
Visualization of Verilog Digital Systems Models

K. Jelemenská, M. Nosáľ, P. Čičák
Institute of Computer Systems and Networks, Faculty of Informatics and Information Technologies

Slovak University of Technology Bratislava
Ilkovičova 3

842 16 Bratislava, Slovakia
jelemenska@fiit.stuba.sk; nosal.michal@gmail.com; cicak@fiit.stuba.sk

Abstract— Nowadays the digital systems design is almost
exclusively realized using hardware description languages
(HDL). Verilog belongs to the HDLs that are the most
widespread especially in the United States. However, the textual
HDL representation of structural model is less understandable
compared the schematic one. Therefore a transformation of the
structural HDL description into its graphical schematic
representation is a useful function for hardware designers. In this
paper the HDL Visualizator is described that was designed and
implemented to support this function for Verilog structural
models. The paper addresses several problems of visualization
process and their possible solutions. The design and
implementation of visualization tool that is able to display the
schematic view as well as the simulation results of structural
Verilog model is also presented.

I. INTRODUCTION

In the process of complex digital systems design hardware
description languages (HDLs) have an irrecoverable role. They
provide designers the possibility to describe the hardware
behavior and structure on the various abstraction levels.
However, the structural description in HDL form is often
unreadable for the persons not familiar with this kind of design.
In these situations the tools for graphical visualization of HDL
structural description are very useful.

There are several applications, design tools or development
environments that are capable of graphical visualization of a
design structure. This possibility is usually only one of many
other functions available in the expensive and often too
complex solutions for certain group of users, e.g. students or
beginners in HDL design. There are very few, if any at all,
easy-to-use and affordable applications offering HDL models
visualization especially when they are written in Verilog. Our
aim was to overcome this gap.

The problem of visualization of digital system Verilog
structural description is the main subject of this paper. The
paper covers application design, its implementation and testing
results.

II. RELATED WORK

The digital systems design methods have evolved
dramatically over the last 30 years. The traditional design
methods, based on mathematical equations or schematic
approach to the hardware design, became impractical or even
useless in the process of complex digital systems design.

Modern design methods based on HDLs and design
automation tools brought the effectiveness into the design

process and sped it up substantially. Another tremendous
advantage was the replacement of prototyping by simulation.
The designers can model hardware structure and behavior on
various abstraction levels using HDLs and simulate the model
to verify its properties. Nowadays, a lot of professional
automatic design tools provide several ways to describe digital
system behavior and structure together with its optimization.
They support various types of graphical and textual editors e.g.
to enter the state diagrams, truth tables, logic diagrams or
simply to describe the circuit in HDL. The most commonly
used HDL languages are VHDL, Verilog and SystemC.

There are many implementations tools with wide spectrum
of functions to make the design process easier, more effective
and faster. However, most of the software tools capable of
structure visualization described in Verilog are the commercial
ones. To the most widespread belong Visual Elite, Active-HDL
and HDL Author [1-3].

HDL Author is the product of Mentor Graphics company [1]
that replaced the previously supported HDL Detective. The
main goal of this tool is the improvement of team work and
data exchange between team members therefore it was
designed for data management in all phases of design process.
The HDL code visualization function is just one of its many
functions and enables also Verilog code conversion into a
Block Diagram, IBD, State Diagram or Flow Chart. The
objects layout, color, style, and font can be modified i.e. the
non-logical edits can be applied that will not influence the
original code in any way. However, HDL Author is a robust
application, which is very complex and quite expensive.

Visual Elite was originally developed by Summit Design
company and later bought by Mentor Graphics [2]. This is
another complex and universal application to design and build
products. It offers a variety of HDLs and other design entry
methods including block diagrams, state diagrams and
connectivity tables. It also provides automatic mapping of
source code into graphical representation. However, the quality
of code visualization is not as high as in HDL Author. On the
other hand the user interface is very comfortable and easier to
manage by new users, than relatively complicated HDL
Author’s user interface.

Another complex design system supporting HDL code
visualization is Aldec’s Active-HDL [3]. It is a suite of many
tools covering all phases of FPGA design and verification. In
the context of this paper the tool called Code2Graphics is an
interesting one. This tool enables the HDL code conversion
into a graphic representation that can be further edited. Unlike
in HDL Author or Visual Elite, the altered graphic
representation can be converted back to the text form of

arbitrary supported HDL using Graphics2Code tool. Moreover,
Active-HDL also supports the visualization of simulation.
During the simulation an actual state of every module in the
block diagram is visualized and the values of all variables are
visible in the waveforms. In many other ways Active-HDL is
comparable to Visual Elite.

All the mentioned tools and systems are the commercial
ones. They all provide many functions, including visualization,
and support several HDLs. The main issue is their excessive
complexity and the price which is often not affordable for
beginners and students.

Since the problem of lost clarity in textual description of
structure is especially relevant to students and beginners, we
decided to dedicate our effort to the development of simple and
easy to use tools for HDL structural description visualization.
Several solutions have been developed at the Faculty of
Informatics and Information Technologies, Slovak University
of Technology (FIIT STU) in Bratislava, most of them in the
frame of diploma theses [4, 6, 7, 8].

VHDLVizualizer [4] is the tool dedicated to the VHDL
structural description visualization. The architecture of this
solution consists of six components (see Fig. 1). The VHDL
parser was built by ANTLR (ANother Tool for Language
Recognition) that provides a framework for arbitrary language
parser generation based on its grammar definition [5]. The
graphic user interface is based on Netron Graph Library and an
XML (Extensible Markup Language) format is used to
represent the visualized VHDL description internally.

The tool is able to check the VHDL source code syntax and
to visualize the VHDL structural description preserving its
hierarchy. It also supports basic non-logical editing of the
resulting visualization like modules layout modification,
modules connections formatting, notes insertion etc. The
created diagrams can be exported into jpeg files or saved in
XML file. The main limitation of this solution was the quality
of the displayed layout of modules and especially the
interconnections which was far from ideal. This issue was
discussed and partially solved in [6].

Another solution with the functionality similar to
VHDLVizualizer was called VHDL Visualizator [7]. The
system architecture is basically the same but this tool was
implemented on Delphi and Java platforms. An internal
representation of visualized structure is also based on XML
format. Although the quality of visualization is a bit higher in
this case, the tool supports smaller subset of VHDL.

An interesting solution represents [8] that was focused on
the SystemC models visualization, based on the modifications
of SystemC library itself. However, the SystemC nature is
substantially different from other HDLs, therefore the approach

adopted in this solution can not be used for Verilog models
visualization.

The visualization tools already developed at FIIT STU
Bratislava were devoted to VHDL and SystemC HDL
languages. The third commonly used HDL – Verilog was not
yet supported. This work is supposed to overcome this gap.

III. V ISUALISATION OF STRUCTURAL HDL DESCRIPTION

In the context of HDL structural description visualization,
the important language constructs are module definitions, port
definitions, module instances and their mutual connections. In
schematic representation each module is represented by a
graphical entity with ports that are connected with ports of
other modules. The visualization process is illustrated in Fig. 2.
There are three main problems that have to be solved in the
visualization process: syntactic analysis of Verilog code,
internal data representation, and graphical layout of the
visualized data.

The first step in the visualization process is a conversion of
Verilog source code into its internal representation. During this
step two issues have to be addressed: Verilog code syntactic
analysis and internal representation selection. An appropriate
internal representation should be able to keep the information
about the modules and connections position, size and general
layout. From this step the third issue results: the optimization
of modules and connections graphical layout.

A. Syntactic Analysis of Verilog Code

Syntactic analysis is relatively complicated but an
unavoidable step in the visualization process. However, there is
a possibility to use an existing parser for this purpose. Several
freeware tools are available supporting among other functions
Verilog syntax checking [9]. Icarus Verilog is a tool for
Verilog simulation and synthesis. Source Navigator for Verilog
is an open source development environment for Verilog which
has a built in parser. CvSDL represents C++ libraries for
Verilog simulation. GPL Cver denotes another Verilog
simulator with full support of IEEE 1364-1995 Verilog
standard and partial support of Verilog 2001. Verilog2C++ is a
tool performing Verilog code transformation into its C++

Fig. 1. The VHDLVisualizer architecture

Fig. 2. The visualisation process of HDL structural description

equivalent. Finally, Verilator stands for Verilog simulator
suitable for large projects, where simulation performance is the
primary concern.

From the available freeware tools the Icarus Verilog was
identified as the most suitable for our purpose, since in addition
to the syntactic analysis it enables also to use the simulation
results in our visualization tool.

The next step in the process of visualization is the
transformation of Verilog description into its internal
representation, what should be done by parser. Since we were
not able to find a suitable open source parser for Verilog
language, we were considering the available parser generators
that can generate a specific language parser based on the
language grammar definition. The parser generators like
Gardens Point Parser Generator (GPPG) [10],
GRAMMATICA – Parser Generator [11], ANTLR v3 [5] and
Compiler Generator Coco/R [12] have been analyzed and the
ANTLR v3 parser generator was chosen as the most suitable
one for our purpose.

B. Internal Representation of Structural Description

There are two basic approaches for internal data
representation: an object-oriented approach and the XML based
approach. An example of the object-oriented structure
representation format is AIRE/CE (The Advanced
Intermediate Representation with Extensibility/Common
Environment) [13], a specification originally designed for the
representation of VHDL description that can potentially be
used for Verilog description as well.

In general, the internal structure representation based on
XML is more flexible than the object-oriented one. There are
several specific XML schemes that could be used for our
purpose including: HDML (Hardware Description Markup
Language) [14] – an XML scheme created for hardware
description, VXML [15] – the VHDL Markup Language
scheme which is more suitable for VHDL description, MoML
(Modeling Markup Language in XML) [16] – the XML
scheme created for hardware design description like HDML.
However, each of them would require some modifications to be
tailored to Verilog language and our specific needs. Therefore
we decided to design our own XML based representation. The
reason was its higher flexibility and potential interoperability
with third part XML editors. The resulting XML scheme is
given in Fig. 3. The internal data representation will contain
information about visualized structure as well as simulation
results.

C. Graph Drawing Algorithms

Graph drawing, including optimization of modules and
connections layout, is quite a complex problem. Several rules
and algorithms are known for graph drawing and optimization
that can be used for Verilog models visualization. The good
graph look is very subjective issue, often it is just a matter of
aesthetic taste, not the exact parameters. Therefore it is difficult
to choose the best algorithm. In spite of this there are a few
criteria for graph layout evaluation [17]:

Minimize crossing: keep the number of lines cross to a
minimum.

Minimize area: keep the graph area to a minimum.
Minimize the sum of edge lengths.

Minimize the difference between edge lengths: keep the edge
lengths as same as possible.

Minimize bends: keep edge bends to a minimum.

IV. V ISUALISATION OF HDL SIMULATION

HDL model simulation is much more complicated than HDL
model structure visualization. A testbench has to be developed
to simulate the Verilog digital system model.

In the visualization process of Verilog model simulation a
few basic steps can be identified. The first one is the Verilog
code integrity and syntax checking. The second step is
simulation itself and the third one is the transformation of
simulation results into the internal representation and their
visualization. There is also the possibility to visualize the
simulation results from external VCD1 (Value Change Dump)
file. In this case the integrity of this file must be checked as
well.

V. SYSTEM ARCHITECTURE

Based on the previous analysis the system architecture was
designed that is illustrated in Fig. 4.

The Icarus Verilog was used to perform the syntactic
analysis of Verilog model for its structure visualization as well
as to simulate the model for simulation results visualization.

The syntactically correct Verilog model is passed to the
Verilog parser that was implemented using the ANTLR v3
parser generator [5]. Only the Verilog language constructs
relevant to structural description are parsed and transformed
into the internal data representation: module definition, ports
definitions, instantiations of modules and their mutual
connections represented by “net” construct.

1 standardized format of simulation results

Fig. 3. The XML scheme of internal data representation

 Icarus Verilog simulator generates the simulation results in
the form of VCD file – a textual description of variable values
changes throughout the simulation time. A VCD parser is then
used to perform the transformation of VCD data into the
internal XML representation that was described in the previous
section.

The Layout optimizer can be applied to the internal data to
optimize the graphical layout of the visualized model. The goal
of this optimization is symmetrical and well-arranged modules
alignment and connections layout.

All the required application functionality is provided to the
user by means of Graphic User Interface (GUI). To fulfill this
task GUI cooperates with other components.

Simulation Graph Library component is used for drawing
simulation results (Waveforms). It transforms the simulation
results from internal XML form into an interactive simulation
graph. The functions like zoom, time cursor, waves reordering
and redrawing, image exporting or printing are supported by
this library.

Netron Graph Library component is the core of the
visualization. It carries our the actual drawing of modules,
ports and interconnections and provides functions like objects
moving, objects multi-selection, connections forming, graph
printing and exporting, grid and snap to grid functions etc.

HDL Shapes Library component is an extension to Netron
Graph Library. It defines the shapes of modules, connections,

notes and pin labels. The basic classes for visualized objects:
VerilogModule, VerilogPort and VerilogConnection are
defined here. The objects of these classes represent the basic
building elements of graph drawing. HDL Shapes Library is an
interface between the Netron Graph Library and the internal
XML representation. The classes for handling XML
representation, modifying Verilog model visualization, and
layout optimization are also defined here.

VI. SYSTEM IMPLEMENTATION

The system was implemented in C# language under the
.NET Framework 3.5 in Microsoft Visual Studio 2008 SP1
under the operating system Windows 7 Professional. The
purpose of Verilog parser component is Verilog code parsing
into the internal XML representation. It consists of three parts:
VerilogLexer, VerilogParser, and VerilogToXML. The source
codes of VerilogLexer and VerilogParser were generated by
ANTLRv3 parser generator [5].

The VCD parser component is similar to the Verilog parser
component. This component consists of three parts:
VCDLexer, VCDParser, and VCDToXML. VCDLexer and
VCDParser were also generated by ANTLRv3 parser
generator.

HDL Shapes Library contains the definitions of classes like
VerilogModule, VerilogPort and VerilogConnection that were
derived from Netron Graph Library classes Shape and
Connection. Other classes were implemented for handling
XML representation, visualization and layout optimization.

The Simulation Graph Library provides an engine for
creating interactive simulation graph (waveforms) user
interface. This functionality is ensured by four main classes:
Stamper, SimGraphControl, Wave and Header

VII. RESULTS AND EXPERIENCE

All the implemented components have been tested during the
implementation process and after that entire application was
tested again. All found bugs have been fixed.

A. Illustrating Example

To illustrate the features of the implemented visualization
tool a simple example will be presented here. In Fig. 5, there is
a fragment of a simple Verilog model representing the
structural description of 8-bit binary adder that was the input of
the HDL Visualizator. The Verilog code is analyzed, simulated
and transformed into an XML representation that is then
visualized. The resulting visualization of Verilog structural
description and its simulation illustrates the screenshot in Fig.
6.

B. Restrictions

The application is able to recognize the following Verilog
language constructions: module definition with module name
and ports declaration, port type definitions, all types of net
definitions (supply0, supply1, tri, triand, trior, tri0, tri1, wire,
wand, wor), module instantiations, UDP (User Defined
Primitive) definitions and UDP instantiations. Verilog parser
can handle implicit port mapping or named port mapping in the
module or UDP instantiation.

The vector type port can be assigned each vector element
separately using curly brackets like in .portname ({sig1, sig2,

Verilog code

Visualized structure and simulation graph

Icarus Verilog

(Verilog simulator) (Syntactic analyzer)

Verilog parser

(ANTLR parser + C#

programme)

Grafické používateľské rozhranie

Verilog simulator

(VVP engine)

VCD parser

(ANTLR parser + C#

programme)

Internal data

representation of

structure and

simulation graph

Simulation Graph

Library

Netron Graph

Library

HDL Shapes Library

GUI

Fig. 4. The system architecture

sig3...})). Verilog parser doesn’t support block assignment of
signal arrays to the array of module instances.

VCD parser supports four state VCD file format according
to the IEEE standard [18], but it does not support extended
VCD file format.

C. System Scalability

The system architecture is designed with the idea of
component independence in mind (each component can be
replaced by a new one in case the character of interface was
kept). The components are implemented as independent
projects and their interfaces are well documented.

The significant space for improvements is in the Verilog
parser. As it was mentioned before, the Verilog parser does not
support all the Verilog language constructs and its performance
is not ideal. Its performance is given by ANTLR characteristic
not by an efficiency of Verilog syntax description.

For simulation purpose an external tool Icarus Verilog was
used that generates the VCD file that is afterwards imported
into the XML file. It is very simple and efficient solution. It
has, however, one disadvantage. The VCD output is generated
based on the commands specified in the input Verilog code,
therefore there is a need to modify it each time we need to
change the variables we would like to trace. This disadvantage
is compensated by the simplicity of this solution but represents
the potential space for system improvements.

 The significant improvements can also be done in the
visualized structure layout optimization. We could provide
various optimization algorithms to get the layout as close to the
users expectations as possible so that almost no manual layout
editing would be necessary.

The HDL visualization tool could also be extended by a
textual editor to input Verilog code. This extension would
transform it into the simple development environment for
Verilog projects. The application like that would be capable of
writing Verilog model of digital system, checking its syntax,
compiling and simulating it and visualizing its structure and
simulation results.

D. Performance Tests

In order to find out the efficiency of the developed HDL
visualization tool it was exposed to several performance tests.
The components Verilog parser and VCD parser turned out to
be the weakest parts in the chain especially when large Verilog
or VCD files are to be parsed. Some experimental results for
larger Verilog code compilations are given in Table I.

The experimental results prove the inefficiency of the
Verilog parser. The similar problem arises over the VCD parser
performance. For example to import the VCD file of 0.5MB
takes about 20 seconds. This size of file corresponds
approximately to the simulation time of 2000 time slices.

To conclude the tests for the reasonable processing time the
input Verilog file should not exceed 1000 lines and the VCD
file should not exceed 0.5 MB. The HDL visualization tool is
therefore no suitable for large projects but it can meet the needs
of students and beginners in Verilog design that are working on
smaller projects.

VIII. CONCLUSION

The paper is devoted to the problem of visualization of
structural digital system models described in Verilog. Some
design alternatives and the possibilities of using the existing
freeware tools have been discussed at the beginning. The core
of the paper forms the design and implementation of the new
HDL visualization tool.

The resulting application called HDL Visualization supports
Verilog input and is able to visualize digital system structural
description. It is also possible to simulate the design and to
display the results in a waveform view. The GUI of the
application is intuitive and simple. The internal representation
of schematic in the XML format can be stored and later loaded
and edited again. The XML file contains also the simulation
results. The visualization results can be printed or exported to
an image file. The developed tool can be used for smaller
project and therefore is especially suitable for education
purpose. However, the simultaneous visualization of structural
model and its simulation is useful for verification purpose as
well.

TABLE I
THE HDL VISUALIZATION TOOL EFFICIENCY IN TERMS OF VERILOG CODE

PROCESSING

Verilog file size
(number of lines)

Processing time
(sec.)

Memory Consumption
(MB)

630 4 150

1050 8 200

1995 15 400

3254 60 1500

Fig. 5. Fragment of Verilog structural model

...
module SUM8bit (IN1, IN2, OUT, CO);
 output [7:0] OUT;
 output CO;
 input [7:0] IN1;
 input [7:0] IN2;
 wire [6:0] carrysignal;
 SUM sum0(IN1[0],IN2[0], 0,OUT[0],carrysignal[0]);
 SUM sum1(IN1[1],IN2[1],carrysignal[0],OUT[1],carrysignal[1]);
 SUM sum2(IN1[2],IN2[2],carrysignal[1],OUT[2],carrysignal[2]);
 SUM sum3(IN1[3],IN2[3],carrysignal[2],OUT[3],carrysignal[3]);
 SUM sum4(IN1[4],IN2[4],carrysignal[3],OUT[4],carrysignal[4]);
 SUM sum5(IN1[5],IN2[5],carrysignal[4],OUT[5],carrysignal[5]);
 SUM sum6(IN1[6],IN2[6],carrysignal[5],OUT[6],carrysignal[6]);
 SUM sum7(IN1[7],IN2[7],carrysignal[6],OUT[7],CO);
endmodule
module main;
 reg [7:0] a,b;
 wire [7:0] y;
 wire co;
 time tim;
 SUM8bit s1(a,b,y,co);
 initial begin
 $dumpfile("SUM8bit.vcd");
 $dumpvars(3, main);
 a = 0;
 b = 0;
 #1 a = 2;
 #1 b = 15;
 #1 a = 8;
 #1 b = 137;
 #1 a = 119;
 end
endmodule /* main */

ACKNOWLEDGMENT

The support by Slovak Science Grant Agency (VEGA
1/0649/09 “Security and reliability in distributed computer
systems and mobile computer networks“) is gratefully
acknowledged.

REFERENCES
[1] Mentor Graphics, “Manage design data and flows - HDL Author,”

Mentor Graphics's products, Online, May 2009, 1-800-547-3000.
http://www.mentor.com/products/fpga/hdl_design/hdl_author/

[2] Mentor Graphics, “Continuous design flow from TLM to RTL - Visual
Elite HDL,” Mentor Graphics's products, Online, May 2009, 1-800-547-
3000. http://www.mentor.com/products/fpga/hdl_design/visual-elite-hdl/

[3] Aldec, Inc., “Active-HDL,” Aldec's products, Online, May 2009.
http://www.aldec.com/ActiveHDL/

[4] J. Petráš, “VHDL model visualization”, master theses, FIIT STU
Bratislava, 2008, 85 p.

[5] R.M. Volkmann, ANTLR 3, Online, January 2010.
 http://jnb.ociweb.com/jnb/jnbJun2008.html

[6] D., Macko, “Development of visualization environment for supporting
the digital systems design,” in Proc. of the 6th Student Research
Conference in Informatics and Information Technologies, Bratislava,
April 2010, pp. 419-426.

[7] M. Zubal, “VHDL model visualization”, master theses, FIIT STU
Bratislava, 2008, 80 p.

[8] J. Turoň, K. Jelemenská, “Contribution to graphical representation of
SystemC structural model simulation,” in Proc. of the 7th FPGAword

Conference, L. Lindh, V.J. Mooney, S. de Pablo, J. Öberg, Eds.
Copenhagen (Denmark), September 2010, pp. 42–48.

[9] Verilog.net, “Verilog.Net Free Tools,” Online, May 2009.
 http://www.verilog.net/free.html

[10] W. Kelly, “The Gardens point parser generator (GPPG),” Beta version
0.8, 2005, Online, May 2008.
http://sharptoolbox.com/tools/gardens-point-parser-generator

[11] P. Cederberg, “ GRAMMATICA – parser generator“, v. 1.4, 2003.
Online, May 2008. http://grammatica.percederberg.net/index.html

[12] University of Linz, “The compiler generator Coco/R,” 2006. Online,
May 2008. http://www.ssw.uni-linz.ac.at/Coco/

[13] J. Willis, et al. “AIRE/CE - Intermediate representation with
extensibility / Common environment. Internal intermediate
representation (IIR) specification,” v 4.6, 1999. Online, May 2008.
http://www.ececs.uc.edu/~paw/aire/iirUS.pdf

[14] M.H. Reshadi, B. Goji-Ara, Z. Navabi, “HDML: compiled VHDL in
XML,” in IEEE Xplore, 2002, ISBN: 0-7695-0890-1. Online May 2008.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=890270

[15] W. Ecker, et al., “Using xml for vhdl model representation,” 2000.
Online, May 2008.
http://www.ifip.org/con2000/icda2000/icda-16-4.pdf

[16] GigaScale Systems Research Center, “ MoML — a modeling markup
language in XML,” University of California at Berkeley, v. 0.4, 2000.
Online, May 2008.
 http://www.gigascale.org/pubs/16/moml_erl_memo.pdf

[17] T. Germano, “Graph drawing,” 1999. Online, May 2009
http://davis.wpi.edu/~matt/courses/graphs/

[18] IEEE Computer Society, “IEEE Standard Verilog® Hardware
Description Language,” ISBN 0-7381-2827-9 SS94921, 2001.

Fig. 6. Screenshot of HDL visualization tool
structural model

