
 UM-157

ModelSim SE User’s Manual

6 - SystemC simulation

Chapter contents
Introduction UM-158

Supported platforms and compiler versions UM-159
Building gcc with custom configuration options UM-159
HP Limitations for SystemC UM-160

Usage flow for SystemC-only designs UM-161

Compiling SystemC files UM-162
Creating a design library UM-162
Modifying SystemC source code UM-162
Invoking the SystemC compiler UM-165
Compiling optimized and/or debug code UM-165
Specifying an alternate g++ installation UM-166
Maintaining portability between OSCI and ModelSim . . . UM-166
Restrictions on compiling with HP aCC UM-167
Switching platforms and compilation UM-167
Using sccom vs. raw C++ compiler UM-168

Linking the compiled source UM-162
sccom -link UM-170

Simulating SystemC designs UM-171
Running simulation UM-171

Debugging the design UM-174
Viewable SystemC objects UM-174
Source-level debug UM-176

SystemC object and type display in ModelSim UM-174
Support for aggregates UM-178
Viewing FIFOs UM-179

Differences between ModelSim and the OSCI simulator UM-180
Fixed point types UM-180
OSCI 2.1 features supported UM-181

Troubleshooting SystemC errors UM-182
Errors during loading UM-182
Errors during loading UM-182

UM-158 6 - SystemC simulation

ModelSim SE User’s Manual

Introduction

This chapter describes how to compile and simulate SystemC designs with ModelSim.
ModelSim implements the SystemC language based on the Open SystemC Initiative
(OSCI) SystemC 2.0.1 reference simulator. It is recommended that you obtain the OSCI
functional specification, or the latest version of the SystemC Language Reference Manual
as a reference manual. Visit http://www.systemc.org for details.

In addition to the functionality described in the OSCI specification, ModelSim for SystemC
includes the following features:

• Single common Graphic Interface for SystemC and HDL languages.

• Extensive support for mixing SystemC, VHDL, and Verilog in the same design (SDF
annotation for HDL only). For detailed information on mixing SystemC with HDL see
Chapter 7 - Mixed-language simulation.

Supported platforms and compiler versions UM-159

ModelSim SE User’s Manual

Supported platforms and compiler versions

SystemC runs on a subset of ModelSim supported platforms. The table below shows the
currently supported platforms and compiler versions:

Building gcc with custom configuration options

We only test with our default options. If you use advanced gcc configuration options, we
cannot guarantee that ModelSim will work with those options.

To use a custom gcc build, set the CppPath variable in the modelsim.ini file. This variable
specifies the pathname to the compiler binary you intend to use.

When using a custom gcc, ModelSim requires that the custom gcc be built with several
specific configuration options. These vary on a per-platform basis as shown in the
following table:

Platform Supported compiler versions

HP-UX 11.0 or later aCC 3.45 with associated patches

RedHat Linux 7.2 and 7.3
RedHat Linux Enterprise version 2.1

gcc 3.2.3

SunOS 5.6 or later gcc 3.2

Windows NT and other NT-based
platforms (win2K, XP, etc.)

Minimalist GNU for Windows
(MinGW) gcc 3.2.3

Important: ModelSim SystemC has been tested with the gcc versions available from
ftp.model.com/pub/gcc. Customized versions of gcc may cause problems. We strongly
encourage you to download and use the gcc versions available on our FTP site (login as
anonymous).

Platform Mandatory configuration options

Linux none

Solaris --with-gnu-ld --with-ld=/path/to/binutils-2.14/bin/ld --with-gnu-as
--with-as=/path/to/binutils-2.14/bin/as

HP-UX N/A

Win32 (MinGW) --with-gnu-ld --with-gnu-as
Do NOT build with the --enable-sjlj-exceptions option, as it can cause
problems with catching exceptions thrown from SC_THREAD and
SC_CTHREAD

ld.exe and as.exe should be installed into the <install_dir>/bin before
building gcc. ld and as are available in the binutils package. Modelsim
uses binutils 2.13.90-20021006-2.

UM-160 6 - SystemC simulation

ModelSim SE User’s Manual

If you don't have a GNU binutils2.14 assembler and linker handy, you can use the as and
ld programs distributed with ModelSim. They are located inside the built-in gcc in directory
<install_dir>/modeltech/gcc-3.2-<mtiplatform>/lib/gcc-lib/<gnuplatform>/3.2.

By default ModelSim also uses the following options when configuring built-in gcc.

• --disable-nls

• --enable-languages=c,c++

These are not mandatory, but they do reduce the size of the gcc installation.

HP Limitations for SystemC

HP is supported for SystemC with the following limitations:

• variables are not supported

• aggregates are not supported

• objects must be explicitly named, using the same name as their object, in order to debug

SystemC simulation objects such as modules, primitive channels, and ports can be
explicitly named by passing a name to the constructors of said objects. If an object is not
constructed with an explicit name, then the OSCI reference simulator generates an internal
name for it, using names such as "signal_0", "signal_1", etc..

Usage flow for SystemC-only designs UM-161

ModelSim SE User’s Manual

Usage flow for SystemC-only designs

ModelSim allows users to simulate SystemC, either alone or in combination with other
VHDL/Verilog modules. The following is an overview of the usage flow for strictly
SystemC designs. More detailed instructions are presented in the sections that follow.

1 Create and map the working design library with the vlib and vmap statements, as
appropriate to your needs.

2 Modify the SystemC source code, including the following highlights:

• Replace sc_main() with an SC_MODULE, and potentially add a process to contain
any testbench code

• Replace sc_start() by using the run (CR-257) command in the GUI

• Remove calls to sc_initialize()

• Export the top level SystemC design unit(s) using the SC_MODULE_EXPORT
macro

See "Modifying SystemC source code" (UM-162) for a complete list of all modifications.

3 Analyze the SystemC source using sccom (CR-259). sccom invokes the native C++
compiler to create the C++ object files in the design library.

See "Using sccom vs. raw C++ compiler" (UM-168) for information on when you are
required to use sccom vs. another C++ compiler.

4 Perform a final link of the C++ source using sccom -link (UM-170). This process creates
a shared object file in the current work library which will be loaded by vsim at runtime.
sccom -link must be re-run before simulation if any new sccom compiles were
performed.

5 Simulate the design using the standard vsim command.

6 Simulate the design using the run command, entered at the vsim command prompt.

7 Debug the design using ModelSim GUI features, including the Source and Wave
windows.

jelemenska
Usage flow for SystemC-only designs

jelemenska
Replace sc_main() with an SC_MODULE, and potentially add a process to contain
any testbench code

jelemenska
Replace sc_start()

jelemenska
Remove calls to sc_initialize()

jelemenska
Export the top level SystemC design unit(s) using the SC_MODULE_EXPORT
macro

jelemenska
Create and map the working design library

jelemenska
Analyze the SystemC source

jelemenska
Perform a final link

jelemenska
Simulate the design

UM-162 6 - SystemC simulation

ModelSim SE User’s Manual

Compiling SystemC files

To compile SystemC designs, you must

• create a design library

• modify the SystemC source code

• run the sccom (CR-259) SystemC compiler

• run the sccom (CR-259) SystemC linker (sccom -link)

Creating a design library

Before you can compile your design, you must create a library in which to store the
compilation results. Use vlib (CR-361) to create a new library. For example:

vlib work

This creates a library named work. By default, compilation results are stored in the work
library.

The work library is actually a subdirectory named work. This subdirectory contains a
special file named _info. Do not create libraries using UNIX commands – always use the
vlib command (CR-361).

See "Design libraries" (UM-55) for additional information on working with libraries.

Modifying SystemC source code

Several modifications must be applied to your original SystemC source code. To see
example code containing the modifications listed below, see "Code modification
examples" (UM-163).

Converting sc_main() to a module

In order for ModelSim to run the SystemC/C++ source code, the control function of
sc_main() must be replaced by a constructor, SC_CTOR(), placed within a module at the
top level of the design (see mytop in "Example 1" (UM-163)). In addition:

• any testbench code inside sc_main() should be moved to a process, normally an
SC_THREAD process.

• all C++ variables in sc_main(), including SystemC primitive channels, ports, and
modules, must be defined as members of sc_module. Therefore, initialization must take
place in the SC_CTOR. For example, all sc_clock() and sc_signal() initializations must
be moved into the constructor.

Replacing the sc_start() function with the run command and options

ModelSim uses the run command and its options in place of the sc_start() function. If
sc_main() has multiple sc_start() calls mixed in with the testbench code, then use an
SC_THREAD() with wait statements to emulate the same behavior. An example of this is
shown below.

jelemenska
Converting sc_main() to a module

jelemenska
Replacing the sc_start() function with the run command and options

Compiling SystemC files UM-163

ModelSim SE User’s Manual

Removing calls to sc_initialize()

vsim calls sc_initialize() by default at the end of elaboration, so calls to sc_initialize() are
unnecessary.

Exporting all top level SystemC modules

For SystemC designs, you must export all top level modules in your design to ModelSim.
You do this with the SC_MODULE_EXPORT(<sc_module_name>) macro. SystemC
templates are not supported as top level or boundary modules. See "Templatized SystemC
modules" (UM-169). The sc_module_name is the name of the top level module to be
simulated in ModelSim. You must specify this macro in a C++ source (.cpp) file. If the
macro is contained in a header file instead of a C++ source file, an error may result.

For HP-UX: Explicitly naming signals, ports, and modules

Important: Verify that SystemC signals, ports, and modules are explicitly named to avoid
port binding and debugging errors.

Code modification examples

Example 1

The following is a simple example of how to convert sc_main to a module and elaborate it
with vsim.

The run command equivalent to the sc_start(100, SC_NS) statement is:

run 100 ns

Original OSCI code #1 (partial) Modified code #1 (partial)

int sc_main(int argc, char* argv[])

{

 sc_signal<bool> mysig;

 mymod mod("mod");

 mod.outp(mysig);

 sc_start(100, SC_NS);

}

SC_MODULE(mytop)

{

 sc_signal<bool> mysig;

 mymod mod;

 SC_CTOR(mytop)

 : mysig("mysig"),

 mod("mod")

 {

 mod.outp(mysig);

 }

};

SC_MODULE_EXPORT(mytop);

jelemenska
Removing calls to sc_initialize()

jelemenska
Exporting all top level SystemC modules

jelemenska
Code modification examples

UM-164 6 - SystemC simulation

ModelSim SE User’s Manual

Example 2

This next example is slightly more complex, illustrating the use of sc_main() and signal
assignments, and how you would get the same behavior using ModelSim.

Original OSCI code #2 (partial) Modified ModelSim code #2 (partial)

int sc_main(int, char**)

{

sc_signal<bool> reset;

counter_top top("top");

sc_clock CLK("CLK", 10, SC_NS, 0.5,

0.0, SC_NS, false);

top.reset(reset);

reset.write(1);

sc_start(5, SC_NS);

reset.write(0);

sc_start(100, SC_NS);

reset.write(1);

sc_start(5, SC_NS);

reset.write(0);

sc_start(100, SC_NS);

}

SC_MODULE(new_top)

{

sc_signal<bool> reset;

counter_top top;

sc_clock CLK;

void sc_main_body();

SC_CTOR(new_top)

: reset("reset"),

 top("top")

CLK("CLK", 10, SC_NS, 0.5, 0.0, SC_NS, false)

{

top.reset(reset);

SC_THREAD(sc_main_body);

}

};

void

new_top::sc_main_body()

{

reset.write(1);

wait(5, SC_NS);

reset.write(0);

wait(100, SC_NS);

reset.write(1);

wait(5, SC_NS);

reset.write(0);

wait(100, SC_NS);

}

SC_MODULE_EXPORT(new_top);

Compiling SystemC files UM-165

ModelSim SE User’s Manual

Example 3

One last example illustrates the correct way to modify a design using an SCV transaction
database. ModelSim requires that the transaction database be created before calling the
constructors on the design subelements. The example is as follows:

Take care to preserve the order of functions called in sc_main() of the original code.

Sub-elements cannot be placed in the initializer list, since the constructor body must be
executed prior to their construction. Therefore, the sub-elements must be made pointer
types, created with "new" in the SC_CTOR() module.

Invoking the SystemC compiler

ModelSim compiles one or more SystemC design units with a single invocation of sccom
(CR-259), the SystemC compiler. The design units are compiled in the order that they appear
on the command line. For SystemC designs, all design units must be compiled just as they
would be for any C++ compilation. An example of an sccom command might be:

sccom -I ../myincludes mytop.cpp mydut.cpp

Compiling optimized and/or debug code
By default, sccom invokes the C++ compiler (g++ or aCC) without any optimizations. If
desired, you can enter any g++/aCC optimization arguments at the sccom command line.

Also, source level debug of SystemC code is not available by default in ModelSim. To
compile your SystemC code for debug, use the g++/aCC -g argument on the sccom
command line.

Original OSCI code # 3 (partial) Modified ModelSim code #3 (partial)

int sc_main(int argc, char* argv[])

{

scv_startup();

scv_tr_text_init();

scv_tr_db db("my_db");

scv_tr_db db::set_default_db(&db);

sc_clock clk ("clk",20,0.5,0,true);

sc_signal<bool> rw;

test t("t");

t.clk(clk);;

t.rw(rw);

sc_start(100);

}

SC_MODULE(top)

{

sc_signal<bool>* rw;

test* t;

SC_CTOR(top)

{

scv_startup();

scv_tr_text_init()

scv_tr_db* db = new scv_tr_db("my_db");

scv_tr_db::set_default_db(db):;

clk = new sc_clock("clk",20,0.5,0,true);

rw = new sc_signal<bool> ("rw");

t = new test("t");

}

};

SC_MODULE_EXPORT(new_top);

UM-166 6 - SystemC simulation

ModelSim SE User’s Manual

Specifying an alternate g++ installation

We recommend using the version of g++ that is shipped with ModelSim on its various
supported platforms. However, if you want to use your own installation, you can do so by
setting the CppPath variable in the modelsim.ini file to the g++ executable location.

For example, if your g++ executable is installed in /u/abc/gcc-3.2/bin, then you would set
the variable as follows:

CppPath /u/abc/gcc-3.2/bin/g++

Maintaining portability between OSCI and ModelSim

If you intend to simulate on both ModelSim and the OSCI reference simulator, you can use
the MTI_SYSTEMC macro to execute the ModelSim specific code in your design only
when running ModelSim. The MTI_SYSTEMC macro is defined in ModelSim’s systemc.h
header file. When you #include this file in your SystemC code, you gain access to this
macro. By including #ifdef/else statements in the code, you can then avoid having two
copies of the design.

Using the original and modified code shown in the example shown on page 163, you might
write the code as follows:

#ifdef MTI_SYSTEMC //If using the ModelSim simulator, sccom compiles this

SC_MODULE(mytop)

{

 sc_signal<bool> mysig;

 mymod mod;

 SC_CTOR(mytop)

 : mysig("mysig"),

 mod("mod")

 {

 mod.outp(mysig);

 }

};

SC_MODULE_EXPORT(top);

#else //Otherwise, it compiles this

int sc_main(int argc, char* argv[])

{

 sc_signal<bool> mysig;

 mymod mod("mod");

 mod.outp(mysig);

 sc_start(100, SC_NS);

}

#endif

Compiling SystemC files UM-167

ModelSim SE User’s Manual

Restrictions on compiling with HP aCC

ModelSim uses the aCC -AA option by default when compiling C++ files on HP-UX. It
does this so cout will function correctly in the systemc.so file. The -AA option tells aCC to
use ANSI-compliant <iostream> rather than cfront-style <iostream.h>. Thus, all C++-
based objects in a program must be compiled with -AA. This means you must use
<iostream> and "using" clauses in your code. Also, you cannot use the -AP option, which
is incompatible with -AA.

Switching platforms and compilation

Compiled SystemC libraries are platform dependent. If you move between platforms, you
must remove all SystemC files from the working library and then recompile your SystemC
source files. To remove SystemC files from the working directory, use the vdel (CR-332)
command with the -allsystemc argument.

If you attempt to load a design that was compiled on a different platform, an error such as
the following occurs:

vsim work.test_ringbuf
Loading work/systemc.so

** Error: (vsim-3197) Load of "work/systemc.so" failed:
work/systemc.so: ELF file data encoding not little-endian.

** Error: (vsim-3676) Could not load shared library
work/systemc.so for SystemC module 'test_ringbuf'.

Error loading design

You can type verror 3197 at the vsim command prompt and get details about what caused
the error and how to fix it.

UM-168 6 - SystemC simulation

ModelSim SE User’s Manual

Using sccom vs. raw C++ compiler

When compiling complex C/C++ testbench environments, it is common to compile code
with many separate runs of the compiler. Often users compile code into archives (.a files),
and then link the archives at the last minute using the -L and -l link options.

When using ModelSim's SystemC, you may wish to compile a portion of your C design
using raw g++ or aCC instead of sccom. Perhaps you have some legacy code or some non-
SystemC utility code that you want to avoid compiling with sccom. You can do this,
however, some caveats and rules apply.

Rules for sccom use

The rules governing when and how you must use sccom are as follows:

1 You must compile all code that references SystemC types or objects using sccom (CR-

259).

2 When using sccom, you should not use the -I compiler option to point the compiler at
any search directories containing OSCI or any other vendor supplied SystemC header
files. sccom does this for you accurately and automatically.

3 If you do use the raw C++ compiler to compile C/C++ functionality into archives or
shared objects, you must then link your design using the -L and -l options with the sccom
-link command. These options effectively pull the non-SystemC C/C++ code into a
simulation image that is used at runtime.

Failure to follow the above rules can result in link-time or elaboration-time errors due to
mismatches between the OSCI or any other vendor supplied SystemC header files and the
ModelSim SystemC header files.

Rules for using raw g++ to compile non-SystemC C/C++ code

If you use raw g++ to compile your non-systemC C/C++ code, the following rules apply:

1 The -fPIC option to g++ should be used during compilation with sccom.

2 For C++ code, you must use the built-in g++ delivered with ModelSim, or (if using a
custom g++) use the one you built and specified with the CppPath .ini variable.

Otherwise binary incompatibilities may arise between code compiled by sccom and code
compiled by raw g++.

Rules for using raw HP aCC to compile non-SystemC C/C++ code

If you use HP’s aCC compiler to compile your non-systemC C/C++ code, the following
rules apply:

1 For C++ code, you should use the +Z and -AA options during compilation

2 You must use HP aCC version 3.45 or higher.

Compiling SystemC files UM-169

ModelSim SE User’s Manual

Issues with C++ templates

Templatized SystemC modules

Templatized SystemC modules are not supported for use at:

• the top level of the design

• the boundary between SystemC and higher level HDL modules (i.e. the top level of the
SystemC branch)

To convert a top level templatized SystemC module, you can either specialize the module
to remove the template, or you can create a wrapper module that you can use as the top
module.

For example, let’s say you have a templatized SystemC module as shown below:

template <class T>
class top : public sc_module
{

sc_signal<T> sig1;
.
.
.

};

You can specialize the module by setting T = int, thereby removing the template, as
follows:

class top : public sc_module
{

sc_signal<int> sig 1;
.
.
.

};

Or, alternatively, you could write a wrapper to be used over the template module:

class modelsim_top : public sc_module
{

top<int> actual_top;
.
.
.

};

SC_MODULE_EXPORT(modelsim_top);

Organizing templatized code

Suppose you have a class template, and it contains a certain number of member functions.
All those member functions must be visible to the compiler when it compiles any instance
of the class. For class templates, the C++ compiler generates code for each unique instance
of the class template. Unless it can see the full implementation of the class template, it
cannot generate code for it thus leaving the invisible parts as undefined. Since it is legal to
have undefined symbols in a .so, sccom -link will not produce any errors or warnings. To
make functions visible to the compiler, you must move them to the .h file.

UM-170 6 - SystemC simulation

ModelSim SE User’s Manual

Linking the compiled source

Once the design has been compiled, it must be linked using the sccom (CR-259) command
with the -link argument.

sccom -link

The sccom -link command collects the object files created in the different design libraries,
and uses them to build a shared library (.so) in the current work library or the library
specified by the -work option. If you have changed your SystemC source code and
recompiled it using sccom, then you must relink the design by running sccom -link before
invoking vsim. Otherwise, your changes to the code are not recognized by the simulator.
Remember that any dependent .a or .o files should be listed on the sccom -link command
line before the .a or .o on which it depends. For more details on dependencies and other
syntax issues, see sccom (CR-259).

Simulating SystemC designs UM-171

ModelSim SE User’s Manual

Simulating SystemC designs

After compiling the SystemC source code, you can simulate your design with vsim (CR-

378).

Loading the design

For SystemC, invoke vsim (CR-378) with the top-level module of the design. This example
invokes vsim (CR-378) on a design named top:

vsim top

When the GUI comes up, you can expand the hierarchy of the design to view the SystemC
modules. SystemC objects are denoted by green icons (see "Design object icons and their
meaning" (GR-12) for more information).

To simulate from a command shell, without the GUI, invoke vsim with the -c option:

vsim -c <top_level_module>

Running simulation

Run the simulation using the run (CR-257) command or select one of the Simulate > Run
options from the menu bar.

UM-172 6 - SystemC simulation

ModelSim SE User’s Manual

Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. You can set
the simulator resolution and user time unit from SystemC source code using the
sc_set_time_resolution() and sc_set_default_time_unit() functions.

If the resolution is not set explicitly by sc_set_time_resolution(), the resolution limit
defaults to the value specified by the Resolution (UM-507) variable in the modelsim.ini file.
You can view the current resolution by invoking the report command (CR-249) with the
simulator state option.

The rules vary if you have mixed-language designs. Please see "Simulator resolution limit"
(UM-189) for details on mixed designs.

Choosing the resolution

Simulator resolution:

You should choose the coarsest simulator resolution limit possible that does not result in
undesired rounding of your delays. However, the time precision should also not be set
unnecessarily small, because in some cases performance will be degraded.

SystemC resolution:

The default resolution for all SystemC modules is 1ps. For all SystemC calls which don’t
explicitly specify units, the resolution is understood to be 1ps. The default is overridden by
specifying units in the call.

Overriding the resolution

You can override ModelSim’s default simulator resolution by specifying the -t option on
the command line or by selecting a different Simulator Resolution in the Simulate dialog
box. Available resolutions are: 1x, 10x, or 100x of fs, ps, ns, us, ms, or sec.

When deciding what to set the simulator’s resolution to, you must keep in mind the
relationship between the simulator’s resolution and the SystemC time units specified in the
source code. For example, with a time unit usage of:

sc_wait(10, SC_PS);

a simulator resolution of 10ps would be fine. No rounding off of the ones digits in the time
units would occur. However, a specification of:

sc_wait(9, SC_PS);

would require you to set the resolution limit to 1ps in order to avoid inaccuracies caused by
rounding.

Simulating SystemC designs UM-173

ModelSim SE User’s Manual

Initialization and cleanup of SystemC state-based code

State-based code should not be used in Constructors and Destructors. Constructors and
Destructors should be reserved for creating and destroying SystemC design objects, such
as sc_modules or sc_signals. State-based code should also not be used in the elaboration
phase callbacks before_end_of_elaboration() and end_of_elaboration().

The following virtual functions should be used to initialize and clean up state-based code,
such as logfiles or the VCD trace functionality of SystemC. They are virtual methods of the
following classes: sc_port_base, sc_module, sc_channel, and sc_prim_channel. You can
think of them as phase callback routines in the SystemC language:

• before_end_of_elaboration ()
Called after all constructors are called, but before port binding.

• end_of_elaboration ()
Called at the end of elaboration after port binding. This function is available in the
SystemC 2.0.1 reference simulator.

• start_of_simulation ()
Called before simulation starts. Simulation-specific initialization code can be placed in
this function.

• end_of_simulation ()
Called before ending the current simulation session.

The call sequence for these functions with respect to the SystemC object construction and
destruction is as follows:

1 Constructors

2 before_end_of_elaboration ()

3 end_of_elaboration ()

4 start_of_simulation ()

5 end_of_simulation ()

6 Destructors

Usage of callbacks

The start_of_simulation() callback is used to initialize any state-based code. The
corresponding cleanup code should be placed in the end_of_simulation() callback. These
callbacks are only called during simulation by vsim and thus, are safe.

If you have a design in which some state-based code must be placed in the constructor,
destructor, or the elaboration callbacks, you can use the mti_IsVoptMode() function to
determine if the elaboration is being run by vopt (CR-376). You can use this function to
prevent vopt from executing any state-based code.

UM-174 6 - SystemC simulation

ModelSim SE User’s Manual

Debugging the design

You can debug SystemC designs using all of ModelSim’s debugging features, with the
exception of the Dataflow window.

Viewable SystemC objects

Objects which may be viewed in SystemC for debugging purposes are as shown in the
following table.

 Channels Ports Variables Aggregates

sc_signal<type>
sc_signal_rv<width>
sc_signal_resolved
sc_clock (a
hierarchical channel)
sc_mutex
sc_fifo

sc_in<type>
sc_out<type>
sc_inout<type>
sc_in_rv<width>
sc_out_rv<width>
sc_inout_rv<width>
sc_in_resolved
sc_out_resolved
sc_inout_resolved
sc_in_clk
sc_out_clk
sc_inout_clk
sc_fifo_in
sc_fifo_out

Module member variables
of all C++ and SystemC
built-in types (listed in the
Types list below) are
supported.

Aggregates of SystemC
signals or ports.

Only three types of
aggregates are supported
for debug:

struct
class
array

Debugging the design UM-175

ModelSim SE User’s Manual

Types (<type>) of the objects which may be viewed for debugging are the following:

 Types

bool, sc_bit
sc_logic
sc_bv<width>
sc_lv<width>
sc_int<width>
sc_uint<width>
sc_fix
sc_fix_fast
sc_fixed<W,I,Q,O,N>
sc_fixed_fast<W,I,Q,O,N>
sc_ufix
sc_ufix_fast
sc_ufixed
sc_ufixed_fast
sc_signed
sc_unsigned
char, unsigned char
int, unsigned int
short, unsigned short
long, unsigned long
sc_bigint<width>
sc_biguint<width>
sc_ufixed<W,I,Q,O,N>
short, unsigned short
long long, unsigned long long
float
double
enum
pointer
class
struct
union
bit_fields

UM-176 6 - SystemC simulation

ModelSim SE User’s Manual

Source-level debug

In order to debug your SystemC source code, you must compile the design for debug using
the -g C++ compiler option. You can add this option directly to the sccom (CR-259)
command line on a per run basis, with a command such as:

sccom mytop -g

Or, if you plan to use it every time you run the compiler, you can specify it in the
modelsim.ini file with the SccomCppOptions variable. See "[sccom] SystemC compiler
control variables" (UM-501) for more information.

The source code debugger, C Debug (UM-399), is automatically invoked when the design is
compiled for debug in this way.

You can set breakpoints in a Source window, and single-step through your SystemC/C++
source code. .

The gdb debugger has a known bug that makes it impossible to set breakpoints reliably in
constructors or destructors. Try to avoid setting breakpoints in constructors of SystemC
objects; it may crash the debugger.

Debugging the design UM-177

ModelSim SE User’s Manual

You can view and expand SystemC objects in the Objects pane and processes in the Active
Processes pane.

UM-178 6 - SystemC simulation

ModelSim SE User’s Manual

SystemC object and type display in ModelSim

This section contains information on how ModelSim displays certain objects and types, as
they may differ from other simulators.

Support for aggregates

ModelSim supports aggregates of SystemC signals or ports. Three types of aggregates are
supported: structures, classes, and arrays. Unions are not supported for debug. An
aggregate of signals or ports will be shown as a signal of aggregate type. For example, an
aggregate such as:

sc_signal <sc_logic> a[3];

is equivalent to:

sc_signal <sc_lv<3>> a;

for debug purposes. ModelSim shows one signal - object "a" - in both cases.

The following aggregate

sc_signal <float> fbus [6];

when viewed in the Wave window, would appear as follows:

SystemC object and type display in ModelSim UM-179

ModelSim SE User’s Manual

Viewing FIFOs

In ModelSim, the values contained in an sc_fifo appear in a definite order. The top-most or
left-most value is always the next to be read from the FIFO. Elements of the FIFO that are
not in use are not displayed.

Example of a signal where the FIFO has five elements:

examine f_char
{}
VSIM 4> # run 10
VSIM 6> # examine f_char
A
VSIM 8> # run 10
VSIM 10> # examine f_char
{A B}
VSIM 12> # run 10
VSIM 14> # examine f_char
{A B C}
VSIM 16> # run 10
VSIM 18> # examine f_char
{A B C D}
VSIM 20> # run 10
VSIM 22> # examine f_char
{A B C D E}
VSIM 24> # run 10
VSIM 26> # examine f_char
{B C D E}
VSIM 28> # run 10
VSIM 30> # examine f_char
{C D E}
VSIM 32> # run 10
VSIM 34> # examine f_char
{D E}

UM-180 6 - SystemC simulation

ModelSim SE User’s Manual

Differences between ModelSim and the OSCI simulator

ModelSim is based upon the 2.0.1 reference simulator provided by OSCI. However, there
are some minor but key differences to understand:

• vsim calls sc_initialize() by default at the end of elaboration. The user has to explicitly
call sc_initialize() in the reference simulator. You should remove calls to sc_initialize()
from your code.

• The default time resolution of the reference simulator is 1ps. For vsim it is 1ns. The user
can set the time resolution by using the vsim command with the -t option or by modifying
the value of the Resolution (UM-507) variable in the modelsim.ini file.

• All SystemC processes without a dont_initialize() modifier are executed once at the end
of elaboration. This can cause print messages to appear from user models before the first
VSIM> prompt occurs. This behavior is normal and necessary in order to achieve
compliance with both the SystemC and HDL LRMs.

• The run command in ModelSim is equivalent to sc_start(). In the reference simulator,
sc_start() runs the simulation for the duration of time specified by its argument. In
ModelSim the run command (CR-257) runs the simulation for the amount of time
specified by its argument.

• The sc_cycle(), sc_start(), sc_main() & sc_set_time_resolution() functions are not
supported in ModelSim.

Fixed point types

Contrary to OSCI, ModelSim compiles the SystemC kernel with support for fixed point
types. If you want to compile your own SystemC code to enable that support, you’ll need
to define the compile time macro SC_INCLUDE_FX. You can do this in one of two ways:

• enter the g++/aCC argument -DSC_INCLUDE_FX on the sccom (CR-259) command
line, such as:

sccom -DSC_INCLUDE_FX top.cpp

• add a define statement to the C++ source code before the inclusion of the systemc.h, as
shown below:

#define SC_INCLUDE_FX
#include "systemc.h"

Differences between ModelSim and the OSCI simulator UM-181

ModelSim SE User’s Manual

OSCI 2.1 features supported

ModelSim is fully compliant with the OSCI version 2.0.1. In addition, the following 2.1
features are supported:

Hierarchical reference SystemC functions

The following two member functions of sc_signal, used to control and observe hierarchical
signals in a design, are supported:

• control_foreign_signal()

• observe_foreign_signal()

For more information regarding the use of these functions, see "Hierarchical references in
mixed HDL/SystemC designs" (UM-190).

Phase callback

The following functions are supported for phase callbacks:

• before_end_of_elaboration()

• start_of_simulation()

• end_of_simulation()

For more information regarding the use of these functions, see "Initialization and cleanup
of SystemC state-based code" (UM-173).

Accessing command-line arguments

The following global functions allow you to gain access to command-line arguments:

• sc_argc()
Returns the number of arguments specified on the vsim (CR-378) command line with the
-sc_arg argument. This function can be invoked from anywhere within SystemC code.

• sc_argv()
Returns the arguments specified on the vsim (CR-378) command line with the -sc_arg
argument. This function can be invoked from anywhere within SystemC code.

Example:

When vsim is invoked with the following command line:

vsim -sc_arg "-a" -c -sc_arg "-b -c" -t ns -sc_arg -d

sc_argc() and sc_argv() will behave as follows:

 int argc;
 const char * const * argv;

 argc = sc_argc();
 argv = sc_argv();

The number of arguments (argc) is now 4.

argv[0] is "vsim"
argv[1] is "-a"
argv[2] is "-b -c"
argv[3] is "-d"

UM-182 6 - SystemC simulation

ModelSim SE User’s Manual

Troubleshooting SystemC errors

In the process of modifying your SystemC design to run on ModelSim, you may encounter
several common errors. This section highlights some actions you can take to correct such
errors.

Errors during loading

When simulating your SystemC design, you might get a "failed to load sc lib" message
because of an undefined symbol, looking something like this:

Loading /home/cmg/newport2_systemc/chip/vhdl/work/systemc.so

** Error: (vsim-3197) Load of "/home/cmg/newport2_systemc/chip/vhdl/work/
systemc.so" failed: ld.so.1:

/home/icds_nut/modelsim/5.8a/sunos5/vsimk: fatal: relocation error: file

/home/cmg/newport2_systemc/chip/vhdl/work/systemc.so: symbol
_Z28host_respond_to_vhdl_requestPm:

referenced symbol not found.

** Error: (vsim-3676) Could not load shared library /home/cmg/
newport2_systemc/chip/vhdl/work/systemc.so for SystemC module 'host_xtor'.

Source of undefined symbol message

The causes for such an error could be:

• missing definition

• bad link order specified in sccom -link

• multiply-defined symbols

Missing definition

If the undefined symbol is a C function in your code or a library you are linking with, be
sure that you declared it as an extern "C" function:

extern "C" void myFunc();

This should appear in any header files include in your C++ sources compiled by sccom. It
tells the compiler to expect a regular C function; otherwise the compiler decorates the name
for C++ and then the symbol can't be found.

Also, be sure that you actually linked with an object file that fully defines the symbol. You
can use the "nm" utility on Unix platforms to test your SystemC object files and any
libraries you link with your SystemC sources. For example, assume you ran the following
commands:

sccom test.cpp
sccom -link libSupport.a

If there is an unresolved symbol and it is not defined in your sources, it should be correctly
defined in any linked libraries:

nm libSupport.a | grep "mySymbol"

Troubleshooting SystemC errors UM-183

ModelSim SE User’s Manual

Misplaced "-link" option

The order in which you place the -link option within the sccom -link command is critical.
There is a big difference between the following two commands:

sccom -link liblocal.a

and

sccom liblocal.a -link

The first command ensures that your SystemC object files are seen by the linker before the
library "liblocal.a" and the second command ensures that "liblocal.a" is seen first. Some
linkers can look for undefined symbols in libraries that follow the undefined reference
while others can look both ways. For more information on command syntax and
dependencies, see sccom (CR-259).

Multiple symbol definition errors

The most common type of error found during sccom -link operation is the multiple symbol
definition error. This typically arises when the same global symbol is present in more than
one .o file. The error message looks something like this:

work/sc/gensrc/test_ringbuf.o: In function
`test_ringbuf::clock_generator(void)':

work/sc/gensrc/test_ringbuf.o(.text+0x4): multiple definition of
`test_ringbuf::clock_generator(void)'

work/sc/test_ringbuf.o(.text+0x4): first defined here

A common cause of multiple symbol definitions involves incorrect definition of symbols
in header files. If you have an out-of-line function (one that isn’t preceded by the "inline"
keyword) or a variable defined (i.e. not just referenced or prototyped, but truly defined) in
a .h file, you can't include that .h file in more than one .cpp file.

Text in .h files is included into .cpp files by the C++ preprocessor. By the time the compiler
sees the text, it's just as if you had typed the entire text from the .h file into the .cpp file. So
a .h file included into two .cpp files results in lots of duplicate text being processed by the
C++ compiler when it starts up. Include guards are a common technique to avoid duplicate
text problems. See "Errors during loading" (UM-182) for more information on include
guards.

If an .h file has an out-of-line function defined, and that .h file is included into two .c files,
then the out-of-line function symbol will be defined in the two corresponding. o files. This
leads to a multiple symbol definition error during sccom -link.

To solve this problem, add the "inline" keyword to give the function "internal linkage".
This makes the function internal to the .o file, and prevents the function's symbol from
colliding with a symbol in another .o file.

For free functions or variables, you could modify the function definition by adding the
"static" keyword instead of "inline", although "inline" is better for efficiency.

Sometimes compilers do not honor the "inline" keyword. In such cases, you should move
your function(s) from a header file into an out-of-line implementation in a .cpp file.

UM-184 6 - SystemC simulation

ModelSim SE User’s Manual

