3. prednaska

Dopredné neuronové
siete

(multilayered perceptron)

Priesvitka 1

Vtip, ktory mi minuly tyZder poslala doc. Befniuskova z

Nového Zealandu, ktora zalozila spolu s Petrom Tifiom tradiciu

prednasok a vyskumu neurénovych sieti na tejto fakulte

3. Find x.

3cm

Ocular Trauma - by Wade Clarke ©2005

Priesvitka 2

Dopredné neurdnové siete
(multilayer perceptron)

logicky neuron (MacCulloch a Pitts, 1943)

perceptron (Rosenblatt, 1967)

dopredné neuroénové siete (Rumelhard, 1986)

prudky rozvoj neurénovych sieti (subsymbolicka Ul, konekcionizmus)

Priesvitka 3

David Rumelhart

e D. E. Rumelhart, G. E. Hinton, and R. J. Williams: Learning representations by back-

propagating errors. Nature, 323(1986), 533-536.

e D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors: Parallel Distributed

Processing, volumes I and II. MIT Press, Cambridge, MA, 1986.

Priesvitka 4

Formal definition of a multilayer perceptron

Let us consider an oriented graph G=(V,E) determined as an ordered couple
of a vertex set V and an edge set E.

acyclic oriented graph

cyclic oriented graph

Priesvitka 5

Theorem. An oriented graph G is acyclic iff it may be indexed so that
ve=(i,j)eE:i<]j

Vertices of an oriented graph can be classified as follows:

(1) Input vertices that are incident only with outgoing edges.

(2) Hidden vertices that are simultaneously incident at least with one incoming edge and at
least with one outgoing edge.

(3) Output vertices, that are incident only with outgoing edges.

J output neuron

hidden neurons

} input neurons

Priesvitka 6

The vertex set V is unambiguously divided into three disjoint subsets
V=V uV,u\,
that are composed of input, hidden, and output vertices, respectively.

Assuming that the graph G is canonically indexed and that the graph is composed of n input
vertices, h hidden vertices, and m output vertices, then the above three vertex subsets can be simply
determined by

vV, ={12,..,n}, |V/|=n
Vy={n+Ln+2,..,n+h}, [Vy]=h
Vo={n+h+Ln+h+2,..,n+h+m}, |\]=m

output neuron

hidden neurons

input neurons

Priesvitka 7

Vertices and edges of the oriented graph G are evaluated by real numbers. Each oriented edge
e=(V;,V))eE is evaluated by a real number W;; called the weight. Each vertex vieV is evaluated by a
real number X called the activity and each hidden or output vertex v;eV is evaluated by a real
number 9 called the threshold.

x;and 9, Wi x;and 9,

Vi Vi

The activities of hidden and output vertices are determined as follows

X :t(éi)

&= D WX +9

jeray

where t(&) is a transfer function. In our forthcoming considerations we will assume that its
analytical form is specified by as the sigmoid function.

Priesvitka 8

Definition. A feed-forward neural network is determined as an ordered triple
N=(Gw,9)

G is an acyclic, oriented, and connected graph and w and ¢ are weights and thresholds assigned to
edges (connections) and vertices (neurons) of the graph. We say that the graph G specifies a

topology (or architecture) of the neural network N, and that weights w and thresholds ¢ specify
parameters of the neural network.

Activities of neurons form a vector X=(X;,X,,...,X,). This vector can be divided formally onto
three subvectors that are composed of input, hidden, and output activities

X=X ®X, DX,

Priesvitka 9

A neural network N=(G,w,¥) with fixed weights and thresholds can be considered as a parametric
function

GWw,9):R" - (0,)"

w,9

X—>— G »—X,

&
X,

This function assigns to an input activity vector X; a vector of output activities Xo
Xo = G(X,;W,9)

Hidden activities in this expression are not explicitly presented, they play only a role of byproducts.

Priesvitka 10

How to calculate activities of a neural network N=(G,w,9)?

(1) We shall postulate that activities of input neurons are kept fixed, in other words, we say that the
vector of input activities X; is an inputs to the neural network. Usually its entries correspond to the
so-called descriptors that specify a classified pattern.

(2) Activities of hidden and output neurons are calculated by simple recurrent procedure based on
the fact that the topology of neural network is determined by an acyclic oriented graph G .
% =f(X,%,..x_) (fori=n+1Ln+2,..,p)
Layer L,
X,=input constant
X,=Input constant

Layer L
X=UW3, X W3 X, +85)
X =W, X +3,)

Layer L,:

{V./ 7 \t }Lo <Ax5=t(ws3x3+w52x2+85)

Layer L;:
Xﬁzt(W63X3+W64X4+W65X5+95)

Priesvitka 11

Unfortunately, if the graph G is not acyclic (it contains oriented cycles), then the above simple
recurrent calculation of activities is inapplicable, in some stage of algorithm we have to know an
activity which was not yet calculated, activities are determined by

X = £(X 0% e X0 Xy X,) (fori=n+1,n+2,...,p)
These equations are coupled, their solution (if any) can be constructed by making use of an iterative
procedure, which is started from initial activities, and calculated activities are used as an input for
calculation of new activities, etc.
XY = (X X e X X XS) (fori =n+1,n+2,...,)
This iterative procedure is repeated until a difference between new and old activities is smaller than
a prescribed precision.

Priesvitka 12

Learning (adaptation process) of feed-forward neural networks

A learning of a feed-forward neural network consists in a looking for such weights and
thresholds that produced output activities (as a response on input activities) are closely related
to the required ones.

First of all what we have to define is the training set composed of examples of input-activity
vector and required output-activity vector

A={ A= (X X5):k=1.2,....}
The error objective function is determined by

2

£, 8) = (x5~ X5)' = 2(G(xt 1w 9) - %)

1 P

= 729?

2
~ {xi -% (forieVy,)

9= 0 (otherwise)
EW.9) = > E,w.9)

Priesvitka 13

The learning process of the given feed-forward neural network o/=(G,e,e) specified by the
graph G and with unknown weights and thresholds is realized by the following minimization process
(Wege 8) = arg min E(w, 9)

If we know the optimal weights and thresholds (that minimize the error objective function), then an
active process is a calculation of output activities as a response on input activities for parameters
determined by the learning - adaptation process

Xo = G(X,; Wy, 9)

%o

—X M GWw,9) — 2 WG (W S

Aw, AS

learning process active process

Priesvitka 14

The active process of neural networks is usually used for a classification or prediction of
unknown patterns that are described only by input activities (descriptors that specify a structure of
patterns). In order to quantify this process we have to introduce the so-called test set composed of
examples of patterns specified by an input-activity vector and a required output-activity vector

Aot = {ﬂkz(ylk,yg); k= 1,2,...,q}

An analogue of the error objective function is

EC (W B0y) = %(vo-95) = %(G(ViV 8) - 5

Elte) (Wopt ’Som) —

> El(:a) (Wopt ’Sopt)
k=

1
We say that an adapted neural network correctly interprets patterns from the test set if this

objective function is sufficiently small. If this requirement is not fulfilled, then there exists an
example from the test set which incorrectly interpreted.

Priesvitka 15

Gradient of error objective function

Partial derivatives of the error objective function (defined over a training set) with respect to
weights and thresholds are determined by

oE, OFE, ox OF, .,

« OB Ox _O&, (&),
ow, 0% ow, ox
OE, OE, 0O oE, .,
OB _ 05 9% _ OB &)
09, 0Ox 09, 0x
where the partial derivatives 0x /ow;is simply calculated by making use the relation x=t(&;), then
ox, ow; =t'(&;)- 0, /ow; =t'(§,)x; . Similar considerations are applicable also for the partial
derivative 0x /09;. If we compare both these equations we get simple relationship between partial
derivatives OE, /ow; and OE, /99,

OE, OE, «

aw, 9, "

1j

Priesvitka 16

Let us study the partial derivative OE,/dx, its calculation depends on whether the index i
corresponds to an output neuron or hidden neuron

%: g (fori eV)
O _ 5 X (fori eV,)
0% T OX Ox

where summation runs over all neurons that are successors of the i-the neuron. The second above
formula results as an application of the well-known theorem called the chain rule for calculation of
partial derivatives of the composite function. Last expressions can be unified at one expression

E gy B

OX; T OX OX

where it is necessary to remember that the summation on r.h.s. is vanishing is the i-th neuron has not
successors, that is output neurons.

Priesvitka 17

A final expression for the partial derivatives of error objective function with respect to thresholds

&
09,

=t'(§i)[gi +ZZ§“%] (fori eV, UV,)

(1) In general, the above formula for calculation of partial derivative of the objective function can be
characterized as a system of linear equations the solution of which determines partial derivatives
OE,/09,.

(2) For feed-forward neural networks the above formula can be solved recurrently. Starting from top
layer L. we calculate all partial derivatives assigned to output neurons, JE, /09, =t'(§,)g,. In the
next step we calculate partial derivatives from the layer L, for their calculation we need to know
partial derivatives from the layer L, , which were calculated in the previous step, etc. Therefore this
recurrent approach of calculation of partial derivatives based is called the back propagation.

(3) Knowing all partial derivatives OF, /09, , we may calculate simply partial derivatives E, /ow; .
(4) An analogue of the above formula was initially derived by Rumelhart et al. in 1986, this work is
considered in literature as one of milestones of the development of theory of neural network.
They demonstrated that multilayer perceptrons together with the back propagation method for
calculation of gradients of error objective functions are able to overcome boundaries of simple
perceptrons stated by Minsky and Papert, that is to classify correctly all patterns and not only those
ones that are linearly separable.

Priesvitka 18

output neuron

hidden neurons

input neurons \

~+ back propagation

Theorem. For feed-forward neural networks the first partial derivatives of the error objective
function Ey are determined recurrently by

gt—t'(é.)(g. +2|22§TW..J
OB _ 0K
ow. 09, "

ij i
where in order to calculate OE,/d3,we have to know either g; (for ieVp) or partial
derivatives OE, /09, (for e T3) .

Priesvitka 19

We have to emphasize that in the course of derivation of the above formula we have never
used an assumption that the considered neural network corresponds to an acyclic graph. This
means that this formula is correct also for neural networks assigned to graphs that are either cyclic or
acyclic.

For neural networks assigned to cyclic graphs the above discussed recurrent approach of
calculation of partial derivatives is inapplicable. For this type of neural networks the partial
derivatives are not determined recurrently, but only as a solution of linear coupled equations

aEk aEk ' 1
o 2 oo WX =Xg
09, 1509,
Its matrix form is
(1-diag(x' W')e, =a
where € :(GEK/681,...,8EK/OSP)Tis a column vector composed of first derivatives of the error

objective function E; with respect to thresholds, diag(x’) = (5iJ Xi')is a diagonal matrix composed of
first derivatives of activities, and a= (glxl’ ,...,ng,'))Tis a column vector composed of products gx .
Assuming that the matrix (1 — diag(X')w")is nonsingular, then the solution is determined by

e = (1-diag(xw") 'a
This means, for neural networks represented either by cyclic or acyclic oriented graph, first partial
derivatives of E; are determined as a solution of the above matrix equation.

Priesvitka 20

The present approach is simply generalized also for calculation of partial derivatives of the total
error objective function determined over all tralnmg patterns

OE OE, 6E 2
8W” kz% I] Z
If we know the partial derivatives, then the batch adaptatlon process is simply realized by a
steepest-descent optimization accelerated by a momentum term
6E
t+1) _ 6 (D) t)
W = — A —+ pAw
ij

90 = 90 -2 % 4 agw
09

where the learning parameter A>0 should be sufficiently small (usually A=0.01-0.1) to ensure a
monotonous convergence of the optimization method. Initial values of weights W,” and thresholds

9 are randomly generated . The last terms in the above formulae correspond to momentum terms
determined as a difference of terms from the last two iterations, Aw”=w" —w "and
A" =9 — 8"V The momentum terms may be important at the initial stage of optimization as a
simple tool how to escape local minima, the value of the momentum parameter is usually 0.5<u<0.7.

Priesvitka 21

Hessian of error objective function

One of the most efficient optimization techniques is the Newton optimization method based on the
following recurrent updating formula

X = X — Hil(xk)grad f(x)

where H(xy) is a Hessian matrix composed of partial derivatives of second order and f(X) is an
objective function to be minimized. This recurrent scheme is stopped if a norm of gradient is smaller
than a prescribed precision, the obtained solution x* is a minimum for a positive definite Hessian
H(x*).

Three types of partial derivatives of second order will be calculated

OE, OE, OE,
09,09," 090w, ow,ow,,

Priesvitka 22

The partial derivatives 8°E, /89,69, (where i,a€VyUVo) can be calculated as follows

PE. o (k) o], OE,
09,09, 09 [asj 29 {t(é‘)(gi Zasw“ﬂ

_)q”Sla[gl_FZ Ek ||]+)§[ia |())q+,26(j} I;l;} \Nllj

where

{1 (if i = a) 1 (ifi eVy)
S, = . and 5,(0)=)
0 (ifi=a) 0 (ifi eV,)

Symbols x/and x"are first and second derivative of activities assigned to hidden or output neurons.

This formula allows a recurrent "back propagation" calculation of second partial derivatives
0°E, /09,09, .

Priesvitka 23

The partial derivatives 8°E, /ow, 89, are calculated immediately from the above two formulae, we

get
62Ek 0 | ok, 0 [Ok,
oW, 09, 68 8Wab 69 09, 9. %

O°E,
= +8, X &
09,09, %+ O 09,

In a similar way we may calculate partial derivatives 0°E, / 6\N oOW; 5
O’E, 0 | ok, 0 [ok, E
owgow, owy | ow, | ow, (89,

_ 0 (B, (OB O _ 0[O @
_awab{a\gijxj +59i oW, 39 [[NV]X * (aJ)Sjaxb

we get

o (oE, LB OE OE, 0%,

— t'(e.)6 . x = k X. + 8.
68[X"J 09, (E") 2% asiasax‘” 29, 09, o as (F") %
O°E, OE,

= x4+ 8, X %
asiasax" 'bx" X T O 09,

A calculation of partial derlvatlves aZEk Jow,09, and &°E, /6WalﬁWij requires only first partial
derivatives OE, /09, and second partial derivatives 6°E, /09,09,

Priesvitka 24

Theorem. For feed-forward neural networks the second partial derivatives of the error objective
function Ey are determined by

PE, O,
09 69 |a(gi z \Nh)

(ia |(O))g +zas 69 \Nli))q

2 2
Gl = 75 Xb+5|b6EkXb
w09, 0909, 89,
2 2
a Ek = 6 Ek b 6|b7EkXbX +8|a EkXbX,
owgow, 09,09, EXY

where partial derivatives 0°E, / 09,09, may be calculated recurrently in a back propagation manner
whereas other two partial derivatives 6°E, /ow,,09, and 0°E, / OW,,0W; are calculated directly.

Priesvitka 25

Partial derivatives of second order of the total objective function determined over all patterns
from the training set are determined as summations of partial derivatives of objective functions Ey

PE & OE
09,09, _;asaag,
E & O°E,
o9,0w, ;ag,a/vah
PE & O°E

-y

An adaptation process of neural networks realized in the framework of Newton optimization
method is based on the following recurrent updating formulae

oY oE"
WI(_1+1) _ Wi(_t) SO _N Oyt
i] % (ii)(ab) ow,, (Za): (ii)(a) 09,

((. oW RS oE®
] ' & (i)(ap) ow, o ()@ 09,

Priesvitka 26

In a similar way as in the previous part of this lecture, where we have studied first partial
derivatives of the error objective function Ey, the second partial derivatives were derived so that we
did not use any assumption that neural networks correspond to acyclic graphs. Of course, an
assumption that neural networks are acyclic considerably simplifies the calculation of second partial
derivatives 0°E, /09,09 by a recurrent method. For cyclic neural networks this recurrent approach is
inapplicable, the partial derivatives are determined by a system of linear equations

O°E, O°E, OE,
= Thw, [+8,8,(0
39,09, 23505, 25, "% = 'a)‘[Z‘asl Wj+ 5 (0)%°

This relation may be rewritten in a matrix form as follows

E"(1-wdiag(x'))= A
where E" is a symmetric matrix composed of partial derivatives 8°E, /09,09, and A=(Ay) is a
diagonal matrix. Assuming that the matrix (1-wdiag(X')) is a nonsingular, then the matrix E"
composed of second partial derivatives 6°E, /09,09, is determined explicitly by

E" = A(1-wdiag(x"))"

Priesvitka 27

Ilustrative example
Boolean function XOR

An effectiveness of neural networks with hidden neurons is illustrated by Boolean function XOR,
which is not correctly classified by simple perceptron without hidden neurons.

The used neural networks will contain three layers, the first layer is composed of input neuron, the
second one of hidden neurons, and the third (last) one of output neurons.

Hidden neurons create the so-called inner representation which is already linearly separable, this is

the main reason why neural networks with hidden neurons are most frequently used in the whole
theory of neural networks.

Priesvitka 28

Parameters of adaptation process are: A=0,1, pu=0,5; after 400 iterations the objective function
achieved value E=0.031.

Priesvitka 29

Activities of neurons from the feed-forward
network composed of five neurons and two
hidden neurons.

No. X X3 X3 X4 Xs Xs
1 0,00 | 0,00 | 0,96 | 0,08 | 0,06 | 0,00
2 0,00 | 1,00 | 1,00 | 0,89 | 0,95 | 1,00
3 1,00 | 0,00 | 0,06 | 0,00 | 0,94 | 1,00
4 1,00 | 1,00 | 0,96 | 0,07 | 0,05 | 0,00

Hidden activities of XOR problem are linearly separable.

X, Xy

©.1) Ry

Priesvitka 30

Newtonova metoda

Budeme priblizne riesit’ rovnicu
grad f(x)=0
Nech x=x¢+6, kde &~(5y,5,...,6), potom
grad f(x,+d)=0
l'ava strana bude upravena pomocou Taylorovho rozvoja
grad f(x,)+H(x,)d+..=0
Ak budeme uvazovat len prvé dva Cleny rozvoja a budeme predpokladat, ze Hessian H(X,) je
nesinguldrna matica, potom
§~-H"(x,)grad f(x,)

Poznamka: Vychylka & je formalne uréena dvoma ekvivalentnymi sposobmi: bud’ ako rieSenie
systému linearnych rovnic

H (XO)S ~—grad f (XD)
alebo pomocou inverznej matice

SZ—H’I(XO)grad f(XO)

Priesvitka 31

Riesenie rovnice grad f (x)=0 ma potom tento priblizny tvar
X~ X, —H™(x,) grad f(x,)

Toto rieSenie sluzi ako podklad pre konstrukciu rekurentnej formule, ktora je zakladom Newtonovej
optimaliza¢nej metody

X = X —H (%) grad f (%)

pre k=0,1,2,... a X, je zadana pociato¢né rieSenie. Rekurentna aplikacia tejto formule je ukoncena
ked’ zacne platit’ ‘XM1 - Xk‘ < g, kde >0 je zadana presnost’ pozadovaného rieSenia.

Priesvitka 32

Algoritmus Newtonovej metody

read (Xo » Knax » 8) :
k:=0; norm:=w; X:=Xq;
while (k<kmax) and (norm>¢) do
begin k:=k+1;
solve SLE H(x)d=-grad f(x);

X" I=X+3;
norm:=|x-x"];
XI1=X";

end;

write(X,f(x));

Priesvitka 33

Poznamky
(1) Newtonova metdda najde rieSenie rovnice grad f(x) =0, tj. najde stacionarne stavy funkcie
f(X). Tieto stacionarne stavy sa klasifikované pomocou Hessianu H(X):

Ak X je stacionarny bod a Hessian H(X) je pozitivne negativny, potom v bode x
ma funkcia f(X) minimum.

(2) Funkcia f(x) musi byt dvakrat diferencovatelna na celom R', po¢itame gradient a Hessian
funkcie.

(3) Vypocet Hessianu moze byt ¢asovo a pamitovo vel'mi naroény, menovite pre funkcie mnohych
(niekol’ko sto) premennych.

Priesvitka 34

Nutna a postadujiica podmienka pre existenciu takého X,

Linearizovana Newtonova metoda

=igé(x)

k=1

Pre thto funkciu plati vlastnost’

f(x)=0 < vke[l,p]:g,(x)=0

Pre ur¢ity typ minimalizovanej funkcie vypocet Hessianu moze byt’ podstatne zjednoduseny.

f(x")=0, aby pre kazdé ke[1,p] platilo

Priesvitka 35

82f(x):2i6gk(6gk +ZZg X
OX.0X; o OX

Budeme predpokladat’, Ze vektor X je blizko X, potom Ok(X)=0, pre k=1,2,..., potom priblizny vyraz
pre elementy Hessianu ma tento tvar

H, (x)~ o f(x) ~Ziagk(x) 9, (x)

OX,0X,; - a OX 0X;

V maticovom formalizme tento vyraz ma tvar

25i(grad g.(x) (grad g, (x))

k=1

Priesvitka 36

