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have valuable applications. In particular, it is shown (§11) that the
Hilbertian Entscheidungsproblem can have no solution.

In a recent paper Alonzo Churchi has introduced an idea of “effective
caleulability *, which is equivalent to my *computability ”, but is very
differently defined. Church also reaches similar conclusions about the
Entscheidungsproblemi. The proof of equivalence between **computa-
bility ** and ““effective calculability ”’ is outlined in an appendix to the
present paper.

1. Computing machines.

We have said that the computable numbers are those whose decimals
are caleulable by finite means. This requires rather more explicit
definition. No real attempt will be made to justify the definitions given
until we reach §9. For the present I shall only say that the justification
lies in the fact that the human memory is necessarily limited.

We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions ¢;. ¢s, ... 4
which will be called ““m-configurations . The machine is supplied with a
“tape” (the analogue of paper) running through it, and divided into
sections (called “*squares”) each capable of bearing a “symbol™. At
any moment there is just one square, say the r-th, bearing the symbol &(r)
which is “in the machine”. We may call this square the *scanned
square”. The symbol on the scanned square may be called the *scanned
symbol ", The ‘“scanned symbol ” is the only one of which the machine
is, so to speak, “directly aware”. However, by altering its m-confign-
ration the machine can effectively remember some of the symbols which
it has *seen’ (scanned) previously. The possible behaviour of the
machine at any moment is determined by the m-configuration ¢, and the
scanned symbol €(r). This pairg,, &(r) will be called the * configuration ™ :
thus the configuration determines the possible behaviour of the machine.
In some of the configurations in which the scanned square is blank (i.c.
bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but only by
shifting it one place to right or left. In addition to any of these operations
the m-configuration may be changed. Some of the symbols written down

+ Alonzo Chureh, * An ungolvable problem of elementary number theory ™, American
J. of Math., 58 (1936), 345-363.

4 Alonzo Church, *“A note on the Entscheidungsproblem”, JJ. of Symbolic Logic, 1
(1936), 40-41.
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will form the sequence of figures which is the decimal of the real numher
which is being computed. The others are just rough notes to *assist the
memory . It will only be these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used
in the computation of a number. The defence of this contention will be
eagier when the theory of the machines is familiar to the reader. In the
next section I therefore proceed with the development of the theory and
assume that it is understood what is meant by ‘“machine”, “tape”,
““geanned 7, ete.

2. Definitions.
Aulomatic machines.

If at each stage the motion of a machine (in the sense of §1) is completely
determined by the configuration, we shall call the machine an * auto-
matic machine’ (or a-machine).

For some purposes we might use machines (choice machines or
c-machines) whose motion is only partially determined by the configuration
(hence the use of the word “possible’ in §1). When such a machine
reaches one of these ambiguous configurations, it cannot go on until some
arbitrary choice has been made by an external operator. This would be the
case if we were using machines to deal with axiomatic systems. In this
paper I deal only with automatic machines, and will therefore often omit
the prefix a-.

Computing machines.

It an e-machine prints two kinds of symbols, of which the first kind
(called figures) consists entirely of 0 and 1 (the others being called symbols of
the second kind), then the machine will be called a computing machine.
If the machine is supplied with a blank tape and set in motion, starting
from the correct initial m-configuration, the subsequence of the symbols
printed by it which are of the first kind will be called the sequence computed
by the machine. The real number whose expression as a binary decimal is
obtained by prefacing this sequence by a decimal point is called the
number computed by the machine.

At any stage of the motion of the machine, the number of the scanned
square, the complete sequence of all symbols on the tape, and the
m-configuration will be said to describe the complete configuration at that
stage. The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.
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Circular and circle-free machines.

If a computing machine never writes down more than a finite number
of symbols of the first kind, it will be called eircular. Otherwise it is said to
he .mfrclefree.

A machine will be circular if it reaches a configuration from which there
i no possible move, or if it goes on moving, and possibly printing symbols
of the second kind, but cannot print any more symbols of the first kind.
The significance of the term “circular™ will be explained in §8.

Computable sequences and numbers.

A sequence is said to be computable if it can be computed by a cirele-free
machine. A number is computable if it differs by an integer from the
number computed by a circle-free machine.

We shall avoid confusion by speaking more often of computahle
sequences than of computable numbers.

3. Examples of computing machines.

I. A machine can be constructed to compute the sequence 010101 ... .
The machine is to have the four m-configurations * b7, ¢, “§7, #¢”
and is eapable of printing 0" and *1”. The behaviour of the machine is
described in the following table in which “ B’ means “ the machine moves
o that it scans the square immediately on the right of the one it was
scanning previously 7. Similarly for < L. “E” means “the scanned
symbol is erased ™ and “ P stands for “prints”. This table (and all
succeeding tables of the same kind) is to be understood to mean that for
a configuration described in the first two columns the operations in the
third column are carried out suceessively, and the machine then goes over
into the m-configuration described in the last column. When the second
column is left blank, it is understood that the behaviour of the third and
fourth eolumns applies for any symbol and for no symbol. The machine
starts in the m-configuration b with a blank tape.

Configuration Behaviour
m-confiy. symbol operations  final m-config.
b None Lo, i ¢
¢ None R ¢
¢ None Pl, R 3

i None R b
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and each small Greek letter by a symbol, we obtain the fable for an
m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations:
they are not essential. So long as the reader understands how to obtain
the complete tables from the skeleton tables, there is no need to give any
exact definitions in this connection.

Let us consider an example:

m-config. Symbol Behaviowr Final
m-config.

L §(G, %, a) From the m-configuration
f(€.%,a) { " L 6 B f(€, B, a) the machine finds the
nove f(€, ®, a) symbol of form « which is far-

o ¢ thest to the left (the *first o)
f(6,B,a) {nota R §(C B a) and the m-configuration then
becomes €. If there is no a

Nome B f,(C.®.a) then the m-configuration be-

@ ¢ comes B.
fo(€,®B,a) snota R §(C DB, a)
None R B

If we were to replace € throughout by q (say), B by r. and a by x, we
should have a complete table for the m-configuration f(q, v, ). §is called
an “m-configuration funetion™ or “m-function ™.

The only expressions which are admissible for substitution in an
m-function are the m-confignrations and symbols of the machine. These
have to be enumerated more or less explicitly : they may include expressions
such as p(e, 2): indeed they must if there are any m-functions used at all.
If we did not insist on this explicit enumeration, but simply stated that
the machine had certain m-configurations (enumerated) and all m-configu-
rations obtainable by substitution of m-configurations in certain m-func-
tions, we should usually get an infinity of m-configurations; e.g., we might
say that the machine was to have the m-configuration g and all m-configu-
rations obtainable by substituting an m-configuration for € in p(€). Then

it would have g, (0), (#(3), $(p(5(0))), . as m-configurations.

Our interpretation rule then is this. We are given the names of the
m-configurations of the machine, mostly expressed in terms of m-functions,
We are also given skeleton tables. All we want is the complete table for
the m-configurations of the machine. This is obtained by repeated
substitution in the skeleton tables.
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and, in particular, blank = S, 0 = 8, 1= 8,. The lines of the table are
now of form

Final
m-confiy. Symbol Operations m-config.
' 8, P8, L Im (N,)

U 8; PS;. R /o ()

4 S, PS; T (Ng)
Lines such as

i Sy E R Um
are to be written as

' 8, PSy, R U
and lines such as

UG 8, R Im
to be written as

9 S ¥ P S’, R qm

Tn this way we reduce each line of the table to a line of one of the forms
{NI)l (Nz)s (N!!}'

From each line of form (V,) let us form an expression ¢;8;8; Lq,;
from each line of form (N,) we form an expression ¢;8;8; Rq,;
and from each line of form (V,) we form an expression ¢;8; S, N q,,.

Let us write down all expressions so formed from the table for the
machine and separate them by semi-colons. In this way we obtain a
complete description of the machine. In this description we shall replace
¢; by the letter <D followed by the letter A’ repeated i times, and S; by
“D” followed by “C" repeated j times. This new description of the
machine may be called the standard description (S.D). It is made up
entirely from the letters ©* 4", w@? «p” <L «R” NV, and from

If finally we replace 4" by =1 BRI by 27, <D By ay se. I,
by 4, SRR by 5%, <N by <" and ;" by “7" we shall have a
description of the machine in the form of an arabic numeral. The integer
represented by this numeral may be called a description number (D.N) of
the machine. The D.N determine the S.D and the structure of the
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then 1 will compute the same sequence as .\l. In this section I explain
in outline the behaviour of the machine. The next section is devoted to
giving the complete table for i,

Let us first suppose that we have a machine .|’ which will write down on
the F-squares the successive complete configurations of (\. These might
be expressed in the same form as on p. 235, using the second description,
(C), with all symbols on one line. Or, better, we could transform this
description (as in §3) by replacing each m-configuration by “D* followed
by A" repeated the appropriate number of times, and by replacing each
symbol by “D* followed by “ (" repeated the appropriate number of
times. Thenumbersofletters * 4 ** and *“ €' are to agree with the numbers
chosen in §5, so that, in particular, “ 07 is replaced by “DC?”, 1" by
“DCC”, and the blanks by D", These substitutions are to be made
after the complete configurations have been put together, as in (C). Diffi-
culties arise if we do the substitution first. In each complete configura-
tion the blanks would all have to be replaced by ** ) ”*, so that the complete
configuration would not be expressed as a finite sequence of symbols.

If in the description of the machine I of § 3 we replace “ o by “ DAA ”,
“9” by “DOCC™, #q” by “DAAA”, then the sequence (C) becomes:

DA :DOCCDCCCDAADCDDC : DOCODCCCDAAADCDDC : .. (Cy)

(This is the sequence of symbols on F-squares.)

It is not difficult to see that if .|l ean be constructed, then so can .(l’.
The manuer of operation of .I\* could be made to depend on having the rules
of operation (i.e., the 8.D) of .|l written somewhere within itself (i.e. within
AL); each step could be carried out by referring to these rules. We have
only to regard the rules as being capable of being taken ouf and ex-
changed for others and we have something very akin to the universal
machine.

One thing is lacking : at present the machine .\1* prints no figures. We
may correct this by printing between each successive pair of complete
configurations the figures which appear in the new configuration but not
in the old. Then (C,) becomes d

DDA:0:0:DCCCDCCCDAADCDDC : DCCC. ... (Cy)

It is not altogether obvious that the E-squares leave enough room for
the necessary ** rough work ”*, but this is, in fact, the case.

The sequences of letters between the colons in expressions such as
(C,) may be used as standard deseriptions of the complete configurations.
When the letters are replaced by figures, as in §5, we shall have a numerical
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description of the complete configuration, which may be called its deserip-
tion number,

7. Delailed description of the uwniversal machine.

A table is given below of the behaviour of this universal machine. The
m-configurations of which the machine is capable are all those oceurring in
the first and last columns of the table, together with all those which oceur
when we write out the unabbreviated tables of those which appear in the
table in the form of m-functions. E.g., ¢(anf) appears in the table and is an
m-function. Its unabbreviated table is (see p. 239)

B R ¢y (anf)

Hanf) not o L efanf)

. Any R, E R ¢ (anf)
e(anf) { None anf

Consequently ¢ (anf) is an m-configuration of (.

When 11 is ready to start work the tape running through it bears on it
the symbol o on an F-square and again o on the next E-square; after this,
on F-squares only, comes the 8.D of the machine followed by a double
colon “::" (a single symbol, on an F-square). The S.D consists of a
number of instructions, separated by semi-colons.

Each instruction consists of five consecutive parts

(i) =D followed by a sequence of letters 4. This describes the
relevant m-configuration.

(ii) <D followed by a sequence of letters “C'”". This describes the
scanned symbol.

(iii) <D followed by another sequence of letters “C™. This
describes the symbol into which the scanned symbol is to be changed.

(iv) *L", “R”, or “N ", describing whether the machine is to move
to left, right, or not at all.

(v) <D followed by a sequence of letters “4". This describes the
final m-configuration.

The machine |l is to be capable of printing <47, <07, “D”, «07,
SRR gt STt Mg g e The 8.1 is Tormed from 57,
‘(A ll, “Ul,, ‘.'D?J, “L:!’ ‘IR,,, ((N !,.
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inat g([(inth), u) inst. The. next complete
configuration is written down,

inst; a RE st (a) carrying out the marked instrue-

inst, (L) ces(09, 0, y, 2, u, ) tions. The letters u, », w, x, ¥
are erased. —anf.

ingt, (R) ceg(ov, v, @, w, ¥, w)

inﬂtl(N) “5{0”! v, @, Y, W, w)

0y ¢(anf)

8. Application of the diagonal process.

It may be thought that arguments which prove that the real numbers
are not enumerable would also prove that the computable numbers and
sequences cannot be enumerable®. Tt might, for instance, be thought
that the limit of a sequence of computable numbers must be computable.
This is clearly only true if the sequence of computable numbers is defined
by some rule.

Orwe might apply the diagonal process. < If the computable sequences
are enumerable, let o, be the n-th computable sequence, and let ¢, (m) he
the m-th figure in a,. Let B be the sequence with 1—d, (n) as its n-th
figure. Since B is computable, there exists a number K such that
1—d, () =dg(n) all n. Putting n= K, we have 1= 2d,(K), 1.e. 1 is
even. This is impossible. The computable sequences are therefore not
enumerable .

The fallacy in this argument lies in the assumption that 8 is computable.
It would be true if we could enumerate the computable sequences by finite
means, but the problem of enumerating computable sequences is equivalent
to the problem of finding out whether a given number is the D.N of a
cirele-free machine, and we have no general process for doing this in a finite
number of steps. In fact, by applying the diagonal process argument
correctly, we can show that there cannot be any such general process.

The simplest and most direct proof of this is by showing that, if this
general process exists, then there is a machine which computes . This
proof, although perfectly sound, has the disadvantage that it may leave
the reader with a feeling that *there must be something wrong”. The
proof which 1 shall give has not this disadvantage, and gives a certain
insight into the significance of the idea *circle-free”. Tt depends not on
constructing £, but on constructing g’, whose n-th figure is ¢, (n).

* Of. Hobson, Theory of funetions of a real variable (2nd ed., 1921), 87, 88,
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Let us suppose that there is such a process ; that is to say, that we can
invent a machine . which, when supplied with the 8.D of any computing

. machine || will test this 8.D and if .\l is circular will mark the 8.D with the

symbol ““# ' and if it is circle-free will mark it with “s””. By combining
the machines © and 1l we could construct a machine il to compute the
sequence f'. The machine 1> may require a tape. We may suppose that
it uses the E-squares beyond all symbols on F-squares, and that when it
has reached its verdict all the rough work done by L is erased.

The machine 1| has its motion divided into sections. In the first N—1
sections, among other things. the integers 1. 2, ..., N—1 have been written
down and tested by the machine .. A certain number, say R(N—1), of
them have been found to be the D.N’s of circle-free machines. In the N-th
section the machine 1 tests the number N. If IV is satisfactory, i.e., if it
is the D.N of a eircle-free machine, then R(N)= 1 R(N—1) and the first
R(N) figures of the sequence of which a DN is N are calculated. The
R(N)-th figure of this sequence is written down as one of the figures of the
sequence B’ computed by I, If N isnotsatisfactory, then B(N)= R(N—1)
and the machine goes on to the (N-1)-th section of its motion.

From the construction of || we can see that 1l is circle-free. Fach
section of the motion of Il comes to an end after a finite number of steps.
For, by our assumption about 11, the decision as to whether N is satisfactory
is reached in a finite number of steps. If N is not satisfactory, then the
N-th section is finished. IFN is satigfactory, this means that the machine
J(N) whose D.N is N is circle-free, and therefore its R(N)-th figure can be
calculated in a finite number of steps.  When this figure has been calculated
and written down as the R(N)-th figure of B', the N-th section is finished.
Hence 1l is circle-free.

Now let A be the D.N of {l. What does i do in the K-th section of
its motion? It must test whether K is satisfactory, giving a verdiet s
or “u4”. Since K is the D.N of il and since 1| is circle-free, the verdict
cannot be *“«”".  On the other hand the verdict cannot be “s”. For if it
were, then in the K-th section of its motion |1 would be bound to compute
the first R(K—1)+1= R(K) figures of the sequence computed by the
machine with K as its D.N and to write down the R(K)-th as a figure of the
sequence computed by /. The computation of the first B(K)—1 figures
would be carried out all right, but the instructions for calculating the
E(K)-th would amount to calculate the first R(K) figures computed hy
H and write down the R(K)-th”. This R(K)-th figure would never be
found. [I.e., !l is circular, contrary both to what we have found in the last
paragraph and to the verdict “s”. Thus both verdicts are impossible
and we conclude that there can be no machine 1.
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We can show further that there can be no machine © which, when
supplicd with the 8.D of an arbitrary machine \\, will determine whether L
ever prints a given symbol (0 say).

We will first show that, if there is a machine £, then there is a general
process for determining whether a given machine [l prints O infinitely
often. Let .I\; be a machine which prints the same sequence as ||, except
that in the position where the first 0 printed by A\ stands, .\, prints 0.
Al is to have the first two symbels 0 replaced by 0, and so on. Thus, if .1l
were to print

ABA01AABOO10AB...,

then .U\, would print
ABAD1AABODLIOAB...
and .\, would print
ABAD1AABO0OLI0AB....

Now let 7 be a machine which, when supplied with the 8.D of 11, will
write down successively the 8.1 of AL, of A\, of A, ... (there is such a
machine). We combine & with £ and obtain a new machine, ;. In the
motion of ( first & is used to write down the S.D of .\, and then £ tests
it, : 01 is written if it is found that Al never prints 0; then 7 writes the 5.D
of .l;, and this is tested, : 0: being printed if and only if .1, never prints 0,
and so on. Now let us test ( with £. Ifitis found that { never prints 0,
then A\ prints 0 infinitely often; if ¢ prints 0 sometimes, then .\l does not
print 0 infinitely often.

Similarly there is a general process for determining whether .\l prints 1
infinitely often. By a combination of these processes we have a process
for determining whether A\ prints an infinity of figures, i.e. we have a process
for determining whether .l is circle-free. There can therefore be no
machine £.

The expression “there is a general process for determining ...”" has
been used throughout this section as equivalent to * there is a machine
which will determine ...”. This usage can be justified if and only if we
can justify our definition of *“computable”. For each of these ““general
process” problems can be expressed as a problem concerning a general
process for determining whether a given integer n has a property G(n) [e.g.
G'(n) might mean “n is satisfactory ” or  » is the Godel representation of
a provable formula™], and this is equivalent to computing a number
whose n-th figure is 1 if G (n) is true and 0 if it is false.
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9. The extent of the computable numbers.

No attempt has yet been made to show that the ““ computable” numbers
inelude all numbers which would naturally be regarded as computable. All
arguments which can be given are hound to be. fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is * What are the possible processes which can he
carried out in computing a number?”

The arguments which I shall use are of three kinds.

(@) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(¢) Giving examples of large classes of numbers which are
computable,

Onge it is granted that computable numbers are all “*computable ™,
several other propesitions of the same character follow. In particular, it
follows that, if there is a general process for determining whether a formula
of the Hilbert function ealeulus is provable, then the determination can be
carried out by a machine.

1. [Type (@)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally dene by writing certain symbols on paper. We
may suppose this paper is divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and T think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, i.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extentf. The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as

# 1f we regard a symbol as literally printed on & square we may suppose that the square
is0<eel, 0<y<l. The symbol is defined as a set of points in this square, viz. the
set oecupied by printer’s ink. If these sets are restricted to be measurable, we can deline
the *distance ” between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit area of printer's ink unit distanee is unity, and there is an
infinite supply of ink at # = 2, y = 0,  With this topology the symbols form a condition-

-ally compact space.
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17 or 999999999999999 is normally treated as a single symhol.  Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbolg). The
differences from our point of view between the single and compound symhols
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

The hehaviour of the computer at any moment is determinec by the
symbols which he is observing, and his * state of mind ** at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number of states of mind which need be taken into account is finite,
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be  arbitrarily close ” and will be confused. Again, the restriction
is not one which seriously affeets computation, since the use of more compli-
cated states of mind can be avoided by writing more symbols on the tape,

Let us imagine the operations performed by the computer to be split up
into “simple operations ” which are so elementary that it is not easy to
imagine them further divided. BEvery such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes
can be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in
regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
“observed ” squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. I think it isreasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.

In connection with “immediate recognisability ”, it may be thought
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-
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diately recognisable. Now if these squares are marked only by single
symbols there can be only a finite number of them, and we should not upset
our theory by adjoining these marked squares to the observed squares, 1If,
" on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. It is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477 ; then, further on in the paper, we
might find ... hence (applying Theorem 157767733443477) we have ... 7",
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure. possibly ticking the figures off
in pencil to make sure of their not being counted twice. If in spite of this
it is still thought that there are other “*immediately recognisable™ squares,
it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. This idea is
developed in TIT below.
The simple operations must therefore include :

{z) Changes of the symbol on one of the observed squares,

(h) Changes of one of the squares observed to another square
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(4) A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares. together with a
possible change of state of mind.

The operation actually performed is determined, as has been suggested
on p. 250, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation is carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an * m-configuration ” of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. Inanymove the machine can change asymbol
on a scanned square or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned
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squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in § 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

1L [Type (b)]-

If the notation of the Hilbert funetional caleulust is modified so as to
be systematic, and so as to involve only a finite number of symbols, it
becomes possible to construct an automatic] machine 1, which will find
all the provable formulae of the calenlus§.

Now let a be a sequence, and let us denote by @, (x) the proposition
“The x-th figure of a is 1 *, so that| — @, (¢) means ““The z-th figure of a
is 0. Suppose further that we can find a set of properties which define
the sequence a and which can be expressed in terms of & (¥) and of the
propositional funetions N(z) meaning ““2 is a non-negative integer™ and
F(x, y) meaning “y—a-+1". When we join all these formulae together
conjunetively, we shall have a formula, U say, which defines a. The terms
of U must include the necessary parts of the Peano axioms, viz.,

(3u) N (u) & () (N (@)~ (39) F(z, 9)) & (F@, 9) >N ),

which we will abbreviate to P.
When we say 9 defines «”, we mean that —2 is not a provable
formula, and also that, for each n, one of the following formulae (A,) or

{B,,) is provable.
U & FM— G, (1), (AT

A & P (— G, (), (B,),
where F stands for F(u, w') & Fw', w”) & ... Fun=2, um),

+ The expression *the functional caleulus™ is used throughout to mean the restricted
Hilbert functional caleulus,

1 1t is most natural to construct first a choice machine (§2) to do this. But it is
then easy to construct the required automatic machine. We can suppose that the choices
are always choices between two possibilities 0 and 1. Each proof will then be determined
by a gequence of choices i, iy, ..., 1, (i, =0 or 1, i;=0 or 1, ..., i, =0 or 1), and hence
the number 2" 44, 2014, 2524 4, completely determines the proof. The automatic
machine carries out successively proof 1, proof 2, proof 4, ...

§ The author has found a deseription of such a machine.

|| The negation sign is written before an expression and not over it.

% A sequence of r primes is denoted by .
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I say that a is then a computable sequence : a machine ), fo compute
a can be obtained by a fairly simple modification of It

We divide the motion of ), into sections. The n-th section is devoted
. tofinding the n-th figure of a. After the (n—1)-thsection s finished a double
colon :: is printed after all the symbols, and the succeeding work is done
wholly on the squares to the right of this double colon. The first step is to
write the letter .4 ** followed by the formula (A,) and then © B followed
by (B,). The machine iC, then starts to do the work of I, but whenever
a provable formula is found, this formula is compared with (A,,) and with
(B,). Ifitisthe same formula as (A,), then the figure © 1" is printed, and
the n-th section is finished. Ifitis (B,), then “0 " is printed and the section
is finished. If it is different from both, then the work of i is continued
from the point at which it had been abandoned. Sooner or later one of
the formulae (A,) or (B,) is reached; this follows from our hypotheses
ahout @ and ¥, and the known nature of . Hence the n-th section will
eventually be finished. I, is circle-free: ais computable.

Tt can also be shown that the numbers a definable in this way by the use
of axioms include all the computable numbers, This is done by describing
computing machines in terms of the function caleulus.

Tt must be remembered that we have attached rather a special meaning
to the phrase =* % defines «*.  The computable numbers do not include all
(in the ordinary sense) definable numbers. Let 8 be a sequence whose
n-th figure is 1 or 0 according as # is or is not satisfactory. It isan imme-
diate consequence of the theorem of §8 that 3 is not computable. It is (so
far as we know at present) possible that any assigned number of figures of 3
can be ealculated, but not by a uniform process, When sufficiently many
figures of & have been caleulated, an essentially new method is necessary in
order to obtain more figures.

TI1. This may be regarded as a modification of I or as a corollary of IT.

We suppose, as in I, that the computation is carried out on a tape ; but we
avoid introducing the “state of mind” by considering a more physical
and definite counterpart of it. It is always possible for the computer to
break off from his work, to go away and forget all about it, and later to come
back and go on with it. If he does this he must leave a note of instructions
(written in some standard form) explaining how the work is to be con-
tinued. This note is the counterpart of the *state of mind ™. We will |
suppose that the computer works in such a desultory manner that he never
does more than one step at a sitting. The note of instructions must enable
him to carry out onestep and write thenextnote. Thus thestate of progress
of the computation at any stage is completely determined by the note of’



254 A. M, Tvring [Nov. 12,

instructions and the symbols on the tape. That is, the state of the system
may be described by a single expression (sequence of symbols), consisting
of the symbols on the tape followed by A (which we suppose not to appear
elsewhere) and then by the note of instructions. This expression may be
called the ““state formula”. We know that the state formula at any
given stage is determined by the state formula before the last step was
made, and we assume that the relation of these two formulae is expressible
in the funetional caleulus, In other words, we assume that there is an
axiom % which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the
state formula at the preceding stage. If this is so, we can construct a
machine to write down the successive state formulae, and hence to
compute the required number.

10. BExamples of large classes of numbers which are computable.

It will be useful to begin with definitions of a computable funetion of
an integral variable and of a computable variable, ete. There are many
equivalent ways of defining a computable function of an integral
variable. The simplest is, possibly, as follows. If y is a computable
sequence in which 0 appears infinitely{ often, and « is an integer, then let
us define £(y, ») to be the number of figures 1 between the n-th and the
(n~+1)-th figure 0 in y- Then ¢(n) is computable if, for all # and some Vs
b(n)=E(y, n). An equivalent definition is this, Let # (x, %) mean
$(@)=y. Then,if we can find a contradiction-free axiom Uy, such that
Uy P, and if for each integer » there exists an integer N, such that

Uy & PO H (), qy(m)),
and such that, if m # $(n), then, for some N,

Ay & FN) 5 (—H (um, w‘-m)),

then ¢ may be said to be a computable function.

We cannot define general computable functions of a real variable, since
there is no general method of describing a real number, but we can define
4 computable function of a computable variable, If n i8 satisfactory,
let y,, be the number computed by Al(n), and let

a, = tan (m(y,—1)),

1 If Ml computes v, then the problem whother AL prints 0 infinitely often is of the
same character as the problem whether .\l is circle-free,

(<
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unless y, =0 or y, =1, in either of which cases a,=0. Then, as 2
runs through the satisfactory numbers, a, runs through the computable
numberst. Now let ¢(n) be a computable function which can be
shown to be such that for any satisfactory argument its value is satis-

'factoryi. Then the function f. defined hy f(a,) = ay, i8 a computable

funetion and all computable functions of a computable variable are

-expressible in this form.

Similar definitions may be given of computable functions of several
variables, computable-valued funetions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but 1
shall prove only (ii) and a theorem similar to (iii).

(i) A computable funetion of a computable function of an integral or
computable variable is computable.

[

(ii) Any function of an integral variable defined recursively in terms
of computable functions is computable. I.e. if ¢(m, n) is computable, and
7 is some integer, then »(n) is computable, where

1(n) = b(n, n(n—1)).

(iii) If ¢ (m. n) is a computable function of two integral variables, then
¢(n, n) is a computable function of n.

(iv) If ¢ (n) is a computable function whose value is always 0 or 1, then
the sequence whose n-th figure is ¢(n) is computable.

Dedekind’s theorem does not hold in the ordinary form if we replace
“real” throughout by “computable”. But it holds in the following form :
(v) If G'(a) is a propositional function of the computable numbers and
(@ (Fa)(3P)|Gla) & (—C @A)},
(6) Gla) & (—G(R))>(a<p)

and there is a general process for determining the truth value of &(a), then

f A funetion a, may be defined in many other ways so as to run through the
computable numbers.

£ Although it is not possible to find a general process for determining whether a given
number is satisfactory, it is often possible to show that certain classes of numbers are
satisfactory,
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there is a computable number & such that
(& (a)_}a = fs
—G(a)>a =&

In other words, the theorem holds for any section of the computables
such that there is a general process for determining to which class a given
number belongs.

Owing to this restriction of Dedekind’s theorem, we cannot say that a
computable bounded increasing sequence of computable numbers has a

computable limit. This may possibly be understood by considering a
sequence such as

'—]-v —i_l,” —%r ‘_%‘v ._Lllﬁ' %1 .
On the other hand, (v) enables us to prove

(vi) If a and B are eomputable and a < 8 and $(a) < 0 < $(f), where
¢ (x) is a computable inereasing continnons function, then there is a unique
computable number y, satisfying « <y < B and d(y) = 0.

Computable convergence.

We shall say that a sequence 8, of computable numbers converges
computably if there is a computable integral valued function N (e) of the
computable variable ¢, such that we can show that, if € > 0 and » > N (¢)
and m = N (e), then |8, —8,,| < .

We can then show that

(vii) A power series whose coefficients form a computable sequence of
computable numbers is computably convergent at all computable points
in the interior of its interval of convergence.

(viii) The limit of a computably convergent sequence is computable.
And with the obvious definition of ““uniformly computably convergent " :

(ix) The limit of a uniformly computably convergent computable
sequence of computable functions is a computable function. Hence

(x) The sum of a power series whose coefficients form a computable
sequence is a computable function in the interior of its interval of
convergence.

From (viii) and 7= 4(1—4+1—...) we deduce that = is computable.
From e = l—[—l—i—%-{—-al' ... we deduce that e is computable,
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11, Application to the Entscheidungsproblem.

The results of §8 have some important applications. In particular, they
can be used to show that the Hilbert Entscheidungsproblem can have no
solution. For the present T shall confine myself to proving this particular
theorem. For the formulation of this problem I must refer the reader to
Hilbert and Ackermann's Grundzige der Theoretischen Logik (Berlin,
1931), chapter 3.

I propose. therefore, to show that there can be no general process for
determining whether a given formula % of the functional caleulus K is
provable, i.e. that there can be no machine which, supplied with any one
U of these formulae, will eventually say whether 2 is provable.

It should perhaps be remarked that what I shall prove is quite different
from the well-known results of Godelf. Godel has shown that (in the forma-
lism of Principia Mathematica) there are propositions % such that neither
9 nor — % is provable. As a consequence of this, it is shown that no proof
of consistency of Principia Mathematica (or of K) can be given within that
formalism. On the other hand, I shall show that there is no general method
which tells whether a given formula % is provable in K, or, what ecomes to
the same, whether the system consisting of K with —% adjoined as an
extra axiom is consistent.

If the negation of what Godel has shown had been proved, i.e.if, for each
9, either % or — Y is provable, then we should have an immediate solution
of the Entscheidungsproblem. For we can invent a machine K which will
prove consecutively all provable formulae. Sooner or later 3¢ will reach
either 9% or — 2. If it reaches U, then we know that 2 is provable. Ifit
reaches — 2, then, since K is consistent (Hilbert and Ackermann, p. 65), we
know that U is not provable.

Owing to the absence of integers in K the proofs appear somewhat
lengthy. The underlying ideas are quite straightforward.

Corresponding to each computing machine .\l we construct a formula,
Un (L) and we show that, if there is a general method for determining
whether Un (1) is provable, then there is a general method for deter-
mining whether Il ever prints 0.

The interpretations of the propositional functions involved are as
follows :

Ry (x, y) is to be interpreted as “in the complete configuration @ (of
Al) the symbol on the square y is 87,

¥ Lae, cit.
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I(z, y) is to be interpreted as “in the complete configuration z the
square ¥y is scanned .

K, (¢)is to be interpreted as “in the complete configuration x the
m-configuration is g,,.

F(z, y) is to be interpreted as “y is the immediate suceessor of 2.

Inst {g;8; 8, Lq;} is to be an abbreviation for

@92 y) | (B ) & 1@, 9) & Ky o) & Flay o) & By, )
S (I(x', Y) & By, (¢, y) & K, ()
& @[ P, 2)v (B 2> Rs @, 2) ])
Inst {g; 8,8, Rq,} and Inst{g8,;85.Ng¢}

are to be abbreviations for other similarly constructed expressions.

Let us put the description of .l into the first standard form of §6. This
description consists of a number of expressions such as “g; 8, S, Lq,” (or
with R or N substituted for L). Let us form all the corresponding expres-
sions such as Inst {¢;S; 8, Lg;} and take their logical sum. This we call
Des (.AL).

The formula Un (Al) is to be

(30) [ N () & (@) (N @) (32) Fw, @)
& (1 2) (Fly, )>N(y) & N()) & (o) Rs,(u, 9)
& I (u, u) & K, (u) & Des(..u)]
~(38) (31) [N (s) & N(t) & Bg,(s, t)].

[N (u) & -.. & Des ()] may be abbreviated to A ().

When we substitute the meanings suggested on p. 259-60 we find that
Un () has the interpretation “in some complete configuration of AL, S,
(i.e. 0) appears on the tape™. Corresponding to this I prove that

(a) If 8, appears on the tape in some complete configuration of A, then
Un () is provable.

(b) If Un (AL} is provable, then 8, appears on the tape in some complete
configuration of AL,

When this has been done, the remainder of the theorem is trivial.
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Levma 1. If S appears on the lape in some complete configuration of
AL, then Un (M) is provable.

‘We have to show how to prove Un (.\l). Let us suppose that in the
‘n-th complete configuration the sequence of symbols on the tape is
Sitn, 00 Sein, 115 20 Sy, n» followed by nothing but blanks, and that the
scanned symbol is the i(#)-th, and that the m-configuration is ¢y, Then
we may form the proposition

B, (W, ) & B, (0", @) & ... & Rg,, , (™, ut)

& I(u™, wlim) & qum(um))
& W (@, w)v F y) vE@, y)v...¥ FuD, y)v Ry (u, y)),

which we may abbreviate to CC,.

As before, F(u, u') & F(w', w') & ... & F(urD, 4) is abbreviated
to F,

I shall show that all formulae of the form A4 (M) & F® - CC, (abbre-
viated to C'F' ) are provable. The meaning of C'F,, is “The n-th complete
co ation of /| is so and so 7', where “‘so and so ** stands for the actual
n-th complete configuration of .Al. That C'F, should be provable is
therefore to be expected,

C'F, is certainly provable, for in the complete configuration the symbols
are all blanks, the m-configuration is ;. and the scanned square is «, i.e.
Cc, is

(y) Rg, (u, y) & I (u, u) & K, (u).
A(M)—>C€, is then trivial.

We next show that OF, —CF, , is provable for each n. There are
three cases to consider, according as in the move from the n-th to the
(n-1)-th configuration the machine moves to left or to right or remains
stationary. We suppose that the first case applies, i.e. the machine
moves to the left. A similar argument applies in the other cases. If
r(nim) =a, r(ntlim+1)) =c, k(i) =b, and k(i(+1)) =4,
then Des (.\) must include Inst {g, S, §; Lg,} as one of its terms, i.e,

Des (M) —Inst {g, S, S; L.}
Hence A(M) & BV —Tnst {g, S, S, Lg,} & Fr1,
But Inst{g, S, 8y Ly} & Fr V= (CC, - CC,.,)
is provable, and so therefore is

A(M) & FoD—s (00, > CC,,y)
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is interesting to express Un(.\l) in a form in which all quantors are at the
beginning. Un(.Il) is, in fact, expressible in the form

(u) (3) (w) (Fy) ... (F,) D, (1)

where ® contains no quantors, and # — 6. By unimportant modifications
we can obtain a formula, with all essential properties of Un(.l), which is of
form (I) with n= 5.

Added 28 August, 1936,

APPENDIX.

Computability and effective caloulability

The theorem that all effectively caleulable (A-definable) sequences are
computable and its converse are proved below in outline. 1t is assumed
that the terms “ well-formed formula ** (W.F.F.) and ** conversion ” as used
by Church and Kleene are understood. In the second of these proofs the
existence of several formulae is assumed without proof; these formulae
may be constructed straightforwardly with the help of, eg., the
results of Kleene in “A theory of positive integers in formal logic ™,
American Journal of Math., 57 (1935), 153-173, 219-244.

The W.F.F. representing an integer n will be denoted by N,. We shall
say that a sequence y whose n-th figure is ¢ (n) is A-definable or effectively
calculable if 1. (%) is a A-definable function of %, i.e. if there is a W.F.F.
M, such that, for all integers n,

{My} (Nn) eonv N@,(ﬂ)-i-l’

ie. (M} (N,) is convertible into Azy.a:( x(y)) or into Ary.x(y) according as
the n-th figure of A is 1 or 0.

To show that every A-definable sequence y is computable, we have to
show how to construct a machine to compute y. For use with machines it
is convenient to make a trivial modification in the calculus of conversion.
This alteration consists in using @, 2/, 2", ... as variables instead of
@, 0, ¢, .... Wenow construct a machine £ which, when supplied with the
formula M, writes down the sequence y. The construction of £ is some-
what similar to that of the machine ¢ which proves all provable formulae
of the functional caleulus. We first construct a choice machine £, which,
if supplied with a W.F.F., M say, and suitably manipulated, obtains any
formula into which M is convertible, £, can then be modified so as to
yield an automatic machine £, which obtains successively all the formulae
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into which M is convertible (cf. foot-note p. 252). The machine £
includes £, as a part. The motion of the machine £ when supplied
with the formula M, is divided into sections of which the n-th is
devoted to finding the n-th figure of y. The first stage in this n-th section
is the formation of {M.}(N,). This formula is then supplied to the
machine £,, which converts it successively into various other formulae.
Each formula into which it is convertible eventually appears, and each, as
it is found, is compared with

Av [hcr'[{;x}({a:}(n."))]], 8N

and with [ M [fa}@N] ie Ny

If it is identical with the first of these, then the machine prints the figure 1
and the n-th section is finished. If it is identical with the second, then 0
is printed and the section is finished. If it is different from both, then the
work of £, is resumed. By hypothesis, {M }(N,) is convertible into one of
the formulae N, or N, ; consequently the a-th section will eventually be
finished, i.e. the n-th figure of y will eventually be written down.

To prove that every computable sequence y is A-definable, we must
ghow how to find a formula M, such that, for all integers n,

f ] 1 i - AT
(M }(N,) conv N,y 6

Let M\ be a machine which computes y and let us take some description
of the complete configurations of ! by means of numbers, e.g. we may take
the D.N of the complete configuration as deseribed in §6. Let {(n) be
the D.N of the n-th complete configuration of M. The table for the
machine Il gives us a relation between £(n--1) and £(n) of the form

Em+1)=p, (£m),

where p, is a function of very restricted, although not usually very simple,
form ; it is determined by the table for AL. p,is A-definable (I omit the proof
of this), ¢.e. there is a W.F.F. 4, such that, for all integers n,

{4.} (N i) conv Nogyoqy:
Let U, stand for
xo [ {4} )],
where r= £(0); then, for all integers n,
{U} (NV,) conv Ny,

 derrm
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It may be proved that there is a formula V such that

conv N, if, in going from the n-th to the (n--1)-th
complete configuration, the figure 0 is
= Yoo | printed.
17 Vo) | (Newy)
conv N, if the figure 1 is printed.
conv N, otherwise,

Let W, stand for

) |

so that, for each integer =,

{VHN gtz 0) | (Vi) conv (W} (N,,),

and let ) be a formula such that
Q@ (W)L V,) conv N,

where 7(s) is the s-th integer g for which { W} (NV,) is convertible into either
N, or N,. Then, if M, stands for

e | (W) ({{@ W) @) ]

it will have the required propertyf.

The Graduate College,
Princeton University,
New Jersey, U.S.A.

+ In a complete proof of the A-definability of computable sequences it would be best to
modify this method by replacing the numerical deseription of the complete configurations
by a description which can be handled more easily with our apparatus. Let us choose
certain integers to represent the symbols and the m-configurations of the machine.

Suppose that in & certain complete configuration the numbers representing the successive

symbols on the tape are &, 8,...5,, that the m-th symbol is scanned, and that the m-configur-

ation has the number £; then we may represent this complete configuration by the formula

7798 e, ORS¢ T N ¢ e

where a, b] stands for Au

: tul(a) }{MJ_

a, b, ¢] stands for .\HL | : IS : (1) : {e) ]r
ete.

Printed by C. F. Hodgson & Son, Ltd, Newton St., London, W.C.2




ON COMPUTABLE NUMBERS. WITH AN APPLICATION TO
i THE ENTSCHEIDUNGSPROBLEM. A CORRECTION

By A. M. TurixG.

[Extracted from the Proceedings of the London Mathematical Society, Ser. 2, Vol. 43, 1937.]

In a paper entitled *“ On computable numbers, with an application to
the Entscheidungsproblem "'* the author gave a proof of the insolubility
of the Entscheidungsproblem of the *engere Funktionenkalkiil ™. This
proof contained some formal errorst which will be corrected here: there
are also some other statements in the same paper which should be modified,
although they are not actually false as they stand.

The expression for Inst {¢;8; 8, Lg} on p. 260 of the paper quoted
should read

(2. 9, 2 y) [( Ry (@, y) & L@, y) & K, (2) & Fl, ) & P, ) )
= (1(3,-', Y) & R @, ) & K, (@) & P, 2) v [ (B, (2 2) > Re (2, )

& (Rsl(z, 2)—= R (2, z)) Kok (Rsx(a:, 2)—> R, (', z))]) },

8y, 8y, ..y Sy being the symbols which JA can print. The statement on
p. 261, line 33, viz.

“Inst {Qa Sb Sd LQc} & PR (Con i CCIHI)

is provable " is false (even with the new expression for Inst {g, S, S, Lg.}):

we are unable for example to deduce FOr+1)— (—F(u, e.r.")) and therefore
can never use the term

F', 2)v[ (R (2, 2) > Ry (@', 2)) & .. & ( B, (3, 2) > R, (2, 2) ) ]

* Proc. London Math. Soc. (2), 42 (1936-7), 230-265.
1 The author is indebted to P, Bernays for pointing out these errors.
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in Inst{q,S, 8, Lq}. To correct this we introduce a new functional
variable ¢ [G(z, y) to have the interpretation “z precedes y”]. Then,
if @ iz an abbreviation for '

@) @)y ) {F e, w) & (Fla, )= Gl p)) & [ Fla, 2 66 )6, )
& [G(z, v (G ) & Fly. 2))v (P, y) & Pe, w) = (—F z;)]}
the corrected formula Un(Al) is to be
(Fu) A (M) > (35)(30) R, (s, 1),

where 4(A\) is an abbreviation for

Q& (y) Bs, (w, y) & I (u, ) & K (1) & Des ().
The statement on page 261 (line 33) must then read
Inst {g, 8y Sy Ly} & Q & Frs (OO, > O, ),
and line 29 should read

r(ni@m) =b, r{nt1, i) =d, kn)=a, kin+1)—ec.

For the words “logical sum™ on p. 260, line 15, read *conjunetion .
With these modifications the proof is correct. Un (.1l) may be put in the
form (1) (p. 263) with n— 4.

Some difficulty arises from the particular manner in which * computable
number ” was defined (p. 233). If the computable numbers are to satisfy
intuitive reguirements we should have:

1f we can give a rule which asseciates with each positive integer # tico
rationals a,, b, satisfying a, <a, . <<b,., <b,, b,—a, <2, then there is
a computable number o for which a, < a < b, each n. (A)

A proof of this may be given, valid by ordinary mathematical standards,
but involving an application of the principle of excluded middle. On the
other hand the following is false:

There is a rule whereby, given the vule of formation of the sequences a,, b,
an (A) we can obtain a DN. for a mackine to compute a. (B)

That (B) is false. at least if we adopt the convention that the decimals
of numbers of the form m/2% shall always terminate with zeros, can be
seen in this way. Let 9l be some machine, and define ¢, as follows:
¢ = % if 1 has not printed a figure 0 by the time the n-th complete configu-
ration is reached ¢, = 1—2-7-% if 0 had first been printed at the m-th
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complete configuration (m<n). Put a,=c,—2 "2 b —c,+2"2
Then the inequalities of (A) are satisfied, and the first figure of a is 0 if 1\
ever prints O and is 1 otherwise. If (B) were true we should have a means
of finding the first figure of a given the D.N. of 111 i.e. we should be able to
determine whether Il ever prints 0. contrary to the results of § 8 of the paper
quoted. Thus although (A) shows that there must be machines which
compute the Euler constant (for example) we cannot at present describe
any such machine, for we do not yet know whether the Euler constant is
of the form m/2".

This disagreeable situation can be avoided by modifying the manner in
which computable numbers are associated with computable sequences,
the totality of computable numbers being left unaltered. It may be done
in many ways* of which this is an example. Suppose that the first figure
of a computable sequence y is ¢ and that this is followed by 1 repeated n
times, then by 0 and finally by the sequence whose r-th figure is ¢,: then
y the sequence y is to correspond to the real number

| (Gi—1)n+ 51(20,—1)(%)".

If the machine which computes y is regarded as computing also this real

number then (B) holds. The uniqueness of representation of real numbers

| by sequences of figures is now lost, but this is of little theoretical importance,
since the D.N."s are not unique in any case.

‘ The Graduate College,
Princeton, N.J., U.S.A.

| * This use of overlapping intervals for the definition of real numbers is due originally
| to Brouwer.
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