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Abstract. Holographic reduced representation is based on a suitable distributive
coding of structured information in conceptual vectors, which elements satisfy
normal distribution N(0,1/n). Existing applications of this approach concern
various models of associative memory that exploit a simple algebraic operation
of scalar product of distributed representations to measure an overlap between
two structured concepts. We have described here a method that uses this
representation to model a similarity between different concepts and an inference
process based on the rules modus ponens and modus tollens.

Key words: Holographic, reduced representation, distributed representation,
convolution.

1. Introduction

The goal of this paper is to highlight an alternative approach, which may
overcome the gap between the symbolic and subsymbolic approaches in the
description and interpretation of cognitive activities of the human brain [7-9].
We shall show, that the application of a distributed representation allows to
integrate connectionism and cognitivism. The mental representations (symbols)
are specified by distributed patterns of neural activities, while over these
distributed patterns we can introduce formal algebraic operations, which not
only allow to mathematically model cognitive operations, but also allow to
simulate processes of storage and retrieval of information from memory.
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Figure 1. A visualization of the transition from neural network to distributed representation.
The state of neural network in the time t is given by the activities of single neurons, which are
determined by the activities in the previous time t-1 and by weight coefficients of single
oriented connections. Using a certain abstraction, these activities can be ordered into one big
one-dimensional array (vector) of real numbers (their size is determined by the level of gray of
the corresponding component – neuron). In the distributed representation the architecture of the
neural network is ignored, i.e. two randomly generated distributed representations must be
understood as totally independent without mutual relations; their incidental connections derived
from neural network are completely ignored. New unary and binary operations are introduced
in the distributed representation, which enable to create new distributed representations from
the original ones.

We shall study a nontraditional style of performing calculation by using
distributed patterns. This approach is substantially different from classical
numeric and symbolic computations and it is a suitable model tool for
understanding of the global properties of neural networks. We shall
demonstrate that such a „neurocomputing“ is based on extensive randomly
created patterns (represented by multidimensional vectors with random entries),
see fig. 1.

This approach, which basic principles were formulated already at the end of
sixties [2,4], was crowned by Tony Plate [5,6] in works on „holographic
reduced representation“ (HRR). Kanerva [3] in the middle of nineties proposed
a certain alternative to HRR, which is based on randomly generated binary
vectors. Our contribution to the development of HRR consists in its application
to modeling of cognitive processes of reasoning by application of rules modus
ponens a modus tollens.

2. A mathematical formulation of holographic representation

The aim of this chapter is a presentation of basic properties of a holographic
representation, which was developed by Plate [5,6]. Its basic notion is a
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conceptual vector, which is represented by an n-dimensional vector
( )0 1 1

n
nR a ,a ,...,a −∈ ⇒ =a a . Components of this vector are random numbers

with a standard normal distribution, ( )0 1ia N , n= , where N(0,1/n) is a random
number with a mean equal to 0 and a standard deviation 1/n. A binary operation
„convolution“ is defined over conceptual vectors, which assigns to a couple of
vectors a third vector, ⊗=c a b , its entries are determined by

[ ] ( )
1

0
0 1 1

n

i j i j
j

c a b i , ,...,n
−

−
=

= = −∑                            (1)

where the index in the square brackets, [k], is defined using a modulo n
operation. The operation of convolution is commutative, and associative. In
general, almost for each conceptual vector a there exist an inverse vector 1−a ,

1− ⊗ =a a 1 .  A unary operation over conceptual vectors is the so-called
involution

[ ] [ ] [ ] [ ]( )0 1 2 1n na ,a ,...,a ,a∗
− − + − += =b a . It is possible to prove, that the involution

c* is approximately equal to an inverse vector c-1, ∗ ⊗ ≈c c 1 . According to this
important property it is possible to decode the original information from the
complex conceptual vectors. Reconstruction of x from c⊗x is based on the
following property:

( ) ( )∗ ∗= ⊗ ⊗ = ⊗ ⊗ ≈ ⊗ =x c c x c c x x x1                         (2)
An overlap of the resulting vector x  with the original vector x is

determined from a scalar product by

( )1 1overlap , ⋅− ≤ = ≤x xx x
x x

                                    (3)

where the inequalities result directly from the Schwartz’s inequality from linear
algebra. The closer this value is to its maximum value, the more similar the
vectors x  and x are.

Let’s turn our attention to the second possibility of the verificati on of the
formula (2) with the application of the approach called the „superposition
memory“. Let us have a set containing p+q randomly generated conceptual
vectors, { }1 2 1p p p qX , ,..., , ,...,+ += x x x x x . Using the first p vectors from X
allows us to define a memory vector t as their sum

1

p

i
i=

= ∑t x                                                     (4)

The vector t represents a superposition memory, which by a simple additive
way contains vector from the set X. The decision, whether some vector X∈x
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is contained in t must be based on the value of the overlap (3),  ( )overlap ,x t .

If this value is greater than a predefined threshold value, ( )overlap , ≥x t ϑ ,
then the vector x is included in the superposition memory t, in the opposite
case, if ( )overlap , <x t ϑ , then the vector x is not included in t (see fig. 2).
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Figure 2. Illustration of the superposition memory for the first 7 vectors of the set X, which
contains 14 randomly generated conceptual vectors of the dimension n=1024. The threshold
value ϑ can be in this case set to 0.2.

In this simple illustrative example, the used method for a reconstruction
of conceptual vectors, which can „appear“ in some other different complex
conceptual vector (which can be the result of complicated previous calculations
– transformations) is based on the concept of overlap between reconstructed
and required vectors. The used method is called „clean-up“ [5,6] and it is
specified as follows: Let us have a set of vectors  { }1 2 nX , ,...,= x x x  and some
vector t. We face the decision, whether the memory vector (trace) t contains a
superposition component, which is similar (or which is not similar) to some
vector from the set X.  This problem can be solved by calculating the so called
overlap (3), formally

( )( )
( )( )

yes overlap ,

no overlap ,

 ≥≈ = 
<

x t
x t

x t

ϑ

ϑ
                               (5)

where ϑ is a chosen threshold value of acceptance of the size of the overlap as
the positive answer. The result of this cleaning-up process is a subset of vectors

( ) { }X X ; X= ∈ ≈ ⊆t x x t                                      (6)
We can put the question also in a rather different form, which is,

whether the memory vector t is similar to any of the vectors from the set X? The
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answer to this more general question shall be decided from the maximum value
of the overlap

( ) ( )
x X

overlap ,X max overlap ,
∈

=t t x                                (7)

Then we can rewrite (5) in the form
( )( )
( )( )

yes overlap , X
X

no overlap ,X

 ≥∈ = 
<

t
t

t

ϑ

ϑ
                              (8)

3. Associative memory

The construction of the associative memory belongs to the main results of the
holographic reduced representation, which can be further generalized by so
called chunking. Let us have a set of conceptual vectors { }1 2 nX , ,...,= x x x  and

a training set { }; 1 2train i iA i , ,...,m= =c x , which contains m<n associated
couples of conceptual vectors i ic x , where ci is the input to the associative
memory (cue) and xi is the output from the memory. Let’s create a memory
vector t representing the associative memory created from the training set Atrain

1 1
1

m

m m i i
i

...
=

= ⊗ + + ⊗ = ⊗∑t c x c x c x                              (9)

Let us suppose, that we know in advance only the inputs ci to the associative
memory, we do not know the possible outputs from the set

{ }1 2train mX , ,...,= x x x . The response of the associative memory to the input -
clue ci is determined by the process of „cleaning-up“ represented by the
formula (8). In the first step we shall calculate the vector i i

∗= ⊗x c t , then by
a process based on the maximum value of the overlap we shall find whether

i i X≈ ∈x x
( ) ( )

train
i ix X

overlap ,X max overlap ,
∈

=x x x                            (10)

1st illustrative example
This example uses only the training set { }; 1 2train i iA i , ,...,m= =c x , which is
randomly generated for m=8, while the dimension of conceptual vectors is
n=1000. For each associated couple i ic x  there are calculated i i i= ⊗t c x . The

values of ( )i i joverlap ,∗ ⊗c t x  are presented in the table
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1 2 3 4 5 6 7 8
1 0.717 -0.018 0.014 0.027 -0.014 -0.019 -0.024 0.013
2 -0.039 0.738 0.015 0.014 0.002 0.023 -0.005 -0.016
3 -0.027 -0.017 0.646 0.004 -0.115 -0.008 0.014 0.003
4 0.007 0.003 -0.018 0.687 -0.153 0.000 -0.005 0.001
5 -0.004 0.004 -0.018 -0.008 0.707 0.041 -0.033 -0.006
6 -0.014 0.025 -0.014 -0.013 -0.030 0.714 0.000 -0.005
7 0.029 0.008 -0.003 -0.003 0.012 0.009 0.707 0.018
8 -0.003 -0.010 0.008 -0.018 0.003 -0.026 0.008 0.589

It is evident from the table, that the overlaps are sufficiently great just for
diagonal values, while the non-diagonal overlaps are smaller by an order of
magnitude. We can therefore unambiguously decide from the overlap, whether

i i i
∗ ⊗ ≈c t x  is associated with the cue ci.

2nd illustrative example
In this illustrative example we shall use the training set { }train i iA = c x ,
generated for m=10 associated couples – vectors of dimension n=1000. This
memory is represented by a memory vector 1 1 m m...= ⊗ + + ⊗t c x c x .  The
following table shows 20 experiments of „clean up“, where we used with a 50%
probability as an associative entry a vector ci from the training set or
a randomly generated conceptual vector. The table contains maximal values of
overlaps (7), by which we can unambiguously determine, whether the used
input has an associated counterpart in the training set.

# max. overlap Input index index of output with
 max.overlap

1 0.311 6 6
2 0.047 rand. gener. nonexistent
3 0.383 5 5
4 0.373 10 10
5 0.316 3 3
6 0.397 4 4
7 0.074 rand. gener. nonexistent
8 0.065 rand. gener. nonexistent
9 0.069 rand. gener. nonexistent

10 0.039 rand. gener. nonexistent
11 0.344 7 7
12 0.402 8 8
13 0.032 rand. gener. nonexistent
14 0.073 rand. gener. nonexistent
15 0.017 rand. gener. nonexistent
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16 0.004 rand. gener. Nonexistent
17 0.033 rand. gener. nonexistent
18 0.056 rand. gener. nonexistent
19 0.373 10 10
20 0.037 rand. gener. nonexistent

It follows from the table, that the associative memory with the clean up process
is unambiguously identifying, the values of a maximum overlap for conceptual
vectors well specify the existence (or nonexistence) of corresponding
associative outputs.

4. Coding of relations

Holographic reduced representation can also provide a suitable means for
encoding relations (predicates). Let us study a binary relation P(x,y), when the
Pascal code is used, this relation is formally specified by the head

( )1 2 3: ; : :function P x type y type type                              (11)
The domains, over which the single arguments of the relation are defined, are
specified by the types type1 and type2, respectively; similarly also the relation P
itself is understood as a function, which domain of values is specified by the
type type3. In many cases the domain of variables and also the domain of the
relation itself are equal to each other; therefore their specifications can be
omitted, which substantially reduces the holographic representation of relations.
The simplified form of relation (11) looks as ( );function P x y , where we
know in advance the type of variables x,  y, and also the type of the relation P
itself. The holographic representation of the relation (11) can have the
following form

( ) ( )( )
1 2

3 1 1 2 2

= + + + ⊗

+ ⊗ + + ⊗ +

t P variable variable P

type variable x type variable y type
         (12)

Their decoding is carried out step-by-step. In the first step we use the clean up
procedure to recognize the name (identifier) of the relation P and also the
names (identifiers) of its variables x and y. In the second step we identify the
type type3 of the relation P, in the last, third step we use previous results to
identify variables x, y and also their types type1 and type2. In many cases the
representation of the relation P(x,y) is satisfactory in the following simplified
form

1 2= + ⊗ + ⊗t P variable x variable y                          (13)
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The chosen method of the holographic representation of relation can be easily
generalized also for more complex (higher order) relations, where the variables
are predicates as well, e.g.  ( )( )P x,Q y,z , where the „inner“ predicate Q is
characterized  by

( )3 4 5: ; : :function Q y type z type type                            (14)

In order to create a higher order relation ( )( )P x,Q y,z , we must presume
a type compatibility of the second variable of the relation P and of the type of
relation  Q, i.e. type2=type5. In the simplified approach, where all the types are
the same, it is not necessary to distinguish the types of single variables and the
relations themselves. A simplified holographic representation of relation (14)
has the following form

1 2′ = + ⊗ + ⊗t Q variable y variable z                          (15)
By exchanging the representation (15) for the variable y in the representation
(13) we may construct “nested” representation of the higher order relation

( )( )P x,Q y,z .

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 19 20 21 22 23 2418

33 35 36 37 38 39 4034

25 27 2826 29 30 31 32

41 43 44 45 46 47 4842

Figure 3. A set of 48 similar figures, which contain two objects, placed either next to each
other, or above each other and the objects are either small or big. Every column contains
a couple of similar objects, which differ only by their placement or size.



9

1st illustrative example –a similarity between geometric figures
In the figure 15 there are presented 48=6×8 geometric patterns, which contain
either in horizontal or in vertical settings two objects, which moreover can be of
two sizes, small and big. Let us mark holographic representations of
corresponding atomic concepts as follows:

Objects: tr (triangle), sq (square), ci(circle), st (star)
Unary relations: sm (small), lg (large)
Binary relations: hor (horizontal), ver (vertical)
Variables: ver_var1 (1st variable for binary relation ver), ver_var1 (2nd

                  variable for binary relation ver), hor_ver1 (1st variable for
                  binary relation hor),  hor_ver2 (2nd variable for binary
                  relation hor)

Single figures from fig. 3 are characterized by relations given in the following
table.

 row specification
1 ver(lg(x),lg(y))
2 hor(lg(x),lg(y))
3 hor(sm(x),lg(y)) and  hor(lg(x),sm(y))
4 ver(sm(x),lg(y)) and  ver(lg(x),sm(y))
5 ver(sm(x),sm(y))
6 hor(sm(x),sm(y))

Holographic representations of single cases from this table have the
following form

1 2

2 2

2
3

2

2
4

, , 1

, , 1

1
, ,

1

1
, ,

1

_ _

_ _

_ _

_ _

_ _

_

= + ⊗ ⊗ + ⊗ ⊗

= + ⊗ ⊗ + ⊗ ⊗

 + ⊗ ⊗ + ⊗ ⊗= 
+ ⊗ ⊗ + ⊗ ⊗
+ ⊗ ⊗ + ⊗ ⊗

=
+

x y

x y

x y

x y

t ver ver var lg x ver var lg y

t hor hor var lg x hor var lg y

ver ver var lg x ver var sm y
t

ver ver var sm x ver var lg y

hor hor var lg x hor var sm y
t

hor hor var 2_




⊗ ⊗ + ⊗ ⊗ sm x hor var lg y

                         (16)

5 2

6 2

, , 1

, , 1

_ _

_ _

= + ⊗ ⊗ + ⊗ ⊗

= + ⊗ ⊗ + ⊗ ⊗
x y

x y

t ver ver var sm x ver var sm y

t hor hor var sm x hor var sm y
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where x and y are holographic representations of single objects (tr, sq, ci, st)
and the bracket u  indicates, that the vector u is normalized. The similarity
between single figures is determined by the overlap of their holographic
representations

( ) ( )similarity X ,X overlap ,′ ′= t t                             (17)
The obtained results are shown in the fig. 4. The dominant feature

controlling similarity value is the horizontal or vertical arrangement of objects.
The overlap (i.e. also the similarity) between two figures, which have different
arrangement is usually smaller than 0.1.

In general, holographic reduced representation allows fairly simple
determination of similarity of objects specified by a predicate structure (19)  or
by its generalization through further nested predicates. This possibility opens
new horizons on future developments in fundamental methods of search for
similar objects or analogies, which are considered very difficult problems for
artificial intelligence requiring special symbolic techniques [7].

0.58

0.52

0.16

0.16

0.52
0.54

0.48

0.13
0.42

0.47

0.15

0.12

0.45
0.54

0.43

0.09

Figure 4. Illustrative presentation of similar figures for two chosen figures 1 and 48 (see fig. 3).
Single arrows are marked by the overlap between the figures calculated by formula (50).

This simple illustrative example shows, that in the framework of the
holographic distributed representation one can use (at least potentially)
associative representations of the type (9), where associative cues correspond to
numbers. It means that in this distributed approach there exists a possibility of
associative simulation of an arbitrary function, which substantially increases the
potential of the method to be used universally.
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5. Reasoning by modus ponens and modus tollens

Simulation of reasoning processes (inference) belongs to the basic problems,
which are repeatedly solved in artificial intelligence and cognitive science [7-
10]. Fodor‘s critique [1] of connectionism (see ref. 9) was based precisely on
the brash conclusion, that artificial neural networks are not able to simulate
higher cognitive activities, which are purported to be an exclusive domain of
the classical symbolic approach. This Fodor’s opinion was proved to be
incorrect, further development of theory of neural networks showed, that
connectionism is a universal computational tool, which does not have limits of
applicability, it does not have domains of inapplicability, which would be
forbidden to it. Of course, it can transpire, that in some domains its application
is extremely cumbersome and exceedingly complicated, that there exist other
approaches, which in the given domain provide substantially simpler and direct
solution, than the one provided by neural networks.

In this chapter we shall show a possibility of representation of two basic
modes of deductive reasoning of modal logic,

p q
p

q

⇒
   and    

p q
q

p

⇒
                                        (18)

which are called modus ponens and modus tollens, respectively. These modes
of reasoning are equivalent to the following tautologies of the predicate logic

( )( )p q p q⇒ ∧ ⇒                                           (19a)

( )( )p q q p⇒ ∧ ⇒                                           (19b)

Implication ′⇒′ can be understood as a binary relation, which can be
in holographic distribution represented like this

1 2p q⇒ = + ⊗ + ⊗t impl var p var q                                 (20)
which contains a sum of three parts, the first part specifies the type of relation
(implication), the second and third parts specify the first (antecedent) resp. the
second (consequent) variable of the relation of implication. This conceptual
vector representing relation of implication can be transformed as follows

p q p q⇒ ⇒= ⊗t t T                                             (21a)
where

1 2
∗ ∗ ∗ ∗ ∗ ∗= ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗T var p p q var q q p                   (21b)

The transformed representation of implication is represented by a sum of two
associated couples
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p q
∗ ∗

⇒ ≈ ⊗ + ⊗t p q q p                                         (22)
which gives the holographic representation of the rules modus ponens
and modus tollens

p q⇒⊗ ≈p t q                                                (23a)

p q⇒⊗ ≈q t p                                               (23b)
The first formula (23a) can be understood as a holographic representation of
modus ponens (see (18) and (19a)), while the other formula is a holographic
representation of modus tollens (see (18) and (19b)).

A similar result can be obtained also by an alternative approach, which is
based on the disjunctive form of implication ( ) ( )p q p q⇒ ≡ ∨ . The
distributed representation of implication in this alternative form can be
expressed by

1 2p q∨ = + ⊗ + ⊗t disj var p var q                                 (24)
By a transformation of this representation we can get (see (20))

p q p q
∗ ∗

∨ ∨= ⊗ ≈ ⊗ + ⊗t t T p q q p                               (25)

where 1 2
∗ ∗ ∗ ∗= +T var q var p . This transformation is much simpler than the one

in the previous case (21b). The rules modus ponens and modus tollens are now
realized by formulas similar to (23a-b). Moreover, we get also the following
two „rules“

p q
∗ ∗

∨⊗ ≈q t p                                           (26a)

p q
∗ ∗

∨⊗ ≈p t q                                           (26b)
which remind us of the well known fallacies

p q
q

p

⇒
   and    

p q
p

q

⇒
                                       (27)

that are known as „affirming the consequent“ and „denying the antecedent“,
respectively. This fault is caused by the fact, that the transformed
representations of implications p q⇒t  and p q∨t  are not identical, the
representation p q∨t  leads to unexpected results (27), which represent erroneous
modes of reasoning (which are however often used by people without
knowledge of principles of logic).
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6. Conclusions

Holographic reduced representation offers new unconventional solution to one
of the basic problems of artificial intelligence and cognitive science, which is to
find a suitable distributive coding of structured information (sequence of
symbols, nested relational structures, etc.). The used distributed representation
is based on a binary operation „convolution“ over a domain of n-dimensional
randomly generated conceptual vectors, which elements satisfy normal
distribution N(0,1/n). Application of this distributed representation allows us to
model various types of associative memory, which are represented by
a conceptual vector and also to decode a memory vector, i.e. to determine the
conceptual (atomic) vectors it is composed of. Such an analysis of the memory
vector is carried out by a clean-up procedure that determines from the overlap
of the vectors, which of the vectors is the most similar to the memory vector.
Holographic reduced representation allows to measure similarity between two
structured concepts by a simple algebraic operation of scalar product of their
distributed representations. This fact can be very useful, when we want to
model processes, which search through memory to find its similar (analogical)
single components. In the last part of the paper we have demonstrated, that the
holographic reduced representation may be used also to model an inference
process based on the rules modus ponens and modus tollens.
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