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Dopredné neurónové siete 

(multilayer perceptron) 
 
 
 

logický neuron (MacCulloch a Pitts, 1943) 
 
 
 

perceptrón (Rosenblatt, 1967) 
 
 
 

dopredné neurónové siete (Rumelhard, 1986) 
 
 
 

prudký rozvoj neurónových sietí (subsymbolická UI, konekcionizmus) 
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Formal definition of a multilayer perceptron 
 
 Let us consider an oriented graph G=(V,E) determined as an ordered couple 
of a vertex set V and an edge set E.  
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Theorem. An oriented graph G is acyclic iff  it may be indexed so that 

∀ = ∈ <e i j E i j,a f :  
 
 Vertices  of an oriented graph can be classified as follows: 
 (1) Input vertices that are incident only with outgoing edges. 
 (2) Hidden vertices that are simultaneously incident at least with one incoming edge and at 
least with one outgoing edge. 
 (3) Output vertices, that are incident only with outgoing edges. 
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The vertex set V is unambiguously divided into three disjoint subsets 

V V V VI H O= ∪ ∪  
that are composed of input, hidden, and output vertices, respectively. 
 
 Assuming that the graph G is canonically indexed and that the graph is composed of n input 
vertices, h hidden vertices, and m output vertices, then the above three vertex subsets can be simply 
determined by 
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 Vertices and edges of the oriented graph G are evaluated by real numbers. Each oriented edge 
e=(vi,vj)∈E  is evaluated by a real number wji called the weight. Each vertex vi∈V is evaluated by a 
real number xi called the activity and each hidden or output vertex vi∈V is evaluated by a real 
number ϑi called the threshold. 
  

 
 
The activities of hidden and output vertices are determined as follows 
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where t(ξ) is a transfer function. In our forthcoming considerations we will assume that its 
analytical form is specified by as the sigmoid function.  
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Definition. A feed-forward neural network is determined as an ordered triple 

=(G,w,ϑ) 
 
 
G is an acyclic, oriented, and connected graph and w and ϑ  are weights and thresholds assigned to 
edges (connections) and vertices (neurons) of the graph.  We say that the graph G specifies a 
topology (or architecture) of the neural network , and that weights w and thresholds ϑ  specify 
parameters of the neural network.  
 
 
 Activities of neurons form a vector x=(x1,x2,...,xp). This vector can be divided formally onto 
three subvectors that are composed of input, hidden, and output activities 

 
x x x x= ⊕ ⊕I H O  
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A neural network =(G,w,ϑ) with fixed weights and thresholds can be considered as a parametric 
function 
 

G Rn mw, ,ϑ( ) → ( ): 0 1  
 

xI G xO

xH

w,ϑ

 
 
This function assigns to an input activity vector xI a vector of output activities xO 

 
x x wO IG= ; ,ϑa f 

 
Hidden activities in this expression are not explicitly presented, they play only a role of byproducts.  
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 How to calculate activities of a neural network =(G,w,ϑ)? 
 

 (1) We shall postulate that activities of input neurons are kept fixed, in other words, we say that the 
vector of input activities xI is an inputs to the neural network. Usually its entries correspond to the 
so-called descriptors that specify a classified pattern.  
(2) Activities of hidden and output neurons are calculated by simple recurrent procedure based on 
the fact that the topology of neural network is determined by an acyclic oriented graph G .  

x f x x x i n n pi i i= = + +−1 2 1 1 2, ,..., , ,...,a f a ffor  
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 Unfortunately, if the graph G is not acyclic (it contains oriented cycles), then the above simple 
recurrent calculation of activities is inapplicable, in some stage of algorithm we have to know an 
activity which was not yet calculated, activities are determined by  

x f x x x x x i n n pi i n n p= = + ++1 2 1 1 2, ,..., , ,..., , ,...,c h a ffor  
These equations are coupled, their solution (if any) can be constructed by making use of an iterative 
procedure, which is started from initial activities, and calculated activities are used as an input for 
calculation of new activities, etc. 

x f x x x x x i n n pi
t

i n n
t

p
t+( )

+
( ) ( )= = + +1

1 2 1 1 2, ,..., , ,..., , ,...,c h a ffor  
This iterative procedure is repeated until a difference between new and old activities is smaller than 
a prescribed precision. 
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Learning (adaptation process) of feed-forward neural networks 

 
 A learning of a feed-forward neural network consists in a looking for such weights and 
thresholds that produced output activities (as a response on input activities) are closely related 
to the required ones. 
 
 First of all what we have to define  is the training set composed of examples of input-activity 
vector and required output-activity vector 
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 The learning process of the given feed-forward neural network N=(G,•,•)  specified by the 
graph G and with unknown weights and thresholds is realized by the following minimization process 

w w
wopt opt E, ,

,
ϑ ϑ

ϑ
c h = ( )

( )
arg min  

If we know the optimal weights and thresholds (that minimize the error objective function), then an 
active process is a calculation of output activities as a response on input activities for parameters 
determined by the learning - adaptation process  
 

x x wO I opt optG= ; ,ϑc h 
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 The active process of  neural networks is usually used for a classification or prediction of 
unknown patterns that are described only by input activities (descriptors that specify a structure of 
patterns). In order to quantify this process we have to introduce the so-called test set composed of 
examples of patterns specified by an input-activity vector and a required output-activity vector 
 

( ){ }1 2k k
k I Oˆ, ;k , ,...,q= = =y y  

 
An analogue of the error objective function is 
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We say that an adapted neural network correctly interprets patterns from the test set if this 
objective function is sufficiently small. If this requirement is not fulfilled, then there exists an 
example from the test set which incorrectly interpreted. 
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Gradient of error objective function 

 
 Partial derivatives of the error objective function (defined over a training set) with respect to 
weights and thresholds are determined by 
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where the partial derivatives ∂ ∂x wi ij is simply calculated by making use the relation xi=t(ξi), then 
∂ ∂ ξ ∂ξ ∂ ξx w t w t xi ij i i ij i j= ′ ⋅ = ′a f a f  . Similar considerations are applicable also for the partial 
derivative ∂ ∂ϑxi i . If we compare both these equations we get simple relationship between partial 
derivatives ∂ ∂E wk ij  and ∂ ∂ϑEk i  
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Let us study the partial derivative ∂ ∂E xk i , its calculation depends on whether the index i 
corresponds to an output neuron or hidden neuron 
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where summation runs over all neurons that are successors of the i-the neuron. The second above 
formula results as an application of the well-known theorem called the chain rule for calculation of 
partial derivatives of the composite function. Last expressions can be unified at one expression 
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where it is necessary to remember that the summation on r.h.s. is vanishing is the i-th neuron has not 
successors, that is output neurons.  
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A final expression for the partial derivatives of error objective function with respect to thresholds 
 

( ) ( )fork k
i i li H O

li l

E Et g w i V V
⎛ ⎞∂ ∂′= ξ + ∈ ∪⎜ ⎟∂ϑ ∂ϑ⎝ ⎠

∑  

 
(1) In general, the above formula for calculation of partial derivative of the objective function can be 
characterized as a system of linear equations the solution of which determines partial derivatives 
∂ ∂ϑEk i .  
(2) For feed-forward neural networks the above formula can be solved recurrently. Starting from top 
layer  Lt we calculate all partial derivatives assigned to output neurons, ∂ ∂ϑ ξE t gk i i i= ′a f . In the 
next step we calculate partial derivatives from the layer Lt-1, for their calculation we need to know 
partial derivatives from the layer Lt , which were calculated in the previous step, etc. Therefore this 
recurrent approach of calculation of partial derivatives based is called the back propagation. 
(3) Knowing all partial derivatives ∂ ∂ϑEk i , we may calculate simply partial derivatives ∂ ∂E wk ij . 
(4) An analogue of the above formula was initially derived by Rumelhart et al. in 1986, this work is 
considered in literature as one of milestones of the development of theory of neural network. 
They demonstrated that multilayer perceptrons together with the back propagation method for 
calculation of gradients of error objective functions are able to overcome boundaries of simple 
perceptrons stated by Minsky and Papert, that is to classify correctly all patterns and not only those 
ones that are linearly separable.  
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Theorem. For feed-forward neural networks the first partial derivatives of the error objective 
function Ek are determined recurrently by 
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where in order to calculate ∂ ∂ϑEk i we have to know either gi (for i∈VO) or partial 
derivatives ∂ ∂ϑEk l (for l∈Γi) . 
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 We have to emphasize that in the course of derivation of the above formula we have never 
used an assumption that the considered neural network corresponds to an acyclic graph. This 
means that this formula is correct also for neural networks assigned to graphs that are either cyclic or 
acyclic. 
 For neural networks assigned to cyclic graphs the above discussed recurrent approach of 
calculation of partial derivatives is inapplicable. For this type of neural networks the partial 
derivatives are not determined recurrently,  but only as a solution of linear coupled equations  

∂
∂ϑ

∂
∂ϑ

E E w x x gk

i

k

l
li i

l i
i i− ′ = ′

∈ ( )
∑
Γ

 

Its matrix form is 
1 x w e a− ′ ′ =diaga fb gT k  

where ′ =ek k k p

T
E E∂ ∂ϑ ∂ ∂ϑ1 ,...,c h is a column vector composed of first derivatives of the error 

objective function Ek with respect to thresholds, diag ′ = ′xa f c hδ ij ix is a diagonal matrix composed of 

first derivatives of activities, and a = ′ ′g x g xp p

T

1 1,...,c h is a column vector composed of products g xi i′ . 
Assuming that the matrix 1 − ′diag x wa fb gT is nonsingular, then the solution is determined by 

′ = − ′
−e 1 x w adiaga fb gT 1  

This means, for neural networks represented either by cyclic or acyclic oriented graph, first partial 
derivatives of Ek are determined as a solution of the above matrix equation. 
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 The present approach is simply generalized also for calculation of partial derivatives of the total 
error objective function determined over all training patterns 
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If we know the partial derivatives, then the batch adaptation process is simply realized by a 
steepest-descent optimization accelerated by a momentum term 
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where the learning parameter λ>0 should be sufficiently small (usually λ=0.01-0.1) to ensure a 
monotonous convergence of the optimization method. Initial values of weights wij

0( ) and thresholds 
ϑ i

0( ) are randomly generated . The last terms in the above formulae correspond to momentum terms 
determined as a difference of terms from the last two iterations, ∆w w wij

t
ij

t
ij

t( ) ( ) −( )= − 1 and 
∆ϑ i

t
i
t

i
t( ) ( ) −( )= −ϑ ϑ 1 . The momentum terms may be important at the initial stage of optimization as a 

simple tool how to escape local minima, the value of the momentum parameter is usually 0.5≤µ≤0.7.  
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Hessian of error objective function 
 
One of the most efficient optimization techniques is the Newton optimization method based on the 
following recurrent updating formula 

 
x x x xk k k kH f+

−= −1
1a f a fgrad  

 
where H(xk) is a Hessian matrix composed of partial derivatives of second order and f(x) is an 
objective function to be minimized. This recurrent scheme is stopped if a norm of gradient is smaller 
than a prescribed precision, the obtained solution x* is a minimum for a positive definite Hessian 
H(x*). 
  Three types of partial derivatives of second order will be calculated 
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The partial derivatives ∂ ∂ϑ ∂ϑ2Ek i a (where i,a∈VH∪VO) can be calculated as follows 
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Symbols ′xi and ′′xi are first and second derivative of activities assigned to hidden or output neurons. 

 
This formula allows a recurrent "back propagation" calculation of second partial derivatives 
∂ ∂ϑ ∂ϑ2Ek a i .  
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The partial derivatives ∂ ∂ ∂ϑ2E wk ab i  are calculated immediately from the above two formulae, we 
get 
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In a similar way we may calculate partial derivatives ∂ ∂ ∂2E w wk ab ij , we get 
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A calculation of partial derivatives ∂ ∂ ∂ϑ2E wk ab i  and ∂ ∂ ∂2E w wk ab ij  requires only first partial 
derivatives ∂ ∂ϑEk i  and second partial derivatives ∂ ∂ϑ ∂ϑ2Ek i a  . 
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Theorem. For feed-forward neural networks the second partial derivatives of the error objective 
function Ek are determined by 
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where partial derivatives 2

k i aE∂ ∂ϑ ∂ϑ may be calculated recurrently in a back propagation manner 
whereas other two partial derivatives ∂ ∂ ∂ϑ2E wk ab i  and ∂ ∂ ∂2E w wk ab ij are calculated directly. 
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 Partial derivatives of second order of the total objective function determined over all patterns 
from the training set are determined as summations of partial derivatives of objective functions Ek 
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 An adaptation process of neural networks realized in the framework of Newton optimization 
method is based on the following recurrent updating formulae 
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 In a similar way as in the previous part of this lecture, where we have studied first partial 
derivatives of the error objective function Ek, the second partial derivatives were derived so that we 
did not use any assumption that neural networks correspond to acyclic graphs. Of course, an 
assumption that neural networks are acyclic considerably simplifies the calculation of second partial 
derivatives ∂ ∂ϑ ∂ϑ2Ek i a by a recurrent method. For cyclic neural networks this recurrent approach is 
inapplicable, the partial derivatives are determined by a system of linear equations 
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2 2

2k k k
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E E Ew x x g w O x
⎛ ⎞∂ ∂ ∂′ ′′ ′− = δ + + δ δ⎜ ⎟∂ϑ ∂ϑ ∂ϑ ∂ϑ ∂ϑ⎝ ⎠

∑ ∑  

This relation may be rewritten in a matrix form as follows 
′′ − ′ =E 1 w x Adiaga fb g  

where E" is a symmetric matrix composed of partial derivatives ∂ ∂ϑ ∂ϑ2Ek i a  and A=(Aai) is a 
diagonal matrix. Assuming that the matrix (1-wdiag(x')) is a nonsingular, then the matrix E" 
composed of second partial derivatives ∂ ∂ϑ ∂ϑ2Ek i a is determined explicitly by  

′′ = − ′ −E A 1 w xdiaga fb g 1 
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Illustrative example 
Boolean function XOR 

 
An effectiveness of neural networks with hidden neurons is illustrated by Boolean function XOR, 
which is not correctly classified by simple perceptron without hidden neurons. 
 
The used neural networks will contain three layers, the first layer is composed of input neuron, the 
second one of hidden neurons, and the third (last) one of output neurons.  
 
Hidden neurons create the so-called inner representation which is already linearly separable, this is 
the main reason why neural networks with hidden neurons are most frequently used in the whole 
theory of neural networks.  
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Parameters of adaptation process are: λ=0,1, µ=0,5; after 400 iterations the objective function 
achieved value E=0.031.  
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5
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Activities of neurons from the feed-forward 
network composed of five neurons and two 

hidden neurons. 
No. x1 x2 x3 x4 x5 x5  
1 0,00 0,00 0,96 0,08 0,06 0,00 
2 0,00 1,00 1,00 0,89 0,95 1,00 
3 1,00 0,00 0,06 0,00 0,94 1,00 
4 1,00 1,00 0,96 0,07 0,05 0,00 

 
Hidden activities of XOR problem are linearly separable. 
 

x1 x3

x2 x4

A B  
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Newtonova metóda 
 
Budeme približne riešiť rovnicu 

( )grad f =x 0   
Nech x=x0+δ, kde δ=(δ1,δ2,...,δn), potom 

( )grad dof + =x 0  
ľavá strana bude upravená pomocou Taylorovho rozvoja 

( ) ( )grad do of H ...+ + =x x 0  
Ak budeme uvažovať len prvé dva členy rozvoja a budeme predpokladať, že Hessián H(xo) je 
nesingulárna matica, potom 

( ) ( )1 grado oH f−δ ≈ − x x  
 
 

Poznámka: Výchylka δ  je formálne určená dvoma ekvivalentnými spôsobmi: buď ako riešenie 
systému lineárnych rovníc 

( ) ( )grado oH fδ ≈ −x x  
alebo pomocou inverznej matice 

( ) ( )1 grado oH f−δ ≈ − x x  
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Riešenie rovnice ( )grad f =x 0  má potom tento približný  tvar 
 

( ) ( )1 grado o oH f−≈ −x x x x  
 

Toto riešenie slúži ako podklad pre konštrukciu rekurentnej formule, ktorá je základom Newtonovej 
optimalizačnej metódy 
 

( ) ( )1
1 gradk k k kH f−

+ = −x x x x  
 
pre k=0,1,2,... a xo je zadaná počiatočné riešenie. Rekurentná aplikácia tejto formule je ukončená 
keď  začne platiť 1k k+ − < εx x , kde ε>0 je zadaná presnosť požadovaného riešenia. 
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Algoritmus Newtonovej metódy 

 
read(xo,kmax,ε);  
k:=0; norm:=∞; x:=xo; 
while (k<kmax) and (norm>ε) do 
begin k:=k+1; 
      solve SLE H(x)δ=-grad f(x); 
      x':=x+δ; 
      norm:=|x-x'|; 
      x:=x'; 
end; 
write(x,f(x)); 
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Poznámky 
 

(1) Newtonova metóda nájde riešenie rovnice ( )grad f =x 0 , t.j. nájde stacionárne stavy funkcie 
f(x). Tieto stacionárne stavy sú klasifikované pomocou Hessiánu H(x):  
 

Ak x je stacionárny bod a Hessián H(x) je pozitívne negatívny, potom v bode x 
má funkcia f(x) minimum.  

 
(2) Funkcia f(x) musí byť dvakrát diferencovateľná na celom Rn, počítame gradient a Hessián 
funkcie.  
 
(3) Výpočet Hessiánu môže byť časovo a pamäťovo veľmi náročný, menovite pre funkcie mnohých 
(niekoľko sto) premenných. 
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Linearizovaná Newtonova metóda 
 

Pre určitý typ minimalizovanej funkcie výpočet Hessiánu môže byť podstatne zjednodušený. 
 

( ) ( )2

1

p

k
k

f g
=

= ∑x x  

 
Pre túto funkciu platí vlastnosť 
 

( ) [ ] ( )0 1 : 0kf k , p g x∗ ∗= ⇔ ∀ ∈ =x  
 

Nutná a postačujúca podmienka pre existenciu takého x* , f(x*)=0, aby pre každé k∈[1,p] platilo  
gk(x*)=0 .  
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Výpočet Hessiánu pre funkciu ( ) ( )2

1

p

k
k

f g
=

= ∑x x  

 
( ) ( ) ( )

1
2

p
k

k
ki i

f g
g

x x=

∂ ∂
=

∂ ∂∑
x x

x  

 
( ) ( ) ( ) ( ) ( )2 2

1 1
2 2

p p
k k k

k
k ki j i j i j

f g g g
g

x x x x x x= =

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑
x x x x

x  

Budeme predpokladať, že vektor x je blízko x*, potom  gk(x)≈0, pre k=1,2,..., potom približný výraz 
pre elementy Hessiánu má tento tvar 

 

( ) ( ) ( ) ( )2

1
2

p
k k

ij
ki j i j

f g g
H

x x x x=

∂ ∂ ∂
≈ ≈

∂ ∂ ∂ ∂∑
x x x

x  

 
 V maticovom formalizme tento výraz má tvar 
 

( ) ( )( ) ( )( )
1

2
p

T
k k

k

H grad g grad g
=

≈ ∑x x x  


