
Approaches Based on Markovian Architectural

Bias in Recurrent Neural Networks

Matej Makula1, Michal Čerňanský1, and Ľubica Beňušková2

1 Faculty of Informatics and Information Technologies,
Slovak University of Technology, Ilkovičova 3,

812 19 Bratislava, Slovakia
{makula, cernans}@fiit.stuba.sk

http://www.fiit.stuba.sk
2 Institute of Informatics, Comenius University,

Mlynská dolina, 842 48 Bratislava, Slovakia
benus@ii.fmph.uniba.sk

Abstract. Recent studies show that state-space dynamics of randomly
initialized recurrent neural network (RNN) has interesting and poten-
tially useful properties even without training. More precisely, when ini-
tializing RNN with small weights, recurrent unit activities reflect history
of inputs presented to the network according to the Markovian scheme.
This property of RNN is called Markovian architectural bias. Our work
focuses on various techniques that make use of architectural bias. The
first technique is based on the substitution of RNN output layer with
prediction model, resulting in capabilities to exploit interesting state rep-
resentation. The second approach, known as echo state networks (ESNs),
is based on large untrained randomly interconnected hidden layer, which
serves as reservoir of interesting behavior. We have investigated both
approaches and their combination and performed simulations to demon-
strate their usefulness.

1 Introduction

The key part of recurrent neural networks (RNNs) performance is encoded in
activities of recurrent units (network state) and their variations in time (network
dynamics). It is well-known fact that recurrent neural networks have universal
approximation capability, although development of desired dynamics in training
might be sometimes difficult or even unfeasible task. Classical gradient-based
training methods face severe problems such as information latching problem [4].
This problem arises because gradient of the error function tends to vanish in
time, thus it is impossible for RNNs to catch the long time dependencies in
the input sequence. Several approaches have been developed in order to at least
partially overcome this problem [5, 1]. But recent studies show that sometimes
instead of complicated RNN weights adaptation, it might be beneficial to leave
network dynamics randomly initialized.

It has been known for some time that when RNN is used to process symbolic
sequences, activations of recurrent units show considerable amount of informa-
tion about input sequence prior to training [2, 9, 10]. It was experimentally shown
that RNNs initialized with small weights are inherently biased towards Markov
models [11, 12]. This phenomenom is refered as Markovian architectural bias of
RNNs. When dealing with problems, where this Markovian representation is use-
ful, initial network dynamics can be leaved unchanged and only transformation
of state to desired output has to be carried out. This can be performed either
by simple neural network layer or by other advanced method, e.g. by prediction
model.

Major advantage of this ’unusual’ approach is the elimination of the recursive
dependencies between weights in adjustment process, i.e. problem when even
small ’positive’ weight change in one step can have huge impact on network
activities in other steps. Thus, instead of complicated training of whole network,
only output layer (or prediction model) is adjusted to produce desired output
from the inherent ’Markovian’ dynamics.

2 Alternative Training Approaches

Typical example of ’classical’ approach in recurrent network community is the
first-order Elman simple recurrent network (SRN) [3], trained by various gradient-
based techniques. Recently a novel approach based on architectural bias called
echo state networks (ESNs) has been introduced [6].

Layer interconnections and units used in ESN are mostly equal to SRN ar-
chitecture3, but the main difference is in the size of recurrent layer and in the
training process. ESNs use large randomly initialized recurrent layer, called dy-
namical reservoir, to obtain massive response to the input signal. In training,
output weights are adjusted to use this response to ’reconstruct’ desired output.
Essential condition for the ESN approach is that dynamical reservoir must pro-
duce meaningful response, i.e. network state must be an ’echo’ of input signal.
This is achieved by rescaling network weights to small values, which is apparently
equivalent to architectural bias condition, i.e. initialization with ’small’ weights.
Thus, ESNs can be viewed as ’architectural bias’ based counterparts of classical
RNNs.

As it was mentioned earlier, once we skip recurrent weights training, the
output weights can be calculated effectively by linear regression. In ESNs it is
usually done offline by calculation of pseudoinverse matrix, but also other online
algorithms, such as least mean squares (LSM) or recursive least squares (RLS),
can be used. It is important to notice that before training suitable memory
capacity of ESN can be set up by rescaling weights in dynamical reservoir [7].
More detailed description of ESN approach can be found in [8].

Another widely used technique is to extract finite state representation from
trained recurrent networks. By clusterization of recurrent units activities, com-

3 ESN approach allows also additional input-output and output-hidden layer inter-
connection, but we did not use them in our experiments.

Table 1. Differences between ’classical’ approaches and approaches based on ’archi-
tectural bias’

SRN NPM ESN untrained NPM

approach classical based on architectural bias

output
layer

neural network prediction
model

neural network prediction
model

output symbols and
real values

only symbols symbols and
real values

only symbols

hidden
layer

small ≈ 10 units small ≈ 10 units large ≈ 102

units
small ≈ 10 units

network
dynamics

adjusted adjusted random -
Markovian

random -
Markovian

adjustment both network
dynamics and
state-output
mapping

same as SRN
+ prediction
model building

only state-
output mapping

only prediction
model building

training
algorithm

gradient based
[14], extended
Kalman filter

same as SRN
+ model adjust-
ment

linear regression only model ad-
justment

plex network dynamics can be easily substituted with more useful finite state
representation. This kind of state representation is used in simple modification of
RNN called neural prediction machine (NPM)[12], where network output layer
is replaced with prediction model. NPM seeks state clusters in network state
space and associates them with conditional probabilities for the next symbol
prediction. Conditional probabilities are determined by counting of (state clus-
ter, output symbol) occurrences in training sequence. Because NPM can be also
built from an untrained network, this approach can be used to exploit Markovian
state representation in untrained network.

Architectures described in previous chapters are summarized in the Table. 1.
The first two columns describe architectures where both input-state and state-
output mapping is adjusted in training. The approaches based on architectural
bias are in the third and fourth column.

3 Experiments & Results

In the following subsections we describe our experiments, data sets, and training
parameters. The first experiment is comparison of SRN and ESN approach on
problem of periodic sequence prediction task. The second problem is the pre-
diction of symbolic sequence obtained by quantization of chaotic laser activity,
where we compared performance of NPMs built on recurrent layer of trained
and untrained recurrent network.

3.1 Periodic Sequence Prediction Task

In this experiment we studied how the desired solution is achieved by both classi-
cal SRN and novel ESN approach. Original experiment was based on problem of
stable generation of periodic sequence by ESN [6]. We simplified original problem
to next value prediction task and evaluated SRN and ESN with various numbers
of hidden units.

Input sequence was the melody ”The House of the Rising Sun” transformed
to numerical values to fit interval [-0.05,0.5] (Fig. 1). Multiple melody samples
were concatenated together to form the target sequence of period 48.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100 120 140

in
pu

t s
eq

ue
nc

e

Fig. 1. Input sequence was created by concatenation of multiple samples from melody
”The House of the Rising Sun”

ESN input weights were selected randomly from uniform distribution [-2, 2].
Recurrent weights were set to values +0.4, -0.4 and then scaled down to obtain
λmax = 0.908. The connectivity of recurrent layer was sparse with ratio 1.25 %.
Since we were not concerned about stable melody generation, we did not in-
corporate noise into the training data. Both training and testing sequence had
1500 input symbols, where first 500 inputs were used for initialization. Output
weights were calculated offline with linear regression.

All weights in SRN were selected randomly from uniform distribution [-0.1,0.1].
Training was performed by extended Kalman filter method (EKF). Error covari-
ance matrix was initialized P = 1000 · I, measurement noise matrix was set to
R = 100·I and output noise matrix was set to Q = 10−4·I, where I is the identity
matrix. Weights derivatives were calculated by back-propagation through time
(BPTT) method [13] with window size 30. Both training and testing sequence
had 10000 input symbols, where first 500 inputs were used for initialization.

We use bipolar (tanh) activation function for both ESN and SRN units. All
values presented in figure Fig. 2 are the averages of mean square error (MSE)
with standard deviations from 10 runs of ESN and SRN network training.

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

3 5 8 10 15 20 30 45 48 50 80 100 200 300 400

M
S

E

of recurrent units

ESN
SRN

Fig. 2. Mean square error (MSE) for SRN and ESN after training. MSE was calculated
for networks with different number of hidden units. We can see that SRN with the same
number of hidden units outperforms ESN, although MSE for larger ESNs is almost zero
(MSE ≈ 10−30 - limited by computer decimal number precision)

3.2 Chaotic Sequence Prediction Task

In this experiment we focus on the second approach based on architectural bias,
i.e. NPM built on untrained RNN. Performance of NPMs built on untrained
network was compared with performance of NPMs built on recurrent layer of
trained SRN. We have used networks with various numbers of hidden units.

As a training sequence for this experiment we chose a long symbolic sequence
of quantized activity changes of laser in chaotic regime. Data set includes various
levels of memory structures, i.e. relatively predictable subsequences followed by
global, harder to predict events, that require a deeper memory (Fig 3).

Whole sequence4, i.e. 10 000 differences ∆t between two subsequent activa-
tions, was quantized into a symbolic stream of four symbols from the alphabet
{a, b, c, d}, corresponding to low / high and positive / negative activity changes.
Entire sequence was divided into the training sequence (the first 8000 symbols)
and the test sequence (the last 2000 symbols). Symbols were encoded using one-
hot-encoding.

As activation function we use unipolar sigmoid 1/(1 + ex). Training of SRN
was performed by EKF in 10 epochs. First 50 symbols were used for initialization.
Other SRN parameters were the same as in the previous experiment. For NPMs
built form untrained network underlying dynamics was produced by dynamical
reservoir of ESN initialized identically with the previous experiment.

4 Taken from http://www-psych.stanford.edu/˜andreas/Time-Series/SantaFe.html

−200

−150

−100

−50

0

50

100

150

200

200 400 600 800 1000 1200
t

∆
t

a

b

c

d

Fig. 3. Example of 1000 differences ∆t of the laser activations. Dotted horizontal lines
corresponds to 10% and 90% sample quantiles. Letters on the right vertical axis indicate
quantization into four symbols

Finally, state space of both trained and untrained network was clustered
by K-means algorithm with 250 clusters and NPM was built. Performance of
NPMs was evaluated by means of the normalized negative log-likelihood (NNL)
(Fig. 4). NNL can be viewed as inverse compression ratio, i.e. NNL=0.5 means
that sequence can be compressed to half of its original size. Ideal NNL value is
0, NNL = 1 corresponds to random guessing.

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

3 5 8 10 15 20 50 100 200 400

N
N

L

of recurrent units

NPM (random)
NPM (SRN)

Fig. 4. Normalized negatibe log-likelihood (NNL) for NPMs build from trained SRN
and untrained ESN reservoir

4 Discussion

First task is a straightforward demonstration of difference between the classical
and novel approach. Once a periodic signal is presented to the untrained RNN,
its state moves on periodic orbit in the state space. Classical approach performs
training by reshaping state trajectory and simultaneous adaptation of state-
output mapping. When sufficient number of recurrent units is used and network
has enough state space dimensions to examine, desired dynamics emerges and
the next value can be successfully predicted (Fig. 2, for SRN with 15 hidden
units MSE ≈ 1.7 · 10−4).

The way in which ESN produces desired solution is different. Initial network
dynamics behave similarly with SRN, i.e. network state jumps between 48 differ-
ent clusters in the state space. In training, output weights are used to fit desired
output from network state. When dimension of state space is small, i.e. small
number of recurrent units, network output cannot be precisely reconstructed.
Once output weights have enough state space dimension to explore, linear com-
bination of state vector components can produce desired periodic output signal
with almost zero precision (MSE ≈ 10−30). It might seem that great number
of units in ESN recurrent layer is not necessary, but in original experiment this
additional dimensions were used by ESN to stably reproduce original periodic
sequence [6].

Results of our second experiment confirm that the prediction of chaotic laser
sequence is rather difficult task due to long time dependency problem. Training
of recurrent network by extended Kalman filter slightly improve state represen-
tation, which is clearly visible when sufficient number of hidden units is used
(Fig. 4). However, NPM built on hidden layer of untrained network can provide
comparable results. Interestingly, in this case larger number of hidden units did
not help to improve NPM performance.

5 Conclusion

In this paper we presented approaches based on architectural bias. These ap-
proaches leave randomly initialized network dynamics unchanged and adjust
only state to output transformation. On selected experiments we evaluate their
performance and compared obtained results with classical approaches.

Results show that SRN can produce desired solution with smaller number
of recurrent units, although it requires much more computationally expensive
training. On the other hand, nature of approaches based on architectural bias
allows to increase the number of recurrent units without significant increasing
of training complexicity. ESN can use this high dimensional state space to fit
desired output accurately. In the second experiment simple prediction model -
NPM, built on untrained network with 5 recurrent units, produced little worse
results than NPM built on much larger network trained by computationally
demanding EKF technique.

Acknowledgments

This work was supported by the VEGA grant 1/9046/02.

References

1. Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–
166, 1994.

2. M. H. Christiansen and N. Chater. Toward a connectionist model of recursion in
human linguistic performance. Cognitive Science, 23:417–437, 1999.

3. J. L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.
4. S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in re-

current nets: the difficulty of learning long-term dependencies. In J. Kolen and
S. Kremer, editors, Field Guide to Dynamic Recurrent Networks, pages 237–243.
Wiley-IEEE Press, 2001.

5. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

6. H. Jaeger. The ”echo state” approach to analysing and training recurrent neural
networks. Technical Report GMD Report 148, German National Research Center
for Information Technology, 2001.

7. H. Jaeger. Short term memory in echo state networks. Technical Report GMD
Report 152, German National Research Center for Information Technology, 2001.

8. H. Jaeger. Tutorial on training recurrent neural networks. Available on:
http://www.ais.fraunhofer.de/INDY/herbert/ESNTutorial/, 2002. release
September / October, 2002.

9. J. F. Kolen. The origin of clusters in recurrent neural network state space. In
Proceedings from the Sixteenth Annual Conference of the Cognitive Science Society,
pages 508–513. Hillsdale, NJ: Lawrence Erlbaum Associates, 1994.

10. J. F. Kolen. Recurrent networks: state machines or iterated function systems?
In D. S. Touretzky J. L. Elman M. C. Mozer, P. Smolensky and A.S. Weigend,
editors, Proceedings of the 1993 Connectionist Models Summer School, pages 203–
210. Erlbaum Associates, Hillsdale, NJ, 1994.

11. P. Tiňo, M. Čerňanský, and L. Beňušková. Markovian architectural bias of recur-
rent neural networks. accepted to IEEE Transactions on Neural Networks.

12. P. Tiňo and M. Čerňanský and L. Beňušková. Markovian architectural bias of
recurrent neural networks. In P. Sinčák et al., editor, Intelligent Technologies –

Theory and applications, pages 17–23. IOS Press, 2002.
13. P. J. Werbos. Backpropagation through time; what it does and how to do it.

Proceedings of the IEEE, 78:1550–1560, 1990.
14. R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent

networks and their computational complexity. In Y. Chauvin and D. E. Rumelhart,
editors, Back-propagation: Theory, Architectures and Applications, pages 433–486.
Lawrence Erlbaum Publishers, Hillsdale, N.J., 1995.

