Visualization of Verilog Digital Systems Models

K. Jelemenska, M. NosaP.Cicak
Institute of Computer Systems and Networks, Faafityformatics and Information Technologies
Slovak University of Technology Bratislava
llkovicova 3
842 16 Bratislava, Slovakia
jelemenska@fiit.stuba.sk; nosal.michal@gmail.coicalc@fiit.stuba.sk

Abstract— Nowadays the digital systems design is almost process and sped it up substantially. Another treloes

exclusively realized using hardware description laguages
(HDL). Verilog belongs to the HDLs that are the mos
widespread especially in the United States. Howevethe textual
HDL representation of structural model is less undestandable
compared the schematic one. Therefore a transformain of the
structural HDL description into its graphical schematic
representation is a useful function for hardware dsigners. In this
paper the HDL Visualizator is described that was dsigned and
implemented to support this function for Verilog stuctural
models. The paper addresses several problems of wédization
process and their possible solutions. The design @n
implementation of visualization tool that is able ¢ display the
schematic view as well as the simulation results daftructural
Verilog model is also presented.

. INTRODUCTION

In the process of complex digital systems desigmnivkare
description languages (HDLs) have an irrecoveratiee They
provide designers the possibility to describe tldivare
behavior and structure on the various abstractievels.
However, the structural description in HDL form ddten
unreadable for the persons not familiar with thrlkof design.
In these situations the tools for graphical visatlon of HDL
structural description are very useful.

There are several applications, design tools oeldgment
environments that are capable of graphical visattin of a
design structure. This possibility is usually onlye of many
other functions available in the expensive and rofteo
complex solutions for certain group of users, stgdents or
beginners in HDL design. There are very few, if atyall,
easy-to-use and affordable applications offeringLHbDodels
visualization especially when they are written iarNog. Our
aim was to overcome this gap.

The problem of visualization of digital system \eg
structural description is the main subject of thaper. The
paper covers application design, its implementadiod testing
results.

I RELATED WORK

advantage was the replacement of prototyping bwlsition.
The designers can model hardware structure andvioehan
various abstraction levels using HDLs and simutag2model
to verify its properties. Nowadays, a lot of prciesal
automatic design tools provide several ways to ri@sdligital
system behavior and structure together with itsndpéation.
They support various types of graphical and texdditors e.g.
to enter the state diagrams, truth tables, logagmims or
simply to describe the circuit in HDL. The most aoonly
used HDL languages are VHDL, Verilog and SystemC.

There are many implementations tools with wide spet
of functions to make the design process easiere raffective
and faster. However, most of the software toolsabbgp of
structure visualization described in Verilog are tommercial
ones. To the most widespread belong Visual Elitgiv&-HDL
and HDL Author [1-3].

HDL Author is the product of Mentor Graphics company [1]
that replaced the previously supported HDL DetectiVhe
main goal of this tool is the improvement of teararkvand
data exchange between team members therefore it was
designed for data management in all phases of nigsaress.
The HDL code visualization function is just one itsf many
functions and enables also Verilog code conversiga a
Block Diagram, IBD, State Diagram or Flow Chart. eTh
objects layout, color, style, and font can be miedifi.e. the
non-logical edits can be applied that will not irghce the
original code in any way. However, HDL Author isr@bust
application, which is very complex and quite expens

Visual Elite was originally developed by Summit Design
company and later bought by Mentor Graphics [2]isTis
another complex and universal application to desigt build
products. It offers a variety of HDLs and other igasentry
methods including block diagrams, state diagramsl an
connectivity tables. It also provides automaticppiag of
source code into graphical representation. Howetierquality
of code visualization is not as high as in HDL AarthOn the
other hand the user interface is very comfortabl @asier to
manage by new users, than relatively complicatedL HD
Author’s user interface.

Another complex design system supporting HDL code

The digital systems design methods have evolvedisualization is Aldec’s Active-HDL [3]. It is a #fe of many

dramatically over the last 30 years. The traditiodasign

tools covering all phases of FPGA design and aiidn. In

methods, based on mathematical equations or scitemaghe context of this paper the tool called Code2icpis an

approach to the hardware design, became impradicaten
useless in the process of complex digital systessgyd.

Modern design methods based on HDLs and desigm HDL Author or Visual

automation tools brought the effectiveness into thesign

interesting one. This tool enables the HDL codeveesion
into a graphic representation that can be furthéee. Unlike
Elite, the altered graphic
representation can be converted back to the tenh fof

arbitrary supported HDL using Graphics2Code toabrébver,
Active-HDL also supports the visualization of simitibn.

During the simulation an actual state of every nedn the

block diagram is visualized and the values of alliables are
visible in the waveforms. In many other ways ActiBL is

comparable to Visual Elite.

All the mentioned tools and systems are the comialerc
ones. They all provide many functions, includingudlization,
and support several HDLs. The main issue is thetessive
complexity and the price which is often not affdstda for
beginners and students.

Since the problem of lost clarity in textual degtian of
structure is especially relevant to students arginbers, we
decided to dedicate our effort to the developmésimple and
easy to use tools for HDL structural descriptioguailization.
Several solutions have been developed at the Kaailt
Informatics and Information Technologies, Slovakiugnsity
of Technology (FIIT STU) in Bratislava, most of then the
frame of diploma theses [4, 6, 7, 8].

VHDLVizualizer [4] is the tool dedicated to the VHDL
structural description visualization. The architeet of this
solution consists of six components (see Fig. he YHDL
parser was built by ANTLR (ANother Tool for Langeag
Recognition) that provides a framework for arbigreanguage
parser generation based on its grammar definiteln The
graphic user interface is based on Netron Graphatyband an
XML (Extensible Markup Language) format is used to
represent the visualized VHDL description intemall

The tool is able to check the VHDL source code ayrand
to visualize the VHDL structural description predeg its
hierarchy. It also supports basic non-logical editiof the
resulting visualization like modules layout modition,
modules connections formatting, notes insertion. &the
created diagrams can be exported into jpeg filesamed in
XML file. The main limitation of this solution wathe quality
of the displayed layout of modules and especialye t
interconnections which was far from ideal. Thisusswas
discussed and partially solved in [6].

Another solution with the functionality similar
VHDLVizualizer was calledvVHDL Visualizator [7]. The
system architecture is basically the same but tiid was
implemented on Delphi and Java platforms. An irdgérn
representation of visualized structure is also thame XML
format. Although the quality of visualization isb# higher in
this case, the tool supports smaller subset of VHDL

An interesting solution represents [8] that wasufsd on
the SystemC models visualization, based on the finatibns
of SystemC library itself. However, the SystemCunatis
substantially different from other HDLs, therefdhe approach

[

to

User interface

I T oxm 9 T
[VHDL Library] [VHDLtoXML]
Netron Graph
{ L|brary] [VHDL parser VHDL
[.NET Framework 3.5]

Fig. 1. The VHDLVisualizer architecture

adopted in this solution can not be used for Vgritnodels
visualization.

The visualization tools already developed at FIITUS
Bratislava were devoted to VHDL and SystemC HDL
languages. The third commonly used HDL — Verilog wat
yet supported. This work is supposed to overcorisegdp.

Ill. VISUALISATION OF STRUCTURAL HDL DESCRIPTION

In the context of HDL structural description vigaation,
the important language constructs are module digiins, port
definitions, module instances and their mutual eations. In
schematic representation each module is represdmyed
graphical entity with ports that are connected wpthrts of
other modules. The visualization process is ilatst in Fig. 2.
There are three main problems that have to be dalvahe
visualization process: syntactic analysis of Verilcode,
internal data representation, and graphical layotitthe
visualized data.

The first step in the visualization process is avession of
Verilog source code into its internal representatiduring this
step two issues have to be addressed: Verilog sgutactic
analysis andinternal representation selection. An appropriate
internal representation should be able to keegrtfuemation
about the modules and connections position, sidegemeral
layout. From this step the third issue results: dpemization
of modules and connectiogsaphical layout.

A. Syntactic Analysis of Verilog Code

Syntactic analysis is relatively complicated but
unavoidable step in the visualization process. H@nehere is
a possibility to use an existing parser for thispose. Several
freeware tools are available supporting among dilrections
Verilog syntax checking [9]Icarus Verilog is a tool for
Verilog simulation and synthesiSource Navigator for Verilog
is an open source development environment for ¥gnvhich
has a built in parserCvSDL represents C++ libraries for
Verilog simulation. GPL Cver denotes another Verilog
simulator with full support of IEEE 1364-1995 Ve
standard and partial support of Verilog 200&:ilog2C++ is a
tool performing Verilog code transformation intcs iC++

an

‘ Open Verilog code ‘

<

‘ Check Verilog syntax ‘

< -

Transformation of
Verilog code to XML
representation

B e

Create graphic objects
representating
modules

p =

Organize ports
in the module

-

Organize modules

Schematic representation
of structure - result
of visualization

L)

J Layout optimalisation -

E— Next iteration
n

Create connections

Fig. 2. The visualisation process of HDL structaiescription

equivalent. Finally, Verilator stands for Verilog simulator

suitable for large projects, where simulation perfance is the Modules
primary concern. |(Module) _
From the available freeware tools thearus Verilog was {(_VerilogPorts)
identified as the most suitable for our purpose;esin addition
lso

to the syntactic analysis it enables also to usestmulation
results in our visualization tool.

The next step in the process of visualization ig th
transformation of Verilog description into its intel
representation, what should be done by parsereSimcwere
not able to find a suitable open source parserMerilog
language, we were considering the available payseerators
that can generate a specific language parser basethe
language grammar definition. The parser generatikes
Gardens Point Parser Generator (GPPG) [10],
GRAMMATICA — Parser Generator [L11ANTLR v3 [5] and
Compiler Generator Coco/R [12] have been analyzed and the
ANTLR v3 parser generator was chosen as the most suitab

VerilogConnections

one for our purpose. _—
B. Internal Representation of Structural Description
There are two basic approaches for internal dat: Fig. 3. The XML scheme of internal data represémat
representation: an object-oriented approach anthie based o]
approach. An example of thebject-oriented structure Minimize the difference between edge lengths: keep the edge

representation format is AIRE/CE (The Advanced lengths as same as possible.

Intermediate Representation with Extensibility/Coomm Minimize bends: keep edge bends to a minimum.
Environment) [13], a specification originally deseyl for the

representation of VHDL description that can poiyti be IV. VISUALISATION OFHDL SIMULATION

used for Verilog description as well. HDL model simulation is much more complicated th#pL

In general, the internal structurepresentation based on model structure visualization. A testbench hasealbveloped
XML is more flexible than the object-oriented one. réhare (g simulate the Verilog digital system model.

several specific XML schemes that could be used dior
purpose including:HDML (Hardware Description Markup
Language) [14] — an XML scheme created for hardwar
description, VXML [15] — the VHDL Markup Language
scheme which is more suitable for VHDL descriptibfogML
(Modeling Markup Language in XML) [16] — the XM
scheme created for hardware design description HiR/L.
However, each of them would require some modificetito be
tailored to Verilog language and our specific neetlherefore

In the visualization process of Verilog model siatidn a
few basic steps can be identified. The first on¢hés Verilog
code integrity and syntax checking. The second s&ep
simulation itself and the third one is the transfation of
L simulation results into the internal representataond their
visualization. There is also the possibility to uatize the
simulation results from external VEéValue Change Dump)
file. In this case the integrity of this file muisé checked as

we decided to design our own XML based represemtafihe well.

reason was its higher flexibility and potentialeirtperability

with third part XML editors. The resulting XML scime is V. SYSTEMARCHITECTURE

given in Fig. 3. The internal data representatiolh eontain Based on the previous analysis the system archigegtas

information about visualized structure as well asutation designed that is illustrated in Fig. 4.

results. The Icarus Verilog was used to perform the syntactic
_ _ analysis of Verilog model for its structure visaalion as well

C. Graph Drawing Algorithms as to simulate the model for simulation resultsiaiization.

Graph drawing, including optimization of modulesdan Tne syntactically correct Verilog model is passedthe
connections layout, is quite a complex problem.eS@vrules vgrjjog parser that was implemented using the ANTLR v3
and algorithms are known for graph drawing androjz&tion parser generator [5]. Only the Verilog language statts
that can be used for Verilog models visualizatibhe good yglevant to structural description are parsed aadsformed

graph look is very subjective issue, often it istja matter of jntg the internal data representation: module dégim ports
aesthetic taste, not the exact parameters. Therfisrdifficult gefinitions, instantiations of modules and their tual

to choose the best algorithm. In spite of this ¢hare a few gnnections represented by “net” construct.
criteria for graph layout evaluation [17]:

Minimize crossing: keep the number of lines cross to a
minimum.

Minimize area: keep the graph area to a minimum.
Minimize the sum of edge lengths.

1 standardized format of simulation results

‘ Visualized structure and simulation graph ‘

T C

GUI ‘

J E JC

Netron Graph
Library

Simulation Graph
Library

Print / Export

HDL Shapes Library

Internal data
representation of
structure and
simulation graph

‘ Save / Load

Layout optimizer

VCD parser
(ANTLR parser + C#
programme)

Il
Import
VCD

Verilog parser
(ANTLR parser + C#
L programme)
Verilog simulator
(VVP engine)

T T

Export VCD

Icarus Verilog
(Verilog simulator) (Syntactic analyzer)

T

‘ Verilog code

Fig. 4. The system architecture

Icarus Verilog simulator generates the simulatiesults in
the form of VCD file — a textual description ofriable values
changes throughout the simulation timeV&D parser is then
used to perform the transformation of VCD data itie
internal XML representation that was describechim previous
section.

notes and pin labels. The basic classes for visdlobjects:
VerilogModule, VerilogPort and VerilogConnection ear
defined here. The objects of these classes refréserbasic
building elements of graph drawing. HDL Shapes &iijpris an
interface between the Netron Graph Library and ititernal
XML representation. The classes for handling XML
representation, modifying Verilog model visualipati and
layout optimization are also defined here.

VI. SYSTEM IMPLEMENTATION

The system was implemented in C# language under the
.NET Framework 3.5 in Microsoft Visual Studio 20&P1
under the operating system Windows 7 Professiomak
purpose of Verilog parser component is Verilog cpdesing
into the internal XML representation. It consisfdtoee parts:
VerilogLexer, VerilogParser, and VerilogToXML. Thsurce
codes of VerilogLexer and VerilogParser were gemérdy
ANTLRv3 parser generator [5].

The VCD parser component is similar to the Verifagser
component. This component consists of three parts:
VCDLexer, VCDParser, and VCDToXML. VCDLexer and
VCDParser were also generated by ANTLRv3 parser
generator.

HDL Shapes Library contains the definitions of sks like
VerilogModule, VerilogPort and VerilogConnectionathwere
derived from Netron Graph Library classes Shape and
Connection. Other classes were implemented for Imand
XML representation, visualization and layout optiation.

The Simulation Graph Library provides an engine for
creating interactive simulation graph (waveformsyeru
interface. This functionality is ensured by fourimalasses:
Stamper, SimGraphControl, Wave and Header

VII. RESULTSAND EXPERIENCE

All the implemented components have been testedglthie
implementation process and after that entire agptio was
tested again. All found bugs have been fixed.

A. lllustrating Example
To illustrate the features of the implemented Jigation

The Layout optimizer can be applied to the internal data totg| a simple example will be presented here. tn Bj there is

optimize the graphical layout of the visualized mlod he goal
of this optimization is symmetrical and well-arradgmodules
alignment and connections layout.

All the required application functionality is praldd to the
user by means dbraphic User Interface (GUI). To fulfill this
task GUI cooperates with other components.

Smulation Graph Library component is used for drawing
simulation results (Waveforms). It transforms thedation
results from internal XML form into an interactiggmulation
graph.The functions like zoom, time cursor, waves redrdggr
and redrawing, image exporting or printing are sufgul by
this library.

Netron Graph Library component is the core of the
visualization. It carries our the actual drawing rabdules,
ports and interconnections and provides functidtes dbjects
moving, objects multi-selection, connections forgrirgraph
printing and exporting, grid and snap to grid fumies etc.

a fragment of a simple Verilog model representitg t
structural description of 8-bit binary adder thatswhe input of
the HDL Visualizator. The Verilog code is analyzsimulated

and transformed into an XML representation thatthien

visualized. The resulting visualization of Verilagjructural

description and its simulation illustrates the eashot in Fig.

6.

B. Restrictions

The application is able to recognize the followigrilog
language constructions: module definition with medoname
and ports declaration, port type definitions, glhas of net
definitions (supplyO, supplyl, tri, triand, triarjo, tril, wire,
wand, wor), module instantiations, UDP (User Dedine
Primitive) definitions and UDP instantiations. Meg parser
can handle implicit port mapping or named port niagjn the
module or UDP instantiation.

HDL Shapes Library component is an extension to Netron 1he Vector type port can be assigned each vectonegit

Graph Library. It defines the shapes of modulesnegtions,

separately using curly brackets like in .porteafisigl, sig2,

module SUM8bit (IN1, IN2, OUT, CO);
output [7:0] OUT;
output CO;
input [7:0] IN1;
input [7:0] IN2;
wire [6:0] carrysignal;
SUM sumO(IN1[0],IN2[0], 0,0UT[0],carrysignal[0]);
SUM sum1(IN1[1],IN2[1],carrysignal[0],0UT[1],carrysignal[1]);
SUM sum2(IN1[2],IN2[2],carrysignal[1],0UT[2],carrysignal[2]);
SUM sum3(IN1[3],IN2[3],carrysignal[2],0UT[3],carrysignal[3]);
SUM sum4(IN1[4],IN2[4],carrysignal[3],0UT[4],carrysignal[4]);
SUM sum5(IN1[5],IN2[5],carrysignal[4],0UT[5],carrysignal[5]);
SUM sum6(IN1[6],IN2[6],carrysignal[5],0UT[6],carrysignal[6]);
SUM sum7(IN1[7],IN2[7],carrysignal[6],0UT[7],CO);
endmodule
module main;
reg [7:0] a,b;
wire [7:0] y;
wire co;
time tim;
SUMB8bit s1(a,b,y,co);
initial begin
Sdumpfile("SUM8bit.ved");
Sdumpvars(3, main);
a=0;
b=0;
#la=2;
#1b=15;
#1a=28;
#1b=137;
#1a=119;
end
endmodule /* main */

Fig. 5. Fragment of Verilog structural model

sig3...})). Verilog parser doesn’t support bloclsigement of
signal arrays to the array of module instances.

VCD parser supports four state VCD file format adaug

to the IEEE standard [18], but it does not suppxtended
VCD file format.

C. System Scalability

The system architecture is designed with the idéa
component independence in mind (each componentbean
replaced by a new one in case the character affante was

The HDL visualization tool could also be extended &
textual editor to input Verilog code. This extemsiaould
transform it into the simple development environméor
Verilog projects. The application like that would bapable of
writing Verilog model of digital system, checkintg isyntax,
compiling and simulating it and visualizing its gtture and
simulation results.

D. Performance Tests

In order to find out the efficiency of the develdpElDL
visualization tool it was exposed to several penmmce tests.
The components Verilog parser and VCD parser tumgdo
be the weakest parts in the chain especially wheagelVerilog
or VCD files are to be parsed. Some experimentllte for
larger Verilog code compilations are given in Table

The experimental results prove the inefficiency tbe
Verilog parser. The similar problem arises over\i@D parser
performance. For example to import the VCD fileGo$MB
takes about 20 seconds. This size of file corredpon
approximately to the simulation time of 2000 tintiees.

To conclude the tests for the reasonable procesisieythe
input Verilog file should not exceed 1000 lines ahd VCD
file should not exceed 0.5 MB. The HDL visualizatitool is
therefore no suitable for large projects but it oaet the needs
of students and beginners in Verilog design thatwarking on
smaller projects.

VIIl. CONCLUSION

The paper is devoted to the problem of visualiratid
structural digital system models described in \égril Some
design alternatives and the possibilities of udimg existing
freeware tools have been discussed at the beginfh core
of the paper forms the design and implementatiothefnew
DL visualization tool.

The resulting application called HDL Visualizatienpports

kept) The Components are imp'emented as indepénde“erilog input and is able to visualize d|g|ta| Mstructural

projects and their interfaces are well documented.

The significant space for improvements is in therildg
parser. As it was mentioned before, the Verilogeadoes not
support all the Verilog language constructs angétgormance
is not ideal. Its performance is given by ANTLR deeristic
not by an efficiency of Verilog syntax description.

For simulation purpose an external tool Icarus Mgrivas
used that generates the VCD file that is afterwangzorted
into the XML file. It is very simple and efficiergolution. It
has, however, one disadvantage. The VCD outputnemted
based on the commands specified in the input \&erilode,
therefore there is a need to modify it each timensed to
change the variables we would like to trace. Tlssdlvantage
is compensated by the simplicity of this solutiarn kepresents
the potential space for system improvements.

The significant improvements can also be doneha t
visualized structure layout optimization. We coyddovide
various optimization algorithms to get the layositcdose to the
users expectations as possible so that almost noah&ayout
editing would be necessary.

description. It is also possible to simulate theigie and to
display the results in a waveform view. The GUI tbk

application is intuitive and simple. The internapresentation
of schematic in the XML format can be stored andrlfpaded
and edited again. The XML file contains also thegation

results. The visualization results can be printe@xorted to
an image file. The developed tool can be used foallsr

project and therefore is especially suitable foucadion

purpose. However, the simultaneous visualizatiostafctural
model and its simulation is useful for verificatipnrpose as
well.

TABLE |
THE HDL VISUALIZATION TOOL EFFICIENCY IN TERMS OFVERILOG CODE
PROCESSING
Verilog file size Processing time Memory Consumption
(number of lines) (sec.) (MB)
630 4 150
1050 8 200
1995 15 400
3254 60 1500

File

"
[Medakes | Hierarcy [Fies|

El [Top modules]
(= main

Edit View Tools

HE | =

=5 - -

: ‘ Modula: SUMBbit

=i- SUMBbit 51
[SUM sumD

i NAND2 nand2z
{NAND2 nand2
< NAND2 nandZc
+.- NAND3 nandla
L NOT nota
+-NOT notb
L-NOT note

< NAND3 nand3b
+.- NAND3 nandlc
! NAND2nandd
- NAND3 nand3s
L. NAND4 nand4a
- SUM sum1 I
- SUM sum2 L

[SUM sum3

(- SUM sumd

(- SUM sum3
[#- SUM sum6b
#- SUM sum?

Medule: main.sl

Canasle| Waves VD ta]

Variable: Value: At time:

VCD files visualize succeedded.

MName filter criteria:

Fig. 6. Screenshot of HDL visualization tool

ACKNOWLEDGMENT

The support by Slovak Science Grant Agency (VEGAIQ]
1/0649/09 “Security and reliability in distributecomputer

systems and mobile computer

networks")

acknowledged.

(1

(2

(3]
(4]
(5]
(6l

(7]
(8]

REFERENCES
Mentor Graphics, “Manage design data and flows -LHButhor,”
Mentor Graphics's products, Online, May 2009, 1-88@-3000.
http://www.mentor.com/products/fpga/hdl_design/fadithor/
Mentor Graphics, “Continuous design flow from TLM RTL - Visual
Elite HDL,” Mentor Graphics's products, Online, M2909, 1-800-547-
3000. http://www.mentor.com/products/fpga/hdl|_deaigsual-elite-hdl/
Aldec, Inc., “Active-HDL,” Aldec's products, Onlin&ay 2009.
http://www.aldec.com/ActiveHDL/
J. PetrdS, “VHDL model visualization”, master thesd=IIT STU
Bratislava, 2008, 85 p.
R.M. Volkmann, ANTLR 3, Online, January 2010.
http://jnb.ociweb.com/jnb/jnbJun2008.html
D., Macko, “Development of visualization environrhdar supporting
the digital systems design,” iRroc. of the 6th Student Research
Conference in Informatics and Information Technologies, Bratislava,
April 2010, pp. 419-426.
M. Zubal, “VHDL model visualization”, master theseBIIT STU
Bratislava, 2008, 80 p.
J. Turai, K. Jelemenska, “Contribution to graphical repnéaton of
SystemC structural model simulation,” Rroc. of the 7th FPGAword

is grateful

| [10]

(11]

(12]

(23]

(14]

(18]

[16]

(17]

(18]

Conference, L. Lindh, V.J. Mooney, S. de Pablo, J. Oberg, .Eds
Copenhagen (Denmark), September 2010, pp. 42—-48.

Verilog.net, “Verilog.Net Free Tools,” Online, M&p09.
http://www.verilog.net/free.html

W. Kelly, “The Gardens point parser generator (GRPBeta version
0.8, 2005, Online, May 2008.
http://sharptoolbox.com/tools/gardens-point-pagsarerator

P. Cederberg, “ GRAMMATICA — parser generator, 4, 2003.
Online, May 2008. http://grammatica.percederbetgnmaex.html
University of Linz, “The compiler generator Cocd/R006. Online,
May 2008. http://www.ssw.uni-linz.ac.at/Coco/

J. Willis, et al. “AIRE/CE - Intermediate represatidbn with
extensibility / Common environment. Internal intecdiate
representation (lIR) specification,” v 4.6, 199%li@e, May 2008.
http://www.ececs.uc.edu/~paw/aire/iirUS.pdf

M.H. Reshadi, B. Goji-Ara, Z. Navabi, “HDML: compil VHDL in
XML,” in IEEE Xplore, 2002, ISBN: 0-7695-0890-1. Online May 2008.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arber=890270

W. Ecker, et al., “Using xml for vhdl model reprasstion,” 2000.
Online, May 2008.
http://www.ifip.org/con2000/icda2000/icda-16-4.pdf

GigaScale Systems Research Center, “* MOML — a nmugleharkup
language in XML,” University of California at Berey, v. 0.4, 2000.
Online, May 2008.
http://lwww.gigascale.org/pubs/16/moml_erl_memo.pdf

T. Germano, “Graph drawing,” 1999. Online, May 2009
http://davis.wpi.edu/~matt/courses/graphs/

IEEE Computer Society, “I[EEE Standard Verilog® Haade
Description Language,” ISBN 0-7381-2827-9 SS942201.

