UM-157

6 - SystemC simulation

Chapter contents

Introduction UM-158
Supported platforms and compiler versions UM-159
Building gcc with custom configurationoptions. UM-159
HP Limitationsfor SystemC UM-160
Usage flow for SystemC-only designs. UM-161
Compiling SystemC files UM-162
Creatingadesignlibrary UM-162
Modifying SystemC sourcecode UM-162
Invoking the SystemC compiler UM-165
Compiling optimized and/or debugcode. UM-165
Specifying an alternate g++ installation UM-166
Maintaining portability between OSCI and Model S| m . . . UM-166
Restrictions on compilingwithHP2aCC UM-167
Switching platforms and compilation. UM-167
Using sccomvs. raw C++ compiler UM-168
Linking thecompiled source UM-162
sccom-link UM-170
Simulating SystemCdesigns UM-171
Running simulation UM-171
Debugging thedesign UM-1714
Viewable SystemC obj ects UM-174
Source-leveldeug UM-176
SystemC object and type display in ModelSm UM-174
Support for aggregates UM-178
ViewingFIFOs UM-179
Differences between ModelSim and the OSCI simulator UM-180
Fixed point types UM-180
OSCI 2.1 features supported UM-as
Troubleshooting SystemCerrors UM-182
Errorsduringloading UM-182
Errorsduring loading UM-182

ModelSim SE User’'s Manual

UM-158 6 - SystemC simulation

Introduction

ModelSim SE User’'s Manual

This chapter describes how to compile and simulate SystemC designs with Model Sim.
Model Sim implements the SystemC language based on the Open SystemC Initiative
(OSCI) SystemC 2.0.1 reference simulator. It is recommended that you obtain the OSCI
functional specification, or the latest version of the SystemC L anguage Reference Manual
as areference manual. Visit http://www.systemc.org for details.

Inaddition to thefunctionality described in the OSCI specification, Model Sim for SystemC
includes the following features:

* Single common Graphic Interface for SystemC and HDL languages.

 Extensive support for mixing SystemC, VHDL, and Verilog in the same design (SDF
annotation for HDL only). For detailed information on mixing SystemC with HDL see
Chapter 7 - Mixed-language simulation.

Supported platforms and compiler versions UM-159

Supported platforms and compiler versions

SystemC runs on a subset of Model Sim supported platforms. The table below shows the
currently supported platforms and compiler versions:

Platform Supported compiler versions
HP-UX 11.0 or later aCC 3.45 with associated patches
RedHat Linux 7.2 and 7.3 gcc 3.2.3

RedHat Linux Enterprise version 2.1

SunOS 5.6 or later gcc 3.2

Windows NT and other NT-based Minimalist GNU for Windows
platforms (win2K, XP, etc.) (MinGW) gcc 3.2.3

A 'mportant: ModelSim SystemC has been tested with the gcc versions available from
ftp.model .comy/pub/gcc. Customized versions of gcc may cause problems. We strongly
encourage you to download and use the gcc versions available on our FTP site (login as
anonymous).

Building gcc with custom configuration options

We only test with our default options. I f you use advanced gec configuration options, we
cannot guar antee that M odelSim will work with those options.

To use acustom gec build, set the CppPath variable in the modelsim.ini file. Thisvariable
specifies the pathname to the compiler binary you intend to use.

When using a custom gcc, Model Sim requires that the custom gcc be built with severa
specific configuration options. These vary on a per-platform basis as shown in the
following table:

Platform Mandatory configuration options
Linux none
Solaris --with-gnu-1d --with-ld=/path/to/binutils-2.14/bin/ld --with-gnu-as

--with-as=/path/to/binutils-2.14/bin/as

HP-UX N/A

Win32 (MinGW) | --with-gnu-ld --with-gnu-as

Do NOT build with the --enabl e-5jlj-exceptions option, as it can cause
problems with catching exceptions thrown from SC_THREAD and
SC_CTHREAD

Id.exe and as.exe should be installed into the <install_dir>/bin before
building gcc. Id and as are available in the binutils package. Modelsim
uses binutils 2.13.90-20021006-2.

ModelSim SE User’'s Manual

UM-160 6 - SystemC simulation

If you don't have a GNU binutils2.14 assembler and linker handy, you can use the as and
Id programs distributed with Model Sim. They arelocated insidethe built-in gccin directory
<install_dir>/modeltech/gcc-3.2-< mtiplatfor m>/lib/gcc-lib/< gnuplatform>/3.2.

By default Model Sim a so uses the following options when configuring built-in gec.
o —-disable-nls

* --enable-languages=c,c++

These are not mandatory, but they do reduce the size of the gcc installation.

HP Limitations for SystemC
HP is supported for SystemC with the following limitations:
* variables are not supported
* aggregates are not supported
* objects must be explicitly named, using the same name as their object, in order to debug

SystemC simulation objects such as modules, primitive channels, and ports can be
explicitly named by passing a name to the constructors of said objects. If an object is not
constructed with an explicit name, then the OSCI reference simul ator generates an internal
name for it, using names such as "signal_0", "signal_1", etc..

ModelSim SE User’'s Manual

Usage flow for SystemC-only designs UM-161

Usage flow for SystemC-only designs

Model Sim allows users to simulate SystemC, either alone or in combination with other
VHDL/Verilog modules. The following is an overview of the usage flow for strictly
SystemC designs. More detailed instructions are presented in the sections that follow.

1 Create and map the working design library with the vlib and vmap statements, as
appropriate to your needs.
2 Modify the SystemC source code, including the following highlights:

* Replace sc_main() with an SC_MODULE, and potentially add a process to contain
any testbench code

* Replace sc_start() by using the run (CR-257) command in the GUI
* Remove callsto sc_initialize()

» Export the top level SystemC design unit(s) using the SC MODULE_EXPORT
macro

See "Modifying SystemC source code” (Um-162) for acomplete list of al modifications.
3 Analyze the SystemC source using sccom (CR-259). sccom invokes the native C++

compiler to create the C++ object filesin the design library.

See "Using sccom vs. raw C++ compiler” (uM-168) for information on when you are

required to use sccom vs. another C++ compiler.

4 Perform afinal link of the C++ source using sccom -link (UM-170). This process creates
ashared object filein the current work library which will be loaded by vsim at runtime.
sccom -link must be re-run before simulation if any new sccom compiles were
performed.

5 Simulate the design using the standard vsim command.

6 Simulate the design using the run command, entered at the vsim command prompt.

7 Debug the design using Model Sim GUI features, including the Source and Wave
windows.

ModelSim SE User’s Manual

jelemenska
Usage flow for SystemC-only designs

jelemenska
Replace sc_main() with an SC_MODULE, and potentially add a process to contain
any testbench code

jelemenska
Replace sc_start()

jelemenska
Remove calls to sc_initialize()

jelemenska
Export the top level SystemC design unit(s) using the SC_MODULE_EXPORT
macro

jelemenska
Create and map the working design library

jelemenska
Analyze the SystemC source

jelemenska
Perform a final link

jelemenska
Simulate the design

UM-162 6 - SystemC simulation

Compiling SystemC files

To compile SystemC designs, you must

* create adesign library

» modify the SystemC source code

* run the sccom (CR-259) SystemC compiler

* run the sccom (CR-259) SystemC linker (sccom -link)

Creating a design library

Before you can compile your design, you must create a library in which to store the
compilation results. Use vlib (CR-361) to create a new library. For example:

vlib work

This creates alibrary named wor k. By default, compilation results are stored in the wor k
library.

Thework library is actually a subdirectory named work. This subdirectory contains a
specia file named _info. Do not create libraries using UNIX commands — always use the
vlib command (CR-361).

See "Design libraries’ (um-55) for additional information on working with libraries.

Modifying SystemC source code

Several modifications must be applied to your original SystemC source code. To see
exampl e code containing the modifications listed below, see "Code modification
examples' (UM-163).

Converting sc_main() to a module

In order for Model Sim to run the SystemC/C++ source code, the control function of
sc_main() must be replaced by a constructor, SC_CTOR(), placed within amodule at the
top level of the design (see mytop in "Example 1" (UM-163)). In addition:

* any testbench codeinside sc_main() should be moved to a process, normally an
SC_THREAD process.

 al C++ variablesin sc_main(), including SystemC primitive channels, ports, and
modules, must be defined as members of sc_module. Therefore, initialization must take
placeinthe SC_CTOR. For example, al sc_clock() and sc_signal() initializations must
be moved into the constructor.

Replacing the sc_start() function with the run command and options

Model Sim uses the run command and its options in place of the sc_start() function. If
sc_main() has multiple sc_start() calls mixed in with the testbench code, then use an
SC_THREAD() with wait statementsto emul ate the same behavior. An example of thisis
shown below.

ModelSim SE User’'s Manual

jelemenska
Converting sc_main() to a module

jelemenska
Replacing the sc_start() function with the run command and options

Compiling SystemC files UM-163

Removing calls to sc_initialize()

vsim callssc_initialize() by default at the end of elaboration, so callsto sc_initialize() are
unnecessary.

Exporting all top level SystemC modules

For SystemC designs, you must export all top level modulesin your design to Model Sim.
Y ou do thiswith the SC_M ODULE_EXPORT(<sc_module_name>) macro. SystemC
templates are not supported astop level or boundary modules. See " Templatized SystemC
modules’ (UM-169). The sc_module_name is the name of the top level module to be
simulated in ModelSim. Y ou must specify this macro in a C++ source (.cpp) file. If the
macro is contained in a header file instead of a C++ source file, an error may resuilt.

For HP-UX: Explicitly naming signals, ports, and modules

Important: Verify that SystemC signals, ports, and modules are explicitly named to avoid
port binding and debugging errors.

Code modification examples

Example 1
Thefollowing isasimple example of how to convert sc_main to amodule and el aborate it
with vsim.
Original OSCI code #1 (partial) Modified code #1 (partial)
int sc_main(int argc, char* argv[]) SC_MODULE(nyt op)
{ {
sc_si gnal <bool > nysi g; sc_si gnal <bool > nysi g
mynmod nod(" nmod"); mynmod nod;

nod. out p(nysi g) ;
SC_CTOR(myt op)
sc_start (100, SC NS); : nysig("nysig"),
1 nmod(" nod")
nmod. out p(nysi g) ;
b

SC_MODULE_EXPORT(nyt op) ;

The run command equivalent to thesc_start (100, SC_NS) statement is:

run 100 ns

ModelSim SE User’'s Manual

jelemenska
Removing calls to sc_initialize()

jelemenska
Exporting all top level SystemC modules

jelemenska
Code modification examples

UM-164 6 - SystemC simulation

Example 2

This next example is dightly more comple, illustrating the use of sc_main() and signa
assignments, and how you would get the same behavior using Model Sim.

Original OSCI code #2 (partial)

Modified ModelSim code #2 (partial)

int sc_main(int,

{

char**)

sc_si gnal <bool > reset;

counter_top top("top");
sc_cl ock CLK("CLK", 10,
SC NS, false);

SC NS, 0.5,

top.reset(reset);

reset.wite(l);
sc_start(5, SC_NS);
reset.wite(0);
sc_start (100, SC_NS);
reset.wite(1);
sc_start(5, SC_NS);
reset.wite(0);
sc_start (100, SC NS);

SC_MODULE(new_t op)

{
sc_si gnal <bool > reset;
counter_top top;
sc_cl ock CLK;

void sc_mai n_body();

SC_CTOR(new_t op)
reset("reset"),
top("top")
CLK("CLK", 10, SC NS, 0.5, 0.0, SCNSs,
{
top.reset(reset);
SC_THREAD(sc_nmi n_body) ;
}
}

voi d

new_t op: : sc_mai n_body()

{
reset.write(l);
wait (5, SC_NS);
reset.write(0);
wai t (100, SC_NS);
reset.write(l);
wait (5, SC_NS);
reset.wite(0);
wait (100, SC_NS);

}

SC_MODULE_EXPORT(new._t op) ;

fal se)

ModelSim SE User’'s Manual

Compiling SystemC files UM-165

Example 3

One last example illustrates the correct way to modify adesign using an SCV transaction
database. Model Sim requires that the transaction database be created before calling the
constructors on the design subelements. The exampleis asfollows:

Original OSCI code # 3 (partial) Modified ModelSim code #3 (partial)
int sc_main(int argc, char* argv[]) SC_MODULE(t op)
{ {
scv_startup(); sc_si gnal <bool >* rw;
scv_tr_text_init(); test* t;
scv_tr_db db("ny_db");
scv_tr_db db::set_defaul t _db(&db); SC_CTOR(t op)
{
sc_clock clk ("clk",20,0.5,0,true); scv_startup();
sc_si gnal <bool > rw, scv_tr_text_init()
test t("t"); scv_tr_db* db = new scv_tr_db("my_db");
scv_tr_db::set_defaul t _db(db):;
t.clk(clk);;
t.rw(rw); clk = new sc_cl ock("cl k", 20,0.5,0,true);
rw = new sc_si gnal <bool > ("rw");
sc_start(100); t = newtest("t");
} }

}s

SC_MODULE_EXPORT(new_t op) ;

Take care to preserve the order of functions called in sc_main() of the original code.

Sub-elements cannot be placed in the initializer list, since the constructor body must be
executed prior to their construction. Therefore, the sub-elements must be made pointer
types, created with "new" in the SC_CTOR() module.

Invoking the SystemC compiler

Model Sim compiles one or more SystemC design units with a single invocation of sccom
(CR-259), the SystemC compiler. The design unitsare compiledin the order that they appear
on the command line. For SystemC designs, al design units must be compiled just asthey
would be for any C++ compilation. An example of an sccom command might be:

sccom -1 ../ nyincludes nytop.cpp nydut.cpp

Compiling optimized and/or debug code

By default, sccom invokes the C++ compiler (g++ or aCC) without any optimizations. If
desired, you can enter any g++/aCC optimization arguments at the sccom command line.

Also, source level debug of SystemC codeis not available by default in ModelSim. To
compile your SystemC code for debug, use the g++/aCC -g argument on the sccom
command line.

ModelSim SE User’'s Manual

UM-166 6 - SystemC simulation

Specifying an alternate g++ installation

We recommend using the version of g++ that is shipped with Model Sim on its various
supported platforms. However, if you want to use your own installation, you can do so by
setting the CppPath variable in the modelsim.ini file to the g++ executable location.

For example, if your g++ executableisinstalled in /u/abc/gee-3.2/bin, then you would set
the variable as follows:

CppPat h /u/ abc/ gcc- 3. 2/ bi n/ g++

Maintaining portability between OSCI and ModelSim

If you intend to simul ate on both Model Sim and the OSCI reference simulator, you can use
the MTI_SY STEMC macro to execute the Model Sim specific code in your design only
when running Model Sim. The MTI_SY STEM C macro isdefined in Model Sim'’ s systemc.h
header file. When you #include thisfile in your SystemC code, you gain accessto this
macro. By including #ifdef/el se statements in the code, you can then avoid having two
copies of the design.

Using the original and modified code shown in the example shown on page 163, you might
write the code as follows:

#i fdef MII_SYSTEMC //1f using the Mdel Sim sinulator, sccomconpiles this
SC_MODULE(myt op)
{

sc_si gnal <bool > nysi g;
mynmod nod;

SC_CTOR(myt op)
© nysig("nysig"),
nmod(" nod")

nmod. out p(nysi) ;
H
SC_MODULE_EXPORT(t op) ;

#else [/ Otherwise, it conpiles this
int sc_main(int argc, char* argv[])
{

sc_si gnal <bool > nysi g;

mynmod nod(" mod");

nmod. out p(nysi Q) ;

sc_start (100, SC_NS);

}
#endi f

ModelSim SE User’'s Manual

Compiling SystemC files UM-167

Restrictions on compiling with HP aCC

Model Sim uses the aCC -AA option by default when compiling C++ fileson HP-UX. It
doesthis so cout will function correctly in the systemc.sofile. The -AA option tellsaCC to
use ANSI-compliant <iostream> rather than cfront-style <iostream.h>. Thus, all C++-
based objectsin a program must be compiled with -AA. This means you must use
<iostream> and "using" clausesin your code. Also, you cannot use the -AP option, which
isincompatible with -AA.

Switching platforms and compilation

Compiled SystemC libraries are platform dependent. If you move between platforms, you
must remove al SystemC files from the working library and then recompile your SystemC
source files. To remove SystemC files from the working directory, use the vdel (CR-332)
command with the -allsystemc argument.

If you attempt to load a design that was compiled on adifferent platform, an error such as
the following occurs:

vsi mwork.test_ringbuf
Loadi ng work/systent. so

** Error: (vsim3197) Load of "work/systent.so" failed:
wor k/ systenc.so: ELF file data encoding not little-endian.

** Error: (vsim3676) Could not |oad shared library
wor k/ systenct.so for SystenC nodule 'test_ringbuf'.

Error |oading design

Y ou can typeverror 3197 at the vsim command prompt and get detail s about what caused
the error and how to fix it.

ModelSim SE User’'s Manual

UM-168 6 - SystemC simul

ation

Using sccom vs. raw C++ compiler

ModelSim SE User’'s Manual

When compiling complex C/C++ testbench environments, it is common to compile code
with many separate runs of the compiler. Often users compile code into archives (.afiles),
and then link the archives at the last minute using the -L and -I link options.

When using ModelSim's SystemC, you may wish to compile a portion of your C design
using raw g++ or aCC instead of sccom. Perhaps you have somelegacy code or some non-
SystemC utility code that you want to avoid compiling with sccom. Y ou can do this,
however, some cavests and rules apply.

Rules for sccom use
The rules governing when and how you must use sccom are as follows:

1 You must compile all code that references SystemC types or objects using sccom (CR-
259).

2 When using sccom, you should not use the -I compiler option to point the compiler at
any search directories containing OSCI or any other vendor supplied SystemC header
files. sccom does this for you accurately and automatically.

3 If you do use the raw C++ compiler to compile C/C++ functionality into archives or
shared objects, you must then link your design using the-L and -I optionswith the sccom
-link command. These options effectively pull the non-SystemC C/C++ codeinto a
simulation image that is used at runtime.

Failure to follow the above rules can result in link-time or elaboration-time errors due to
mismatches between the OSCI or any other vendor supplied SystemC header files and the
Model Sim SystemC header files.

Rules for using raw g++ to compile non-SystemC C/C++ code

If you use raw g++ to compile your non-systemC C/C++ code, the following rules apply:
1 The-fPIC option to g++ should be used during compilation with sccom.

2 For C++ code, you must use the built-in g++ delivered with ModelSim, or (if using a
custom g++) use the one you built and specified with the CppPath .ini variable.

Otherwise binary incompatibilities may arise between code compiled by sccom and code
compiled by raw g++.

Rules for using raw HP aCC to compile non-SystemC C/C++ code

If you use HP' s aCC compiler to compile your non-systemC C/C++ code, the following
rules apply:

1 For C++ code, you should use the +Z and -AA options during compilation

2 You must use HP aCC version 3.45 or higher.

Compiling SystemC files UM-169

Issues with C++ templates

Templatized SystemC modules
Templatized SystemC modules are not supported for use at:
* thetop level of the design

* the boundary between SystemC and higher level HDL modules (i.e. the top level of the
SystemC branch)

To convert atop level templatized SystemC module, you can either specialize the module
to remove the template, or you can create a wrapper module that you can use as the top
module.

For example, let’ s say you have atemplatized SystemC module as shown below:

tenpl ate <class T>
class top : public sc_nodule

{

sc_si gnal <T> si g1,

3

Y ou can specialize the module by setting T = int, thereby removing the template, as
follows:

class top : public sc_nodule

{

sc_signal <int> sig 1;

}

Or, dternatively, you could write awrapper to be used over the template module;

class nodel simtop : public sc_nodule

{

top<i nt> actual _top;

3

SC_MODULE_EXPORT(nodel si m top);

Organizing templatized code

Suppose you have a class template, and it contains a certain number of member functions.
All those member functions must be visible to the compiler when it compiles any instance
of the class. For classtemplates, the C++ compiler generates code for each unique instance
of the class template. Unlessit can see the full implementation of the class template, it
cannot generate code for it thus leaving the invisible parts as undefined. Sinceit islegal to
have undefined symbolsin a.so, sccom -link will not produce any errors or warnings. To
make functions visible to the compiler, you must move them to the .h file.

ModelSim SE User’'s Manual

UM-170 6 - SystemC simulation

Linking the

sccom -link

ModelSim SE User’'s Manual

compiled source

Once the design has been compiled, it must be linked using the sccom (CR-259) command
with the -link argument.

The sccom -link command collects the object files created in the different design libraries,
and uses them to build a shared library (.s0) in the current work library or the library
specified by the -work option. If you have changed your SystemC source code and
recompiled it using sccom, then you must relink the design by running sccom -link before
invoking vsim. Otherwise, your changes to the code are not recognized by the simulator.
Remember that any dependent .a or .o files should be listed on the sccom -link command
line before the .aor .0 on which it depends. For more details on dependencies and other
syntax issues, see sccom (CR-259).

Simulating SystemC designs UM-171

Simulating SystemC designs

After compiling the SystemC source code, you can simulate your design with vsim (CR-
378).

Loading the design
For SystemC, invoke vsim (CR-378) with the top-level module of the design. Thisexample
invokes vsim (CR-378) on a design named top:
vsi mtop
When the GUI comes up, you can expand the hierarchy of the design to view the SystemC

modules. SystemC objects are denoted by green icons (see "Design object icons and their
meaning” (GR-12) for more information).

Workspace +| & ¥/ | Objects +| | X
o B
¥ Instance | Design urit | Design urit type | [|==| |*|Mame Walue —
- tgp tgp Schodule hurffer oriioiai1oioot 11
test test_ringhuf ScMochule) 0
g— ring_L.. ringhuf<d, 16 ScMocule
gl block control<d> Sctocule
il blockistore<d, 162 Sehocule
Bl Hlockretrieve<d, 16> Setacule
o} clock_... tesi_ringbuf ScMethod
—‘ reset_... test_ringhbuf Schethod
—‘ genera... test_ringbuf ScMethod
—‘ campar ... test_ringbuf Schethod
—‘ print_e... test_ringhbuf Schethod
—‘ print_r... test_ringbuf ScMethod
=

I] Lirary ‘ &im ‘ £ Files | (=

To simulate from a command shell, without the GUI, invoke vsim with the -c option:

vsim-c <top_| evel _nodul e>

Running simulation

Run the simulation using the run (CR-257) command or select one of the Simulate > Run
options from the menu bar.

ModelSim SE User’'s Manual

UM-172 6 - SystemC simulation

Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. Y ou can set
the simulator resolution and user time unit from SystemC source code using the
sc_set_time resolution() and sc_set_default_time_unit() functions.

If the resolution is not set explicitly by sc_set_time_resolution(), the resolution limit
defaultsto the value specified by the Resolution (UM-507) variable in the modelsim.ini file.
Y ou can view the current resolution by invoking the report command (CR-249) with the
simulator state option.

Therulesvary if you have mixed-language designs. Please see " Simulator resolution limit"
(UM-189) for details on mixed designs.

Choosing the resolution
Simulator resolution:

Y ou should choose the coarsest simulator resolution limit possible that does not result in
undesired rounding of your delays. However, the time precision should also not be set
unnecessarily small, because in some cases performance will be degraded.

SystemC resolution:

The default resolution for all SystemC modulesis 1ps. For al SystemC calls which don’t
explicitly specify units, the resolution is understood to be 1ps. The default is overridden by
specifying unitsin the call.

Overriding the resolution

Y ou can override Model Sim’s default simulator resolution by specifying the -t option on
the command line or by selecting a different Simulator Resolution in the Simulate dialog
box. Available resolutions are: 1x, 10x, or 100x of fs, ps, ns, us, ms, or sec.

When deciding what to set the simulator’ s resolution to, you must keep in mind the
relationship between the simulator’ s resol ution and the SystemC time units specified in the
source code. For example, with atime unit usage of:

sc_wai t (10, SC_PS);

asimulator resolution of 10pswould be fine. No rounding off of the ones digitsin the time
units would occur. However, a specification of:

sc_wait(9, SC PS);

would requireyou to set the resolution limit to 1psin order to avoid inaccuracies caused by
rounding.

ModelSim SE User’'s Manual

Simulating SystemC designs UM-173

Initialization and cleanup of SystemC state-based code

State-based code should not be used in Constructors and Destructors. Constructors and
Destructors should be reserved for creating and destroying SystemC design objects, such
assc_nodul es Of sc_si gnal s. State-based code should also not be used in the elaboration
phase callbacks before_end_of_elaboration() and end_of_elaboration().

The following virtual functions should be used to initialize and clean up state-based code,
such aslogfilesor the VCD tracefunctionality of SystemC. They are virtual methods of the
following classes. sc_port_base, sc_ module, sc_channel, and sc_prim_channel. Y ou can
think of them as phase callback routines in the SystemC language:

* before_end _of_elaboration ()
Called after al constructors are called, but before port binding.

» end_of elaboration ()
Called at the end of elaboration after port binding. This function isavailable in the
SystemC 2.0.1 reference simulator.

* start_of_simulation ()
Called before simulation starts. Simulation-specific initialization code can be placed in
this function.

» end_of _simulation ()
Called before ending the current simulation session.

The call sequence for these functions with respect to the SystemC object construction and
destruction is as follows:

1 Constructors

2 before_end_of elaboration ()
3 end_of_elaboration ()

4 start_of_simulation ()

5 end_of_simulation ()

6 Destructors

Usage of callbacks

Thestart_of simulation() callback isused to initialize any state-based code. The
corresponding cleanup code should be placed in theend_of_simulation() callback. These
callbacks are only called during simulation by vsim and thus, are safe.

If you have a design in which some state-based code must be placed in the constructor,
destructor, or the elaboration callbacks, you can use the mti_| sVoptM ode() function to
determine if the elaboration is being run by vopt (CR-376). Y ou can use this function to
prevent vopt from executing any state-based code.

ModelSim SE User’s Manual

UM-174 6 - SystemC simulation

Debugging the design

Y ou can debug SystemC designs using all of Model Sim’ s debugging features, with the
exception of the Dataflow window.

Viewable SystemC objects

Objects which may be viewed in SystemC for debugging purposes are as shown in the

following table.

Channels Ports Variables Aggregates
sc_signal<type> sc_in<type> Module member variables Aggregates of SystemC
sc_signal_rv<width> sC_out<type> of al C++ and SystemC signals or ports.
sc_signal_resolved sC_inout<type> built-in types (listed in the
sc_clock (a sc_in_rv<width> Typeslist below) are Only three types of
hierarchical channel) sc_out_rv<width> supported. aggregates are supported
SC_mutex sc_inout_rv<width> for debug:
sc fifo sc_in_resolved

sc_out_resolved struct
sc_inout_resolved class
sc_in_clk array
sc_out_clk

sc_inout_clk

sc fifo_in

sc_fifo out

ModelSim SE User’'s Manual

Debugging the design UM-175

Types (<type>) of the objects which may be viewed for debugging are the following:

Types

bool, sc_hit

sc_logic
sc_bv<width>
sc_lv<width>
SC_int<width>
SC_uint<width>

sc_fix

sc_fix_fast
sc_fixed<W,l,Q,0O,N>
sc fixed fast<W,l,Q,0O,N>
sc_ufix

sc_ufix_fast
sc_ufixed

sc_ufixed fast
sc_signed
sc_unsigned

char, unsigned char
int, unsigned int

short, unsigned short
long, unsigned long
sc_higint<width>
sc_biguint<width>
sc_ufixed<W,1,Q,0,N>
short, unsigned short
long long, unsigned long long
float

double

enum

pointer

class

struct

union

bit_fields

ModelSim SE User’s Manual

UM-176 6 - SystemC simulation

Source-level debug

In order to debug your SystemC source code, you must compile the design for debug using
the -g C++ compiler option. Y ou can add this option directly to the sccom (CR-259)
command line on a per run basis, with acommand such as:

sccom nmytop -g
Or, if you plan to use it every time you run the compiler, you can specify it in the

modelsim.ini file with the SccomCppOptions variable. See "[sccom] SystemC compiler
control variables' (UM-501) for more information.

The source code debugger, C Debug (UM-399), is automatically invoked when the designiis
compiled for debug in thisway.

Y ou can set breakpointsin a Source window, and single-step through your SystemC/C++

source code. .
43 expected{"expected"), =
5o dataerror{"datasccor"},
51 actnald" actnal")
- i
53 L& create instances
B4 ring THST = new ringbuf<:>{"rcing THET"3;
EE
1 SF Gonnect ports
57 ring THST-r*clock{clock);
La ring THST-rreseb{reset);
Cagy ring THST-rtxdadtada);
=30} ring _IRST-roedafocdar;
E1l ring _THET- =t (tao)
62 ring THST- rontstrobe fontstrobe);
EZ
3 SC_HMETHOD {clock_generatord;
EC sensitive << clock_ewent;
EE
67 SC_HMETHOD {reset generatord;
B zensitive << reset_deac tJ.va.t_Lon event;
E3
70 SC_HMETHOD {generate_data);
71 sensitiwve_pos <4 txo;
2 sen=zitiwve_neg <4< reset
o Ared G ik F AT Tl rd
F-1 =]
test_ringbuf.h |

The gdb debugger has a known bug that makes it impossible to set breakpoints reliably in
constructors or destructors. Try to avoid setting breakpoints in constructors of SystemC
objects; it may crash the debugger.

ModelSim SE User’'s Manual

Debugging the design UM-177

Y ou can view and expand SystemC objectsin the Objects pane and processesin the Active
Processes pane.

| Instarice | Design unit = Design urit tp
Bl test_ringbuf test_ringhuf Si:Moclule
rezet_generator test_ringhuf ScMethad
generate_data test_ringhuf Schethod
compare_data test_ringhuf Schethod
print_errar test_ringhuf Schethod
print_restore test_ringhuf ScMethod
o clock s¢_clock SeMaocule
-l ring_INST tingkiuf Module

Ohigcts

ModelSim SE User’'s Manual

UM-178 6 - SystemC simulation

SystemC object and type display in ModelSim

This section contains information on how Model Sim displays certain objects and types, as
they may differ from other simulators.

Support for aggregates

Model Sim supports aggregates of SystemC signals or ports. Three types of aggregates are
supported: structures, classes, and arrays. Unions are not supported for debug. An
aggregate of signals or ports will be shown as asignal of aggregate type. For example, an
aggregate such as:

sc_signal <sc_logic> a[3];
isequivalent to:

sc_signal <sc_|v<3>> g;

for debug purposes. Model Sim shows one signal - object "a" - in both cases.
The following aggregate

sc_signal <float> fbus [6];

when viewed in the Wave window, would appear as follows:

wave - defanlt !El E

File Edit “iew Insert Format Tools ‘Window

‘ _Frint

@ ®|| s @ hx e

i

e e———————————————————

I | N | W S | S| S—"
e e———————————————————

I | N | W S | S| S—"
e e———————————————————

I | N | W S | S| S—"
e e———————————————————

| E— T S T— T—

[] i1

441 ns to 556 ns | Mow: 550 s Delta: 2

G | [y —

ModelSim SE User’'s Manual

Viewing FIFOs

SystemC object and type display in ModelSim UM-179

In Model Sim, the values contained in an sc_fifo appear in adefinite order. Thetop-most or
left-most value is always the next to be read from the FIFO. Elements of the FIFO that are
not in use are not displayed.

Example of a signal where the FIFO has five elements:

exam ne f_char

{}
VSIM 4> # run 10

VSI M 6> # exam ne f_char

A

VSIM 8> # run 10
VSI M 10> # exani ne
{A B}

VSIM 12> # run 10
VSI M 14> # exani ne
{ABC

VSIM 16> # run 10
VSI M 18> # exani ne
{A B C D

VSIM 20> # run 10
VSI M 22> # exani ne
{ABCDE

VSIM 24> # run 10
VSI M 26> # exani ne
{B CD E

VSIM 28> # run 10
VSI M 30> # exami ne
{C D E

VSIM 32> # run 10
VSI M 34> # exani ne
{D E}

f _char

f _char

f _char

f _char

f_char

f _char

f _char

ModelSim SE User’s Manual

UM-180 6 - SystemC simulation

Differences between ModelSim and the OSCI simulator

Model Sim is based upon the 2.0.1 reference simulator provided by OSCI. However, there
are some minor but key differences to understand:

vsim calls sc_initialize() by default at the end of elaboration. The user has to explicitly
call sc_initialize() in the reference simulator. Y ou should remove callsto sc_initialize()
from your code.

The default time resolution of the reference simulator is 1ps. For vsim it is 1ns. The user
can set thetime resol ution by using the vsim command with the-t option or by modifying
the value of the Resolution (UM-507) variable in the modelsim.ini file.

All SystemC processes without adont_initialize() modifier are executed once at the end
of elaboration. This can cause print messages to appear from user models before the first
V SIM> prompt occurs. This behavior is normal and necessary in order to achieve
compliance with both the SystemC and HDL LRMs.

Therun command in ModelSim is equivalent to sc_start(). In the reference smulator,
sc_start() runsthe simulation for the duration of time specified by its argument. In
Model Sim the run command (CR-257) runs the simulation for the amount of time
specified by its argument.

The sc_cycle(), sc_start(), sc_main() & sc_set_time_resolution() functions are not
supported in Model Sim.

Fixed point types

Contrary to OSCI, Model Sim compiles the SystemC kernel with support for fixed point
types. If you want to compile your own SystemC code to enable that support, you' Il need
to define the compile time macro SC_INCLUDE_FX. Y ou can do thisin one of two ways:

ModelSim SE User’'s Manual

enter the g++/aCC argument -DSC_INCLUDE_FX on the sccom (CR-259) command
line, such as:

sccom - DSC_I NCLUDE_FX t op. cpp
add a define statement to the C++ source code before the inclusion of the systemc.h, as
shown below:

#define SC_| NCLUDE_FX
#i ncl ude "systent. h"

Differences between ModelSim and the OSCI simulator UM-181

OSCI 2.1 features supported

ModelSim is fully compliant with the OSCI version 2.0.1. In addition, the following 2.1
features are supported:

Hierarchical reference SystemC functions

The following two member functions of sc_signal, used to control and observe hierarchical
signalsin adesign, are supported:

« control_foreign_signal()

* Observe foreign_signal()

For more information regarding the use of these functions, see "Hierarchical referencesin
mixed HDL/SystemC designs" (UM-190).

Phase callback

The following functions are supported for phase callbacks:

* before_end_of elaboration()

o start_of_simulation()

» end_of_simulation()

For more information regarding the use of these functions, see "Initialization and cleanup
of SystemC state-based code" (UM-173).

Accessing command-line arguments
The following global functions allow you to gain access to command-line arguments:

* sc_arge()
Returns the number of arguments specified on the vsim (CRr-378) command line with the
-sc_arg argument. This function can be invoked from anywhere within SystemC code.

* sc_argv()
Returns the arguments specified on the vsim (CR-378) command line with the -sc_arg
argument. This function can be invoked from anywhere within SystemC code.

Example:

When vsim isinvoked with the following command line;
vsim-sc_arg "-a" -c -sc_arg "-b -c" -t ns -sc_arg -d

sc_arge() and sc_argv() will behave as follows:

int argc;
const char * const * argv;

argc
ar gv

sc_argc();
sc_argv();

The number of arguments (argc) is now 4.
argv[0] is"vsim"

argv[1] is"-a"

argv[2] is"-b-c"

argv[3] is"-d"

ModelSim SE User’'s Manual

UM-182 6 - SystemC simulation

Troubleshooting SystemC errors

In the process of modifying your SystemC design to run on Model Sim, you may encounter
several common errors. This section highlights some actions you can take to correct such
errors.

Errors during loading

When simulating your SystemC design, you might get a"failed to load sc lib" message
because of an undefined symbol, looking something like this:

Loadi ng / hone/ cng/ newport 2_syst ent/ chi p/ vhdl / wor k/ syst ent. so

** Error: (vsim 3197) Load of "/home/cng/ newport?2_systenc/chip/vhdl /work/
systenc.so" failed: |d.so.1:

/ hone/ i cds_nut/ nodel si m 5. 8a/ sunos5/vsink: fatal: relocation error: file

/ home/ cng/ newport 2_syst enc/ chi p/ vhdl / wor k/ syst ent. so: synbol
_Z28host _respond_t o_vhdl _request Pm

ref erenced synbol not found.

** Error: (vsim3676) Could not |oad shared library /home/cng/
newport 2_systenc/ chi p/ vhdl / wor k/ systent. so for SystenC nmodul e ' host_xtor'.
Source of undefined symbol message
The causes for such an error could be:
* missing definition
* bad link order specified in sccom -link
» multiply-defined symbols

Missing definition
If the undefined symbol isa C function in your code or alibrary you are linking with, be
sure that you declared it as an extern "C" function:

extern "C' void nyFunc();

This should appear in any header filesinclude in your C++ sources compiled by sccom. It
tellsthe compiler to expect aregular C function; otherwise the compiler decoratesthe name
for C++ and then the symbol can't be found.

Also, be surethat you actually linked with an object file that fully definesthe symbol. Y ou
can use the "nm" utility on Unix platformsto test your SystemC object files and any
libraries you link with your SystemC sources. For example, assume you ran the following
commands:

sccom test. cpp
sccom -link |ibSupport.a

If thereisan unresolved symbol and it is not defined in your sources, it should be correctly
defined in any linked libraries:

nm | i bSupport.a | grep "nySynbol "

ModelSim SE User’'s Manual

Troubleshooting SystemC errors UM-183

Misplaced "-link" option

The order in which you place the -link option within the sccom -link command iscritical.
Thereis abig difference between the following two commands:

sccom-link liblocal.a

and

sccom liblocal.a -1ink

Thefirst command ensures that your SystemC object files are seen by the linker before the
library "liblocal.a" and the second command ensures that "liblocal .a" is seen first. Some
linkers can look for undefined symbols in libraries that follow the undefined reference
while others can look both ways. For more information on command syntax and
dependencies, see sccom (CR-259).

Multiple symbol definition errors

The most common type of error found during sccom -link operation isthe multiple symbol
definition error. Thistypically arises when the same global symbol is present in more than
one .o file. The error message |ooks something like this:

wor k/ sc/ gensrc/test _ringbuf.o: In function
“test_ringbuf::clock_generator(void)’

wor k/ sc/ gensrc/test _ringbuf.o(.text+0x4): multiple definition of
“test_ringbuf::clock_generator(void)

wor k/ sc/test _ringbuf.o(.text+0x4): first defined here

A common cause of multiple symbol definitions involvesincorrect definition of symbols
in header files. If you have an out-of-line function (one that isn't preceded by the "inline"
keyword) or avariable defined (i.e. not just referenced or prototyped, but truly defined) in
a.hfile, you can't include that .h file in more than one .cpp file.

Textin.hfilesisincludedinto .cpp filesby the C++ preprocessor. By thetime the compiler
seesthetext, it'sjust asif you had typed the entire text from the .h file into the .cpp file. So
a.hfileincluded into two .cpp files resultsin lots of duplicate text being processed by the
C++ compiler when it starts up. Include guards are acommon technique to avoid duplicate
text problems. See "Errors during loading" (Um-182) for more information on include
guards.

If an .h file has an out-of-line function defined, and that .h fileis included into two .cfiles,
then the out-of-line function symbol will be defined in the two corresponding. ofiles. This
leads to a multiple symbol definition error during sccom -link.

To solve this problem, add the "inline" keyword to give the function "internal linkage".
This makes the function internal to the .o file, and prevents the function's symbol from
colliding with a symbol in another .o file.

For free functions or variables, you could modify the function definition by adding the
"static" keyword instead of "inling", athough "inline" is better for efficiency.

Sometimes compilers do not honor the "inling" keyword. In such cases, you should move
your function(s) from a header file into an out-of-line implementation in a.cpp file.

ModelSim SE User’s Manual

UM-184 6 - SystemC simulation

ModelSim SE User’'s Manual

