unit i with hidden unit j, WRIijand WRCij are weights connecting hidden unit i with jth input or context unit.f stand for activation function. In this work we used logistic sigmoid functionf(x) = (1 + e�x)�1.3 Real Time Recurrent Learning (RTRL) algo-rithmReal Time Recurrent Learning is on-line algorithm for training recurrentnetworks. It is based on approximate on-line gradient computation and wasdescribed in details in [17]. Network weights are updated in every time step inorder to minimize current output error with respect to the calculated approxi-mate gradient. In given t time, modi�cations of weights connecting output andrecurrent units are de�ned as:�WORij = �(D(t)i �O(t)i )f 0( ~O(t)i )R(t)j ; (5)where D(t) = (D(t)1 ; :::; D(t)j ; :::; D(t)jIj ) is the desired output pattern and � is thelearning speed. Modi�cations of weights connecting recurrent and input unitsare de�ned as:�WRIji = � jOjXk 24(D(t)k �O(t)k )f 0( ~O(t)k ) jRjXh=1WRCkh @R(t)h@WRIji 35; (6)3



where @R(t)h@WRIji = f 0( ~R(t)i )24I(t)i Ækronhj + jRjXl=1 WRChl @R(t�1)l@WRIji 35 : (7)In similar way one can calculate the modi�cations of weights connecting contextand recurrent units:�WRCji = � jOjXk 24(D(t)k �O(t)k )f 0( ~O(t)k ) jRjXh=1WRCkh @R(t)h@WRCji 35; (8)where @R(t)h@WRCji = f 0( ~R(t)i )24R(t�1)i Ækronhj + jRjXl=1 WRChl @R(t�1)l@WRCji 35 : (9)Ækronhj is the Kroneckers delta and Ækronhj = 1 if h = 1, otherwise Ækronhj = 0.4 Extended Kalman Filter AlgorithmKalman �lter is a set of equations describing a recursive solution of thediscrete-data linear �ltering problem. It is an e�ective solution to the least-square estimation problem. Good tutorials covering this topic are [13] and the�rst chapter of [8].Suppose system governed by linear stochastic di�erence equation called stateequation xk = Fkxk + wk�1: (10)Unobservable state of the system in step xk is calculated by applying knownstate transition matrix Fk to the previous state xk�1 and white gaussian noisewk�1 is added. Measurement equation is given byzk = Hkxk + vk; (11)where zk stands for observed measurement, Hk for known measurement matrixand vk is white gaussian noise. Covariance matrices R and Q of process andmeasurement noise have zero o�-diagonal elements.R = E �wkwTk � ; (12)Q = E �vkvTk � : (13)Note, that state matrix Fk and measurement matrix Hk can change over time.The aim of the Kalman �lter is to obtein the best state estimate x̂ fromobserved noisy measurements z. We can de�ne the state estimate error ek andestimate error covariance Pk as ek = xk � x̂k ; (14)Pk = E �ekeTk � : (15)Kalman �lter works in two step cycle. The �rst step, time updates is simpleprediction of so called a priori state estimate x̂�k and estimate error covariance4



P�k based on previous x̂k�1 and Pk�1. Superscript � indicates the a prioriestimates. x̂�k = F x̂k�1; (16)P�k = FPk�1F T +Q: (17)The second, measurement update step performs corrections of state estimateand estimate error covariance based on actual measurement. Kalman gain K iscalculated as Kk = P�k HT (HP�k HT +Rk)�1; (18)and a posteriori state estimate x̂k and estimate error covariance Pk are calcu-lated Pk = P�k �KkHkP�k ; (19)x̂k = x̂�k +Kk(zk �Hkx̂�k ): (20)Standard Kalman �lter can be applied to linear system a�ected by whiteGaussian zero mean noise. If we loosen this assumption and consider nonlinarsystem such as SRN with sigmoidal units, Kalman �lter looses its optimalityproperties and so call extended Kalman �lter can be applied as a sub-optimal�lter. Consider time update and measurement update equations described byxk = fk(xk�1) + wk�1; (21)zk = hk(xk) + vk; (22)where f and h are nonlinear functions. By linearisation of these equations wecan derive time update eqationsx̂�k = f(x̂k�1); (23)P�k = FPk�1F T +Q; (24)and measurement update equationsKk = P�k HT (HP�k HT +Rk)�1; (25)Pk = P�k �KkHkP�k ; (26)x̂k = x̂�k +Kk(zk � hk(x̂�k )): (27)where Fk and Hk are Jacobian matricesFk = @fk(x̂k)@x ; (28)Hk = @hk(x̂k)@x : (29)Elman's SRN and generally any other feedforward or recurrent multilayerperceptron network can be described as nonlinear system byxk = xk�1; (30)zk = hk(xk; uk) + vk; (31)5



where state xk is vector of network weights. Weights of trained network do notchange and so state transition matrix F = I where I is identity matrix. Mea-surement zk stands for desired values and measurement function hk is nonlinearfunction of network weights xk and input uk. Jacobian matrix Hk is calculatedin every time step k as Hk = @hk(x̂k; uk)@x ; (32)and extended Kalman functions are simpli�ed intoKk = Pk�1(HPk�1HT +Rk)�1; (33)Pk = Pk�1 +Qk �KkHkPk�1; (34)x̂k = x̂k�1 +Kk(zk � hk(x̂k�1)): (35)Note, that small state transition noise with covariance matrix Q is still consid-ered. In described version of EKF-based training algorithm state x is concate-nation of network's weighs. State x can also include activities on context unitsas described in [15, 16].5 Description of Dataset5.1 Center-Embedding and Right-Branching RecursionData SetWe performed experiments on two arti�cial languages that exhibit recursivestructures found in natural languages. The �rst language is taken from the workof Christiansen and Charter [1]. Language symbols belong to four categories:NP ; VP ; NS; VS , where N stands for a noun, V for a verb P for a plural andS for a singular. Language involves two kinds of recursive structures: one isa complex center-embedding recursion (CER) that cannot be generated by a�nite state machine, and the other one is a right-branching recursion (RBR)that can be produced by a simple iterative process carried out by a �nite statemachine. Thus, this language contains the combination of context-free andregular languages features, similarly like the natural languages do. An RBRcan be generated by a simple generative process described by the productionruleX ! NPVPX jNSVSX je where e is the empty string to obtain constructionslike NPVPNSVS . The center embedding recursion (CER) can be de�ned by thefollowing Production rule: X ! NPXVP jNSXVS je. Starting with X we cangenerate the strings like NPNSVSVP ; NPNSNSNPVPVSVSVP etc. The stringsof this �rst language contained either CER or RBR structures. At the beginningof a string it is impossible to know whether the string will involve CER or RBR.Once the second word is encountered, a verb indicates a RBR whereas anothernoun indicates a CER. A CER structure may end after the �rst noun/verb pair,or continue with one or more embeddings. With another noun, it is not possibleto predict how many nouns will follow. However, after encountering the �rstverb, it is possible to predict the number and type of verbs, provided the systemcan learn the number and the type of nouns.We use a sixteen word vocabulary with four singular nouns, for plural nouns,four singular verbs and four plural verbs. Words representing given cathegorywere choosen with eqal probability. They were encoded by "one-hot" encoding.6



Thus, SRN had 17 input and output units, with one unit devoted to the end ofstring marker. The training sequence consisted of 5000 strings of variable length,and the test set of 500 novel strings that were not contained in the training set.Sets contained 50 % of RBR strings interleaved with 50 % of CER strings in arandom way. The distribution of embedding of both types of recursion was thesame and is described in the table.Length Percent RBR Examples CER Examples2 15.0 % NSVS ; NPVP NSVS ; NPVP4 27.5 % NPVPNSVS NSNPVPVS6 7.0 % NPVPNPVPNSVS NSNPNPVPVPVS8 1.5 % NSVSNPVPNPVPNSVS NSNSNPNPVPVPVSVSTable 1: Distribution of string in CERandRBR dataset. Examples are given incategories. In �nal datasets every category was replaced by one of four wordsthat represent given gathegory.Since in this, though quite complex, language the maximal depth of embed-ding within a string was 3, we have decided to employ a purely context-freearti�cial language with larger maximal embedding equal to 10.5.2 Deep Recursion Data SetDeep recursion data set is composed of strings of context-free language LG.Its generating grammar is G = (R; fRg; fa; b; A;Bg; P ), where R is the singlenon-terminal symbol that is also the starting symbol, and a; b; A;B are terminalsymbols. The set of production rules P is composed of a single rule: R !aRbjR ! ARBjR ! e where e is the empty string. This language is in [9]called palindrome language.The training and testing data sets consist of 1000 randomly generated con-catenated strings. No end-of-string symbol was used. Shorter strings were morefrequent in the training set then the longer ones as shown in the table. Thetotal length of the training set was 6156 symbols and the length of the testingset was 6190 symbols.Length Percent Example2 35.0 % ab;AB4 20.0 % aABb; aabb6 14.0 % aAABBb;AaabBB8 10.0 % AAAabBBB10 3.5 % aAAAABBBBb12 3.5 % AAaAAabBBbBB14 3.5 % AaaaAaabbBbbbB16 3.5 % aaAaAAaABbBBbBbb18 3.5 % aAAAaaaaabbbbbBBBb20 3.5 % aaAaAaAaaabbbBbBbBbbTable 2: Distribution of string in DeepRec dataset.7



6 MethodReal Time Recurrent Learning (RTRL) and extended Kalman Filtering(EKF) have been used to train Elman's simple recurrent network (SRN). Nu-merous simulations were performed with di�erent parameters.SRN weights and initial state (starting activation of state units) were ran-domly initialized from interval (�0:5; 0:5) and (0:0; 1:0) respectively for eachsimulation. 10 training epochs (one epoch - one presentation of the trainingset) for EKF and 100 epochs for RTRL were done for each simulation. SRNstate units were reset before training or testing epoch to initial state and 30dummy steps were performed (no error calculation or weight updates were doneduring dummy steps).Hidden unit count varied from 4 to 32 but we present simulation resultsonly for 8 and 16 hidden units. Number of input and output units correspondedto the symbol count in alphabet of a given data set. Unipolar 0-1 sigmoidactivation function was used.The predictive performance was evaluated by means of normalized negativelog-likelihood (NNL) calculated over symbolic sequence from time step t = 1 toT as NNL = � 1T TXt=1 logjAj p(t) �s(t)�; (36)where the base of he logarithm jAj is the number of symbol in the alphabetA and the p(t) �s(t)� is the probability of predicting symbol s(t) in time stept. Value p(t) �s(t)� is obtained by normalizing activities of output units andchoosing normalized output activity corresponding to symbol s(t).EKF training wasn't as sensitive to initial parameters as RTRL was. Diag-onal elements of state error covariance matrix P were initialized to value 1000,all other elements were set to 100. measurement noise covariance matrix R wasset to R = 1=Pr � I where Pr = 0.01 and output noise covariance matrix Q wasset to Q = Pq � I where Pq = 0:0001. These values were used throughout allexperiments. 10 training epochs were suÆcient for acquiring steady state, nosigni�cant NNL improvement occurs after 10 epochs in any experiment. Par-tial derivatives needed for Jacobian matrix H were calculated by the RTRLalgorithm. Although standalone RTRL doesn't follow the true gradient andshould be used with small learning rate [17], EKF with RTRL Jacobian matrixcalculation worked �ne.Di�erent training algorithm parameters were used for each data set to ob-tain the best results. Using high momentum and learning rate causes fasterconvergence but signi�cant error increases occur frequently and NNL 
uctua-tion is high. On the other hand using smaller values makes training slow andsusceptible to local minima. We tried to avoid these problems by using some ofmethods used by Lawrence, Giles and Fong [6], but the improvements weren'tsigni�cant and didn't made RTRL training as stable and fast as EKF training(taking into account number of epochs). Momentum rate for Context-Free Lan-guage with Deep Recursion Deep Recursion was disabled (set to 0) and learningrate was set to initial value of 0.05. It decreased linearly during presentation of�rst 600000 symbols until it reached value of 0.001. For CERandRBR Data Setmomentum rate was set to 0.90 and learning rate to 0.05.8



7 ResultsWe present results of 10 simulations performed with best parameters. In thiswork we present mean and st. dev. of NNL results of 10 simulations with �xedparameters and di�erent initial values. Although few simulations have beensuppressed because of high NNL 
uctuation (some RTRL and also EKF simu-lations), �nal results represents general behavior for the parameters describedin the previous section. Figure 3 and 2 shows results obtained on CERandRBRand Deep Recursion data set respectively. Generally, NNL performances of net-works trained by EKF are better. We were able to train few networks by RTRLto have similar performance as the networks trained by EKF, but it usually re-quired much more overhead (i.e. choosing only few from meny networks, morethen thousand of training epochs, extensive experimenting with learning andmomentum rate for individual simulation).Recurrent neural networks (RNNs) behave as iterated function system [4, 5]and have properties of Markov model (MM) even before training [7, 11, 12]. Itis important to compare results obtained by RNNs with results given by �xedorder Markov models or variable length Markov models [10]. Markov modelsNNL results as a function of numer of context are shown in �gure 4.For CERandRBR dataset, both RTRL and EKF training were insensitiveto training parameters and acquired similar results. This data set is inspiredby Christiansen and Cahrter's simulations in cognitive �eld. If we take intoaccount the size of the input alphabet (17 symbols), length of the training dataset (23366 symbols) is small. Although NNL performance of trained SRN isbetter then NNL obtained by Markov models, the improvement is small andthe amount of information obtained during training is small. � 20.Training SRN on Deep Recursion data set signi�cantly improves NNL per-formance. Deep recursions require sort of counting mechanisms that are notpresent in MMs. Comparing results of trained SRN with results obtained withMarkov models reveals that SRN acquired signi�cant amount of informationduring training. Actually resulting NNLs are similar to analytically calculatedones.
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Figure 2: NNL performance of SRN output layer on Deep Recursion data set.
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Figure 3: NNL performance of SRN output layer on Deep Cristiansen andCharter's data set.
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Figure 4: NNL performance of Markov models with �xed and variable lengthmemory.8 ConclusionExtended Kalman �lter shows signi�cantly faster convergence in terms ofnumber of epochs and resulting NNLs are better. Standard devitaion of resultsobtained by RTRL algorithm are high revealing RTRL's sensitivity to initialweight setting. Although computationally more diÆcult, extended Kalman �l-ter approach to trainig recurrent networks on symbolic sequencies shows higherrobustness and better resulting performance. It is easy to implement and shouldbe considered when choosing approprieate algorithm for recurrent neural net-work training.References[1] M.H. Christiansen and N. Chater. Toward a connectionist model of re-cursion in human linguistic performance. Cognitive Science, 23:417{437,1999.[2] J. L. Elman. Finding structure in time. Cognitive Science, 14:179{211,1990. 10
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