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Abstract

Distributed representations are attractive for a number of reasons. They offer the pos-
sibility of representing concepts in a continuous space, they degrade gracefully with noise,
and they can be processed in a parallel network of simple processing elements. However,
the problem of representing nested structure in distributed representations has been for
some time a prominent concern of both proponents and critics of connectionism [Fodor and
Pylyshyn 1988; Smolensky 1990; Hinton 1990]. The lack of connectionist representations
for complex structure has held back progress in tackling higher-level cognitive tasks such
as language understanding and reasoning.

In this thesis I review connectionist representations and propose a method for the
distributed representation of nested structure, which I call “Holographic Reduced Rep-
resentations” (HRRs). HRRs provide an implementation of Hinton’s [1990] “reduced
descriptions”. HRRs use circular convolution to associate atomic items, which are repre-
sented by vectors. Arbitrary variable bindings, short sequences of various lengths, and
predicates can be represented in a fixed-width vector. These representations are items in
their own right, and can be used in constructing compositional structures. The noisy re-
constructions extracted from convolution memories can be cleaned up by using a separate
associative memory that has good reconstructive properties.

Circular convolution, which is the basic associative operator for HRRs, can be built into
a recurrent neural network. The network can store and produce sequences. I show that
neural network learning techniques can be used with circular convolution in order to learn
representations for items and sequences.

One of the attractions of connectionist representations of compositional structures is the
possibility of computing without decomposing structures. I show that it is possible to use
dot-product comparisons of HRRs for nested structures to estimate the analogical similarity
of the structures. This demonstrates how the surface form of connectionist representations
can reflect underlying structural similarity and alignment.
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Chapter 1

Introduction

Since the early 1980’s there has been considerable interest in connectionist models for
higher-level cognitive tasks such as natural language processing and reasoning. Many
models have been proposed and built. The success of these models has been mixed – most
appear to have severe limitations.

In connectionist models, even more than in other AI models, the representations chosen
for the data determine what the system can do, since the processing is generally simple.
Consequently, if we want to understand the difficulties and possibilities of applying connec-
tionist models to higher-level tasks, it is appropriate to focus on the types of representations
that are and can be used in models of such tasks.

Much of the interest in connectionist models for higher-level processing stemmed from
dissatisfaction with the limitations of symbolic rule-based systems. These include brit-
tleness, inflexibility, difficulty of learning from experience, poor generalization, domain
specificity, and sloth of serial search in large systems. Initial results with connectionist
models seemed to suggest potential for overcoming these limitations. Various connection-
ist models have tantalized researchers with many attractive properties: pattern comple-
tion, approximate matching, good generalization, graceful degradation, robustness, fast
processing, avoidance of sequential search, parallel satisfaction of soft constraints, context
sensitivity, learning from experience, and excellent scaling to larger systems.

However, no single connectionist model has had all these properties and researchers
have found it very difficult to perform higher-level reasoning tasks in connectionist models.
The difficulties can in part be traced to two characteristics of higher-level reasoning tasks.
The first is that the temporary data structures required for higher-level reasoning are often
complex, and cannot be represented in common connectionist representation schemes. The
second is that many higher-level reasoning problems appear to at least sometimes require
sequential processing, and connectionist models lack the procedural controls necessary to
control sequential processing.

The focus of this thesis is on how some of the structures that are required for higher-level
reasoning can be represented in a distributed fashion. In this introduction, I first discuss
issues of representation. Next I summarize the advantages and disadvantages of local and
distributed representations. Finally, I review Hinton’s [1987; 1990] influential notion of a
“reduced description”, which provides ideas and desiderata about the representation of
hierarchical structure in connectionist models.

I assume that the reader is familiar with the basic principles of connectionist models.
For a tutorial introduction, I refer the reader to McClelland and Rumelhart [1986].

1
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1.1 Representations, descriptions, and implementations

In this thesis I am more concerned with how complex data structures can be implemented
elegantly in distributed representations than with the choices involved in devising a good
knowledge representation for a particular task, though I do approach the latter in Chapter 6.

In contrast to Fodor and Pylyshyn [1988], but in common with Hinton, McClelland and
Rumelhart [1986], I do see implementation issues as interesting and important because
implementation choices often determine which operations are fast and easy to compute
and which are slow and difficult. Chalmers [1990] and Niklasson and van Gelder [1994]
note that connectionist representations for compositional data structures are especially
interesting because they raise the possibility of content-sensitive manipulation without
decomposition, which appears to have no analogue in conventional symbol-based repre-
sentations.

Some authors use the word “representation” to refer to a scheme for representing a
class of entities, and “description” to refer to the way a particular entity is described. I
use “representation” to refer to both representation schemes and descriptions of particular
entities – the context should make the intended meaning clear.

1.2 Connectionist models

A connectionist model is typically a fixed network of simple processing units. The units
are connected by weighted links and communicate only via these links. The messages sent
along the links are typically scalar values, which are modulated by the weight on the link.
Units compute some simple function of the input they receive, such as the sigmoid of a
weighted sum. The value of the function is the state or activation of the unit, and this is the
message passed on to other units. In nearly all connectionist models, units can (in theory)
compute their values in parallel, and the overall computation time is short – on the order
of 100 steps or less.

There are two distinct locations for representing knowledge (or more neutrally, data) in
connectionist models. The first is in the activation values of the units. These are typically
used for representing short-term data; the particular instance of the task, intermediate
states in the computation, and the result. The second location for representing knowledge
is the weights on the connections among units. These comprise the long-term memory
of the model and are typically used for representing knowledge about the domain. They
can also be used to store particular episodes – the weights can be set so that they can later
reinstantiate a particular activity pattern over the units.

There are really only two ways in which links can be used to encode domain knowledge.
One is as constraints on solutions to a task, the other is as transformations between input
and output patterns. Constraints are often used with those localist models that process by
settling to a stable or low-energy state. These states are (or are hoped to be) those in which
most constraints are satisfied. In the network the constraints represented by a link are very
simple: either the connected units should be active together (an excitatory link), or if one is
active, the other should inactive (an inhibitory link). Constraints are generally soft, in that
they can be overridden – the importance of a constraint is indicated by the weight on the
link. Pattern transformations are generally used in feedforward and recurrent networks,
and are usually learned from examples. Some networks, such the Hopfield [1982] network
(an error-correcting associative memory) can be interpreted in both ways.
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There is far more diversity of representation schemes for the temporary data structures
necessary to solve a given instance of the task. The components of the task can be sentences,
words, letters, phonemes, features, concepts, visual or auditory signals, measurements, etc.
These components must be represented as activations over the units of the network. To
a large extent, the representation chosen for the task constrains how the knowledge is
encoded in the links and determines what the network can compute.

1.3 Representational issues

Representations are of critical importance in connectionist models. To a large extent, the
representation scheme used determines what the system can compute. Representations
are the source of both strengths and weaknesses of connectionist models. Carefully con-
structed connectionist representations can endow systems with useful properties such as
robustness, ability to learn, automatic generalization, graceful degradation, etc. These
properties tend to be more associated with distributed representations than with local
representations (though local representations are not without uses). However, there are
serious problems with the adequacy of distributed representations for storing the type of
information necessary to perform complex reasoning.

In this section I give an overview of issues that arise with connectionist representations.
The issues concerning representational adequacy, computational properties, scaling, and
suitability for learning are central to this thesis. There are other important but less pressing
issues which I mention here but do not return to.

1.3.1 Representational adequacy

A system will not be able to perform complex reasoning tasks if it cannot even represent
the objects involved in the tasks. For many complex tasks it seems necessary to be able to
represent complex structures, such as hierarchical predicates. This is an issue especially
for models using distributed representations. When distributed representations first began
to catch people’s interest there was no satisfactory way of representing complex structure
with them, and although several methods have been proposed since, all have had serious
drawbacks. The difficulty with representing complex structure was highlighted by Fodor
and Pylyshyn [1988] in their strong and influential criticisms of connectionist models.

The main categories of structures that complex reasoning seems to require are: vari-
able bindings, sequences of arbitrary length, predicate structures, and recursive predicate
structures. Some sort of variable binding is required anywhere that general rules are used.
Systems which deal with sequential input, such as written or spoken language, must have
some way of storing relevant aspects of the input, since the appropriate output may depend
upon input encountered some time previously. For example, in speech understanding, the
appropriate interpretation of vowel sound can depend on the preceding sounds. Often,
the amount of input that must be stored is unknown. The ability to represent predicate
(relational) structures is necessary in systems which deal with input in which relationships
among the entities are important. In tasks like language understanding, the relationships
can be hierarchical, leading to the need to represent hierarchical predicates. For example,
the object of a predicate such as ‘think’, ‘see’, or ‘want’ can be another predicate.

Connectionist representations are often very different from conventional data struc-
tures, such as variables, records, lists and trees. Sometimes the representations are nearly
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unintelligible and appear to have little or no relationship to conventional data structures.
However, if the model can be proved to work correctly, then it must be representing the
information required for the task in some fashion. Often, this can be analyzed in terms
of conventional data structures. Furthermore, when designing a connectionist model to
perform some task, one must consider what sort of structures the model is going to rep-
resent and how it will manipulate them. When designing or analyzing connectionist
representations for complex structures, a number of questions concerning several aspects
of representation and processing arise:

� Composition, decomposition and manipulation: How are components composed
to form a structure, and how are components extracted from a structure? Can the
structures be manipulated using connectionist techniques?

� Productivity: A few simple rules for composing components can give rise to a huge
variety of possible structures. Should a system be able to represent structures unlike
any it has previously encountered, if they are composed of the same components and
relations?

� Immediate accessibility: What aspects of components and structures does the repre-
sentation make explicit and accessible without pointer-following?

� Systematicity: Does the representation allow processes to be sensitive to the structure
of the objects? To what degree are the processes independent of the identity of
components of structured objects? (The term ‘systematicity’ comes from Fodor and
Pylyshyn [1988].)

There have been three broad classes of reactions to the problem of representing complex
structure. The first is exemplified by the argument of Rumelhart and McClelland’s [1986b]
that the importance of the ability to compose and decompose complex structure is over-
rated. The second is exemplified by the work of Smolensky [1990] on designing connec-
tionist representations for complex structure. The third is exemplified by the work of
Pollack [1990] and Elman [1990] on connectionist networks which learn representations for
complex structure. In this thesis, I take the same approach as Smolensky, because I believe
compositional structure is important, and because the properties of designed representa-
tions are easier to analyze and understand than those of learned representations.

1.3.2 Computational properties

The computational properties of a representation relate to what can be computed using the
representation, the simplicity and speed of the computation, and the resources required.
Connectionist networks usually have very simple processing, so if a representation does
not make something simple to compute, it most likely cannot be computed by the network
at all.

Computational properties commonly possessed by connectionist representations, and
often cited as reasons for interest in connectionist models, include the following:

� Immediate accessibility (explicitness): information can be extracted with simple pro-
cessing and without further access to memory.
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� Analogical representation: similar objects have similar representations.1

� Representational efficiency: representational resources are used in an information-
efficient manner.

� Affordance of generalization: the representation supports generalization of knowl-
edge.

� Robustness and graceful degradation: the information in the representation is still
usable when parts are corrupted or missing.

� Affordance of error correction and pattern completion: the representation contains
redundant information which makes this possible.

� Affordance of easy associative access: the representation make associative access
simple.

This list is not, and cannot be, complete, because it is always possible to invent new
representations with novel computational properties. The properties in this list are inter-
related, and some can be considered as superclasses or prerequisites of others.

The most important of these properties is immediate accessibility. Information in a
representation immediately accessible if it can be extracted with little computation and
without further access to memory (as would be entailed by pointers). Accessibility, or
explicitness, is really a matter of degree: information that requires only a little computation
to extract is somewhat explicit, but information which requires extensive computation to
extract is non-explicit. Almost all connectionist representations are explicit – by necessity,
since the processing they use is so simple.

One type of explicitness that is ubiquitous (and very useful) in distributed represen-
tations is explicit representation of similarity. Similarity is explicit when the information
of which similarity is judged is immediately accessible. This type of explicitness is one of
Marr’s [1982] desiderata for representations of 3-D objects, which specifies that represen-
tations should be analogical. By this he means that representations should in some sense
be analogues of the objects they represent, and should reflect their similarity. Another of
Marr’s desiderata, which complements that of having analogical representations, is that
representations should make differences between similar objects explicit. This property
has been discussed little in connectionist work to date, but will probably become important
as connectionist models grow more sophisticated.

I will have more to say on the other computational properties in the next section, where
I discuss local and distributed representations.

1.3.3 Scaling

Connectionist models are often demonstrated on toy problems which involve only a small
fraction of the entities and relationships found in real-world problems. Hence, the way
in which the resource requirements of a representation scale with increasing numbers of
entities and relationships is important. The way in which increasing size of representation
affects the rest of the system must also be considered. For example, if the number of

1In connectionist systems, the vector dot-product (inner-product) is often used as a measure of the similarity
of two representations.
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components in a representation scales linearly with the number of different objects, and
the system involves interactions among all pairs of components of the representation, then
the scaling of the entire system is quadratic.

1.3.4 Learning representations for new concepts

One of the main attractions of connectionist models is their ability to learn. This is related
to scaling: while it is possible to fashion by hand representations for toy problems, it
would be very time consuming and difficult to fashion representations for real-world
problems. Consequently, the suitability of a representation for use with learning algorithms
is important.

1.3.5 Other representational issues

There are a number of philosophical issues which arise in symbolic artificial intelligence
research, and which also are relevant to connectionist research. However, connectionist
models have not, for the most part, reached the level of sophistication where these issues
become crucial. Hence, I mention these issues here, but do not present any detailed
discussion of them. There are also other technical issues concerning meta-level reasoning
and procedural control, which I mention here but not elsewhere for similar reasons.

Sophistication of knowledge representations

Most connectionist models have extremely simple knowledge representation schemes that
do not make strong distinctions between ontological categories such as concepts, roles,
classes, and individuals. Whether or not the lack of these distinctions is a problem remains
to be seen. Some connectionist representations do support abilities such as property
inheritance, without marking entities as concepts, subconcepts, or individuals. Generally,
these abilities arise from analogical properties of the representations.

The Knowledge Representation Hypothesis

The Knowledge Representation Hypothesis [Brachman 1985b] is an explicit statement of an
idea that has guided much work in symbolic artificial intelligence. It states that intelligence
is best served by representing knowledge explicitly and propositionally. Connectionist
researchers would, for the most part, appear not to believe in this hypothesis. In some
connectionist models knowledge about the domain is represented propositionally, e.g., in
Shastri’s [1988] and Derthick’s [1990] models, but this knowledge is compiled into the
links of the network and the processing does not access the propositional representations.
Most connectionist researchers appear to take the view that if the relevant aspects of the
particular task are represented suitably, then fast processing can be accomplished with
knowledge represented implicitly in the links of the network.

Logical soundness and completeness vs. computational tractability

Connectionist models do not escape the tradeoff between computational tractability and
logical soundness and completeness [Levesque and Brachman 1985]. However, compu-
tational speed has always been important to connectionist researchers, and most models
are built to provide fast answers, but with no guarantee of correctness. Shastri [1988] is
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one exception; he has investigated what types of limited reasoning can be performed both
soundly and correctly.

Meta-level reasoning

Almost all connectionist models make a strong distinction between long-term knowledge
about how to perform the task, which is stored in the weights on the connections, and
the short-term knowledge about a particular instance of the task, which is stored in the
unit activations. It would seem impossible to reason about the rules, because they are
represented in the weights and cannot be (at least directly) transferred into the activations.
However, some other types of meta-level reasoning, e.g., monitoring the progress of a
long chain of processing, are possibly very useful. A way to do this might be to have one
network monitor the activity of another.

Procedural control

Connectionist models which perform higher-level reasoning such as following chains of
inferences will undoubtably require some form of procedural control, possibly involving
subroutines. Ideally, the behaviour of the control mechanism should be error-tolerant and
generalize to novel situations. Very little work has been done on this problem.

1.4 Connectionist representations

There are two distinct styles of representation used for short-term data in connectionist
models: local and distributed representations. They appear to have quite different proper-
ties but are best regarded as end-points of a continuum. I am most interested in distributed
representations, but, as there is some insight to be gained from considering local represen-
tations, I will discuss both in this introduction. The main topic of the remainder of this
thesis is how complex structure can be embodied in distributed representations in a way
which preserves the attractive properties of distributed representations.

1.4.1 Local representations

In a local representation concepts (objects, features, relationships, etc) are represented by
particular units. For example, the “celestial body” sense of “star” is represented by a single
unit in Pollack and Waltz’s model of word sense disambiguation. Activity on this unit
represents the “celestial body” meaning of the word “star”, as opposed to the “movie star”
sense. Local representations are commonly used in constraint satisfaction and in spreading
activation networks.

Advantages of local representations

The advantages of local representations mostly relate to explicitness and ease of use. Some
prominent advantages are the following:

� Explicit representation of the components of a task is simple.

� The interface for the experimenter is convenient.
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� It is easy to represent a probability distribution over different possibilities.

� It is relatively easy to design representational schemes for structured objects.

The principal virtue of localist representations is that they make all the possible com-
ponents of a solution explicit. A unit represents a component, and activity on the unit
represents the presence of that component in the solution. Global constraints on solutions
are transformed into a set of simple local constraints, each involving two of the possible
components of the solution. These simple constraints can be reinforcing or inhibiting; the
presence of one component encourages or discourages the presence of another component
in the solution. Each simple constraint on how components interact is implemented by an
excitatory or inhibitory link. The constraints are usually symmetric: if A and B are linked,
then A excites or inhibits B to the same degree that B excites or inhibits A. Converting
constraints to simple local constraints can require the creation of more units. For example,
if the existence of a relationship between two entities depends on the existence of another
relationship between two other entities, then units must be assigned to these relationships.
This can lead to large numbers of units for even simple problems. Once all the interacting
components are explicitly denoted by units, and constraints embodied in links, reasonably
good solutions can be found using simple computation. If links are symmetric, the compu-
tation can be viewed in terms of energy minimization (as in Boltzmann machines [Ackley,
Hinton and Sejnowski 1985] and Hopfield networks [1982]).

Local representations are convenient to use for input and output to a network because
they are simple and unambiguous and can be easily compared against desired results.

Presenting output as a probability distribution over possibilities is very useful for tasks
which involve prediction or classification. This requires using activation values between
zero and one and constraining the activations of a set of units to sum to one. The units
must represent a complete set of mutually exclusive possibilities.

Problems with local representations

The main problems with local representations concern inefficiency and learnability:

� Inefficiency of local representations for large sets of objects.

� Proliferation of units in networks which represent complex structure.

� Inefficient and highly redundant use of connections.

� Questions about the learnability of elaborate representations for complex structure.

There are several ways in which local representations are inefficient. The most obvious
way is that it is inefficient to use n units to represent n different objects. While it might
be practical to use a hundred units to represent one hundred different objects, it is seldom
practical to use a million units to represent one million different objects. Another type
of inefficiency occurs with some localist representations for complex structure. When
problems involve complex structure, the number of possible components of a solution
tends to increase very quickly with the size of the problem. Representations which devote
units to all possible components of a solution tend to require very large numbers of units
for large problems. The third way in which local representations can be inefficient has to
do with the use of connections. If A and B are units representing similar things, then A and
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B will have similar interactions to other units. However, in a localist network, these similar
interactions must be represented by independent duplicate sets of links. This can result
in duplication and inefficient use of links. All of these inefficiencies lead to poor scaling
properties.

The types of networks which researchers design to perform complex reasoning tasks are
quite elaborate. Although various learning algorithms can be used with localist networks,
none of these algorithms would be able to derive localist networks such as those I review in
Chapter 2. Furthermore, the representations derived by connectionist learning algorithms
which do build internal concepts, such as multilayer feedforward (backpropagation) net-
works, tend to be distributed rather than local.

1.4.2 Distributed representations

Hinton et al [1986] define a distributed representation as one in which each concept is
represented over a number of units, and in which each unit participates in the representation
of a number of concepts. The size of distributed representations is usually fixed, so that
the representation can be instantiated over a fixed set of units. The units can have either
binary or continuous-valued activations.

Hinton et al [1986] give a good general introduction to distributed representations.
Anderson [1973] proposes and analyzes a psychological model for memorizing lists,
which uses superimposed continuous distributed representations. Rosenfeld and Touret-
zky [1987] discuss binary distributed representations and analyze how many patterns can
be superimposed before the individual patterns become unrecognizable. Van Gelder [1990]
analyzes distributed representations from a more philosophical viewpoint and develops
an alternative definition to that of Hinton et al.

In some distributed representations the individual units stand for particular features,
like “is-red”, and in others it is only the overall patterns of activity which have meaning.
Hinton et al [1986] use the term “micro-features” to describe individual units which can
be given an unambiguous meaning. To the extent that this can be done, these parts of the
representations are like local representations.

Distributed representations are in many ways analogous to greyscale images or pho-
tographs. Distributed representations are vectors (one dimensional arrays) with many ele-
ments (units). Concepts are represented by patterns in this continuous, high-dimensional
space. Greyscale images are two-dimensional arrays with many elements (pixels). (The
two-dimensional nature of images is irrelevant to this analogy, what matters is that ele-
ments of a greyscale image take a scalar value, and have a fixed position.) Physical objects
are represented by patterns in this fine grained, high-dimensional space. In both, the in-
formation content is distributed and redundant, which makes them robust and suitable
for error correction. Many pixels in an image can be changed without making the image
unrecognizable. Similarly, in a distributed representation some noise can be added to the
activation levels of units without making the representation of an object unusable.

When viewing superimposed images (like multiple-exposure photographs) it is easy
to tell apart the individual images if they are distinct and coherent. Similarly, distributed
representations of several items can also be superimposed by adding the vectors together.
It is easy to identify the various items in the resulting vector, provided that they are not too
similar and the representation has sufficient capacity.
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Advantages of distributed representations

The attractiveness of distributed representations is largely due to the ease of endowing
them with the following computational properties:

� Explicit representation of relevant aspects of objects.

� Analogical representation, i.e., similar representations for similar objects (explicit
similarity).

� Redundant storage of information.

� Efficient use of representational resources.

� Continuity, i.e., representation in a continuous vector space.

Explicitness is possible with distributed representations because they are wide and flat,
which provides much opportunity for representing relevant aspects of objects. Explicit
representation makes fast processing possible, because it is not necessary to chase pointers
or perform deductions to get at the information in a representation.

A ubiquitous type of explicitness is that which makes similarity explicit – similar con-
cepts have similar representations. The similarity of distributed representations can be
defined as the Euclidean or Hamming distance between two representations, which can
be computed quickly. Thus, the similarity of objects represented by distributed represen-
tations can be quickly computed.

Explicit similarity, the ability to represent similar objects by similar representations, is
probably the most useful property of distributed representations. It can assist in the fast
retrieval of similar instances from memory, and in matching against prototypes and rules.
In Chapter 6, I investigate how far this idea can be taken – I look at whether distributed
representations can support judgements of the structural similarity of structured objects.

Automatic generalization is another useful benefit of explicit similarity. The nature of
processing in connectionist models, which involves units computing weighted sums of
their inputs, results in systems that usually respond similarly to similar representations. A
novel input that is similar to a familiar input will likely result in an output similar to that
for the familiar input, which will often be an appropriate output for the novel input.

Information in a distributed representation is generally stored in a redundant fashion –
we only need to see some part of the representation to know what the whole is. Because of
this, distributed representations are robust in the presence of noise and degrade gracefully
as noise is added. Redundancy makes pattern completion and error correction possible.

The ability to superimpose the representations of multiple items in the same set of units
is another benefit of redundancy. Individual items can still be recognized, depending on
the degree of redundancy and the number of representations superimposed. There is a soft
limit to number of items that can be superimposed – representations degrade as items are
added.

Distributed representations usually require far fewer units to represent a set of objects
than do local representations. This is because the number of possible patterns of activation
over a set of units is much greater than the number of units. At one extreme, a binary-
number style representation is maximally efficient – there are 256 different patterns of
ones and zeros over eight units. At the other extreme, a local representation is minimally
efficient – eight units can represent only eight different objects.
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The efficiency of a representation has consequences for the rest of the system. An
inefficient representation can lead to duplication of computational machinery. For example,
in a local representation, two units representing concepts which interact with other concepts
in the same or a similar way will have many similar connections, which could likely be
avoided through the use of a more efficient representation.

To some extent, efficiency is in opposition to redundancy (though inefficiency does
not necessarily result in redundancy). However, in practice, a moderate number of units
provides so many possible patterns that it is easy to make distributed representations
sufficiently efficient and redundant.

If units have continuous activation values, then concepts are represented in a continuous
vector space. One benefit of continuity is that it makes for natural representations of
inherently continuous concepts, such as colour, the degree of danger presented by a wild
animal, or the meaning of an utterance. This gives a system the potential for coping with
such things as nuances of meaning and slight variations in context .

Another important benefit is that having a continuous representation space allows
us to make small changes to representations. This means that continuous distributed
representations can be used in neural networks that learn by gradient descent techniques.
An appropriately constructed system can learn good distributed representations for the
objects in its domain.

Problems with distributed representations

The main problems with distributed representations are the following:

� Difficulties with representing arbitrary associations and variable bindings.

� Difficulties with representing sequences of arbitrary length.

� Difficulties with representing predicates and hierarchical structure.

� Questions about the origin of patterns which represent particular objects.

� Difficulties with using distributed representations for input and output to the net-
work.

The main problems with distributed representations concern representational adequacy.
Work on models for complex tasks has been held back by difficulties with representing
complex structure.

In many types of distributed representations, patterns can be superimposed to indicate
the presence of several different objects. However, this does not represent associations
between the objects. Furthermore, crosstalk and illusory conjunctions can occur. For
example, if we store ‘red circle’ and ‘blue square’, by superimposing the representations
of ‘red’, ‘circle’, ‘blue’, and ‘square’, it will appear as though ‘red square’ was also stored.
The same problems arise with variable binding.

Storing variable-length sequences in distributed representations is difficult, because
both the identity and the order of inputs can be important and must be remembered. One
of the most common techniques for dealing with time varying input is to turn time into
space, which is done by having a set of buffer units for storing the input for some fixed
number of timesteps in the past. As each new input is received, previous inputs are shifted
back in the buffer. This is somewhat inelegant and is limited in that the network only
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remembers inputs for however many time-slices there are in the buffer – input which is
pushed out of the end of the of the buffer is irretrievably lost. A different approach is to
use recurrent networks (Section 2.3.2) to try to learn what and how much input must be
remembered.

A distributed representation of a predicate such
���������
	�����������������

(for “Spot bit Jane”)
must be carefully designed to preserve the information about which entity is associated
with which role. An obvious way to avoid ambiguity about who is the agent (‘Spot’)
and who is the object (or patient, ‘Jane’) is divide the representation into several blocks,
and devote a block to each role. However, this method is unsuitable for representing
recursively nested predicates such as “Spot bit Jane, causing Jane to flee from Spot”:
� ����	��������������
	�������������������! #"��$���%�������&�%	'�������� , because the representation of a predicate is
larger than the representation of an object, and cannot be squeezed into the same set of
units. The difficulty is not so much with representing the objects involved (we could
simply superimpose them) as it is with representing the relationships among the objects in
an unambiguous and explicit fashion.

Another concern with distributed representations is how the patterns are obtained.
Researchers have generally used one or a combination of the following three methods:
hand-design, random generation, or learning. In many of the early connectionist systems,
the representations were designed by hand, using units to code for features of objects. This
made it easy to introduce and control explicit similarity among representations, which often
underlie the interesting properties of these systems. However, hand-design tends to be
unsatisfactory for several reasons: it is very laborious to construct representations for each
entity a system deals with, sometimes the relevant features of the objects are not known,
distributed representations are often so wide that there are many more units than features,
and finally, an intelligent system should be able to develop its own representations.

Another method for obtaining patterns is to use random patterns. This is done in many
psychological models, e.g., those of Anderson [1973], and Murdock [1982]. In Chapter 3,
I describe how this method can be combined with feature-based methods in order to
introduce explicit similarity among representations.

The most promising and interesting method for obtaining patterns is to have the system
learn appropriate representations for the given task. Hinton showed that this could be
done in a feedforward network trained using backpropagation, I describe this and related
methods in Section 2.2.2.

Distributed representations are usually not suitable for input and output to a network,
because they do not provide a single value which indicates to what degree some object
is present in the representation. This is not a big problem, but it is usually necessary to
translate between distributed and local representations for input and output. This can
require significant amounts of computation, especially for translating from distributed to
local representations.

1.4.3 Relationships between local and distributed representations

The definitions of local and distributed representations are matters of degree. Representa-
tions in which many units are active are fully distributed, those with just a few units active
are somewhat local and are sometimes called sparse distributed representations, and those
with just one unit active are fully local. Furthermore, whether or not we consider a repre-
sentation to be local or distributed depends on which level at which we examine it. The
representation of the lowest-level concepts or features in a model may be clearly “local”
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while the representation of concepts composed of those features may have the charac-
teristics of a distributed representation. One such system is Derthick’s [1990] � KLONE
(Section 2.1.2).

Smolensky [1986] discusses transformations between local and distributed representa-
tions, and the conditions under which operations on both are equivalent. Transforming
representations of a set of objects from a local representation to a distributed one is sim-
ple. It usually just involves superimposing the distributed representations of the objects
present in the local representation. If the superposition operation is linear (as opposed
to a non-linear threshold operation), then this transformation from local to distributed
representations is linear. A system which performs linear operations on the distributed
representation is equivalent to one which performs linear operations on the local represen-
tations. If the distributed representations for all objects are linearly independent, then there
is a linear transformation from the distributed to the local representation. However, requir-
ing linear independence of patterns is inefficient, as there are only n linearly independent
patterns over n units.

Some representations like the binary system for numbers satisfy the definition of a
distributed representation, but there is a common sentiment that they are not distributed
representations (e.g., van Gelder [1990]). I would claim they are distributed representations,
but without most of the useful properties that distributed representations make possible.
The aspect of numbers which binary representations make explicit is the powers of two
whose total equals a number. This is useful for logic circuits that add and multiply numbers,
but it is not very useful for anything else. In particular, the similarity structure this induces
on numbers has little relationship to any human judgements of similarities of numbers.

1.5 Reduced Descriptions

Hinton [1987; 1990] originated the idea of a “reduced description” as a method for encoding
complex conceptual structure in distributed representations. Reduced descriptions make
it possible to use connectionist hardware in a versatile and efficient manner. According to
Hinton, there should be two ways of representing a compositional concept (i.e., a structured
object whose parts are other, possibly compositional, objects). One way is used when the
concept is the focus of attention. In this case all the parts are represented in full, which
means the representation of the concept could be several times as large as that of one of
its parts. The other way of representing the concept is a reduced description, which is
used when the concept is not the focus of attention, but is a part in another concept. In
this case the representation of the concept must be the same size as that of other parts.
Concepts are taken to be simple frame-like structures, with a number of roles or slots.
Relations (predicates) can be represented by allowing one role to be the relation name and
the other roles to be the arguments of the relation. The two different ways a concept can be
represented in the system are shown in Figure 1.1. The concept D, which has E, F, and G
filling its roles, can either be the focus of the system, or can be a filler in the representation
of the concept A. A reduced description is like a label or pointer for a concept, to be used
when we want to refer to the concept, but not focus on it. Since reduced descriptions
provide a pointer-like facility, they allow us to represent concepts linked in an arbitrary
tree or graph structure.

Figure 1.2 shows the steps involved in accessing a full representation from a reduced
description. To begin with, the full concept A is instantiated in the network. The reduced
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Figure 1.1: Two ways of mapping a conceptual structure (the tree on the left) to the units
in a connectionist system. In the first way (the solid arrows) the concept D is the focus of
attention, and the fillers of its roles are mapped to the appropriate sets of units. In the second
way (the dashed arrows) A is the focus of attention and just the reduced description for D
is mapped to a set of units. The rectangles labelled ‘Whole’, ‘Role 1’, etc, are sets of units
over which a distributed representation can be instantiated. (Adapted from Hinton [1990].)

description of concept D is the filler of its third role. To access the full representation of D
we first transfer D into the focus position, and then expand the reduced description of D
to get its full representation.

This scheme for mapping structures to hardware is versatile and efficient because it
allows many different concepts to be represented on the same hardware. An alternative is
to have hardware dedicated to each different type of concept, but this can require excessive
amounts of hardware and cannot easily represent nested structures.

Hinton’s description of reduced descriptions involve four desiderata, all of which seem
to be essential for any useful distributed representation of structure:

� Representational adequacy: it should be possible to reconstruct the full representation
from the reduced description.

� Reduction: the reduced description should be represented over fewer units than the
full representation.

� Systematicity: the reduced description should be related in a systematic way to the
full representations.

� Informativeness: the reduced description should tell us something about the concept
that it refers to, without it being necessary to reconstruct the full representation.

The necessity of the first desideratum is self-evident – if the reduced description does
not provide enough information to reconstruct the full representation, then it is not an
adequate representation. The second desideratum comes from practical considerations
of working with a fixed-size set of computational units. Furthermore, the precision with
which activation values must be represented should not be greater for the reduced de-
scription than for the full description – it is possible, but not realistic, to store an infinite
amount of information in an infinite precision number. This means that the reduced de-
scription must have less information about components than the full description – some
information must be thrown away in constructing the reduced description. This ties in
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Figure 1.2: A network focusing on a reduced description (D) in another concept (A) and
expanding it to a full representation (E F G). (Adapted from Hinton [1990].)

with Miller’s [1956] notion of a chunk and his claim that people can store “seven plus or
minus two” chunks in short-term memory. The idea of “recoding” a set of items (which
are themselves chunks) into one chunk is central to Miller’s explanations of how human
short-term memory works. A reduced description is equivalent to a chunk, and a full
representation is equivalent to the contents of the chunk.

The third and fourth desiderata are for something more than that supplied by conven-
tional pointer-based ways of representing hierarchical structure. Pointers are generally
arbitrarily related to the contents of the structure they point to. Having a systematic rela-
tionship between label and structure makes it easier to find one given the other. The desire
for informativeness is for a form of representational explicitness – the reduced representa-
tion should make explicit some information about the concept it refers to.

Pointers in conventional random access memory serve the same structural function as
reduced descriptions. A record corresponds to a concept, and fields in a record are the
roles. The contents of the fields are the fillers. The entire record is the full representation
of a concept, and the pointer to the record is the reduced description. Complex structure
is represented by allowing fields to be pointers to other records. If we have a pointer, we
can reconstruct the full concept by following the pointer (i.e., by accessing the memory).
However, without the use of some sort of indexing, it is difficult to find the pointer to a
structure given its contents.

The difference between pointers and reduced descriptions is that the relationship be-
tween a pointer and what it points to is arbitrary. Pointers tell us nothing about what they
point to – the only way we can find anything out about the record pointed to, or its fillers,
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is to follow the pointer.2 Hash indexing is a technique from conventional data-structure
theory which is close in spirit to reduced representations. It provides a way of deriving
the “label” of a full representation given its contents. However, memory lookup is usually
necessary to find the contents given the label.

The chief potential advantage of reduced descriptions over pointers is that they could
provide more explicit labels for concepts. This could make it possible to process concepts
more efficiently, since it would not always be necessary to follow pointers to discover
information about subconcepts.

A reduced representation can be seen as a compressed version of a full concept. The
compression must be invertible, since we need to be able to reconstruct the full concept
from the compressed version.3 Unfortunately, Hinton [1990] did not have any way of
implementing reduced descriptions, he only described the properties reduced represen-
tations should have. Pollack [1990] used backpropagation to learn reduced descriptions
for tree structures (Section 2.4.2). In Chapter 3, I describe a way of constructing reduced
representations from first principles.

1.6 Discussion

The computational properties which can be built into distributed representations make
them worth considering as a representation for higher-level cognitive tasks. In Chapter 2, I
review various connectionist models that are relevant to the representation and processing
of complex structure, paying particular attention to representation schemes.

In Chapter 3, I present and discuss a representational scheme for hierarchical structure,
called “Holographic Reduced Representations” (HRRs), which I believe overcomes some
of the flaws of other representations. HRRs use a simple scheme for building up repre-
sentations of structures from representations of components, and are amenable to analysis.
HRRs support the useful properties of distributed representations that were identified in
Section 1.4.2: explicitness, redundancy, continuity, and efficiency. In Chapter 4, I describe
how HRRs can be implemented with distributed representations based on complex-valued
numbers. This makes some of the operations faster to compute, and makes it possible to
perform an advantageous type of normalization.

In Chapter 5, I describe how the convolution operation, the basic association mechanism
for HRRs, can be incorporated into recurrent networks. This allows representations for
items and arbitrary length sequences to be learned using gradient descent procedures. I
claim that for the purposes of storing sequences in a ‘context’ layer (à la Elman [1990],
described in Section 2.3.2) this type of network is superior to a standard recurrent network.

In Chapter 6, I investigate the extent to which the explicit similarity of HRRs is related
to useful forms of similarity. It is obvious from first principles that HRRs will induce
some sort of similarity structure on structured objects, since convolution is a similarity-
preserving operation. The question is whether the induced similarity structure is useful
or related to any other commonly used measures of similarity. I discuss Gentner and

2Except in “tagged” memory hardware, such as that used in some LISP machines. In these systems, several
address bits are used to indicate the type of the object at that address, e.g., atom or cons cell. This helps to
increase the speed of LISP programs.

3MacLennan [1991] claims this is impossible to do with continuous representations, due to a theorem of
Brouwer’s which states that Euclidean spaces of different (but finite) dimensions are not homeomorphic. This
means that it is not possible to have a continuous function f : En � En � En with a continuous inverse
f �

1 : En � En � En.
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Forbus’s [1989] notions of the analogical similarity of structured objects. Using a set of
simple examples, I show how the similarity structure induced by HRRs captures some
aspects of analogical similarity, and how including other types of associations in addition
to role-filler associations can help to capture more aspects of analogical similarity.

In Chapter 7, I discuss various issues: how HRRs can be transformed without decom-
position; differences between HRRs and some psychological notions of chunks; how other
vector-space multiplication operations could be used instead of convolution; how a disor-
dered variant of convolution might be implemented in neural tissue; and weaknesses of
HRRs.



Chapter 2

Review of connectionist and
distributed memory models

In this chapter, I review various connectionist models and distributed memory models
that are relevant to performing higher-level tasks. I begin with some localist models
for higher-level reasoning, and then describe some distributed models which deal with
simple structures. Following that I discuss some models which have dealt with problems
of representing hierarchical structure in implicit ways, by trying to get relatively simple
recurrent networks to learn to process language. Finally, I discuss some models and
representation schemes which are explicitly designed to represent hierarchical structure.
The selection of models for this review was made on the basis of how interesting, novel, or
influential the representation scheme is. The primary goal of this review is to discuss the
advantages and disadvantages of various connectionist representation schemes, so I tend
to ignore aspects of these models that do not have much to do with representational issues.
The secondary goal is to familiarize the reader with the range of connectionist approaches
to higher-level cognitive tasks, and the limitations that many of these approaches share,
the most prominent of which are difficulties with scaling up to larger than toy problems.
The reader who is only interested in models closely related to HRRs should just read
Section 2.2.3 and from Section 2.4.2 onwards.

2.1 Localist connectionist models

Localist networks that compute by spreading activation and local inhibition were among
the first connectionist models of higher-level tasks. A unit in one of these networks
generally represents a proposition, and the activation of the unit represents the degree of
truth or likelihood of the proposition. Links represent interactions between propositions;
propositions can either activate or inhibit each other. The networks are run by allowing
them to settle to a stable state. Some of the more formal work with localist networks treats
links as constraints between propositions, and analyzes the settling of the network as a
search for an energy minimum.

One of the main attractions of this type of model is its style of computation, in which
multiple and diverse constraints are satisfied in parallel. This contrasts with the generally
sequential style of computation in rule-based models. In rule-based models much time can
be wasted searching entire classes of answers that will be rejected en-masse by constraints
applied later in processing.

18
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The representations are generally local in the sense that units represent propositions in a
one-to-one fashion. However, as pointed out in the discussion of the local versus distributed
issue (Section 1.4.3), sometimes local representations can be considered to be distributed
at a higher level, at which the units are the features of objects. Derthick [1990] emphasizes
this point, and his model is sensitive to similarities induced by sharing representational
units.

In all of these networks, relevant propositions are made explicit by devoting units to
represent them. It is this enumeration of propositions which makes possible the simple style
of computation. Everything that needs to be considered, including all possible interactions,
is laid out explicitly. Connections usually encode pairwise interactions between atomic
entities, so interactions among more than two units must be expressed as several pairwise
interactions, which requires more units. The downside of this simple and explicit style
of representation is that networks can become very large when there are many possible
propositions. Holyoak and Thagard’s [1989] ACME, which performs analogical matching,
is an example of this; the propositions are hypothesis about matches between structure
elements, and there are many possible matches when the structures contain many elements.

In most of the networks described here the representations and the interactions are
constructed by hand or by a computer program from a priori knowledge, rather than being
learned from examples. Shastri’s system is an exception to this – its connection strengths
are derived from frequency observations. There are other localist systems which learn
connection strengths, e.g., Neal’s [1992] and Pearl’s [1988] belief networks. Furthermore,
general schemes such as the Boltzmann machine learning algorithm [Ackley, Hinton and
Sejnowski 1985] can be used to learn connection strengths in a localist network.

I review six models here: three for parsing natural language, two for doing simple
inference, and one for mapping analogies. Natural language processing is a popular task
because it requires complex temporary data structures, and more processing power than
provided by a finite state machine. Explicit representation is a common theme in these
models – and it results in large networks when many combinatorial interactions must each
be represented with separate nodes.

2.1.1 Interpreting and parsing language by constraint satisfaction

Waltz and Pollack: “Massively Parallel Parsing”

Waltz and Pollack [1985] devise a “Massively Parallel Parsing” model of natural language
interpretation, which integrates constraints from diverse sources into a homogenous model.
The constraints range from syntactic, i.e., word order, phrase structure, etc, through se-
mantic, e.g., selectional restrictions on case-roles of verbs, and contextual, to pragmatic,
e.g., typical situations. Figure 2.1 shows a network which integrates all the constraints for
parsing and interpreting the sentence “John shot some bucks.” One goal of their research
is to demonstrate a system that could apply all of these constraints in parallel during the
computation. They consider this style of processing more efficient and more psychologi-
cally plausible than rule-based systems which perform syntactic processing first, followed
by semantic analysis, etc.

Their model uses different units to represent different syntactic interpretations of words
or phrases and different senses of words. Links among the units are either inhibitory, for
mutually exclusive interpretations, or excitatory, for consistent interpretations. When run,
the network settled to a stable interpretations after fifty or so cycles.
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Figure 2.1: Waltz and Pollack’s network for parsing and interpreting the sentence “John
shot some bucks”. (Adapted from Waltz and Pollack [1985].)

The system constructs a new network for each sentence presented to it. It uses a chart
parser to find all possible syntactic parses, and translates these into a network form. Units
standing for propositions corresponding to different parses are connected by inhibitory
links, and units standing for propositions corresponding to the same parse are connected
by excitatory links. The example shown has only one full parse, but nodes are constructed
for the alternative parts-of-speech of the words. The system adds further nodes and links
to the network to represent the semantic and pragmatic interpretations and constraints.

One serious limitation of this model as a technique for language understanding is that
a conventional symbolic computer program must construct a network which embodies all
possible syntactic and semantic interpretations of the sentence. It seems that most of the
work of parsing and interpreting is being done by this program – the connectionist network
is only choosing among pre-computed alternatives. Another limitation is that all possible
units and links must be supplied to the system in advance. Waltz and Pollack discuss this
issue and speculate that distributed representations with microfeatures might somehow be
used to overcome this problem.

Cottrell and Small’s [1983] model of word sense disambiguation has many similarities
to Waltz and Pollack’s model. It differs in that a single network is used to deal with all
stimulus, but the part of the model that analyzes syntax is undeveloped. They acknowledge
that as the network gets larger, i.e., as more words, senses, or syntactical alternatives are
added, it gets difficult to control – the network can settle into states which do not represent
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Figure 2.2: Components of Selman and Hirst’s network for parsing sentences from a simple
grammar. (a) and (b): two examples of grammar rules and the connectionist primitives
which implement them. (c): How binder units (units 1, 2, 3, and 4) are used to implement
three rules for VP. (d) The weights on excitatory links in part of a typical parsing network.
(Adapted from Selman and Hirst [1985].)

any sensible interpretation of the input.

Selman and Hirst: parallel parsing network

Selman and Hirst [1985] show how a context-free grammar can be encoded in a connec-
tionist network, so that parsing is accomplished by letting the network settle to an energy
minimum. Unlike Waltz and Pollack’s network, their network can parse any sentence (up
to some pre-specified maximum length). However, it does not incorporate any semantic or
pragmatic constraints. The advantage of their system over traditional parsers is that rules
are applied in parallel, and that top-down and bottom-up processing is integrated. They
show how to derive the weights and thresholds from the rules in a principled manner,
which guarantees that the system will find the correct parse when run as a Boltzmann
machine to thermal equilibrium.

Each grammar rule is translated into a small network, and networks for rules are
combined with “binder” units (Figure 2.2a.) Alternative productions (i.e., the right-hand
sides or bodies of rules) are linked by inhibitory connections and the head of a rule is
linked with excitatory connections to the nodes in the body of the rule. The weights are
set according to a simple scheme. The system does not learn from experience, though it is
conceivable that the weights on the links could be learned using the Boltzmann machine
learning algorithm. Constituents can be shared using binder units, rather than duplicated,
which can save many units and links. Figure 2.3 shows the grammar rules and a network
for parsing sentences of up to five words.

To parse a sentence, the lexical types of the words are instantiated in the bottom row
of the network. The first word goes in input group 1, the second in input group 2, etc. If a
word has more than one possible lexical type, then more than one unit in the group can be
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Figure 2.3: Selman and Hirst’s simple grammar and the network for parsing sentences
generated by it. The network can handle sentences with up to five words. (Adapted from
Selman and Hirst [1985].)

turned on. The network is annealed, and when it reaches thermal equilibrium the correct
parse can be extracted from the average activations of the units.

Again, this network can use very simple computation because it has a very explicit
representation. The nodes in the network can be seen as an enumeration of the ways in
which a sentence can be parsed. There is a node for every non-terminal in every position
it can appear in the parse tree. For example, Node 32 is the NP2 that can begin at the first
word, Node 36 is the NP2 that can begin at the second word, and Node 42 is the NP2 that
can begin at the fifth word.

One problem with this system is that there is a hard maximum on the length of sentences
that it can parse. Another is that the number of units grows rapidly with the maximum
length of sentence to be parsed (n2), and the time to reach thermal equilibrium grows with
the number of units. For unfrustrated systems, the time to reach thermal equilibrium can
scale well. However, if there are high energy barriers, Boltzmann machines take a very
long time to reach thermal equilibrium.1 In practice, the system can only be run for a finite

1Geman and Geman [1984] show that approach to thermal equilibrium is guaranteed if the temperature at
time k, T(k), satisfies T(k)

� c
log(1+k) , where c is proportional to the maximum height of energy barriers. Since

we are interested in the distribution at low temperatures, the settling times required can be very long.
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time, which means that the parse found is not guaranteed to the best one.

Charniak and Santos: parsing network

Charniak and Santos [1987] attempt to overcome the fixed length limitation of systems such
as Selman and Hirst’s by having a window of processing units past which the inputs are slid.
The title of their paper gives some hint as to how they view this attempt: “A Connectionist
Context-free Parser which is not Context-free but then it is not really Connectionist either”.

The network consists of a rectangular array of cells, the bottom row of which contain
units for each terminal symbol of the language (the lexical types of words – noun, verb,
determiner, etc). Each of the cells in the rows above contains a unit for each non-terminal
in the language (sentence, noun-phrase, etc). A sentence is presented to the network by
activating the appropriate units in the bottom row of the rectangle – one word per column.
After the network settles the parse tree of the input is represented in the activations of units.
Each column of units represents a path from a leaf to the root. Links to units above and
below and in adjacent columns constrain the system to represent valid parse trees. Other
binding units indicate when units in adjacent cells represent the same non-terminal. If the
sentence has more words than there are spaces in the rectangle, the input is shifted by one
column and the network allowed to resettle. This continues until the whole sentence has
been processed. As words slide out of the back of the network, their interpretation (i.e.,
their path to the root) is presumed stable and is recorded. The total parse is considered to
be what is in the system and what has slid out the back. The system is limited in the height
of parse trees it can represent, but the parts of the parse tree that get pushed out the top
can be treated in the same way as the parts that slide out the back.

As with Selman and Hirst’s connectionist parser, the connection strengths in Charniak
and Santos’s network are not learned, but are derived from the context-free grammar
rules. The interesting thing about this network is that it overcomes, to some extent, the
fixed sentence length restriction of other connectionist parsers. The memory limitations
of the network result in it being able to cope with some types of long sentences better
than others. It can correctly parse sentences with right-branching parse trees, because the
parse of later segments of the sentence does not depend upon the exact parse of earlier
segments. However, it is unable to find the correct parse for centre-embedded sentences
because relevant parts of the parse tree slide out the back of the network and are no longer
available when they eventually are needed. It is not clear if there is any deep relationship
between these limitations and the relative difficulties people have with these classes of
sentences.

2.1.2 Simple reasoning

Shastri: semantic networks

Shastri [1988] describes a connectionist network which can efficiently compute a useful
but limited class of formal reasoning. The network can perform property inheritance,
which is finding the properties of a concept, and recognition, which is finding the concept
that best matches a set of properties. Shastri uses “Evidential reasoning” to deal with
exceptions, multiple inheritance, and conflicting information in a principled manner. In
contrast to other connectionist networks, there are proofs that this network computes the
correct answer in a strictly limited time. This comes at the cost of expressiveness and power
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– Shastri has picked an extreme point in the tractability-expressiveness tradeoff identified
by Levesque and Brachman [1985].

In Shastri’s network, nodes represent concepts, properties, and individuals, and links
represent relations between them. There is no learning involved – the architecture of the
network is derived from statements written in the formal “knowledge level” language of
the system. The processing is a form of spreading activation and inference is completed in
time proportional to the depth of the conceptual hierarchy. The network can only reason
about the properties of a single object at any one time.

Shastri’s formulation of the inheritance and recognition problems permits them to
be solved in time linear in the depth of the hierarchy (on parallel hardware). Previous
formulations of inheritance, e.g., Touretzky’s [1986b] inheritance networks, or Etherington
and Reiter’s [1983] inheritance hierarchies with exceptions, allowed problems that could
take exponential (serial) time to solve.

Ajjanagadde and Shastri [1991] describe an enhancement of this network which allows
simple rule following. They use temporal synchrony in the phase of unit activations to
bind variables from rules with values – a network cycle has a number of phases during
which units can be active.

Derthick: � KLONE

Derthick’s [1990] � KLONE system for “Mundane reasoning” is another implementation
of a formal logic in a parallel constraint system. The language implemented is a subset of
Brachman’s [1985a] KL-ONE: all constructs except number restrictions, role chains, inverse
roles, and structural descriptions are provided.

The type of reasoning the system did is quite limited – hence the name “mundane
reasoning”. The system finds the most likely set of properties and role fillers for an
individual in a particular situation. Although it is based on a logical language, it performs
“foolhardy” reasoning in that the assignment of truth values is based on one model of one
extension of the rules of the system. This sacrifice of logical soundness is made so that
the system can find an answer in a reasonable time, in the belief that some answer, even if
sometimes wrong, is better than none at all. The system can deal with inconsistent facts or
rules and still find a plausible interpretation.

The system is derived from a specification of frames and relations written in a KL-ONE
like language. To process a query about an individual the system builds a network with the
individual, its properties, its roles, its role fillers and properties of role fillers. Inheritance is
performed by the compiler. The resulting network has a unit representing the conjunction
of each role and each filler (even anomalous ones), a unit representing the conjunction
of each property and each filler, and units representing the properties of the individual
concerned. The links between units are constraints derived from the propositions and
rules concerning the concepts in the network. Simulated annealing is used to search for
the model with the lowest energy (which has most constraints satisfied).

The representation in � KLONE can be seen as both local and distributed. Simple
concepts are represented by single units, but higher level concepts are represented by
patterns of the simple concepts. In one example “sailing” is originally the filler of the “job”
role for “Ted”. However, when the system is told that Ted is a millionaire playboy, and
thus does not perform manual labour for a living, it shifts the role that sailing fills to Ted’s
hobby. This is possible because the job role and the hobby role are similar, both being
instances of the “has-interest” role.
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F = PG = P
G : g(b, a)

F : f (a, b)

P : p(x, y)

g = p f = p

b = xb = y

a = ya = x

Structure 1:

Structure 2:

semantic unit

Figure 2.4: The network ACME would construct to find an analogical mapping between
the two sets of propositions

�
F : f (a, b), G : g(b, a) � and

�
P : p(x, y) � .

Like Shastri’s system, � KLONE does not learn – the network is derived from rules
written in a formal language. � KLONE also reasons about just one entity, but can represent
temporary associations with other roles and fillers. � KLONE is unable to represent complex
hierarchical structure, because it only represents immediate relationships to other entities
and has no way of representing a chain of relationships.

2.1.3 Analogical mapping

Holyoak and Thagard: analogical mapping by constraint satisfaction

Holyoak and Thagard [1989] describe a localist connectionist model which finds a good
analogical mapping between two structured descriptions. The descriptions are in the form
of sets of predicates, with nesting allowed. A good mapping is defined by three constraints:
isomorphism, semantic similarity, and pragmatic centrality. A mapping defines a one-to-
one pairing of the elements from each structure. The isomorphism of a mapping is high
when mapped elements are in the same relationships in each structure. The mapping can
be incomplete, but more complete mappings are preferred. The semantic similarity of a
mapping depends on the similarity of the mapped predicates, and the pragmatic centrality
depends on whether the mapping involves predicates which are believed a priori to be
important.

The model is embodied in a computer program called ACME (Analogical Constraint
Mapping Engine). ACME constructs a connectionist network in which nodes represent
competing and cooperating hypothesis about mappings between the elements of the struc-
tures. Nodes representing competing mapping hypothesis are connected by inhibitory
links, and nodes representing complementary hypothesis are connected by excitatory links.
The network is run and allowed to settle to a stable state, and the active nodes represent
the mapping found by the network.

Consider the two structures
�
F : f (a, b), G : g(b, a) � and

�
P : p(x, y) � . F, G, and P

are particular instances of predicates, f , g, and p are predicate names, and a, b, c, d,
x, and y are atomic objects. Figure 2.4 shows the network ACME would build to find
an analogical mapping between these two structures. It has a node for each possible
pairing of elements from the structures, where elements are atomic objects, predicate names
and whole predicates. There are inhibitory connections between nodes which represent
inconsistent mappings, e.g., a = x and a = y. These connections all have the same weight and
serve to constrain the mapping to be one-to-one. There are excitatory connections between
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nodes which represent mappings of elements of the same predicate, e.g., between F = P,
f = p, a = y and b = x. These connections all have the same weight and support isomorphic
mappings. ACME builds a “semantic unit” and connects predicate name mapping units to
it with an excitatory link whose strength is related to the degree of similarity between the
names. If g were similar to p, then the connection between the g = p and the semantic unit
would be strong. There is also a “pragmatic unit” which has excitatory links to predicate
name mapping units which involve a predicate deemed important (the pragmatic unit is
not shown in this figure). This network has two stable states; in one the nodes on the left
are active, in the other the nodes on the right are active. These stable states represent P
mapping to G, and P mapping to F. Mappings such as

�
G = P, g = p, a = y, b = x � are not

isomorphic and will not be stable states of this network. Note that ACME does not build
an explicit representation of either structure – it only builds an explicit representation of
the mapping between the structures, and the constraints on the mapping.

There is no guarantee that the state ACME settles in will be the best mapping or even
a one-to-one mapping, but it appears to almost always find good solutions. ACME works
because every possible correspondence between the two structures is represented explicitly
by a node, and the compatibility of the correspondences is represented by connections
between the nodes. The networks that ACME builds can be large – if the size of the
structures is n, the size of the ACME mapping network is O(n2).

2.2 Distributed connectionist models for simple structure

One of the big problems with local representations is their inefficient use of resources, which
can lead to a proliferation of units. Distributed representations offer the potential for more
efficient use of resources. In this section I review some models which use distributed
representations for objects and encode simple relations among them.

2.2.1 Learning associations between objects

To represent relations in a neural network, we must have representations for both objects
and the associations among them. Early work in this area typically uses pre-coded dis-
tributed representations for objects. Associations among pairs or triples of these objects are
represented in the connection weights, which are found by some sort of learning procedure.

Hinton: implementation of semantic networks

Hinton [1981] describes a distributed connectionist network which implements a content-
addressable memory for relations. This is one of the first attempts to represent relational
data in a distributed fashion. Instead of representing atomic concepts by single units,
Hinton represents concepts by patterns of activity over groups of units, and represents the
relations between them by interactions among the groups of units.

The network stores two-place predicates, which are triples consisting of a relation name
and two roles. A typical set of triples is:

(John has-father Len)
(Mary has-father Len)
(John has-sister Mary)
(Kate has-father John)
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Figure 2.5: Two schematic representations of the connections in Hinton’s triple memory.
(a) shows the matrix of weights, which connect the units, in block form. Many of the
submatrices are null, e.g., the weights from the ����
��� units to the ����� units. (b) shows the
groups of units, each arrow represents a submatrix of weights connecting the groups. The
matrix of weights from a group to itself (except for the ����
� group) is the identity matrix, it
is intended to cause the group to retain whatever pattern it is initialized with. Reproduced
from Hinton [1981].

The principle task the network performs is associative retrieval (pattern completion).
Given any two concepts in a triple, the network finds the matching stored triple. Given
the query (John has-sister ?) the system should fill in the blank with ‘Mary’, and given the
query (Kate ? John) the system should fill in the blank with ‘has-father’.

The model has a separate group of units for each element of a triple. A concept, such as
‘John’ or ‘has-father’, is represented by a pattern of activity over the appropriate group of
units. The patterns of activity are pre-coded and are chosen so that similar concepts have
similar patterns of activity.

The network architecture is shown in Figure 2.5. In addition to the three groups
of units for each element of the triple, there is a fourth group of units labelled ������� (for
“proposition”). The ����
� units help to implement interactions among the different groups,
and are necessary because direct connections between groups are too limited in the types
of interactions that they can implement. A triple is retrieved by instantiating two of the
groups with the known pattern and then allowing the network to settle to a stable state. A
triple is stored in the network by instantiating its concept patterns on the three groups of
units and then adjusting the variable weights so that the pattern is stable.

Hinton discusses how this type of model can also implement a form of property inher-
itance. As mentioned before, similar concepts (or individuals) are represented by similar
patterns. Hinton suggests that the representation of a super-type concept should be the
set of features that all its subconcepts have in common. Relations that depend on the
type of the individual can be implemented by interactions among the microfeatures that
are common to individuals of that type. Exceptions can be implemented by interactions
among the microfeature patterns that are specific to the exceptional individuals. This is
illustrated in Figure 2.6 for three elephants. There are two microfeatures common to all
elephants, these code for the ‘elephant’ type, and the corresponding units in �������� interact
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Special interaction to
make Clyde’s colour
grey

General interaction to
link elephant, colour,
and grey
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turn off grey for
Clyde
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Anna

White

“Elephant” features

Colour Grey

Figure 2.6: Implementation of inheritance and exceptions in Hinton’s [1981] triple memory.
The solid links indicate positive weights, the dashed link indicates a negative weight, and
weights in opposite directions have the same sign. The first unit in the ����
� group comes
on when an elephant and ‘colour’ are instantiated in the �����
��� and ���� groups, it causes
‘grey’ to be instantiated in the �����
�� group. The fourth unit in the ������� group detects the
special case of Clyde’s colour being asked for, and suppress the ‘grey’ pattern, and excites
the ‘white’ pattern. In an actual trained network the interactions in the ������� group would
probably be implemented by many units.

with the colour pattern in ���� to support the grey pattern in �����
�� . Most elephants, e.g.,
Boris and Anna, will be thought by the system to be coloured grey. However, Clyde is
an exceptional elephant, and the microfeature pattern unique to Clyde interacts with the
colour pattern to suppress the grey pattern and support the white pattern, overriding the
default inference that Clyde is grey.

There are two types of conceptual structure in this model. The pattern of microfeatures
that represents a concept constitutes the “direct content” of the concept. The links to other
concepts constitute the “associative content” of the concept. Hinton suggests these two
types of conceptual structure correspond to two separate components of human memory
sometimes called “integrative” and “elaborative” structure. The first has to do with internal
coherence, and the second to do with external relations. The interesting thing about this
model is that direct content of the concepts causes the associative content. Furthermore,
small changes in the direct content (pattern) will usually lead to small changes in the
associative content, which results in the system having some automatic inheritance and
generalization abilities.

One limitation of this model is that it can only represent one relation at a time. It
cannot represent multiple relations, let alone a structure among a set of relations. Another
limitation is that there are a fixed number of roles in the system. Adding more groups of
units for more roles is not a good solution because it is wasteful for relations that do not use
all the roles, and because it makes it difficult to represent similarity among roles. Hinton
suggests that roles could also be given distributed representations and role-filler bindings
represented by coarse conjunctive codings. I discuss this approach in Section 2.2.3.
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Anderson, Spoehr and Bennet: Arithmetic

Anderson, Spoehr and Bennet [1991] describe a model of learning multiplication tables
which uses analogical distributed representations. Their representation of a number has
two components: an analogical component in which numbers of similar magnitude have
similar representations (using a “sliding bar” method), and a random component. The
representation is very wide – 422 units for each number. The random component is
necessary to make the representations sufficiently different, but the interesting properties
of the model arise from the analogical component of the representation. The model is
trained to remember triples of two operands and one result, using a “Brain-state in a box”
network [Anderson et al. 1977] (a type of auto-associative memory).

As the title indicates (“A Study in Numerical Perversity: Teaching Arithmetic to a
Neural Network”), this model is not intended to be a good way of having a machine
remember multiplication tables. Rather, it is a demonstration of how a simple connectionist
model that uses analogical distributed representations can model human performance. The
overall error patterns and the relative response times for false products (people are quicker
to identify 5 � 3 = 42 as incorrect than 8 � 7 = 63) are similar to people’s performance on
the task of learning multiplication tables. These performance characteristics are a direct
consequence of the analogical structure of the representations of the numbers.

Rumelhart and McClelland: learning past-tenses of verbs

Rumelhart and McClelland [1986a] describe a distributed connectionist model which learns
to produce the past-tense forms of regular and irregular verbs. They represent words as
phonemic strings in a distributed fashion over about 500 units. Each word is represented by
a set of phonemic triples, which in turn are represented by sets of finer-grained conjunctions
called “Wickelfeatures”. The set of Wickelfeatures for a word is stored in the distributed
memory. For example, the word ‘sit’ would be represented by three triples: ‘#si’, ‘sit’, and
‘it#’, where ‘#’ is the start and end symbol. This representation makes local order explicit,
but leaves global order implicit – it is a puzzle to see how the triples of a long word could
fit together. It is possible that different words could have the same representation, but
this problem does not arise with the words used in the model. The network takes the
representation for the root from of verb (‘sit’) as its input and is meant to produce the
representation for the past-tense form (‘sat’) on its output. Rumelhart and McClelland
trained a noisy perceptron-style map to do the mapping from input to output.

Although the network eventually learns to produce the correct past-tense forms for
both regular and irregular verbs, the interesting thing about it is pattern of errors it makes
during learning. Early on in the learning process it produces the correct past-tense forms
for irregular verbs (e.g., ‘sat’ for ‘sit’), but as it learns the regular verbs it begins to produce
incorrect overgeneralized past-tense forms for irregular verbs (e.g., ‘sitted’). In the final
stage, it learns the correct forms for both regular and irregular verbs. The fully trained
network is also able to generalize; it can produce the correct past-tense form for some words
which were not in the training set. Although this model has received extensive criticism as
a psychological model of acquisition of verb tense (e.g., from Pinker and Prince [1987], who
point out that the gradated training set might have something to do with the time-course of
errors), it is still interesting as a demonstration of how rules and exceptions can be learned
using a single homogeneous network.
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Distributed coding layer.

Localist input layer.

To rest of network

Full interconnection,

Figure 2.7: An extra intermediate layer in a feedforward network can convert from localist
to distributed representations Only one unit in the input layer is active at any time. The
links from the active input unit determine the activations on the units in the distributed
coding layer.

2.2.2 Learning distributed representations for objects

The models we have seen so far have used hand-coded feature-based distributed represen-
tations. For reasons mentioned in Section 1.4.2, it is better if a system can develop its own
distributed codes. Hinton [1986] shows how this can be done in a feedforward network by
using localist input layers and extra intermediate layers. The method involves connecting
each localist input layer to its own distributed coding layer, as shown in Figure 2.7. Only
one unit in the input layer is ever active, so its weights determine the activations on the
coding layer. These weights can be trained along with the other weights in the network.
This scheme does not significantly increase the amount of computation, because only the
weights from the active unit to the coding layer need to be considered in both the forward
and backward computations.

Usually, the distributed coding layer has far fewer units than the localist input layer
(this is often called a “bottleneck”). This is done for two reasons, the first being to keep
the number of parameters down, so that not too many examples are required to train the
network. The second reason is to force the network to develop useful distributed codes. If
the code layer has fewer units than the input layer, then the network must develop some
sort of distributed representation on the coding layer, just to be able to represent inputs with
different codes. The hope is that these distributed codes will be based on commonalities
the network discovers while learning to perform the task. Indeed, this is what appears to
happen in the networks that use this technique. Recently, Zemel and Hinton [1994] have
shown that it is possible to use a wide distributed coding layer and still learn useful codes,
by imposing various constraints on the codes.

This technique can also be used for output representations. However, doing this can
significantly increase the amount of computation, because it is not possible to ignore any
of the connections from the distributed output code to the localist output code, except by
making some risky approximations.

Hinton: “Family trees” network

Hinton [1986] demonstrates that a backpropagation network can learn good distributed
representations in the course of learning to perform a task. The network he describes learns
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Gina = Emilio

Alfonso Sophia

Lucia = Marco Angela = Tomaso

Pierro = FrancescaRoberto = Maria

Margaret = Arthur

Andrew = Christine

Jennifer = CharlesVictoria = James

Colin Charlotte

Christopher = Penelope

Figure 2.8: The family trees stored in Hinton’s [1986] “Family trees” network. The two
trees, for English (top) and Italian (bottom) people are isomorphic.
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Localist output representation
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Hidden layer (12 units)

(6 units) for Person 2
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(6 units) for Relation
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Figure 2.9: Architecture of Hinton’s [1986] network for storing family trees as a set of
relationships.

the relations embodied in the two isomorphic family trees shown in Figure 2.8. The form
of the relations is (Person1 Relation Person2), e.g.:

Sophia has-aunt Angela
Charlotte has-aunt Jennifer
Charlotte has-father James

The network is a feedforward architecture which, given a person X and a relationship
R, completes the relation by outputting the person who is in relation R to person X. The
architecture of the network is shown in Figure 2.9. The network uses bottleneck local-to-
distributed mappings on the inputs and outputs. There are 24 individuals, and six units in
the encoding units, so the network must learn a relatively efficient distributed encoding.

Hinton trained the network using the backpropagation with weight decay on 100 of
the 104 instances of relations in the two family trees. The trained network successfully
processes the remaining four relations, indicating that the learned representations and
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mappings can support generalization. Presumably, the isomorphism of the two trees makes
the knowledge about mappings transferable across nationalities. Upon examination, some
of the units in the input encodings for people were found to stand for identifiable features
of the individuals, e.g., nationality and generation. Sex is not encoded in any unit – it
is actually not useful in determining the correct output. The network does not “know”
that nationality and generation are meaningful features, it is only told things like “when
unit 19 in input block 1 and unit 3 in input block 2 are on, turn on unit 13 in the output
block”. It gives some objects similar representations merely because this helps to solve
the mapping problem. It turns out that these similar representations can be interpreted in
terms of common features.

Although this network stores relations, it is not an auto-associative memory like Hin-
ton’s triple memory (Section 2.2.1). This network can only produce Person 2 given Person
1 and the relationship – it cannot produce Person 1 or the relationship given the other two
elements of the relation. The reason for this limitation is the difficulty of incorporating
local-to-distributed mappings in recurrent auto-associative memories.

Other networks which learn distributed representations

Harris [1989] uses this same technique in a system that learns to categorize the meanings,
according to Cognitive Linguistics, of the preposition ‘over’ in sentences. The network
learns distributed representations for words which code for properties relevant to how
‘over’ should be interpreted. The learned representations also exhibit some of the properties
of the “radial categories” of Cognitive Linguistics.

When a network has a number of input blocks, weight sharing can be used to force
all distributed input groups to use the same distributed representation. This has several
advantages – objects have the same distributed representation no matter where they appear
in the input, the distributed representations combine information from many sources, and
the network has less parameters. Lecun, Boser, Denker, Henderson, Howard, Hubbard,
and Jackel [1990] implement a spatial version of this technique to learn translation-invariant
spatial features in their model of handwritten digit recognition.

Miikkulainen and Dyer [1989] extend this local-to-distributed mapping technique to
force the distributed output representation to be the same as the distributed input represen-
tation. In Hinton’s “Family trees” network ‘Charlotte’ can have different representations
on the distributed output units and the distributed input units. Miikkulainen and Dyer
dispense with the localist output layer, and instead give the network a target pattern on the
distributed output layer. This target pattern is the distributed input representation of the
target object currently used by the network. They use this technique in a network which
processes sentences, and the network learns representations for many varied objects. The
resulting representations have many analogical properties. The advantage of using the
same representation on input and outputs is that all the information in the training set is
used to construct a single representation for each object. However, the targets change as
the distributed input representations change, which can make learning slower (a “moving
targets” problem). A potentially serious problem with this technique is that the network
can give all objects the same representation, which results in zero error. This points to
a deficiency in the error function – it lacks a discriminative term. Miikkulainen [1993]
reports that networks rarely give all objects the same representation,2 and suggests that

2This is probably because Miikkulainen does not use the correct derivatives for training the network – he
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Figure 2.10: A network which implements a conjunctive code for colour and shape. A unit
in the conjunctive code is active if both of the shape and colour units it is connected to are
active.

this problem could be avoided entirely by clamping at least two of the representations to
different values.

2.2.3 Conjunctive coding

Conjunctive coding is a way of binding together the representations of two objects. A
conjunctive code has a unit for every possible conjunction of the units used for representing
the objects. If the representation for one object has N units, and the representation for
another has M units, then the conjunctive code will have N � M units. Conjunctive coding
can be used whenever it is necessary to bind several representations together: for binding
roles and fillers, for binding variables and values, for binding the positions and identities
of objects, and for binding multiple features of objects together.

Suppose we want to bind colours with shapes, and are using the following four bit
distributed representations: ‘red’ (r = [0011]T), ‘blue’ (b = [1001]T), ‘square’ (s = [1010]T),
and ‘circle (c = [0110]T). The conjunctive code for this will have sixteen units. Figure 2.10
shows a network implementation of a conjunctive code – a conjunctive unit is active if
both the units it is connected to are active. The conjunctive codes for ‘red-square’ and
‘blue-circle’ are shown in Figure 2.11 (the network is not shown). Conjunctive codes can
be superimposed without the appearance of illusory conjunctions such as ‘blue-square’,
provided that not too many bindings are superimposed. In the terms of linear algebra, a
conjunctive code is a (thresholded) superposition of vector outer products:

B = f (rTs + bTc),

where f is the superposition threshold-function.
To find out what shape is bound to a certain colour, we treat the colour units as input

units and the shape units as output units. If a conjunctive unit is active, and the colour it
is connected to is active, then it sends activation to its shape unit. The shape units sum
the activation they receive, and output 0 or 1 according to whether their total activation is
below or above a suitable threshold.3 In the terms of linear algebra, this is equivalent to

omits the term which would provide a strong push for all the representations to take on the same value.
3With zero-one representations of objects, the appropriate value for the threshold depends on the number

of ones in the representations.
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red-square
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square 0 0 0 0 0
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0 0 0 0 0
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blue-circle
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circle 1 1 0 0 1
1 1 0 0 1
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1 0 0 1
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0 0 1 1
1 0 0 1 Superimposed bindings of
1 0 1 1 red-square and blue-circle
0 0 0 0

Figure 2.11: The conjunctive codes for the ‘red-square’ and ‘blue-circle’ bindings are the
outer products of the representations of ‘red’ and ‘square’, and ‘blue’ and ‘circle’. These
bindings can be superimposed without confusing which colour is bound with which shape.

multiplying the colour vector by the binding matrix, and thresholding the result:

f (Br) = s and f (Bb) = c,

where f is the decoding threshold-function. This decoding process works in the presence
of noise, and with superimposed codes. It can also can be inverted to find the colour given
the shape. Figure 2.12 shows the decoding of the superimposed bindings: the procedure
correctly discovers that ‘red’ was bound to ‘square’ and ‘blue’ to ‘circle’, despite the overlap
in the representations.

Hinton [1981] discusses how distributed conjunctive coding for roles/filler bindings can
solve two potential problems with systems that use blocks of units to represent the fillers of
different roles, such as the memory for triples (Section 2.2.1). One problem is the number
of role blocks required. A system which could represent a variety of predicates with role
blocks would need a large number of them for all the different roles, and could become
unmanageably large.4 Additionally, such a system would be representationally inefficient,
as only a small fraction of the blocks would be in use at any one time. Conjunctive coding
with distributed representations of roles can make better use of representational resources –
one conjunctive code block can represent the binding of a filler with one of many roles. The
other problem is that having different blocks for different roles makes it difficult to represent
similarity between roles. Using distributed representations for roles allows the similarity
structure of roles to be reflected by their representations. These similarity relationships are
preserved by conjunctive coding – the bindings of a filler with similar roles are similar.

Conjunctive codes work with both distributed and local representations, but can grow
very large, especially when higher-order conjunctions are used. This is more of a problem
for local representations than for distributed representations, because local representations

4Actually, a system which uses different blocks of units for different roles can be regarded as using a
conjunctive code with an inefficient local representation for roles. The active unit in the role representation
indicates which row (or column) of the binding matrix should be used to store the filler.
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Figure 2.12: Decoding the superimposed bindings of ‘red-square’ and ‘blue-circle’, to dis-
cover which shape is bound to ‘red’ and which shape is bound to ‘blue’. The first operation
is the dot-product of the colour representation with the each row of the superimposed
bindings, the second is comparison with a threshold.

require a larger number of units to represent a given number of objects. Conjunctive codes
also work with continuous-valued distributed representations: the activation of a unit in
the conjunctive code is the product of the activations of the units it is connected to. The use
of conjunctive codes generally imposes some constraints on the distributed representations
for objects, e.g., that they should have approximately uniform density.

Outer-product conjunctive codes are equivalent to matrix-style hetero-associative mem-
ories, such as the Willshaw net [Willshaw 1981b], and like them are able to exploit redun-
dancy in the conjunctive code to compensate for noisy or incomplete input patterns. The
encoding and decoding operations of matrix memories can be implemented in several
different ways, giving rise to a variety of ways of using conjunctive codes. For example,
instead of superimposing bindings in a binary-OR fashion (as in Figure 2.11), we can super-
impose bindings by ordinary summation. The best choice of operations for a conjunctive
code depends upon the properties of the distributed representation of objects (such things
as its density, and whether it is binary or continuous).

Outer product codes are the most straightforward conjunctive codes for distributed
representations. More complex conjunctive codes can be constructed by involving more
than one unit from the object representations in the conjunctions, as Touretzky and Geva
do in their DUCS system (described in the next section). This makes it possible to increase
redundancy in the conjunctive code, since more than N � M higher-order conjunctions
are available. Increased redundancy gives the system greater ability to correct errors and
complete patterns.

Conjunctive coding can also be extended to bind more than two objects together.
Smolensky [1990] describes a framework for this, based on tensor product algebra. A
tensor product can be viewed as an outer product operation generalized to any number of
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vectors. I review tensor products in Section 2.4.3. Tensor products provide a general frame-
work for understanding conjunctive codes – all conjunctive codes, including the complex
code Touretzky and Geva use in DUCS, can be viewed as tensor products or subsets of
tensor products.

Touretzky and Geva: DUCS

Touretzky and Geva [1987] use conjunctive coding to store simple frame-like structures
in a distributed memory. Their system, called DUCS, is able to retrieve a role-filler pair
given an approximation of the role, which can be interpreted as generalization or error
correction. This ability is a consequence of the use of distributed representations and
redundant conjunctive coding.

A frame consists of a number of role-filler pairs. For example, the frame describing
“Fred the cockatoo” is:

NAME: FRED
BODY-COLOUR: PALE-PINK

BEAK: GREY-HOOKED-THING
CREST: ORANGE-FEATHERED-THING

HABITAT: JUNGLE
DIET: SEEDS-AND-FRUIT

DUCS can store several role-filler pairs in a frame, and several frames in its memory.
DUCS is pattern-completing and error-correcting at the role level and at the frame level. It
can retrieve a frame given a partial or corrupted version of the frame, and can retrieve a
role-filler pair from a frame given a corrupted or similar version of a role in the frame.

The architecture of DUCS is shown in Figure 2.13. Roles and fillers have binary dis-
tributed representations 20 units wide. The binding of roles and fillers is a highly redundant
(and rather complex) set of 1280 conjunctions of role and filler units. Each conjunction can
involve the activation of a unit, or its logical complement, and the set of conjunctions is
designed so that exactly 40 of the 1280 units are active. A “selector” block holds a single
role-filler binding and has extra internal units that exploit the redundancy of the conjunc-
tive code to error correct roles and fillers during frame decoding. A frame is a superposition
of role-filler bindings, and is stored in the frame buffer over 1280 units. The number of
active units in the frame buffer will be approximately the number of roles in the frame
times 40. The frame memory is an auto-associative Willshaw net [Willshaw 1981b], which
is a pattern-completing and error-correcting memory. It can store a number of frames, and
can retrieve one given a partial or corrupted version. The frame memory has 1, 638, 400
links.

The representations on the role and filler units are chosen to reflect the similarity of the
concepts they represent. This allows the system to retrieve a filler from a binding given
an approximation of the name of the role. For example, if the representation for “nose” is
similar to that for “beak”, then if we request the filler of the “nose” of Fred role the system
will change the requested role to “beak” and say the filler is a “grey hooked thing”.

Touretzky and Geva discuss how recursive structure (in which a frame can be a filler in
another frame) could be represented in DUCS. This is difficult because the representation
of a frame is 1280 units, whereas the representation of a filler is 20 units. They suggest that
the first 20 units of the 1280 could serve as a reduced description for the frame, and could
be used as a filler in other frames. However, this is unlikely to be an adequate reduced
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Figure 2.13: DUCS architecture. (Adapted from Touretzky and Geva [1987].)

representation. The code for a frame is sparse, so in any 20 units of a frame there will only
be a few active units. If there are a reasonably large number of frames, the chances are that
some will have the same reduced description.

2.3 Connectionist models which learn to process language

The prospect of processing natural language has been a prime motivation for the interest
among connectionists in the representation of complex structure. Typical language pro-
cessing tasks are: deciding whether a string is grammatical, predicting the next symbol
in a string, assigning case-roles to words in a string (i.e., deciding which is the subject,
object, etc), translation and pronunciation. On top of the problems with representing and
manipulating complex temporary structures in neural nets, several related characteristics
of language add to the difficulty. The input consists of a variable number of objects, typ-
ically in sequential form. Furthermore, the appropriate output at any particular time can
depend upon input received an arbitrary number of timesteps in the past. A network
which can only deal with sequences up to some fixed length will be of limited use, and any
learning it does is unlikely to reveal much of interest about how language can be processed.
To process language in a satisfactory manner, it is necessary to use some sort of network
which is capable of sequential processing, can retain complex state information, and has
context-dependent control over what state information is retained.

Inspired by the ability of feedforward networks to develop useful representations in the
course of learning to perform a task, some researchers tried this approach with recurrent
networks on language processing tasks. Recurrent networks are a modification of feedfor-
ward networks in which the activations of some units are considered to be the state of the
machine and are recycled as inputs to the network at the next timestep. Such a network
can process a sequence of inputs and maintain an internal state. However, before I discuss
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Figure 2.14: Architecture of Sejnowski and Rosenberg’s [1986] NETtalk system.

recurrent networks I want to review NETtalk, which is a feedforward network that learns
to pronounce English text. NETtalk serves to show that neural networks can learn some
regularities and exceptions in a language task (English pronunciation), and clarifies the
limitations of non-recurrent networks.

2.3.1 Non-recurrent networks

Sejnowski and Rosenberg: NETtalk

Sejnowski and Rosenberg’s [1986] NETtalk system, which learns to pronounce English
text, is a feedforward network which looks at a seven-character window of text. Its task is
to output the phoneme corresponding to the central character in the input window. The
architecture of the NETtalk system is illustrated in Figure 2.14. Each input buffer represents
one letter (or punctuation mark) in a local fashion, and the output is the set of features for
the phoneme for the central letter. For cases where more than one letter generates a single
phoneme, the output phoneme can be ‘null’ for all but one of the letters.

The most obvious limitation of this windowing technique is that the “memory” it
provides is strictly limited to inputs that occurred within a fixed number of timesteps. The
network has no internal state. Once an input passes out of the window it can have no
effect on the output. While having access to the three previous input symbols might be
adequate, in most cases, for pronunciation, it is inadequate for more complex language
processing tasks. Merely increasing the window size would be inelegant, inefficient, and
impractical – the window would need to be quite large to be large enough most of the time,
there would be an impracticably large number of parameters, and there would always be
otherwise reasonable inputs which were too large.

Another limitation of this windowing technique is that it is difficult to design the system
so that it can recognize and exploit invariances in the input. For example, words often mean
the same thing independent of which buffer window they appear in, and it is wasteful to
duplicate the machinery that recognizes words. A possible solution is to share the weights
for local to distributed maps on input buffers. However, the problem is more difficult
to solve at higher levels, e.g., in the interpretation of the meanings of short sequences of
words.
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Figure 2.15: A recurrent network, as described by Rumelhart, Hinton and Williams [1986].
The backward connections serve to copy the activations to holding units, for use at the next
timestep.

2.3.2 Recurrent networks

Rumelhart, Hinton and Williams [1986] describe how recurrent networks can be trained
using a modification of backpropagation algorithm for feedforward networks. In a recur-
rent network activations on certain units are fed back into the network at the next timestep.
Figure 2.15 shows the architecture of one such a network. A complete forward propaga-
tion, from the input to the output units is one timestep. The backward connections copy
activations to special “holding” units, which preserve the activation for use at the next
timestep.5 In the first timestep all the holding unit activations are set to some fixed value.
In subsequent timesteps they assume the activations at the previous timestep of units they
are connected to. The activations of any unit in the network can be recycled into the net at
the next timestep by including a holding unit for it. The network can have different input
values and output targets at each timestep, and inputs and targets can be left undefined
at some timesteps. Rumelhart, Hinton and Williams describe how to calculate error gra-
dients for such networks, using an “unfolding in time” procedure. This involves running
the network backwards for the same number of timesteps as it was run forwards.

Rumelhart, Hinton and Williams trained a network like the one in Figure 2.15 to com-
plete sequences. They used 25 different sequences six symbols long, e.g., ‘AB1223’,
and ‘DE2113’. The sequences have the regularity that the third and fourth symbol are
determined by the first, and the fifth and sixth by the second. The first two symbols are
presented to the network as input at the first two timesteps. The remaining four symbols,
which are completely determined by the first two, are the output targets at the subsequent
four timesteps. After training on 20 of the sequences the network could correctly generate
those and could generate completions for the sequences it had not seen. In one training
run the network generated completely correct completions for the unseen sequences, and
in another it made just one mistake. This generalization ability indicates that the network
is able to extract the regularity in the training set.

5Rumelhart, Hinton and Williams use different classes of links rather than holding units, but the results are
the same.
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Elman: Learning to remember

Elman [1988; 1990; 1991] performed several experiments with recurrent networks, in order
to investigate how well they can process language. The results show that simple recurrent
connectionist networks can build representations that stored relevant information from
previous input, that these representations seem to possess internal structure, and that this
structure can be used by the network to account for structure in the input. However, these
results must be taken with some qualifications: the learning is slow, the domains tested
on are simple and small, the representations are difficult to interpret, and the scaling and
generalization properties are uncertain.

Elman uses recurrent networks in which the activations of the hidden layer are recycled
to the next timestep.6 Figure 2.16a shows a typical network. He calls the holding units the
“context” units, because these units hold the memory of previous inputs – they provide the
context for the net to work in. The task of the network at the t-th timestep is to predict the
(t + 1)-th symbol in the sequence, given the t-th symbol as input and the context computed
so far by the network. In the course of making this prediction new activations are computed
on the hidden units. These are used as the context for the following timestep, when the
actual (t+1)-th symbol is presented on the inputs and the network has to predict the (t+2)-th
symbol. There are nearly always several symbols which can occur at a given point in the
sequence. The network can minimize its error by predicting all possible items, but with
lower values (“confidences”). In order to make optimal predictions (and thus minimize
the error) the network must discover all the constraints, syntactic and otherwise, on the
language it is presented with. It must also learn to preserve relevant information about
previous inputs in its context layer, and learn to ignore or discard irrelevant information.

Elman does not compute exact error gradients in the networks. Rather than running the
net backwards through the training sequence to correctly compute errors, Elman truncates
the backpropagation of error signals at the context layer. Figure 2.16b shows an unfolded
network and the forward and backward propagation paths. Truncating the error signals
makes the gradient computation much simpler, as it is no longer necessary to store a history
of activations at each unit and run backwards through the sequence. The backpropagation
of errors can be performed at each timestep, resulting in an algorithm which is local in
time. However, the gradients are not correct, since there is no backpropagation of error
signals from an output to an input which occurred on preceding timesteps. This means
that if an input is only important several timesteps in the future, the network will not
adjust its weights to preserve information about that input. If by chance the information
is preserved, the network can use it, but the calculated gradients only force the network to
transfer information about the input into the hidden layer if that information is useful for
the current output.7

Elman’s simplest experiment [1990] is with a recurrent network that learned the se-
quential XOR task. In this task a string of bits is presented to the network, and the network
must predict the next bit. Every third bit is the XOR of the previous two random bits, and
the network should learn to predict its value. For example, in the string “011110101…” the

6Jordan [1986] used recurrent networks in which output activations are recycled. However, this type of net
is not very suitable for processing language strings because language tasks usually require the retention of
state information that is independent of the outputs.

7Williams and Zipser [1989] describe an algorithm for correctly computing error gradients which does not
require going backwards through the sequence. However, the algorithm is non-local, and expensive both in
time and space.
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Figure 2.16: (a) The type of recurrent net used by Elman [1990]. (b) The unfolded network
showing the patterns of forward and backwards propagations. The numbers in parentheses
are the timesteps. Errors are not backpropagated from the hidden units at time t + 1 to the
hidden units at time t.

underlined numbers are predictable. For unpredictable bits, the total error over the train-
ing set is minimized when the network predicts both with lower confidence. The network
learned this task after a moderately long training period: a string of approximately 3000
bits. This experiment demonstrates that this type of network can learn to remember.

Another experiment involves learning to predict the next word in two- and three-word
sentences generated by a simple template grammar with a vocabulary of 29 words. The
grammar incorporates some semantic constraints, e.g., that the subject of “eat” must be
an animate noun. Elman generated 10, 000 sentences from the grammar and concatenated
them with no begin or end markers to form a continuous sequence of 27, 354 words. The
words are represented in a local fashion on the input and output units. The network
has one hidden layer with 150 units. It learned to make good predictions in six passes
over the data. Elman attempted to analyze the representations by computing the average
hidden unit representation in response to a particular word in all contexts. He performed
a hierarchical cluster analysis on these average representations and found that they cluster,
in a hierarchical fashion into verbs, nouns, animates, inanimates, animals, humans, etc.
Elman interprets this as showing that the network, as a result of learning to predict, had
discovered the semantic structure of the vocabulary. However, as Elman acknowledges,
the observed clusters may be an artifact of the averaging and not due to the learning. The
network, whether trained or not, constructs contexts for individual word occurrences. The
averaging procedure then constructs average contexts for each word. These would be
expected to cluster in way the Elman observed, even without any learning, since similar
words have similar contexts. Elman (private communication) reports that this is in fact
what happens, although the clusters extracted from an untrained network were less clean
than those from the trained network. To test what the network has learned, it would be
more appropriate to do a cluster analysis on the outgoing weights from the input layer, as
these form a local-to-distributed mapping, and any systematic similarities in these weights
must be a result of the learning.
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Additional restrictions:

� number agreement between N and V within clause, and (where
appropriate) between head N and subordinate V

� verb arguments:

chase, feed � require a direct object
see, hear � optionally allow a direct object
walk, live � preclude a direct object
(observed also for head/verb relations in relative clauses)

Figure 2.17: Elman’s grammar which allows embedded clauses. (Adapted from El-
man [1991].)

Elman’s [1991] most complex experiment uses sentences generated from a grammar
which allows embedded phrases in the form of relative clauses, e.g. “Dog who chases cat
sees girl.” This experiment shows that a recurrent network can learn to represent several
levels of hierarchical structure. The grammar, shown in Figure 2.17, has 23 words and
one end-of-sentence marker. This grammar has a number of properties in common with
natural language: number agreement, verb argument structure, interactions with relative
clauses (the agent or subject in a relative clause is omitted), centre-embedding, and viable
sentences (there are positions in which the end of sentence marker cannot occur).

The network architecture is shown in Figure 2.18. Local representations are used
on the inputs and outputs, with two units reserved for unspecified purposes. The hidden
layer consists of 70 units which are recycled to the next timestep via the context units.
Local-to-distributed maps, with 10 units in the distributed representations, are used for
both input and output. The training regime involves four sets of 10, 000 sentences. The first
set of sentences have no relative clauses and each subsequent set has a higher proportion
of more complex sentences, with the fourth set having 75% complex sentences. Each set is
presented to the network five times. This gradated training regime beginning with simple
sentences is necessary for the network to learn the task. At the end of the training (a
total of 200, 000 sentences presentations) the network learned all of the above properties,
i.e., it predicts verbs that agree in number with the noun, etc. Elman tested the trained
network on a new set of test sentences generated in the same way as the fourth training set,
and claims the network gives reasonably good predictions. However, it is difficult for the
reader to evaluate how good these predictions were because although Elman does report
the average error on the testing set, he does not report the average error on the training set,
so there is nothing to compare it to. Also, Elman does not say how many of the sentences in
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Figure 2.18: Elman’s recurrent net for predicting words. (Adapted from Elman [1991])

Length # of patterns # of sentences Length # of patterns
2 6 40 10 1024
3 18 400 11 12288
4 8 128 12 36864
5 96 5120 13 10240
6 288 51200 14 122880
7 96 12288 15 368640
8 1152 16 98304
9 3456

Table 2.1: Numbers of different sentences and sentence patterns generated by Elman’s
grammar. The length does not include the period.

the testing set were not actually in the training set. There are only 440 different sentences
with two or three words, so it is unlikely that many of the shorter sentences in the testing
set are not in the training set.

Another reason for questioning whether the network does more than rote learning is
that the size of the vocabulary gives a misleading impression of the complexity of the
input. There are actually only 11 different classes of vocabulary symbols (including the
period) which must be distinguished in order to make optimal predictions. For example,
‘boy’, ‘girl’, ‘cat’, and ‘dog’ can all be treated as the same for the purposes of prediction.
Thus, although there are 400 sentences of three words, there are only 18 different sentence
patterns of this length, e.g., “singular-noun singular-transitive-verb plural-noun”. When
this is taken into account, the number of distinct sentence patterns is small compared to
the size of the training sets, for sentences with up to 2 or 3 relative clauses. Table 2.1
lists the numbers of sentence patterns for sentences of various lengths. The network
could be learning the classes of vocabulary symbols on the first training corpus, and then
rote-learning sentence patterns on the later training corpora.

Elman attempted to analyze what the network was doing by looking at the trajectories of
the hidden units through time. To make it possible to see these trajectories he extracted the
principal components of the hidden unit space (70 dimensions) and plotted the projection
of the trajectories onto the principal components. Three example trajectory projections
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Figure 2.19: Trajectories of hidden units during processing of sentences, projected onto
principal components. The final word in each sentence is marked with “]S”. (Adapted
from Elman [1991])

are shown in Figure 2.19a. The three verbs have different argument structure and
after receiving the verb the hidden units are in a different region of state space. ‘Chases’
requires a direct object, ‘sees’ takes an optional object, and ‘walks’ precludes an object. One
presumes that ‘feeds’, ‘hears’, and ‘lives’ behave similarly, but this is not reported. When
a sentence can legally end, the trajectories are within a small region (at least on these two
components).

Observing trajectories for sentences with centre-embedded clauses gives an opportunity
for gaining some insight into how the network is representing structured state informa-
tion. Figure 2.19b shows the trajectories of the hidden units while processing two similar
sentences with embedded clauses: “Boys who boys chase chase boy” and “Boy who boys
chase chases boy.” (These sentences were not in the training corpus.) To correctly process
these sentences the network must remember the number (plural or singular) of the main
clause noun (the first word) while processing the intervening relative clause “who boys
chase”. Also, the network must ignore the number of main clause noun when processing
the verb of this relative clause. To do this in general requires a stack, since an intervening
clause can have more relative clauses embedded within it. Figure 2.19b does show that
differences in the trajectories are maintained while the number information is relevant, but
it does not explain how the network is implementing the operations of a stack. Elman
states that representations seemed to degrade after about three levels of embedding, so
it is possible the network did not learn to push and pop number information but merely
learned the patterns for sentences with low degrees of centre-embedding.

Elman’s experiments do not provide conclusive evidence that recurrent networks can
learn to represent complex structure in an interesting way. His networks definitely do learn
some structure, but it is unclear whether they rote-learn many sentence patterns or actually
learn computational primitives for encoding and decoding hierarchical structures.

St. John and McClelland: sentence comprehension

St. John and McClelland [1990] apply recurrent networks to processing sentences. Their
model concurrently learns to represent a “gestalt” meaning of the whole sentence while
learning to answer questions about the sentence, based on the information in the gestalt.
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Figure 2.20: St. John and McClelland’s [1990] sentence processing network.

The model is shown in Figure 2.20. It consists of two networks, one a recurrent network
which builds up a gestalt of the sentence meaning as it receives the syntactic constituents of
the sentence, and the other a feedforward network which decodes the gestalt into role-filler
pairs. All inputs and outputs are represented in a localist fashion. Sentence constituents
(simple noun phrases, prepositional phrases, and verbs) are fed to the network in sequence,
and the sentence gestalt develops recursively. After the presentation of each constituent,
the gestalt is probed for all role-filler pairs in the meaning of the sentence, including ones
that depend upon constituents not yet presented. This forces the network to anticipate
upcoming constituents and discover regularities in sentences which allow it to make good
guesses about the entire meaning based on just part of the sentence. The network performs
well, although training times are long, and the training corpus is small, which raises
questions about how the network might scale to cope with larger corpora.

One of the motivations for this model is to see whether good representations for sen-
tences meanings (a collection of role-filler pairs, in this case) can be learned by backpropa-
gation. St. John and McClelland report that the conjunctive coding representation used by
McClelland and Kawamoto [1986] proved unworkable, and they wanted to see if a back-
propagation network could develop a more usable representation. It does seem as though
the network did develop good representations for the task, but unfortunately, St. John and
McClelland do not investigate the nature of this representation. Neither do they address
the difficult and important problem of how recursive structure could be represented – the
model only deals with sentences without embedded clauses

Sopena: parsing sentences with embedded clauses

Sopena [1991] describes a recurrent network which can process embedded sentences. He
finesses the problem of representing the hierarchical structure of embedded sentences by
using a sequence of simple clause frames as targets. As the network processes each word
in a sentence, it outputs known information about the current clause, such as the predicate,
agent, object, location, and instrument. For example, the sentence “The man that the boy
was looking at was smoking” contains two simple clauses: “The man was smoking” and
“The boy was looking at the man.” When processing the words “the man”, the first clause
is the current one. Next, the second clause becomes the current one, and finally the first
clause again becomes the current one.

Sopena’s network is considerably more complicated than the networks used by Elman.
It has two modules with context-hidden recurrences, one is for storing information about
the current clause, and the other is for storing information about previous clauses. Sopena
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Figure 2.21: Servan-Schreiber et al’s grammar and recurrent network. (Adapted from
Servan-Schreiber et al [1991].)

found that it was necessary to delete most of the recurrent connections (leaving less than
5% connectivity between context and hidden layers) in order for the network to be able
learn to retain information over several timesteps. The output for network is organized as
a set of case-roles. As each word is read, it must be assigned to the appropriate case-role,
and output it on the appropriate set of units.

The performance of the network seems quite good. Sopena trained it on 3000 sentences
for 50 epochs. He reports that the network generalized well to new sentences with both
familiar and novel templates. The network only had difficulties when sentences had three
or more levels of centre-embedded clauses.

Case-role assignment seems to be a better task than prediction for training a recurrent
net. It requires that the network remember more information during processing, and also
results in more informative error signals being fed back to the network. However, the task
does not require the network to represent the entire meaning of the sentence at once; it
only has to maintain a stack of incomplete clauses. The hidden layers in the network are
so large (five times the width of a clause) that the network could be learning to implement
a shift-register style stack. It is unclear whether the task allows for clauses to be forgotten
once they are complete. The network can perform anaphora resolution, but Sopena does
not give enough details to determine whether a referent lies outside of the current and
incomplete clauses.

Servan-Schreiber et al: Graded State Machines

Servan-Schreiber, Cleeremans, and McClelland [1991] conduct a deeper investigation into
the grammar learning abilities of recurrent networks like those used by Elman. They
trained a network to learn a regular grammar from examples, and showed that the fully
trained network has learned to be a perfect recognizer for the language. Their analysis
of the acquisition of the internal representations shows that the network progressively
encodes more and more temporal context during training.

Figure 2.21 shows the grammar that generates the strings, and the network used to
learn the grammar. Servan-Schreiber et al use the same truncated error backpropagation
scheme as Elman.

Servan-Schreiber et al investigate how well the network can carry information about
distant correlations across intervening elements. They use two copies of the above finite
state machine embedded in a larger finite state machine to produce strings which will test
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this capability. This finite state machine produces strings of the form “T < S > T” and
“P < S > P”, where “< S >” is a string generated by the above FSM. To successfully predict
the last letter of the string, the network must remember the first. Servan-Schreiber et al
report that the network is unable to perform the task if the two embedded strings have the
same characteristics. However, if they have different statistical properties (from different
transition probabilities on the arcs) the network is able to learn the task. This shows the
network has a tendency to forget inputs unless they are relevant to predicting the following
item. This inability to learn long-range dependencies is probably due to a large extent to
the truncation of the error propagation path. The network only backpropagates errors one
timestep; thus there is no path for the error feedback to influence what was remembered
about input presented more than one timestep before. This does not mean that the network
cannot remember information if it is not needed on the next timestep; rather it means there
is no pressure for it to so. As it happens, both Elman’s and Servan-Schreiber et al’s networks
often do retain information across several timesteps – it is difficult to quickly wipe out all
traces of previous input in a machine with a continuous high-dimensional state. Moreover,
when input is slightly relevant to the processing of intervening input, the network can
learn to preserve information about it for a large number of timesteps. Servan-Schreiber
et al suggest that natural language might have the property that the information needed
to correctly process long-range dependencies is also useful for processing intervening
elements, and thus could be learned by this simple type of network. However, they do not
present any particularly compelling evidence to support this suggestion.

Other recurrent nets for learning regular and context-free languages

A number of researchers have continued the investigation of how well recurrent networks
can learn languages from examples [Watrous and Kuhn 1992; Giles et al. 1992; Das and
Mozer 1994] This work shows that recurrent networks, similar to those used by Elman and
Servan-Schreiber et al, can reliably learn small regular grammars. Some of this work uses
higher-order recurrent networks, in which connections are from pairs of units to another
unit. In most cases, the training procedures use correct gradients rather than those given by
Elman’s truncated error propagation scheme. However, there have not been any reported
successes with getting simple networks to learn context-free languages. Giles, Sun and
colleagues [Giles et al. 1990; Das, Giles and Sun 1992] show that a higher-order recurrent
network with an external stack can learn simple deterministic context-free grammars (e.g.,
parenthesis matching, anbn, anbncbnan). While it is interesting that a neural network can
learn to use the stack, this avoids the problem of how more complex state information can
be represented in a distributed representation in the hidden layer of a recurrent net.

2.4 Distributed connectionist models for explicit representation
of structure

Researchers who have attempted to train networks to develop representations for complex
structure have laboured under the burden of not knowing how a network can represent
and manipulate structure. This creates a number of problems. It makes it difficult to
analyze or explain the properties of any representations the network does develop, or to
make definitive pronouncements about the how well the network will generalize to novel
data or scale to larger tasks. It also forces the use of very general network architectures,
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Table 2.2: A example receptive field table for a unit in the memory of DCPS. A unit having
this table would respond to (D G R), but not (G D R).

which means that the learning procedure must conduct a long, slow search through a large
function space in order to find suitable composition, manipulation and decomposition
functions.

In this section I review some distributed connectionist models which deal explicitly with
the problem of how compositional structure can be represented and manipulated. Only
one of these models (Pollack’s RAAMs) satisfies to some degree all four desiderata for
Hinton’s reduced descriptions: adequacy, reduction, systematicity, informativeness. The
designers of these models accept the claim that connectionist models must have primitives
for composing and manipulating structure if the models are to be adequate for higher-level
cognitive tasks. This is in contrast to many connectionist researchers who deny this claim.
For example, MacLennan [1991] comments colourfully that decomposing and recomposing
symbolic structures in neural networks is “just putting a fresh coat of paint on old, rotting
[symbolic] theories.”

2.4.1 Touretzky and Hinton: DCPS

Touretzky and Hinton [1985; 1988] constructed a “Distributed Connectionist Production
System” (DCPS) to demonstrate that connectionist networks are powerful enough to do
symbolic reasoning. In later papers, Touretzky [1986a; 1986c; 1990] describes how the
distributed memory of DCPS can represent variable-size tree structures.

The coarse-coded distributed memory in DCPS stores a set of triples. Each element of
a triple is one of the 25 symbols, A B ... Y, so there are 15, 625 possible triples. The memory
has 2000 units. Each unit has a “receptive field” of 216 triples, i.e., a particular unit is
turned on when one of the 216 triples it responds to is stored in the memory. The receptive
fields are constructed in a factorial fashion. Each unit has a receptive field table containing
six symbols for each position in the triple. Table 2.2 shows an example receptive field. A
unit responds to a triple if each symbol in the triple appears in the unit’s table in the correct
position.

A triple is stored in the memory by turning on the units that respond to it. On average,
28 of the 2000 units will respond to a given triple.8 A triple is deleted from memory by
turning off the units which respond to it. To test whether a triple is stored in memory we
check how many of the units responding to it are active. If the triple is present in memory
and no other triples have been deleted from memory, then all of the units responding to

8The system does not work well if many more or less than 28 units respond to some triples, as is the
case with random receptive fields. Touretzky and Hinton [1988] describe how the receptive field tables were
carefully chosen so as keep this number close to 28.
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Figure 2.22: A binary tree and the triples which represent it.

that triple will be active. However, if other triples have been deleted from memory, some
of the units may have been turned off. Touretzky [1990] suggests that a threshold of 75%
of units should be used to decide whether a triple is present in memory. DCPS can reliably
store around 6 or 7 distinct triples. The probability of error on retrieval increases with the
number of triples stored, and with similarity among the stored triples.

This triple memory is used as the working memory in DCPS. DCPS has four other
groups of units which serve to represent rules, extract clauses, and bind variables. The
rules DCPS works with are all in the following form:

Rule-2: (=x A B) (=x C D) � +(=x E F) +(P D Q) � (=x S T)

Rules can have one variable (here “=x”), which, when it appears in a triple, must appear
in the first position. This rule says that if there are triples matching (=x A B) and (=x C D)
(which would match (F A B) and (F C D), but not (F A B) and (G C D)), then two triples
should be added to the working memory, and one deleted, with the appropriate variable
substitutions.

Touretzky [1986a; 1986c; 1990] later designed BoltzCONS, a system which manipulates
LISP-like structures (i.e., binary trees). This system uses the same triple memory to rep-
resent the structures, and has much additional machinery to interpret rules and modify
memory contents. The tree representation is straightforward – each internal node in the
structure is represented by a triple: left-contents, label, and right-contents. The left and
right contents can be another label or an atomic symbol. Node labels function like pointers
or addresses. Figure 2.22 shows a example tree and the set of triples that represent it.

The label of a triple is equivalent to the address of, or pointer to, a CONS cell in
LISP memory. One advantage of this representation over a conventional pointer-based
one is that the memory for triples is associative, so one can retrieve triples given any of
the elements, not just the label. This allows traversal of binary trees without additional
memory (a stack is usually required to traverse a binary tree).

This representation for structure has two of the four desiderata for reduced representa-
tions. The label is an adequate representation, in that one can recover the structure given
the label, and is reduced. However, the label is not systematically related to the contents
or structure of the tree it refers to, and gives no information about the same. It is not
an explicit representation of either the contents or structure of binary trees. To find out
anything about a subtree one must chase labels instead of pointers.

2.4.2 Pollack: RAAMs

Pollack [1990] uses backpropagation to learn reduced representations for trees. He sets up
an auto-encoder net to learn to compress the fields of a node to a label, and uncompress the
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Figure 2.23: A Recursive Auto-Associative Memory (RAAM) for binary trees. The
“WHOLE” is the code for an internal node in a tree, and “LEFT” and “RIGHT” can be
codes for either internal or external nodes. (Adapted from Pollack [1990].)
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Figure 2.24: A simple tree and the auto-associations that encode it in a RAAM.

label to the fields. Pollack calls this type of network a Recursive Auto Associative Memory
(RAAM).

Figure 2.23 shows the architecture of the network for binary trees, and Figure 2.24 shows
the three auto-associations the network must learn to encode a simple tree. The codes for
terminal nodes (A, B, C, and D) are supplied to the network, but the network must learn
suitable codes for the internal nodes (p, q, and r). The training is a moving target problem,
because when the weights are adjusted for one example (e.g., for (B C) � r � (B C)), this
changes the representation for r, which changes the target for another example. This can
cause instability in the training, so the learning rate must be kept small, which results in
long training times.

A RAAM can be viewed as being composed of two networks – an encoding net (the
bottom half), and a decoding net (the top half). The encoding net converts a full repre-
sentation to a reduced representation, and the decoding net performs the inverse function.
The reduced representation for the tree (B C) is r, the reduced representation for ((B C) D)
is q, and so on. The network learns the decoding and encoding functions simultaneously
during training. Both encoding and decoding are recursive operations. The encoding pro-
cedure knows, from the structure of the tree, how many times it must recursively compress
representations. However, the decoding procedure must decide during decoding whether
or not a decoded field represents a terminal node or an internal node which should be
further decoded. Pollack solves this problem by using “binary” codes for terminals (i.e.,
each value in the code is 0 or 1). The reduced representations (i.e., codes for internal nodes)
developed by the network tend to have values between 0 and 1, but not close to 0 or 1. If a
decoded field has all its values sufficiently close to 0 or 1, then it is judged to be a terminal
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node and is not decoded further.
RAAMs are not limited to binary trees – a RAAM with M input fields (each of K units)

can encode trees in which each node has up to M children. Nodes with less than M children
can be encoded with special “nil” labels. Each child must appear in a particular place – the
left subtree is distinct from the right subtree. The locations of subtrees correspond to roles
in simple frames, so RAAMs can be seen as having a fixed set of roles.

Pollack trained a RAAM with three roles to encode compositional propositions such as
(thought pat (knew john (loved mary john))) (“Pat thought that John knew that Mary loved
John”). The network has 48 input units, 16 hidden units, and 48 output units. The network
learned to store the training set of 13 complex propositions. It is also able to encode and
decode some, but not all, of the novel propositions presented to it. Pollack performed a
cluster analysis on the codes for trees, which shows that similar trees tended to have similar
codes. For examples, the codes for the trees (LOVED JOHN PAT), (LOVED MARY JOHN),
(LOVED JOHN MARY), and (LOVED PAT MARY) are all more similar to each other than
any of the codes for other trees.

The similarity structure in the codes (reduced representations) indicates that they do
provide some explicit information about subtrees (full representations). Pollack probed the
nature of this representation by testing whether it is possible to manipulate representations
without decoding them. He trained another network to transform reduced descriptions of
propositions like (LOVED X Y) to (LOVED Y X), where X and Y can take on four different
values. This network has 16 input units, 8 hidden units and 16 output units. Pollack
trained the network on 12 of the 16 propositions, and the network correctly generalizes to
the other four. Chalmers [1990] explores this further with a network with a RAAM which
stores syntactic structures and another network which transforms reduced representations
for passive structures to reduced representations for active structures, without decoding.

The requirement that RAAMs be trained is both good and bad. The benefit is that
RAAMs have the potential to learn to use their resources to represent, efficiently and reli-
ably, the types of structures and terminals that are commonly encountered. The drawback
is that a RAAM may be unable to represent some unfamiliar structures and terminals.

RAAMs do possess, to some extent, all four essential characteristics of reduced repre-
sentations – they are adequate (in some cases), systematic (all have the same compression
and expansion mapping), reduced, and informative. However, as a representation for
complex structure, RAAMs have a number of problems. One problem is with the types of
structures RAAMs can represent. RAAMs have a fixed number of fixed roles and there is
no way of representing similarity between roles. Another problem is the lengthy training
RAAMs require. Another problem is with the amount of information stored in a reduced
description – as trees get deeper, more information must be stored in a fixed-size set of
units, whose activations are presumably of limited precision. Some method of chunking
subtrees is needed.9 The most serious problem is that the generalization and scaling prop-
erties are largely unknown but do not appear to be terribly good. The uncertainty about
them is partly due to not knowing the method by which the network compresses a full
representation into a reduced one.

9MacLennan’s invocation of Brouwer’s theorem is relevant to this.
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2.4.3 Smolensky: Tensor products

Smolensky [1990] describes how tensor product algebra provides a framework for the
distributed representation of recursive structure. Tensor products are a way of binding
multiple vectors together. They can be seen as generalized outer products or conjunctive
codes (Section 2.2.3). Given two n-dimensional column-vectors x and y, the second-order
tensor product T = x � y is equivalent to the outer product xyT. T has n2 elements, and
Tij = xiyj. Both lower-order and higher-order tensors exist: a first-order tensor is just a
vector, and a zero’th-order tensor is a scalar. A third-order tensor is the tensor product
of three vectors: T = x � y � z, where Tijk = xiyjzk and T has n3 elements. Higher-order
tensor products are constructed in a similar fashion – a k’th-order tensor is the product of k
n-dimensional vectors and has nk elements. The “rank” of a tensor is another name for its
order. Tensor products can be built up iteratively – multiplying a third-order tensor and a
second-order tensor gives a fifth-order tensor. Tensor products can be decoded by taking
inner products, e.g., if T = x � y � z, then T � (x � y) = z (under appropriate normalization
conditions on the vectors). The inner product can be taken along any combination of
dimensions. For example, given a third-order tensor x � y � z, we can take the inner
product with a second-order tensor in three different ways: along the first and second
dimensions to extract z, along the first and third dimensions to extract y, or along the
second and third dimensions to extract x. Care must be taken to use the appropriate inner
product.

Dolan and Smolensky: reimplementing DCPS with tensor products

Dolan and Smolensky [1989] use third-order tensors to reimplement Touretzky and Hin-
ton’s [1985] Distributed Connectionist Production System (DCPS). They first show how
Touretzky and Hinton’s triple memory can be interpreted as a rather complex, sparse,
third-order tensor product representation. Next they show how a system based on straight-
forward tensor products is simpler and more principled. This system performs the same
task as DCPS; they call it the “Tensor Product Production System” (TPPS). It has two main
advantages over DCPS. One is that it easier to analyze. The other is that the representations
are designed at the level of atomic symbols, combined with a general-purpose scheme for
representing structured collections of these symbols. This is in contrast to the approach
taken with DCPS, which was to design the representation at the level of structures. The
DCPS representation is both difficult to fine-tune and limited to specific structures (binary
trees).

Role-filler tensor representations for predicates

The ability to bind multiple vectors provides a number of ways of representing predicates.
The simplest is the role-filler outer-product representation (second-order tensor) suggested
by Smolensky [1990]. A predicate such as

� �%� � ���
can be represented by the sum of role-filler

products: r1
� a+r2

� b. Smolensky [1990] discusses two methods of decoding this role-filler
binding. The first method provides exact decoding of bindings, but requires that the set of
possible roles be linearly independent. It involves calculating decoding vectors r �i for the
roles, and then taking a tensor inner product with the binding: (r1

� a+r2
� b) � r �1 = a (which

is equivalent to the vector-by-matrix multiplication r � T
1 (r1aT + r2bT) = a). The disadvantage

of requiring linearly independent role vectors is that the number of roles is limited to being
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less than or equal to the vector dimension, which means that the representation for roles
cannot take advantage of the representational efficiency of distributed representations. The
second method for decoding bindings allows the set of possible role vectors to be linearly
dependent, but only provides approximate results. These results must be cleaned up by
a post-processing system which finds the best match among candidate results. In this
method the decoding vectors are the same as the encoding vectors: (r1

� a + r2
� b) � r1

� a.
Care must be taken if the vectors are not normalized, as results will be scaled. Roles can
also be decoded by taking an inner product in a different direction, which in matrix-vector
terms corresponds to (rT

1a + rT
2b)a � rT

1.
Dolan and Smolensky [1989] suggest that predicates can be represented by a sum of

third-order tensor products of predicate names, roles, and fillers. For example, their tensor
product representation of

� �%� � ���
would be p � r1

� a + p � r2
� b, where the r1 and r2

are the roles of
 

. This representation is very similar to plain role-filler bindings – it is in
fact equivalent to taking the tensor product of the frame name and the set of bindings:
p � r1

� a + p � r2
� b = p � (r1

� a + r2
� b). Fillers can be decoded by taking an inner

product between tensors: (p � r1
� a + p � r2

� b) � (p � r1)
� a. The predicate name or

the role can be decoded in a similar fashion by taking an inner product in the appropriate
direction.

There is not much difference between these two methods for representing predicates.
Including the predicate name in the tensor product might be useful if different predicates
were to share the same roles and it were desired that the representations of different
predicates be distinct. However, one can always view the inclusion of the predicate name
in the binding as a way of making roles of different predicates distinct – p � r1 is distinct from
q � r1. With both of these methods, multiple predicates can be represented in a single tensor
as a sum of bindings. However, multiple occurrences of the same predicate cause problems
in both representations, because bindings from one predicate are not grouped together.
For example, a single tensor representing

����� �������� �  �� 	����
and

����� �����	��
�� � ���
��	 � is
indistinguishable from one representing

����� �������� � � ���'��	�� and
��� � �������
��  ���	����

.
We can represent recursive structure by using higher-order tensors as fillers. The

resulting tensor is of even higher-order – the order increases with each level of embed-
ding. For example, if the tensors P and Q are second-order tensors representing predicates� � � � ���

and � � � ���#� , then the third-order tensor r1
� P + r2

� Q could represent the pred-
icate � ����	$����� �%� � ����� � � � ���#��� . Although this method does provide a general scheme for
representing recursive structure, it has two serious drawbacks. The first is that different
components of a structure can be represented by tensors of different orders. The most
immediate consequence of this is the difficulty of adding tensors of different ranks, as
would be required if one filler were a predicate and another a simple object. Smolensky,
Legendre and Miyata [1992] overcome this problem by multiplying lower-order tensors
by “place-holder” vectors to bring all tensors up to the same rank. The second, and more
severe drawback, is that the rank of the tensor, and hence the number of elements in it,
grows exponentially with the depth of the structure. Smolensky et al [1992] suggest that
this problem could be overcome by projecting higher-order tensors onto lower-order ten-
sors. This would produce a reduced description of the higher-order tensor. However,
they do not discuss what sort of projections would be suitable, or what the encoding and
decoding properties would be. The danger with using projections onto lower-dimensional
spaces is that the information in the null space of the projection is completely lost. If the
difference between two structures is in this null space, the two structures will be given the
same reduced description.
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Dolan: CRAM

Dolan [1989] describes a story understanding system called ‘CRAM’ which uses a role-filler
tensor product representation scheme. CRAM builds a representation of a simple story and
finds the story schema in memory which best matches it. CRAM takes variable bindings
into account during the matching process, and can perform simple reasoning about the
story by rebinding variables in predicates from the retrieved schema.

CRAM uses a superimposed third-order tensor product representation (roles, fillers,
and predicate names) for stories and story schemas. Each story schema in long-term
memory has specific hardware to perform variable matching. It is necessary to do
variable matching to retrieve the correct schema because some schemas consist of the same
predicates and only differ in their variable instantiation patterns, e.g., the schemas for
flattery, boasting, and recommendation.

While CRAM can deal with multiple predicates, it is not able to properly handle schemas
in which predicates form a hierarchical structure. CRAM does not have a satisfactory
method for forming reduced descriptions of predicates. Predicate names can be used as
fillers, but this is not an adequate representation if a predicate occurs more than once in a
schema. In any case, the static binding hardware used in the retrieval process is not able
to properly match nested predicate structure.

Halford et al: component product representation for predicates

Halford, Wilson, Guo, Gayler, Wiles, and Stewart [to appear] propose a different way of
using tensor products to represent predicates. They want a memory system which can
store multiple predicates and retrieve one component of a predicate (the name or a filler)
given its remaining components. They represent a predicate by the tensor product of all
the components of the predicate. The role of a filler determines its position in the product.
For example, the representation of �

�����������  ���� � ��� � ���������
is mother � woman � baby.

They represent a collection of predicates by the sum of tensors for individual predicates.
This representation allows them to solve analogy problems of the form “Mother is to
baby as mare is to what?” For example, suppose T is a sum of predicates, including
� �����������  ���� � ��� � ���������

and �  ���������$  � � �	� �&�  $��"��
. The analogy can be solved by

first taking the appropriate inner product between the tensors T and woman � baby,10

yielding mother (provided T does not contain other predicates relating �  ������� and
� �����

).
Having discovered that the relevant predicate is �

 ���������$� 
we next take the inner product

between mother � mare and T, yielding the answer foal.
Halford et al propose this alternative representation for both psychological and com-

putational reasons. The psychological reasons have to do with their claim that people can
process approximately four independent dimensions in parallel. Consequently, they use
tensors with a maximum order of four. The computational reason stems from their belief
that it is impossible to retrieve one component of a predicate given the others predicates
are represented as a sum of role-filler bindings. This is true if multiple predicates are
stored as superposition of predicates. However, this has more to do with the inadequacy of
superposition as a method for representing multiple predicates than with the adequacy of
the role-filler representation for single predicates. Role-filler bindings are an adequate rep-
resentation for this task if predicates are stored as chunks in an auto-associative memory,

10Care must be exercised to take the appropriate inner product, which depends upon the position of the
unknown component in the third-order tensor.
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as I show in Appendix I. Storing predicates as chunks resolves the ambiguity about which
bindings come from the same predicate and actually results in a more versatile memory
system – a predicate can be retrieved given any number of its components (provided the
components distinguish a particular predicate). Role-filler representations have two other
advantages over component product representations: they do not necessitate the imposi-
tion of an order on the components of a predicate and they have no difficult dealing with
missing arguments.

Halford et al do not give much consideration to how recursive structure might be
represented. They do mention chunking as a way of coping with more than four dimensions
and with nested predicates, but do not say how vectors representing chunks, which would
be akin to reduced representations, might be constructed.

2.4.4 Convolution-based models

The outer product is not the only operation on which a distributed associative memory
can be based. Before matrix memories were conceived of, light holography was pro-
posed as an analogy for human memory. A number of authors, including Gabor [1968a],
Willshaw, Buneman and Longuet-Higgins [1969], and Borsellino and Poggio [1973], con-
sidered distributed associative memory models based on convolution and correlation (the
mathematical operations underlying explanations of holography).

More recently, Liepa [1977], Murdock [1982; 1983; 1993], and Metcalfe [1982; 1985;
1991] have used convolution-based memories for qualitative and quantitative modelling
of human memory performance. Slack [1984b; 1984a; 1986] proposed a convolution-based
representation for parse trees.

Discrete convolution combines two vectors into one. Like the outer product, it can be
used to bind (associate) two vectors. Suppose x and y are two n-dimensional vectors. For
notational convenience I assume n that is odd and that vector indices are centred about
zero, so x = (x � (n � 1)/2, . . . , x(n � 1)/2) and y = (y � (n � 1)/2 . . . y(n � 1)/2). The convolution operation,
denoted by “ � ”, is defined as

z = x � y where zj =
(n � 1)/2�

k= � (n � 1)/2

xkyj � k for j = � (n � 1) to n � 1

Like the outer product, convolution stores information about the association of x and y
in a distributed fashion over the elements of z. Unlike the outer product, convolution is
commutative, i.e., x � y = y � x.11 Convolution can in fact be viewed as a compression
of the outer product. Figure 2.25 shows the outer product of two 3-dimensional vectors,
and Figure 2.26 shows how the elements of the outer product are summed to form the
convolution. Convolution does increase the dimensionality of vectors, but not as drastically
as the outer product: z = x � y has 2n � 1 elements. Convolution can be applied recursively
– the above definition is easily modified to handle x and y with different numbers of
elements. The dimension of convolution products increases with the number of vectors in
the product: w � x � y has 3n � 2 elements. In general a k-way convolution has k(n � 1) + 1
elements.12 Convolution is associative, i.e., (w � x) � y = w � (x � y), this together with
commutativity means that the order of vectors in a convolution product does not matter.

11The commutativity of convolution has consequences for psychological models. See Pike [1984] for a
discussion.

12In Chapter 3 I describe a version of convolution which does not increase vector dimensionality.
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x0y1

x1

x0

x � 1

y1y0y � 1

Figure 2.25: The outer product of two vectors. Each of the small circles at the intersection
of a pair of lines represents a component of the outer product of x and y.

x � 1

x1

x0

y1y0y � 1

z � 1

z0

z � 2

z1

z2

z = x � y

z � 2 = x � 1y � 1
z � 1 = x � 1y0 + x0y � 1
z0 = x � 1y1 + x0y0 + x1y � 1
z1 = x0y1 + x1y0
z2 = x1y1

Figure 2.26: Convolution represented as a compressed outer product for n = 3. The
convolution of x and y consists of sums (along the lines) of outer product elements. Vector
indices are centred on zero for notational convenience – vectors grow in dimensionality (at
both ends) with recursive convolution.

The convolution of two vectors can be decoded by correlation. The correlation opera-
tion, denoted by “#”, is defined as:

w = x#z where wj =
(n � 1)/2�

k= � (n � 1)/2

xk � jzk for j = � (n � 1) to n � 1

Suppose z = x � y. Then, under certain conditions on the elements of x and y, correlating x
with z reconstructs y, with some noise:13

x#z � y

The noise is lower with vectors of higher dimension. A sufficient condition for this recon-
struction to hold is that the elements of x and y are independently distributed as N(0, 1/n)
(i.e., normally distributed with mean zero and variance 1/n). Under this condition the
expected Euclidean length of vectors is 1. Under other conditions the reconstruction is

13The “noise” in the decoding is not stochastic noise – for a particular choice of random vectors the noise in
decoding is always the same. However, over different choices of random vectors, this noise can be treated as
random noise.
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exact – I discuss these conditions and other properties of convolution and correlation in
Chapter 3. Correlation is closely related to convolution: x#z = x

� � z, where x
�

is the mirror
image of x (around the zero’th element), i.e., x

�

i = x � i. Writing expressions with x
�

and
convolution instead of correlation makes them easier to manipulate, because convolution
is associative and commutative, whereas correlation is neither.

As with outer products in matrix memories, convolution products can be superimposed
to give a set of associations. This is often referred to as a memory trace, and sometimes
has other information superimposed as well. The individual associations in a trace can be
decoded separately, provided that the vectors in different associations are not too similar.
For example, suppose t = x � y+z � w, where the elements of x, y, z and w are independently
distributed as N(0, 1/n). Then, any member of a pair can be extracted from t given the
other member of the pair, e.g.:

x
�

� t � y and w
�

� t � z.

The noise in the extracted vectors is quite large and increases as more associations are
added to the trace. The signal-to-noise ratio is usually less than 1 even when there is only
one association in the trace. However, if the dimension of the vectors is sufficiently large,
extracted vectors can be reliably recognized and cleaned up. To recognize vectors we need
a measure of similarity. The dot-product (vector inner product) is usually used for this.
The dot-product is defined as:

x � y =
�

i

xiyi

If x and y are chosen so that elements are independently distributed as N(0, 1), then the
expected value of x � x is one, and the expected value of x � y is zero. If the vectors are
normalized (so that x � x = 1) the dot-product is equal to the cosine of the angle between
them. To recognize and clean up extracted vectors we must have all vectors stored in an
error-correcting clean-up memory. The clean-up memory should find and output the most
similar matching vector for a given input (i.e., the one with the highest dot-product). For
example, we clean up the result y � of extracting what is bound to x in t = (x � y + z � w)
(y � = x

� � t) by passing y � to the clean-up memory. If we are lucky (and if the dimension is
high enough the odds will be good) the vector in clean-up memory most similar to y � will
be y, and y can be considered the result of the clean-up operation. This recognition process
is the “matched filter” used by Anderson [1973] to identify components of a superposition
of random vectors.

Higher-order convolutions can be decoded in a similar manner. For example, if t =
x � y � z, then pairwise convolutions or items can be extracted from it:

x
�

� t � y � z, (x � y)
�

� t � z, (x � z)
�

� t � y.

Convolution is a versatile operation for associating vectors. Associations of different
orders, including plain, unconvolved vectors, can be superimposed in a single memory
trace. Although associations of different orders have different numbers of elements, lower-
order associations can be padded with zeros. Generally, associations of different orders do
not interfere with each other – the expected similarity (dot-product) of x and x � y is zero.

Human memory modelling: models and tasks

Liepa [1977], Murdock [1982; 1983; 1993], and Metcalfe [1982; 1985; 1991] have proposed
various models of human memory for sequences and lists of paired-associates, all based
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on convolution storage methods. I mention the various storage schemes here, but omit
many of the details and intricacies of psychological data that motivate differences among
them. For the sake of simplicity, I just give an example of how a storage scheme stores
a short sequence or small set of pairs, unless it is unclear how the scheme generalizes to
longer sequences or lists. Most of these schemes have scalar parameters which control how
much weight each component is given in the trace. I omit these parameters where they are
unimportant to the gross characteristics of the scheme.

These models are designed to perform various recall and recognition tasks. For ex-
ample, a subject might be asked to memorize the list “cow-horse, car-truck, dog-cat, and
pen-pencil” and then answer such questions as “Did ‘car’ appear in the list?” (recognition),
or “What was ‘cat’ associated with?” (cued recall). In a sequence recall task the subject
might be asked to recall the entire sequence, or recall what item followed another, or recog-
nize whether an item appeared in the sequence at all. Subjects’ relative abilities to perform
these and other tasks under different conditions, and the types of errors they produce, give
insight into the properties of human memory. Some commonly varied conditions are: the
number of pairs or length of sequences, the familiarity of items, and the similarity of items
(both within and across pairs).

Liepa: CADAM models

Liepa [1977] describe schemes for storing lists of paired-associates and sequences, under
the banner of “CADAM” (Content-Addressable Distributed Associative Memory). His
scheme for storing paired associates is unadorned pairwise convolution. For example, the
two pairs (a, b) and (c, d) are stored as:

T = a � b + c � d

It is easy to model cued recall (“What was paired with b?”) with this scheme, but it is not
so easy to do other things such as recognition (“Did a appear in the list”), because there is
no information about individual items in the trace. Liepa’s scheme for sequences is more
interesting, each item is stored by associating it with the convolution of all previous items.
The sequence abcd is stored as:

T = a + a � b + a � b � c + a � b � c � d

This scheme supports sequential recall in the following manner:

T = a + a � b + a � b � c + a � b � c � d � a
a

� � T = a
� � a + a

� � a � b + a
� � a � b � c + a

� � a � b � c � d � b
(a � b)

� � T = (a � b)
� � a + (a � b)

� � a � b + (a � b)
� � a � b � c + . . . � c

(a � b � c)
� � T = (a � b � c)

� � a + . . . + (a � b � c)
� � a � b � c � d � d

The decoding cues must be built up out of retrieved items as the sequence is unravelled.
Each of these equations holds (approximately) because the underlined terms, such as
a

� � a � b( � b), are similar to items in the clean-up memory. The other terms, such as a
� � a

and a
� � a � b � c, are not likely to be similar to anything in clean-up memory, assuming

all the vectors have been chosen randomly. This scheme is not subject to the obvious
pitfall of chaining schemes, which is that repeated items could cause jumps or loops.
However, Liepa’s scheme does not support sequential decoding starting from a named
item or subsequence, or item recognition without decoding. This makes it somewhat
unsatisfactory as a model of how the human brain stores sequences, because people can
perform both of these tasks quite well.
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Murdock: TODAM

Murdock [1982; 1983] proposes a “Theory of Distributed Associative Memory” (TODAM)
in which both item and associative information is superimposed in the memory trace.
TODAM has different schemes for storing sequences and lists of paired-associates. The
scheme for paired-associates [Murdock 1982] stores (a, b) and (c, d) as:

T = a + b + a � b + c + d + c � d

Here, the item information is a + b + c + d and the pair information is a � b + c � d. Murdock
uses several parameters to control the relative contributions of item and pair information
and the decay of the trace as more pairs are added in. This representation supports both
cued recall and item recognition. The processes for these two tasks are different. Cued
recall involves correlating the trace with the cue and cleaning-up the result, whereas item
recognition involves calculating the dot-product of the cue and the trace and comparing
the result against a threshold.

The scheme for serial information [Murdock 1983] is similar. The memory trace for the
series

�
f1, . . . , fk � is built up iteratively using chaining:

M1 = f1

Mj = � Mj � 1 + � fj + � fj
� fj � 1 (for j >= 2)

where Mj is the representation for the sequence up to fj. I show the weighting parameters
because correct recall of the first item in the series depends on the relative weighting of the
items. The intermediate and final traces for the sequence

�
a, b, c, d � are the following:

M1 = a

M2 = � b + � (b � a) + � a

M3 = � c + � (c � b) + ��� b + � � (b � a) + � 2a

M4 = � d + � (d � c) + ��� c + � � (c � b) + � 2 � b + � 2 � (b � a) + � 3a

This representation can support a number of recall and recognition tasks. Item recognition
is the same as for the paired-associates scheme. Whole sequences can be recognized by
forming a trace for the probe sequence in the same manner and comparing it (by the dot-
product) to the memorized trace. Similar sequences will have higher dot-products than
dissimilar sequences. Lewandowsky and Murdock [1989] use this model to explain human
subjects’ performance on a number of serial learning and recall tasks.

To do serial recall we must first find the item with the highest weight (parameters
must be chosen so that � k � 1 > � ). For the above trace (M4) this will be a (assuming that
superimposing the items and pairs has not upset the relative weights of items). Then we
follow the chain of pairs, correlating the trace with the current item to retrieve the next. The
commutativity of convolution results in a minor problem in decoding. When we correlate
with an interior item the result is a superposition of the previous and next items. For
example, correlating M4 with b yields the superposition of a and c. The decoding process
must take this into account. It seems this scheme will not be adequate for sequences which
contain repeated items. The above serial recall process could jump or loop on encountering
a repeated item, and there is no obvious way in which this could be fixed.

Murdock remarks that TODAM memory traces can be regarded as memory chunks.
Traces can be treated as items in their own right, and composed in a hierarchical fashion.
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Murdock does not give any examples, but here is how one might look. For clarity, I omit
the weighting factors. Suppose we have the two chunks (traces) for the sequences

�
a, b �

and
�
c, d, e � :

C1 = a + b + a � b

C2 = c + d + e + c � d + d � e

A sequence composed of these two chunks, and its expansion, would be stored as:

C = C1 + C2 + C1
� C2

= a + b + a � b + c + d + e + c � d + d � e

+ (a + b + a � b) � (c + d + e + c � d + d � e)

This brings up the possibility that TODAM traces could function as a reduced repre-
sentation. The one problem with this is that the dimension of vectors grows with recursive
convolution – not as fast as tensor products grow, but they still grow. It is not inconceivable
that some chunks could be nested quite a few levels deep, and it is somewhat inelegant
(and impractical) for vectors representing high-level chunks to be several times wider than
vectors representing low-level chunks.

Murdock [1983] briefly discusses how predicates might be represented in the TODAM
model. He suggests three different ways of storing the predicate

� �%� � ���
:

P1 = p � a + a � b

P2 = p � a + p � b

P3 = p � a � b

The first two of these methods are simple chaining representations, the first in the order�
p, a, b � and the second in the order

�
a, p, b � . The third stores the predicate as a triple.

None of these methods is entirely satisfactory. The first and second method assume some
ordering on the arguments of a predicate. The second and third methods lose argument
order information –

� �%� � ���
and

� � � �����
have the same representation. With the third

method it is difficult to retrieve the arguments knowing only the predicate name – it
is only easy to decode one argument if we already know the predicate name and one
other argument. All three methods fare poorly if some arguments are optional – the
retrieval processes for a particular argument changes according to which other arguments
are present. These problems are not insurmountable, but as Murdock points out, there
are many ways predicates can be represented using convolution, and other ways could be
superior.

Metcalfe: CHARM

Metcalfe [1982; 1985; 1991] proposes another convolution-based representation for paired-
associates lists. She uses this representation in her “Composite Holographic Associative
Recall Model” (CHARM). CHARM differs from Murdock’s TODAM in that item informa-
tion is stored in the memory trace in the form of auto-convolutions. For example, the pairs
(a, b) and (c, d) are stored as:

T = a � a + b � b + a � b + c � c + d � d + c � d
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The significance of this is that the recognition process is nearly identical to the recall
process. Testing whether a is present in the trace involves correlating the trace with a, and
computing similarity of the result to a. This leads to CHARM and TODAM making different
predictions about the dependence of recall and recognition in the presence of similarity
among items in the trace. Metcalfe [1991] claims that the data on human performance is
more in line with the predictions derived from CHARM.

Murdock: TODAM2

Murdock [1992; 1993], in response to some failings of the TODAM model, proposes a more
general and more complex scheme for storing sequences and lists of paired associates.
Murdock calls this new model TODAM2. I will not describe TODAM2 in full – I will only
explain the “chunking” idea which is a central component of it.

A “chunk” is a representation for a sequence of items. The chunk for the sequence�
f1, .., fk � is:

Ck =
k�

i=1

���
i
j=1 fj � i

,

where the i’th power of a vector is the vector convolved with itself i times (a2 = a � a). Some
examples for the chunks of

�
a, b, c, d � make this clearer:

C1 = a

C2 = a + (a + b)2

= a + (a + b) � (a + b)

= a + a � a + 2a � b + b � b

C3 = a + (a + b)2 + (a + b + c)3

C4 = a + (a + b)2 + (a + b + c)3 + (a + b + c + d)4

For representing sequences, TODAM2 uses one chunk for the entire sequence, unless
the sequence is broken down into subsequences. For paired associates, TODAM2 uses
a chunk for each pair. Chunks contain all the convolution products used in CADAM,
TODAM, and CHARM, thus the access processes of these models can be used with chunks.

Murdock uses chunks for two reasons: to support recall of missing items, and to
create higher-order associations, the need for which is argued by Humphreys, Bain and
Pike [1989].

Recall of missing items involves recalling the items from an original list which are not
in a new list. For example, given an original list

�
a, b, c � and a new list

�
a, c � , the missing

item is b. This information can be extracted from the chunk for
�
a, b, c � by correlating it

with a � c:
(a � c)

�
� C = (a � c)

�
� (a + (a + b)2 + (a + b + c)3)

Most of the terms in the expansion of this turn out to be noise, except for:

(a � c)
�

� (6a � b � c + 3a � c � c + 3a � a � c) � 6b + 3c + 3a,

which can be cleaned up to give b.
The problem with Murdock’s chunks is that they introduce many higher-order associa-

tions for which there is no obvious need, such as a2 � b. These dilute the useful associations,
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which has the effect of adding noise to decoded vectors. This means that very a high vector
dimension is required to achieve acceptable levels of reliability. The problem is particu-
larly bad when chunks are composed of more than three items. One wonders whether
the reasons for using chunks could be satisfied by some other more economical storage
scheme. For example, another way to do missing item recall is to compute the difference
of superpositions, as do Hadley, Healy and Murdock [1992]:

(a + b + c) � (a + c) = b

Doing missing item recall in this way does not require any more convolution products or
vectors than are already required for other tasks such as item recognition.



Chapter 3

Holographic Reduced
Representations

All of the schemes for the distributed representation of hierarchical structure reviewed
in the previous chapter have some flaws. In the remainder of this thesis I present and
discuss a scheme, called “Holographic Reduced Representations” (HRRs) which I believe
overcomes these flaws. HRRs support the useful properties of distributed representations
that were identified in Section 1.4.2: explicitness, explicit similarity, redundancy, conti-
nuity, and efficiency. They satisfy Hinton’s four desiderata for reduced representations:
they are representationally adequate, the reduced descriptions are represented over fewer
units, reduced and full descriptions are related in a systematic manner, and the reduced
descriptions give some information about the contents of the full description.

HRRs incorporate ideas and techniques from several fields of research. HRRs are an
concrete implementation of Hinton’s [1990] notion of “reduced descriptions”. HRRs use
the role-filler representation for predicates suggested by Hinton, McClelland and Rumel-
hart [1986], but bind roles and fillers with convolution instead of the outer product. HRRs
are based on convolution, like Murdock [1982] and Metcalfe’s [1982] models, but use a ver-
sion of convolution (circular convolution) which does not increase the dimensionality of
vectors. Hierarchical structure is represented by recursively composing role-filler bindings
in similar manner to Smolensky’s [1990] recursively composed tensor products, but unlike
the tensor product, circular convolution does not increase vector dimensionality.

HRRs are constructed in a simple and regular manner, as with Smolensky’s tensor
products (to which HRRs are closely related). The simple method of construction makes it
possible to analyze and predict the properties of HRRs, and allows us to make definitive
statements about how well HRRs will scale to larger systems.

The biggest advantage of HRRs is that they make it easy to represent structure. This
means that a learning system which uses HRRs does not need to expend computational
resources learning how to represent structure – it is free to concentrate on the truly difficult
task of learning the important relationships among objects in the task.

3.1 Circular convolution and correlation

Tensor products and ordinary convolution are recursively applicable associative operators,
which makes them candidates for the representation of hierarchical structure. However,
both increase the dimensionality of vectors, which makes them somewhat impractical
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x1

c2c1c0

x2

x0

t0

t1

t2

t = c � x

t0 = c0x0 + c2x1 + c1x2
t1 = c1x0 + c0x1 + c2x2
t2 = c2x0 + c1x1 + c0x2

tj =
n � 1�

k=0

ckxj � k

for j = 0 to n � 1
(Subscripts are modulo-n)

Figure 3.1: Circular convolution ( � ) represented as a compressed outer product for n = 3.
The circles represent the elements of the outer product of x and c. The elements of the
convolution are the sum, along the wrapped diagonals, of the elements of the outer product.

for this purpose (although convolution increases dimensionality far less than the tensor
product). Circular convolution is a version of convolution which does not increase vector
dimensionality. It is well known in signal processing (sometimes as “wrapped” convolu-
tion, e.g., Gabel and Roberts [1973]) but its only use in associative memories has been by
Willshaw, Buneman and Longuet-Higgins [1969] in their “non-linear correlograph”. The
result of the circular convolution of two vectors of n elements has just n elements – there
is no expansion of dimensionality. Like ordinary convolution, circular convolution can be
regarded as a compression of the outer product of two vectors, as illustrated in Figure 3.1.

Circular convolution can be regarded as a multiplication operator for vectors. It has
many properties in common with both scalar and matrix multiplication. It is commutative:
x � y = y � x; associative: x � (y � z) = (x � y) � z; and bilinear: x � ( � y+ � z) = � x � y+ � x � z.
There is an identity vector: �I � x = x, �I = [1, 0, 0, . . .]; and a zero vector: �0 � x = �0 and x+ �0 = x,

�0 = [0, 0, 0, . . .]. For nearly all vectors x, an exact inverse exists: x � 1 � x = �I. For vectors from
certain distributions, there is a stable approximate inverse which is generally more useful
than the exact inverse. In algebraic expressions I give convolution the same precedence as
multiplication, so that x � y + z = (x � y) + z, and higher precedence than the dot-product,
so that x � y � w � z = (x � y) � (w � z).

There is also a circular version of correlation, which under certain conditions is an
approximate inverse of circular convolution. Circular correlation, #

� , can also be regarded
as a compression of the outer product, as illustrated in Figure 3.2. Suppose we have a
trace which is the convolution of a cue with another vector, t = c � x. Correlation of c with
t reconstructs a distorted version of x: y = c #

� t and y � x.
Multiple associations can be represented by the sum of the individual associations.

Upon decoding, the contribution of the irrelevant terms can be ignored as distortion. For
example, if t = c1 � x1+c2 � x2, then the result of decoding of t with c1 is c1 #

� c1 � x1+c1 #
� c2 � x2.

If the vectors have been chosen randomly the second term will, with high probability, have
low correlation with all of c1, c2, x1 and x2 and the sum will be recognizable as a distorted
version of x1.
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y = c #
� t

y0 = c0t0 + c1t1 + c2t2
y1 = c2t0 + c0t1 + c1t2
y2 = c1t0 + c2t1 + c0t2

yj =
n � 1�

k=0

cktk+j

for j = 0 to n � 1
(Subscripts are modulo-n)y2

t0

y1

c1 c2

t2

c0

y0

t1

Figure 3.2: Circular correlation ( #
� ) represented as a compressed outer product for n = 3.

3.1.1 Distributional constraints on the elements of vectors

A sufficient condition for correlation to decode convolution is that the elements of each
vector (of dimension n) be independently and identically distributed with mean 0 and
variance 1/n. This results in the expected Euclidean length of a vector being 1. Examples of
suitable distributions for elements are the normal distribution and the discrete distribution
with values equiprobably

�
1/ � n. The reasons for these distributional constraints should

become apparent in the next subsection.
The tension between these constraints and the conventional use of particular elements

of vectors to represent meaningful features in distributed representations is discussed in
Section 3.5.

3.1.2 Why correlation decodes convolution

It is not immediately obvious why correlation decodes convolution. However, it is not hard
to see if an example is worked through. Consider vectors with three elements, c = (c0, c1, c2)
(the cue), and x = (x0, x1, x2), where the ci and xi are independently drawn from N(0, 1/n)
(i.e., a normal distribution with mean 0 and variance 1/n, n = 3 in this example). The
convolution of c and x is:

c � x =

��
� c0x0 + c1x2 + c2x1

c0x1 + c1x0 + c2x2

c0x2 + c1x1 + c2x0

���
�

We can reconstruct x from this trace by correlating with the cue c:

c #
� (c � x)

=

��������
�

x0(c2
0 + c2

1 + c2
2)+x1c0c2 + x2c0c1 + x1c0c1

+x2c1c2 + x1c1c2 + x2c0c2

x1(c2
0 + c2

1 + c2
2)+x0c0c1 + x2c0c2 + x0c0c2

+x2c1c2 + x0c1c2 + x2c0c1

x2(c2
0 + c2

1 + c2
2)+x0c0c1 + x1c1c2 + x0c1c2

+x1c0c2 + x0c0c2 + x1c0c1

���������
�
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=

��
� x0(1 +

�
) + � 0

x1(1 +
�
) + � 1

x2(1 +
�
) + � 2

���
� = (1 +

�
)x + ��

where
�

and the � i can be treated as zero-mean noise. The variances of
�

and the � i are
inversely proportional to n. The distributions of the

�
and � i are normal in the limit as

n goes to infinity, and the approximation to the normal is excellent for n as small as 16.
In general, it is safe to use the normal approximations because typical values for n in
convolution-based associative memory systems are in the hundreds and thousands.

Using the central limit theorem, and assuming the ci and xi are independent and dis-
tributed as N(0, 1/n), the distributions of

�
and the � i for large n are as follows:

� d= N(0, 2
n ), since

�
= (c2

0 + c2
1 + . . . + c2

n) � 1, and the c2
i are independent and have mean 1/n

and variance 2/n2.

� i
d= N(0, n � 1

n2 ), since the n(n � 1) terms like xjckcl (k �=l) have mean 0 and variance 1/n3, and
the pairwise covariances of these terms are zero.

It is more useful to calculate the variance of the dot-product x � (c #
� (c � x)) than the

variances of the elements of c #
� (c � x), because this can be used to calculate the probability of

correct decoding. This in turn allows us to calculate the minimum dimension (n) for which
the probability of correct decoding associations is acceptable. However, calculating these
variances is not simple, because one must take into account the covariances of the noise
terms in the different elements. Extensive tables of variances for dot-products of various
convolution products have been compiled by Weber [1988] for unwrapped convolution.
Unfortunately, these do not apply exactly to circular convolution. The means and variances
for dot-products of some common circular convolution products will be given in Table 3.1
in Section 3.6.1.

3.1.3 Relationship of convolution to correlation

The correlation of c and t is equivalent to the convolution of t with the involution of c
[Schönemann 1987]. The involution of c is the vector d = c

�

such that di = c � i, where
subscripts are modulo-n.1 For example, if c = (c0, c1, c2, c3), then c

�

= (c0, c3, c2, c1). Writing
c

� � t is preferable to writing c #
� t because it simplifies algebra, since correlation is neither

associative nor commutative whereas convolution is both. Involution distributes over
addition and convolution, and is its own inverse:

(a + b)
�

= a
�

+ b
�

, (a � b)
�

= a
� � b

�

, a
� �

= a

In analogy to inverse matrices, it is sometimes convenient to refer to c
�

as the approximate
inverse of c. The exact inverse of vectors under convolution (i.e., c � 1) will be discussed in
Section 3.6.3.

3.1.4 How much information is stored in a convolution trace?

Since a convolution trace only has n numbers in it, it may seem strange that several pairs
of vectors can be stored in it, since each of those vectors also has n numbers. The reason
is that the vectors are stored with very poor fidelity. The convolution trace stores enough

1Involution has a more general meaning, but in this paper I use it to mean a particular operation.
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information to recognize the vectors in it, but not enough to reconstruct them accurately.
For recognition, we only need to store enough information to discriminate an item from
other possible items. Suppose we have M equiprobable items, each represented by an
n-dimensional vector. About 2k log2 M bits of information are needed to represent k pairs
of those items for the purposes of recognition.2 The dimensionality of the vectors does not
enter into this calculation, only the number of vectors matters.

For example, if we have 1024 items (each represented by a different vector), then
the number of bits required to identify four pairs of those items is slightly less than
2 � 4 � log2 1024 = 80 bits (this is a slight overestimation because the pairs are unordered).
A convolution memory using random vectors with 512 elements can reliably store four
pairs of these items (see Appendix D). Storing 80 bits of information in 512 floating-point
numbers is not particularly efficient, but for the storage of complex structure this is not a
critical issue. Also, the floating-point numbers need not be stored to high-precision. In
fact, in Willshaw, Buneman and Longuet-Higgins [1969] non-linear correlograph, which is
the most information-efficient convolution-based associative memory, all vector elements
are 0 or 1.

3.2 Superposition Memories

One of the simplest ways to store a set of vectors is to superimpose them (i.e., add them
together). In general, such storage does not allow for recall or reconstruction of the stored
items, but it does allow for recognition, i.e., determining whether a particular item has
been stored or not. Anderson [1973] described and analyzed a memory model based on
simple superposition of random vectors.

The principle of superposition memory can be stated thus: “adding together two high-
dimensional vectors gives a vector which is similar to each and not very similar to anything
else.”3 This principle underlies the ability to superimpose traces in both convolution and
matrix memories.

It is not necessary for elements of vectors to have continuous values for superposition
memories to work. Also, their capacity can be improved by applying a suitable non-
linear (e.g., threshold) function to the trace. Touretzky and Hinton [1988] and Rosenfeld
and Touretzky [1988] discuss binary distributed memories, in which representations are
superimposed by elementwise binary-OR. However, I do not use binary representations in
this thesis because of difficulties with maintaining constant density (see Section 3.5.2).

3.2.1 The probability of correct recognition with superposition memories

It is simple to calculate the probability of correct recognition of a random vector stored in a
superposition memory. I do this here because the same techniques are used to calculate the
probabilities of correct reconstruction from convolution-based memories. This analysis is
essentially the same as that given in Anderson [1973]. In this section I give an expression
for the probability of correct recognition, but do not give an analytic solution for it, because
it involves an optimization. In Appendix B, I report results for the numerical optimization
of this equation. In Appendix C I give a lower bound for the solution.

Suppose we have a superposition memory with the following parameters:

2Actually, slightly less than 2k log2 M bits are required if the pairs are unordered.
3This applies to the degree that the elements of the vectors are randomly and independently distributed.
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� n: the dimensions of the vectors.

� A set
�

of m vectors, a, b, c, d etc, with elements independently distributed as
N(0, 1/n).

� A memory trace t, which is the superposition of k distinct vectors from
�

. For the
purposes of this analysis, normalization is unimportant, so I do not normalize the
trace.

� Pr(All Correct), the probability of correctly determining which vectors are and are
not stored in the memory trace.

� sa and sr, the accept and reject signals (see below).

To test whether a particular vector x from
�

is in the trace t, we compute the dot-product
of x and t. The resulting signal will be from one of two distributions; the accept distribution
Sa (if x is in the trace), or the reject distribution Sr (if x is not in the trace). The means and
variances of these distributions can be calculated by expanding x � t. For example, consider
the trace t = a + b + c, and a signal from the accept distribution:

sa = a � t = a � a + a � b + a � c.

Consider typical vectors elements xi and yj, which are independently distributed as
N(0, 1/n). It is easy to show that E[x2

i ] = 1/n and var[x2
i ] = 2/n2, and E[xiyj] = 0 and

var[xiyj] = 1/n2. By the central limit theorem, the terms like a � a are distributed as
N(1, 2/n), and the terms like a � b are distributed as N(0, 1/n). Since these terms all
have zero covariance, we can add means and variances to get sa

d= N(1, (k + 1)/n) and
sr

d= N(0, k/n).
The value of the dot-product x � t (the signal) tells us whether or not the item x is present

in the trace. If the signal is greater than some threshold t we assume that it is from the
accept distribution and thus the item is in the trace, and if it is less we assume it is not.

Using cumulative distribution functions, we can work out the probability of correctly
deciding an item was stored in a trace (Pr(Hit) = Pr(sa > t)), and the probability of correctly
deciding an item was not stored in a trace (Pr(Reject) = Pr(sr < t)). The threshold t can be
chosen to maximize the probability of correctly identifying all the items stored (and not
stored) in a particular trace:

Pr(All Correct) = Pr(Hit)k Pr(Reject)m � k (3.1)

= max
t

Pr(sa > t)k Pr(sr < t)m � k (3.2)

The probability density functions (pdfs) for sa and sr and the optimal single threshold
are shown in Figure 3.3, for an example with n = 64, m = 100, and k = 3 (for which
Pr(All Correct) = 0.68). This threshold was found by numerical optimization of the
expression for Pr(All Correct). We can actually achieve better discrimination by using
a double-threshold scheme. In general, the optimal scheme for deciding which of two
normal distributions a signal comes from involves testing whether the signal is in a region
around the distribution with the smaller variance. However, the improvement gained by
using two thresholds is small when misclassification probabilities are low.
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p(sr)
E(sr) = 0

sd(sr) = 0.217

p(sa)
E(sa) = 1
sd(sa) = 0.25

0 10.651 Signal strength

Threshold

Figure 3.3: Probability density functions for accept (sa) and reject (sr) signals for recognition
in a linear superposition memory, with n = 64 and k = 3. The threshold shown maximizes
Pr(All Correct) for m = 100.

This decision procedure is not infallible, but n can be chosen to make the probability
of error acceptably low, since the variances of the signals are inversely proportional to n.
When the variances of the signals are smaller, the probability of error is lower.

This analysis here treats signal values as random variables, but their randomness is
only a consequence of the random choice of the original vectors. For any particular trace
with a particular set of vectors, the signal values are deterministic. This style of analysis is
consistently used throughout this paper: there are no stochastic operations, only randomly
chosen vectors.

3.2.2 The use of thresholds

Fixed thresholds are helpful in the analysis of probability of correct retrieval but they are not
very good for determining the result of a similarity match in practice. The main reason for
this is that the optimal threshold varies with both the composition of the trace and with the
particular objects that comprise the trace (see Section 3.10.4 for an example). Consequently,
no single fixed threshold will be appropriate for choosing the winning matches in all
situations, and it is impractical to compute a new threshold for every situation. A simpler
scheme is just to choose the most similar match, though this is of limited versatility. A
possible enhancement of is a no-decision region; if the highest score is not more than some
fixed amount greater than the next highest score, then the result is considered unclear.

3.3 The need for clean-up memories

Linear convolution memories are not able to provide accurate reconstructions. If a system
using convolution representations is to do some sort of recall (as opposed to recognition),
it must have an additional error-correcting auto-associative item memory. This is needed
to clean up the noisy vectors retrieved from the convolution traces. This clean-up memory
must store all the items that the system can produce. When given as input a noisy version
of one of those items it must either output the closest item or indicate that the input is not
close enough to any of the stored items. Note that one convolution trace stores only a few
associations or items, and the clean-up memory stores many items.

For example, suppose the system is to store pairs of random vectors a, b, . . . , z. The
clean-up memory must store these 26 vectors and must be able to output the closest item
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�
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Trace

Input Cue
Strength

Output Item
Clean-up

Figure 3.4: A hetero-associator machine. The “*” on the operand to the convolution
indicates the approximate inverse is taken.

for any input vector (the “clean-up” operation). Such a system is shown in Figure 3.4.
The trace is a sum of convolved pairs, e.g., t = a � b + c � d + e � f. The system is given one
item as an input cue and its task is to output the associated item from the trace. It should
also output a scalar value (the strength) which is high when the input cue was a member
of a pair, and low when the input cue was not a member of a pair. When given the above
trace t and a as a cue it should produce b and a high strength. When given g as a cue it
should give a low strength. The item it outputs is unimportant when the strength is low.

Many of systems mentioned in Chapter 2 use some type of clean-up memory. For
example, BoltzCONS uses “pull-out” networks, CRAM and DCPS use “clean-up circuits”,
and TODAM uses an “R-system”. The exact method of implementation of the clean-up
memory is unimportant. Hopfield networks are probably not a good candidate because
of their low capacity in terms of the dimension of the vectors being stored. Kanerva
networks [Kanerva 1988] have sufficient capacity, but can only store binary vectors. For
the simulations reported in this thesis I store vectors in a list and compute all dot-products
in order to find the closest match.

3.4 Representing complex structure

Pairs of items are easy to represent in many types of associative memory, but convolution
memory is also suited to the representation of more complex structure, namely sequences,
predicates, and recursive predicates.

3.4.1 Sequences

Sequences can be represented in a number of ways using convolution encoding. An entire
sequence can be represented in one memory trace, with the probability of error increasing
with the length of the stored sequence. Alternatively, chunking can be used to represent a
sequence of any length in a number of memory traces.

Murdock [1983; 1987], and Lewandowsky and Murdock [1989] propose a chaining
method of representing sequences in a single memory trace, and model a large number of
psychological phenomena with it. The technique used stores both item and pair informa-
tion in the memory trace, for example, if the sequence of vectors to be stored is abc, then
the trace is

�

1a + � 1a � b + �

2b + � 2b � c + �

3c,

where the �

i and � i are weighting parameters, with �

i > �

i+1. The retrieval of the sequence
begins with retrieving the strongest component of the trace, which will be a. From there
the retrieval is by chaining — correlating the trace with the current item to retrieve the
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next item. The end of the sequence is detected when the correlation of the trace with the
current item is not similar to any item in the clean-up memory. This representation of
sequences has the properties that a sequence is similar to all of the items in it, retrieval
can start from any given element of the sequence, and similar sequences will have similar
representations. It has the disadvantage that some sequences with repeated items cannot
be properly represented.

Another way to represent sequences is to use the entire previous sequence as context
rather than just the previous item [Liepa 1977]. This makes it possible to store sequences
with repeated items. To store abc, the trace is:

a + a � b + a � b � c.

This type of sequence can be retrieved in a similar way to the previous, except that the
retrieval cue must be built up using convolutions.

The retrieval of later items in both these representations could be improved by sub-
tracting off prefix components as the items in the sequence are retrieved.

Yet another way to represent sequences is to use a fixed cue for each position of the se-
quence. I call this method for storing sequences trajectory-association, because each element
of the sequence is associated with a point along a predetermined trajectory. To store abc,
the trace is:

p1 � a + p2 � b + p3 � c.

The retrieval (and storage) cues pi can be arbitrary or generated in some manner from
a single vector, e.g., pi = (p)i, i.e., p raised to the i th convolution power (Section 3.6.5).
Convolution powers provide an easy way of generating a sequence of uncorrelated vectors
from a single vector. In Chapter 5 I describe how trajectory-associated sequences can be
decoded by a recurrent network. Trajectory-association can also be applied to representing
continuous trajectories by using fractional powers of p. Fractional convolution powers
are also discussed in Section 3.6.5. The choice of p is important, as the length of (p)i can
increase exponentially with i. It is best to make p a unitary vector (Section 3.6.3), because
if p is unitary,

�
(p)i �

= 1 for all i.
Multiple methods can be combined, e.g., we can combine positional cues and Liepa’s

context method to store abc as:

p1 � a + (p2 + a) � b + (p3 + a � b) � c.

Either cue can be used the decode the sequence, but the reconstruction noise will be lowest
when both cues are used together.

These methods for representing sequences can also be used to represent stacks. For
example, a stack of n items, x1 � � � xn, with x1 on top, can be represented by

s = x1 + p � x2 + p � p � x3 + � � � + pn � xn.

The functions for manipulating such a stack are as follows:
push(s, x) = x + p � s (function value is the new stack)

top(s) = clean-up(s) (function value is the top item)
pop(s) = (s � top(s)) � p

�

(function value is the new stack)

An empty stack is noticed when the clean-up operation finds nothing similar to s.
A problem with this type of stack implementation is that pop(push(s, x)) = s � p � p

�

is
only approximately equal to s. This is because p

�

is an approximate inverse. A consequence
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is that successive pushes and pops at one level lead to the continual degradation of the
lower-level items. After a pair of push-pop actions, the stack will be s � p � p

�

, which is
only approximately equal to s. Additional push-pop pairs further corrupt the remaining
part of the stack. There are two possible solutions to this problem – use chunking (see next
section) or restrict p to be a vector for which the exact inverse is equal to the approximate
inverse, in which case s � p � p

�

= s (see Section 3.6.3).

3.4.2 Chunking of sequences

All of the above methods have soft limits on the length of sequences that can be stored.
As the sequences get longer the noise in the retrieved items increases until the items are
impossible to identify. This limit can be overcome by chunking — creating new “non-
terminal” items representing subsequences.

The second sequence representation method is more suitable for chunking. Suppose
we want to represent the sequence abcdefgh. We can create three new items representing
subsequences:

sabc = a + a � b + a � b � c

sde = d + d � e

sfgh = f + f � g + f � g � h

These new items must be added to the clean-up memory because they are new chunks.
The creation of new chunks is what gives this method the ability to represent sequences of
arbitrary length. The representation for the whole sequence is:

sabc + sabc � sde + sabc � sde � sfgh.

Decoding this chunked sequence is slightly more difficult, requiring the use of a stack
and decisions on whether an item is a non-terminal that should be further decoded.

3.4.3 Variable binding

It is simple to implement variable binding with convolution: convolve the variable rep-
resentation with the value representation. For example, the binding of the value a to the
variable x and the value b to the variable y is

t = x � a + y � b.

Variables can be unbound by convolving the binding with the approximate inverse of
the variable. This binding method allows multiple instances of a variable in a trace to be
substituted for in a single-operation (approximately). It also allows us to find out what
variable is bound to a given value.

3.4.4 Holographic Reduced Representations for simple predicates

Predicates or relations can be represented as simple frame-like structures using convolution
encoding, in a manner analogous to the outer products of roles and fillers in Hinton [1981]
and Smolensky [1990] and the frames of DUCS [Touretzky and Geva 1987]. A frame
consists of a frame name and a set of roles, each represented by a vector. An instantiated
frame is the superposition of the frame name and the role-filler bindings (roles convolved
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with their respective fillers). This instantiated frame is a reduced representation for the
frame, I call it a Holographic Reduced Representation (HRR). For example, suppose we
have a (very simplified) frame for eating. The vector for the frame name is eat and the
vectors for the roles are eatagt and eatobj. This frame can be instantiated with the fillers mark
and the fish, to represent “Mark ate the fish”:4

s1 = eat + eatagt � mark + eatobj � the fish

Fillers (or roles) can be retrieved from the instantiated frame by convolving with the
approximate inverse of the role (or filler). The role vectors for different frames can be frame
specific, i.e., eatagt can be different from seeagt, or they can be the same (or just similar).
The frame name is included as a retrieval cue; it is not necessary for role-filler binding and
unbinding. It makes all eat-frames somewhat similar to the eat vector (and thus to each
other). Eat-frames can be retrieved from clean-up memory by probing with the eat vector.

A role-filler binding such as eatagt � mark is not similar to either the role or the filler,
because the expected value of x � y � x is zero. It is also not similar to a binding of mark
with a dissimilar role, because the expected value of x � y � x � z is zero. This means that
two different frames with the same fillers can have no similarity. If this is not desired, it is
easy to make such frames similar by including the fillers in the frame:

s �1 = eat + mark + the fish + eatagt � mark + eatobj � the fish

This makes the representation for a frame somewhat similar to its fillers and to other frames
involving the same fillers. It also allows fillers to be used as retrieval cues, because s �1 is
similar to mark + the fish. Including fillers in the frame is not without cost – additional
vectors in a convolution trace always increase the noise in recognition and reconstruction.

3.4.5 Holographic Reduced Representations for nested predicates

The vector representation of a frame is of the same dimension as the vector representation
of a filler and can be used as a filler in another frame. In this way, convolution encoding
affords the representation of hierarchical structure in a fixed width vector.

For example, we can use an instantiated frame from the previous section as a filler in
another frame representing “Hunger caused Mark to eat the fish”:

s2 = cause + causeagt � hunger + causeobj � s1

= cause + causeagt � hunger + causeobj � eat

+causeobj � eatagt � mark + causeobj � eatobj � the fish

Normalization of Euclidean lengths of the subframes becomes an issue, because s1 has
a Euclidean length of � 3 but it probably should be given the same weight as hunger in s2.
I discuss the issue of normalization in Section 3.5.3.

This HRR will be similar to other HRRs which have similar role-filler bindings or frame
names. This HRR can be made similar to other frames which involve similar subframes or
fillers in different roles by adding the filler vectors into the HRR:

s �2 = cause + mark + the fish + hunger + s1 + causeagt � hunger + causeobj � s1

4I do not attempt to represent tense in any of the examples in this thesis. All the examples are in the past
tense, and I use the infinitive forms of verbs for vector names.
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It is better not to include fillers in the HRRs for the subframes (s1 here), because doing so
introduces bindings, such as causeobj � mark, which can be undesirable in some situations.

These recursive representations can be manipulated with or without chunking. Without
chunking, we could extract the agent of the object by convolving with (causeobj � eatagt)

�

=
causeobj

� � eatagt
�

. Using chunking, we could first extract the object, clean it up, and then
extract its agent, giving a less noisy result. There is a tradeoff between accuracy and speed
— if intermediate chunks are not cleaned up the retrievals are faster but less accurate. I
discuss the decoding of frames and give results from a simulation in Section 3.10.

The commutativity of the circular convolution operation can cause ambiguity in some
situations. This results from the fact that t � r

�

1 � r
�

2 = t � r
�

2 � r
�

1. The ambiguity is greatly
alleviated by using frame specific role vectors rather than generic role vectors (e.g., a generic
“agent” vector.) A situation when ambiguity can still arise is when two instantiations of
the same frame are nested in another instantiation of that same frame. In this case the agent
of the object can be confused with the object of the agent. Whether this causes problems
remains to be seen. In any case, there are variants of circular convolution that are not
commutative (Section 3.6.7).

Holographic reduced representations provide a way of realizing of Hinton’s [1990]
hypothetical system that could, in the same physical set of units, either focus attention
on constituents or have the whole meaning present at once. Furthermore, the systematic
relationship between the representations for components and frames (i.e., reduced descrip-
tions) means that frames do not need to be decoded to gain some information about the
components (see Section 3.10.2).

3.4.6 Equivalence of first-order and higher-order representations for roles

In Section 2.4.3 I reviewed two tensor-product role-filler representations for predicates.
Smolensky [1990] suggests that the predicate

� �%� � ���
can be represented as a second-

order tensor r1
� a + r2

� b. Dolan and Smolensky [1989] suggest a third-order tensor:
p � r1

� a + p � r2
� b. The difference between these two representations is that the first

uses a first-order tensor for the roles (e.g., r1), whereas the second uses a second-order
tensor for the roles (e.g., p � r1). With HRRs, this difference is largely immaterial – p � r1

is just a vector, like r1. In most circumstances the use of these will be equivalent, though
it is conceivable that the higher-order role representation could support cleverer ways of
decoding HRRs.

The same remarks apply to the frame name. The two styles of representations, exem-
plified by

s1 = eat + eatagt � mark + eatobj � the fish

and
s �1 = framename � eat + eatagt � mark + eatobj � the fish,

where framename is common to all frames, have the same characteristics. Different instan-
tiations of the same predicate will be similar, and different predicates will be different. The
only difference is in how the frame name can be accessed. The second style of representa-
tion (s �1) allows one to decode the frame name from the HRR with framename

�

, giving the
frame name superimposed with noise, which is easy to clean up. The first style of repre-
sentation (s1) has the frame name superimposed with the role filler bindings, which can be
more difficult to clean up, unless frame names are kept in a separate clean-up memory.



75

3.4.7 What can we do with reduced representations?

There are two ways we can use reduced representations of sequences and predicates. One
way is to decode them in order to reconstruct full representations, which involves either
reading out a sequence, or finding the fillers of roles. If accurate results are required,
the decoded vectors must be cleaned up, which involves more computation. The other
way to use HRRs is without decoding, for doing such things as computing the similarity
between HRRs. Similarity can be used as the criterion for retrieval from clean-up memory
(long-term memory), if the clean-up memory is content-addressable. If we want to use
undecoded HRRs to compute the similarity of items, then we must make sure that the
dot-product of HRRs is an adequate measure of similarity. This is the justification for
adding vectors such as fillers and predicate names into HRRs. In Chapter 6 I describe how
to incorporate additional bindings which improve the degree to which the similarity of
HRRs reflects the analogical similarity of structures. However, we must be judicious in
adding more vectors to HRRs, because each additional vector creates more noise in both
decoding and similarity judgements.

3.5 Constraints on the vectors and the representation of features
and tokens

In many connectionist systems, the vectors representing items are analyzed in terms of
“microfeatures”. For example, Hinton’s “Family trees” network [Hinton 1990] learned
microfeatures representing concepts such as age and nationality (Section 2.2.2). The re-
quirement of HRRs that elements of vectors be randomly and independently distributed
seems at odds with this interpretation. Furthermore, if every element of a vector is regarded
as a “microfeature” it is unclear how to use the large number of them that the vectors of
HRRs provide.

3.5.1 The representation of features, types, and tokens

There is no requirement that single features be represented by single bits in a distributed
representation. Features also can be represented by high-dimensional distributed repre-
sentations as wide as the representation of the whole object. An item having some features
can be partly the sum of those features. Tokens of a type can be distinguished from each by
the superposition of some identity-giving vector that is unique for each token. Features can
be represented by random vectors. For example, the person “Mark” can be represented by
mark = being+human+idmark, where idmark is some random vector that distinguishes mark
from representations of other people. Each component feature can be weighted according
to its importance or salience, if necessary.

This scheme has the following advantages over a local microfeature representation:
� The representation of any feature of an item will degrade gracefully as the elements

of the vector representing the item are corrupted.

� The number of features in an item is only loosely related to the dimensionality of the
vectors representing items.

� The vectors can be of as high a dimension as desired, and higher dimensionality will
give better fidelity in the representation of features.
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� The vectors representing items can be expressed as sums of vectors with random
independently distributed elements.

When a set of vectors representing items is constructed from distributed features in this
way the elements of the vectors will not be consistent with being drawn from indepen-
dent distributions. However, if linear superposition and circular convolution are used to
construct representations, all the expressions describing the recall and matching of vectors
can be expanded in terms of the random feature vectors. Thus the means and variances
for the signals in a system with non-random vectors, and consequently the probabilities of
correct retrieval, can be analytically derived. This allows analysis of the crosstalk induced
by having similar vectors representing similar entities (e.g., mark = being+human+ idmark,
and john = being + human + idjohn ). This analysis is done in Sections 3.10.4 and 3.10.5.

The idea of distributing features over the entire vector representing an item is not
new. It is a linear transform and has been suggested by other authors under the name
“randomization” or “random maps” (e.g., Schönemann [1987]).

Care must be taken that the “ownership” of features is not confused when using this
method to represent features (or attributes) of objects. Ambiguity of feature ownership can
arise when multiple objects are stored in a superposition memory. For example, suppose
colour and shape are encoded as additive components. If the representations for “red
circle” and “blue triangle” were summed, the result would be the same as for the sum of
“red triangle” and “blue circle”. However, note that if the representations were convolved
with distinct vectors (e.g., different role vectors) before they were added the results would
not be ambiguous:

(red + triangle) � role1 + (blue + circle) � role2

is distinct from
(red + circle) � role1 + (blue + triangle) � role2.

In any case, it sometimes may be necessary to convolve features with objects to avoid
ambiguity, e.g., to use red + circle + red � circle for a red circle, and human + idjohn +
human � idjohn for John. The disadvantages of doing this are lower similarity of an entity
and its features (e.g., red-circle and red), lower similarity of similar entities (e.g., red-circle
and red-square) and slightly greater complexity. I did not find it necessary to do this in
any of the examples in this thesis.

3.5.2 Why binary distributed representations are difficult to use

Binary distributed representations have some advantages over distributed representations
in

� n. They use fewer bits to store the same amount of information (in terms of numbers of
items), and can be used with non-linear memories (e.g., Willshaw et al’s [1969] non-linear
correlograph), which are more information-efficient and give reconstructions with higher
signal-to-noise ratios.

However, there is one problem with using binary representations in systems in which
the representations of some items are the superpositions of the representation of other
items. The problem is that it is difficult to maintain constant density in representations,
which is essential for the correct functioning of memories like the non-linear correlograph.
For example, how are the two vectors (01001100) and (00100101) to be superimposed to
give a binary vector with density 3/8? This may not be an insurmountable problem, but I
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do not know any good solutions. Hence, in this thesis I use distributed representations in
� n.

3.5.3 Normalization of vectors

The magnitude (Euclidean length) of all vectors (HRRs, tokens, and base vectors) should
be equal, or close to, 1. There are two reasons for this. The first is that we want the
dot-product to reflect similarity rather than vector magnitude. The second is that when we
superimpose two vectors, we want each to be equally represented in the result (we can use
scalar weights if we want one vector to be more prominent in the sum).

There are two ways to make the magnitude of vectors close to 1: normalization and
scaling by expected magnitude. Normalization makes the magnitude of vectors exactly 1, and
careful scaling by expected magnitude the expected magnitude of vectors equal to 1.

The normalized version of the vector x is denoted by
�
x � and is defined as follows (the

denominator is the Euclidean length of x):

�
x � =

x� �
n � 1
i=0 x2

i

The expected magnitude of a vector can be made equal to 1 by scaling:

x � =
x

E[
�
x

�
]

This is differs from normalization in two ways. The magnitude of the scaled vector is not
guaranteed to be equal to 1, but it has an expected value of 1. Also, only information about
the distributions of the xi and not their actual values, enters into the computation of the
scaling factor.

New vectors can be created in three different ways: as a random base vector, as the
convolution product of several vectors, or as the superposition of several vectors. Super-
position is the main concern, because the magnitude of a superposition of several vectors
is nearly always greater than the magnitudes of the individual vectors.

The expected magnitude of vectors with 512 elements chosen independently from
N(0, 1/512) (i.e., base vectors) is 1. For high-dimensional vectors the variance is small,
e.g., with 512-dimensional vectors, and standard deviation of the vector magnitude will be�

(2/512) = 0.0625.
The expected magnitude of a convolution product is equal to the product of the mag-

nitudes, provided that the vectors do not have common components (i.e., their expected
dot-product is zero). If two vectors have expected magnitudes of 1, then their convolution
product will have an expected magnitude of 1. The expected magnitude of an auto-
convolution product, e.g., a � a, is equal to � 2 if the ai are independently distributed as
N(0, 1/n) (see Table 3.1 in Section 3.6.1). For this reason, I avoid using the auto-convolution
product.

The expected magnitude of a superposition of vectors is equal to the square root of
the sum of the squares of the magnitudes, again provided that the vectors do not have
common components. If we have a superposition of M independently chosen vectors, then
we scale by � M to make the expected magnitude of the superposition equal to 1. For
example, we scale a + b by � 2. The only way to scale correctly when vectors are not chosen
independently is to decompose the vectors to a set of independently chosen ones. For
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example, suppose x = (a + b)/ � 2 and y = (a + c)/ � 2 (where a, b and c are independently
chosen). The correct way to scale z = x + y is by expressing it as z = 2a/ � 2 + b/ � 2 + c/ � 2:
the scaling factor is � 3.

In general, normalization is both simpler to use and produces more reliable results,
because it reduces the variance of dot-products (see Appendix G). However, using nor-
malization invalidates the simple capacity analyses presented in this thesis, so in cases
where I analyze capacity I use scaling. These capacity analyses provide a lower bound –
performance improves if normalization is substituted for scaling.

3.5.4 Are the constraints on vectors reasonable?

Fisher, Lippincott and Lee [1987] point out that the constraints on vectors which holographic
memories impose make them difficult to use in practice. This is because most vectors
produced by sensory apparatus or other components of a physical system are unlikely to
satisfy these constraints. Other types of associative memory can handle a wider range of
vectors (and provide reconstructions with higher signal-to-noise ratios). Some researchers5

conclude from this that holographic memories are probably not worthy of further study.
However, this argument is made only in the context of considering the properties of

different schemes for storing associations between pairs of items. HRRs do more than this.
Other types of associative memories have many problems when applied to representing
complex structure, and thus do not provide a clearly superior alternative as they do in the
case of storing pairwise associations.

If it is desired to interface a system which uses HRRs with another system that uses
vector representations which do not conform to the constraints (e.g., a perceptual system),
a different associative memory can be used to translate between representations. The com-
bination of a convolution-based memory (for HRRs) and another associative memory (for
mapping between non-conforming and conforming representations) allows the represen-
tation of complex associations that are difficult to represent without using a convolution-
based memory.

3.6 Mathematical Properties

Circular convolution may be regarded as a multiplication operation over vectors: two
vectors multiplied together (convolved) result in another vector. A finite-dimensional
vector space over the real numbers, with circular convolution as multiplication and the
usual definitions of scalar multiplication and vector addition, forms a commutative linear
algebra. This is most easily proved using the observation that convolution corresponds
to elementwise multiplication in a different basis, as described in Section 3.6.2. All the
rules that apply to scalar algebra (i.e., associativity and commutativity of addition and
multiplication, and distributivity of multiplication over addition) also apply to this algebra.
This makes it very easy to manipulate expressions containing additions, convolutions, and
scalar multiplications.

This algebra has many of the same properties as the algebra considered by Borsellino
and Poggio [1973] and Schönemann [1987], which had unwrapped convolution as a mul-
tiplication operation over an infinite dimensional vector space restricted to vectors with

5E.g., an anonymous reviewer of Plate [in press].
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Expression mean variance
(1) a � a 1 2

n

(2) a � b 0 1
n

(3) a � a � b 0 2n+1
n2

(4) a � b � c 0 1
n

(5) a � a � a � a = a � a � a
�

� a 2 + 2
n

40n+112
n2

(6) a � b � a � b = a � b � a
�

� b 1 6n+4
n2

(7) a � b � a � a = a � b � a
�

� a 0 6n+18
n2

(8) a � b � a � c = a � b � a
�

� c 0 2n+2
n2

(9) a � b � c � c = a � b � c
�

� c 0 2n+2
n2

(10) a � b � c � d = a � b � c
�

� d 0 1
n

Table 3.1: Means and variances of dot-products of common convolution expressions for
vectors with elements distributed as N(0, 1/n), where n is the dimensionality of the vectors.
These expressions assume no normalization or scaling. The dot-products are normally
distributed in the limit as n goes to infinity.

a finite number of non-zero elements. Schönemann observed that representing the cor-
relation of b and a as a convolution of a with an involution of b made expressions with
convolutions and correlations easier to manipulate.

3.6.1 Distributions of dot-products

The distributions of the dot-products of vectors and convolutions of vectors can be analyt-
ically derived. I have calculated distributions for some dot-products; these are shown in
Table 3.1.6 The calculations are based on the assumption that the elements for the vectors
a, b, c, and d are independently distributed as N(0, 1/n) (the expected length of these vec-
tors is 1). The central limit theorem tells us that these dot-products are normally distributed
in the limit as n goes to infinity because they are the sum of products of individual vector
elements.7 The equivalent expressions in rows (5) to (10) are derived from the following
identity of convolution algebra:

a � b � x
�

� y = a � b � y
�

� x = a � b � x � y

The variances for decoding circular-convolution bindings are slightly higher than the vari-
ances for decoding unwrapped-convolution bindings (see Murdock [1985] for a table sim-
ilar to Table 3.1). However, the difference is only a small constant factor (1.3 to 1.5), and
is probably due to to the fact that circular-convolution bindings are represented over n
elements rather than the 2n � 1 elements for wrapped-convolution bindings.

6These were not calculated analytically. The numbers of variance and covariance terms are described by
quadratic polynomials, so I worked out exact expressions for low values of n (4,6,8,10,12 and 16) and fitted
polynomials to these (such as 2n2 + n for a � a � b). I also checked that the expressions agreed with means and
variances from numerical simulations for high values of n (1024, 2048 and 4096).

7Although there are some correlations among these products there is sufficient independence for the central
limit theorem to apply for even quite small n.
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These means and variances are used as follows: Suppose that a, b, c, d, and e are
random vectors with elements drawn independently from N(0, 1/n). Then the value of
a

� � (a � b + c � d) � b will have an expected value of 1 and a variance of 7n+4
n2 (= 6n+4

n2 + 1
n

using rows 6 and 10 in Table 3.1). The value of a
� � (a � b + c � d) � e will have an expected

value of 0 and a variance of 3n+2
n2 (= 2n+2

n2 + 1
n using rows 8 and 10 in Table 3.1).

Of some interest is the distribution of the elements of a � b. If the elements of a and b
are independently distributed as N(0, 1/n) then the mean of the elements of a � b is 0 but
the variance is higher than 1/n and the covariance of the elements is not zero. The expected
length of a � b is still 1, provided that the elements of a are distributed independently of
those of b (the expected length of a � a is � 2 + 2/n). Thus, the variance of a � b � c � a

� � b
�

� c
is higher than that of a � b � a

�

� b. A consequence of this is that some care must be taken
when using a � b as a storage cue, especially in the case where a = b. This is particularly
relevant to the storage capabilities of HRRs because when recursive frames are stored,
convolution products e.g., causeobj � eatagt, are the storage cues.

These means and variances are different if normalization is used. In Appendix G, I
report experiments which investigate this. The results show that variances are significantly
lower and more uniform when normalization is used. In Chapter 4, I describe a different
type of normalization which results in even lower and more uniform variances.

3.6.2 Using FFTs to compute convolution

The fastest way to compute convolution is via Fast Fourier transforms (FFTs) [Brigham
1974]. The computation involves a transformation, an elementwise multiplication of two
vectors, and an inverse transformation. Computing convolution via these three steps takes
O(n log n), whereas the obvious implementation of the convolution equation ci =

�
j ajbi � j

takes O(n2) time.8

The discrete Fourier transform, f :
� n � � n, (

�
is the field of complex numbers) is

defined as:

fj(x) =
n � 1�

k=0

xke
� i2 � jk/n,

where i2 = � 1 and fj(x) is the jth element of f(x). The discrete Fourier transform is invertible
and defines a one-to-one relationship between vectors in the spatial and frequency domains.
It can be computed in O(n log n) time using the Fast Fourier Transform (FFT) algorithm.
The inverse discrete Fourier transform is similar:

f � 1
j (x) =

1
n

n � 1�

k=0

xkei2 � jk/n

and can also be computed in O(n log n) time using the FFT algorithm.
The equation relating convolution and the Fourier transform is:

x � y = f � (f(x) � f(y)),

where � is the elementwise multiplication of two vectors. Figure 3.5 illustrates the ele-
mentwise multiplication of the transforms of two vectors x and y. The constraints on the
Fourier transforms of real vectors are apparent in this figure: the angles of f0(x) and fn/2(x)
are zero, and fi+n/2(x) is the complex conjugate of fi(x) (for i �=0).9

8Computing convolution via FFTs takes about the same time as the O(n2) method for n = 32. It is faster for
n > 32 and slower for n < 32.

9If a vector in the frequency domain does not satisfy these constraints, then it is the Fourier transform of
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f(x � y)

f(x)

f(y)

Figure 3.5: The convolution of 8-dimensional vectors x and y in the frequency domain.
Each arrow represents a complex number in a unit circle. The angle of a component of
f(x � y) is equal to the sum of the angles of the corresponding components of f(x) and f(y).
The magnitude of a component of f(x � y) is equal to the product of the magnitudes of the
corresponding components of f(x) and f(y).

In the following sections, I shall refer to the original space as the spatial domain, and the
range of Fourier transform as the frequency domain. Both domains are n-dimensional vector
spaces, and both the forward and inverse Fourier transforms are linear. In Chapter 4, I
describe how all the operations required for HRRs can be performed solely in the frequency
domain.

3.6.3 Approximate and exact inverses in the frequency domain

Since convolution in the spatial domain is equivalent to elementwise multiplication in the
frequency domain we can easily find convolutive inverses in the frequency domain. By
definition, y is the inverse of x if x � y = 1 and we can write y = x � 1. The convolutive
identity vector is 1 = (1, 0, . . . , 0). Transforming this into the frequency domain gives

f(x) � f(x � 1) = f(1).

The transform of the identity is

f(1) = (e0i, e0i, . . . , e0i) = (1, 1, . . . , 1).

This gives independent relationships between the corresponding elements of f(x) and f(x � )
which can be expressed as

fj(x
� 1)fj(x) = 1.

Expressing f(x) in polar coordinates gives

fj(x) = rjei
�

j

and we can see that the Fourier transform of the inverse of x must be:

fj(x
� 1) =

1
rj

e � i
�

j .

Now consider the approximate inverse. It can be seen from the definition of the Fourier
transform that the transform of the involution of x is

fj(x
�

) = rje
� i
�

j .

a complex vector. Put another way, if X ��� n (the frequency domain) does not satisfy these constraints, then
f �

1(X) exists, but is a complex-valued vector.
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f(x)

f(x � 1)

f(x
�

)

f(x � x
�

) � f(I)

f(x � x � 1) = f(I)

Figure 3.6: The exact and approximate inverses of a vector in the frequency domain (f(x � 1)
and f(x

�

) respectively. f(x � x � 1) is the identity vector, and f(x � x
�

) is an approximation to
it.

In the frequency domain, the elements of the approximate inverse have the same magni-
tudes as the original elements, whereas the elements of the exact inverse have magnitudes
equal to the reciprocals of the original elements. It follows that the approximate inverse
is equal to the exact inverse if and only if the magnitude of all frequency components is 1
(i.e., rj = 1 for all j). I refer to this class of vectors as unitary vectors.10 Put another way, x is
a unitary vector if and only if x � x

�

= I (i.e., x #
� x = I). Figure 3.6 shows the approximate

and exact inverses of a vector.
Vectors which have zero magnitudes for one or more frequency components have no

exact inverse, so I refer to these as singular vectors.
Unitary vectors and vectors with elements distributed as N(0, 1/n) in the spatial domain

are closely related. The mean of frequency component magnitudes for the latter is 1 (except
for the two components with zero angle), and the phase angles are uniformly distributed.
Transformed into the spatial domain, the elements of unitary vectors are distributed as
N(1/n, 1/n). The elements are not independent – there are only (n/2 � 1) degrees of
freedom.

3.6.4 Why the exact inverse is not always useful

Since x � 1 can be used to decode x � y exactly, it might seem to be a better candidate for
the decoding vector than the approximate inverse x

�

. However, using the exact inverse
results in a lower signal-to-noise ratio in the retrieved vector when the memory trace is
noisy or when there are other vectors added into it.11 This problem arises because the exact
inverse is unstable. For vectors with elements independently distributed as N(0, 1/n),

�
x � 1 �

is often significantly greater than
�
x

�
(except when x is unitary). However,

�
x

� �
is always

equal to
�
x

�
. The reason for this can be understood by considering the inverses in the

frequency domain. The relationship between the vector magnitude and the magnitudes of
the frequency components is given by Parseval’s theorem:

�
x

� 2 =
�

k

x2
k =

1
n

�

k

�
fk(x)

� 2.

10By analogy to unitary matrices, for which the conjugate transpose is equal to the inverse.
11Inverse filters are well-known to be sensitive to noise [Elliot 1986].
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Taking the approximate inverse does not change the magnitude of the frequency com-
ponents, so

�
x

� �
is always equal to

�
x

�
. However, taking the exact inverse involves the

reciprocals of the magnitudes, so if the magnitude of a frequency component of x is close
to zero (which can happen), the magnitude of the corresponding frequency component of
x � 1 will be very large magnitude. If exact inverses are used for decoding a noisy trace, the
high-magnitude frequency components magnify the noise in the trace without contributing
much signal to the reconstruction.

3.6.5 The convolutive power of a vector

The convolutive power of a vector (exponentiation) can be straightforwardly defined by
exponentiation of its elements in the frequency domain, i.e.,

fj(xk) = (fj(x))k.

It is easy to verify that this definition satisfies x0 = �I, and xi � x = xi+1 for i
�

0. For negative
and fractional exponents powers are most easily expressed using polar coordinates. Let
fj(x) = rjei

�
j , where rj � 0 and ��� < � � � . Then

fj(xk) = rk
j e

ik
�

j .

Note that for any vector x � � n, and k � �
, xk is also in

� n, because exponentiation as
defined above does not affect the conditions which make a vector in the frequency domain
the transform of a real vector in the spatial domain (see Section 3.6.2). (This would not be
true if in the above defintion we used � 0 � < 2 � , or allowed r to be negative.) Also, unitary
vectors are closed under exponentiation: any power of a unitary vector is a unitary vector.

Integer powers are useful for generating some types of encoding keys (cf. Section 3.4.1)
and fractional powers can be used to represent trajectories through continuous space, as
done in Chapter 5.

3.6.6 Matrices corresponding to circular convolution

The convolution operation can be expressed as a matrix-vector multiplication.

a � b = Mab

where Ma is the matrix corresponding to convolution by a. It has elements maij = ai � j (where
the subscripts on a are interpreted modulo n). Such matrices are known as “circulant
matrices” [Davis 1979]. Since the mapping computed by the connections between two
layers in a feedforward network is a matrix-vector multiplication, it is possible for such a
mapping to correspond to convolution by a fixed vector.

The algebra carries through with matrix multiplication: Ma � b = MaMb. Transposition
corresponds to the approximate inverse, i.e., Ma � = MT

a . Also, if a is a unitary vector,
then Ma is a real unitary matrix (i.e., an orthonormal matrix). The eigenvalues of Ma are
the individual (complex valued) elements of the Fourier transform of a. The correspond-
ing eigenvectors are the inverse transforms of the frequency components, i.e., [1, 0, 0, . . .],
[0, 1, 0, . . .], etc, in the frequency domain.
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3.6.7 Non-commutative variants and analogs of convolution.

The commutativity of convolution can cause ambiguity in the representations of some
structures. If this is a problem, non-commutative variants of circular convolution can be
constructed by permuting the elements of the argument vectors in either the spatial or
frequency domain. The permutations applied to right and left vectors must be different.
The resulting operation is neither commutative nor associative, but is bilinear (and thus
distributes over addition and preserves similarity) and has an easily computed approximate
inverse.

An alternative operation that is non-commutative but still associative is matrix multi-
plication. This could be used to associate two vectors by treating each vector as a square
matrix. The dimension of the vectors would have to be a perfect square. I am unaware
of what the scaling and interference properties of such an associative memory operation
would be. It would be similarity-preserving and vectors corresponding to orthogonal
matrices would have simple inverses.

Another possibility is to use a random convolution-like compression of the outer prod-
uct, as mentioned in Section 7.4.

3.6.8 Partial derivatives of convolutions

A convolution operation can be used in a feedforward networks12 and values can be
propagated forward in O(n log n) time (on serial machines). Derivatives can also be back-
propagated in O(n log n) time. Suppose we have a network in which the values from two
groups of units are convolved together and sent to a third group of units. The relevant
portion of such a feedforward network is shown in Figure 3.7. Suppose we have the partial
derivatives

�
E�
ci

of outputs of the convolution with respect to an objective function E. Then
the partial derivatives of the inputs to the convolution can be calculated as follows:

�
E

�
ak

=
�

i

�
E�
ci

�
ci�
ak

=
�

i

�
E�
ci

bi � k

=
�

i

�
E�
ci

[b
�

]k � i

= [
�

c � b
�

]k

where
�

c is the vector with elements
�

E�
ci

, and [ � ]k is the kth element of a vector.
This means that it is possible to incorporate a convolution operation in a feedforward

network and do the forward and backpropagation computations for the convolution in
O(n log n) time. One reason one might want to do this could be to use a backpropagation
network to learn good vector representations for items for some specific task. This is
pursued in Chapter 5.

3.7 Faster comparison with items in clean-up memory

Computing the dot-product of the probe with each item in clean-up memory can be expen-
sive if there are a large number of items in clean-up memory, especially on a serial machine.

12For an introduction to feedforward networks see [Rumelhart, Hinton and J. 1986].
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�

���������� Inputs

����������a0 an � 1 b0 bn � 1

(Objective function)E

c0 cn � 1
�����

Figure 3.7: A convolution operation in a backpropagation network.

This computation can be reduced by computing a fast estimate of the dot-product and then
only computing the floating-point dot-product for the most promising candidates. The
fast estimate is the count of matching bits in binary versions of the vectors. To make this
practical, we must store a binary version along with each item in clean-up memory. The
binary version is a n-bit vector, and the nth bit is 1 if the nth element of the item vector is
positive, and 0 otherwise. The dot-product of binary vectors (the bitwise dot-product) can
be computed many times faster, using full-word XOR operations, than the dot-product of
floating-point vectors. The bitwise dot-product is highly correlated with the floating-point
dot-product – for n = 2048 the correlation coefficient was measured to be 0.997 (for 4096
pairs of vectors). This of course depends on HRR vector elements having a mean of 0, but
this will be true if the HRRs are constructed following the descriptions in this chapter.

Figure 3.8 shows some simulation results. These plots show the bitwise dot-product
versus the floating-point dot-product. It is clear that the correlation between the floating-
point and the bitwise dot-products increases with vector dimension. This means that the
bitwise dot-product is increasingly useful with higher dimension vectors. In Appendix I,
I report some simulations in which this technique significantly reduced the amount of
computation done by the clean-up operation.

The data in Figure 3.8 was generated by randomly choosing r in [ � 1, 1], and the vectors
x and y with elements randomly selected from N(0, 1/n). Two vectors a and b were derived
from x, y, and r in such a way that the expected dot-product of a and b was r (recall that�
x � denotes the normalized version of x):

a =
�
x �

b =
�
ra + � 1 � r2 y �

The floating-point dot-product a � b is plotted against the scaled count of matching bits in
the binary versions of a and b. Each plot contains 4096 data points.

When searching for the vector in clean-up memory which is the closest to some vector
x, the following scheme reduces the number of floating-point dot-products that must be
computed:

1. Compute and record the bitwise dot-product of x with all the vectors in clean-up
memory.
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Figure 3.8: Bitwise dot-products (vertical axis) versus floating-point dot-products (hori-
zontal axis) for various vector dimensions.

2. Let the maximum bitwise dot-product be t. Calculate the lower bound on what
the floating-point dot-product corresponding to t could be, let this be t � . Calculate
the lower bound on the bitwise dot-product of vectors which have a floating-point
dot-product of t � , let this be t � � .

3. Compute and record the floating-point dot-products of x with all the vectors in clean-
up memory which had a bitwise dot-product of t � � or greater.

This scheme saves computation by not computing the floating-point dot-product for
vectors which could not possibly be the best match. The lower bounds must be derived
from some statistical model of the differences between bitwise and floating-point dot-
products. Some preliminary analysis of simulation data (such as is shown in Figure 3.8)
indicates that we can use

t � � = t � s, where s = 6e � 0.505log n.

This corresponds to an interval at least 8 standard deviations wide.

3.8 The capacity of convolution memories and HRRs

In Appendices B through E, I investigate the capacities of superposition and paired-
associates convolution memory. For superposition and pairwise (variable-binding) convo-
lution memories, I demonstrate the following scaling properties:
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� The number of pairs (items) that can be stored in a single trace is approximately linear
in n.

� The probability of error is negative exponential in n.

� The number of items that can be stored in memory in clean-up memory is exponential
in n.

For example, if we use vectors with 4096 elements, and have 100, 000 items in clean-up
memory, where 100 of those are similar to each other (with dot-product 0.5), then we can
store approximately a dozen bindings in a single trace, and have a 99% chance of decoding
the trace correctly (from Figure D.3).

If some items in clean-up memory are similar to each other, as they will if they are tokens
or HRRs constructed according the to suggestions in this thesis, then the capacity equation
tends to be dominated by the number of similar items, rather than the total number of
items in clean-up memory. Thus the simulations described in this thesis, which mostly
have a small number of similar items, would still work with a much larger number of items
in clean-up memory, provided that no particular item in clean-up memory was similar to
many others.

In Appendices D and E I only consider the capacity of paired-associates convolution
memory. In order to predict the capacity of a system using HRRs, it is necessary to con-
sider the effect of higher-order bindings. If unnormalized vectors are used, the results of
decoding higher-order bindings will be much noisier than the results of decoding pairwise
associations, and thus the capacity will be lower. This is because the variance for decoding
higher-order convolution products is higher than that for decoding lower-order convolu-
tion products. E.g., the variance of (a � b � c) � (b � c)

�

� a is greater than the variance
of (a � b) � b

�

� a. If normalized vectors are used, the results will be only slightly noisier,
and the capacity slightly lower. If unitary vectors are used, as discussed in Chapter 4, the
results will not be any noisier than for pairwise associations.

Thus, if normalization is used, the size of a structure that can be encoded in a HRR, i.e.,
the number of terms in the expanded convolution expression, can be expected to increase
almost linearly with the vector dimension. The results of decoding deep structures will be
noiser, but if this becomes a critical problem it can be overcome by storing substructures
as separate chunks, and cleaning up intermediate results. In fact, if chunking is used,
structures of unlimited size can be stored, as long as all the component chunks are not too
large.

3.9 Convolution-based memories versus matrix-based memories

Convolution- and matrix-based memories have long been considered alternative ways
of implementing associative distributed memory (e.g., see Willshaw et al [1969], Will-
shaw [1981b], Pike [1984], and Fisher et al [1987]). The focus has usually been on storing
pairwise associations, though Pike does consider higher-order associations. Convolution-
based memories were invented first, inspired by holography [Reichardt 1957; Gabor 1968b;
Longuet-Higgins 1968; Willshaw, Buneman and Longuet-Higgins 1969; Borsellino and
Poggio 1973]. Matrix memories were proposed by Willshaw, Buneman and Longuet-
Higgins [1969] as a way of improving on the properties of convolution-based memo-
ries, while retaining their distributed associative character. Since then, convolution-based
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memories have fallen out of favor. Willshaw [1981a], commenting on his earlier work on
convolution-based memory, writes:

The prominence given to the newly emerging field of holography in the 1960s
made it likely that before long the suitability of the hologram as a distributed
associative memory would be explored. But as seen from today’s viewpoint, a
study of the hologram may seem an irrelevant diversion. This was, however,
one of the routes to the particular associative memory that we investigated, the
well-known matrix, or correlation, memory, to which holographic models bear
a formal, mathematical similarity.

Matrix memories have gone on to be widely studied, e.g., in the form of Hopfield nets [1982].
In this thesis I return to convolution-based memories because they are more suitable for
forming complex associations, and their weaknesses can be compensated for by using them
in conjunctive with associative clean-up memories.

3.9.1 Comparison of convolution and matrix-based memories

Matrix and convolution-based memories have much in common – they share the following
properties (where a/b means the association of a and b):

� Learning is a one-shot process – an association can be stored after a single presenta-
tion, in contrast to schemes involving iterative feedback.13

� The framework involves three operations: a bilinear encoding operation to create as-
sociations, superposition to combine associations, and a bilinear decoding operation.

� Incorporating non-linearities in the form of thresholds on the three operations im-
proves performance and capacity [Willshaw 1981b].

� Non-linear versions have the same information efficiency under optimal conditions
[Willshaw 1981b], and linear versions also have similar information efficiency [Pike
1984].

� Association preserves similarity: If items a and a � are similar, then the traces a/b and
a � /b will also be similar (to approximately the same degree). This is useful because,
if the representations of items make similarity explicit (Section 1.4.2), then structures
composed of those items will also make similarity explicit.

� Association has randomizing effect: If items x and y are not similar, then the traces
x/a and y/a will also not be similar. This is useful because it allows superimposing
multiple associations without getting false cross-associates.

� The encoding operation involves pairwise products of the elements of each vector.

The differences between convolution- and matrix-based memories are as follows:

� Convolution-based memories are symmetric, and matrix memories are not. This is
because convolution is commutative (a � b = b � a), whereas the outer product is
not.

13This is not to say that iterative schemes cannot improve performance. On the contrary, in Chapter 5 I
describe how such a scheme enables the use of lower-dimensional vectors.
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� In matrix memories the dimensionality of the trace is the square of the dimensionality
of the vectors being associated, whereas in convolution memories, the dimensionality
of the trace can be made the same as that of the vectors being associated.

� Matrix memories can store more associations of vectors of a given dimensionality
(though the size of the traces are correspondingly larger).

� Reconstructions from linear matrix memories have higher signal-to-noise ratios than
those from linear convolution-based memories.

� It is easier to build error-correcting properties into matrix memories, so that if the
association a/b is decoded with a � (a corrupted version of a) the reconstructed version
of b will be more similar to b than a � is to a.

3.9.2 Convolution as a low-dimensional projection of a tensor product

The convolution operation can be seen as a realization of Smolensky, Legendre and Miy-
ata’s [1992] suggestion for solving the expanding-dimensionality problem of tensor prod-
ucts by projecting higher-order tensor products onto a lower-dimensional space. The
projection matrix P such that P x � y = x � y is easily derived. The 3 � 9 matrix P which
projects a 9 element tensor onto to three elements is shown below. It has a regular structure:
each 3 � 3 block contains one wrapped diagonal.

P x � y =
��
� 1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0

���
�

���������������
�

x1y1

x1y2

x1y3

x2y1

x2y2

x2y3

x3y1

x3y2

x3y3

����������������
�

=
��
� x1y1 + x3y2 + x2y3

x2y1 + x1y2 + x3y3

x3y1 + x2y2 + x1y3

���
� = x � y

In general, the dimensionality-reducing projection P has a null space which interferes
minimally with associations. For any non-singular vector x, there are no distinct vectors y
and y � such that P x � y = P x � y � (i.e., such that x � y = x � y � ). It is true that there are an
infinite number of distinct pairs x, y and x � , y � such that P x � y = P x �

� y � , but this does not
cause problems if either (a) we know one of the items in the association, or (b) we choose
vectors randomly so that this type of collision has low probability.

3.10 An example of encoding and decoding HRRs

An example of HRR frame construction and decoding is presented in this section. The types
and tokens representing objects and concepts are constructed according to the suggestions
in Section 3.5. Results from a simulation of the example using 512-dimensional vectors are
reported.
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Object features Role features Frame names
being food object cause
human fish agent eat
state bread see

Table 3.2: Base vectors. Vector elements are all independently chosen from N(0, 1/512).

mark = (being + human + idmark)/ � 3

john = (being + human + idjohn)/ � 3

paul = (being + human + idpaul)/ � 3

luke = (being + human + idluke)/ � 3

the fish = (food + fish + idthe fish)/ � 3

the bread = (food + bread + idthe bread)/ � 3

hunger = (state + idhunger)/ � 2

thirst = (state + idthirst)/ � 2

eatagt = (agent + ideat agent)/ � 2

eatobj = (object + ideat object)/ � 2

Table 3.3: Token and role vectors constructed from base vectors and random identity-giving
vectors. The identity vectors (e.g., idmark) are chosen in the same way as the base vectors.
The denominators are chosen so that the expected length of a vector is 1.0. Other roles
(e.g., seeagt) are constructed in the analogous fashion.

3.10.1 Representation and similarity of tokens

The suggestion in Section 3.5 for token vectors (representing an instance of a type) was
that they be composed of the sum of features and a distinguishing vector giving individual
identity. In this example the base vectors (the features other vectors are composed of) have
elements chosen independently from N(0, 1/512). The base vectors are listed in Table 3.2.
The token and role vectors are constructed by summing the relevant feature vectors and
a distinguishing random “identity” vector that is used to give a distinct identity to an
instance of a type. Scale factors are included in order to make the expected length of the
vectors equal to 1. These token vectors and a representative pair of role vectors are listed
in Table 3.3.

The similarity matrix of the tokens is shown in Table 3.4. Tokens with more features
in common have higher similarity (e.g., mark and john), and tokens with no features in
common have very low similarity (e.g., john and the fish).

I weighted vectors to make their expected length equal to 1 rather than normalizing
them because normalization invalidates the analysis of expectations and variances of dot-
products. In practice, it is better to normalize vectors.
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mark luke hunger
john the fish thirst

paul the bread
mark 1.07
john 0.78 1.08
paul 0.76 0.75 1.08
luke 0.73 0.68 0.74 1.01
the fish 0.01 0.00 -.02 -.03 1.16
the bread 0.02 0.01 0.06 0.01 0.35 0.97
hunger 0.01 0.06 0.05 0.03 0.10 0.03 0.93
thirst 0.01 0.11 0.04 0.06 0.07 0.02 0.48 1.04

Table 3.4: Similarities (dot-products) among some of the tokens. The diagonal elements
are the squares of the vector lengths. Tokens sharing feature vectors (see Table 3.3) have
higher similarity.

s1 Mark ate the fish.
s2 Hunger caused Mark to eat the fish.
s3 John ate.
s4 John saw Mark.
s5 John saw the fish.
s6 The fish saw John.

Table 3.5: Sentences.

3.10.2 Representation and similarity of frames

The six sentences listed in Table 3.5 are represented as HRR frames. The expressions for
these HRRs are listed in Table 3.6. Again, scale factors are included to make the expected
length of the vectors equal to 1.

The similarities of the HRRs are shown in Table 3.7. Some similarities between instanti-
ated frames can be detected without decoding. The HRRs for similar sentences (s4, s5, and
s6) are similar, because convolution preserves similarity. One role-filler binding is similar
to another to the extent that their respective roles and fillers are similar. This is investigated
in more detail in Section 3.10.5.

The HRRs for two frames which have identical constituents but different structure
are distinct. Consequently, s5 and s6 are distinct. Having the same filler in the same
role causes more similarity between frames than having the same filler in a different role.
Consequently, s4 is more similar to s5 than s6, because john fills the agent role in s4 and s5,
and the object roles in s6.

3.10.3 Extracting fillers and roles from frames

The filler of a particular role in a frame is extracted as follows: the frame is convolved
with the approximate inverse of the role and the result is cleaned up by choosing the most
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s1 = (eat + eatagt � mark + eatobj � the fish)/ � 3

s2 = (cause + causeagt � hunger + causeobj � s1)/ � 3

s3 = (eat + eatagt � john)/ � 2

s4 = (see + seeagt � john + seeobj � mark)/ � 3

s5 = (see + seeagt � john + seeobj � the fish)/ � 3

s6 = (see + seeagt � the fish + seeobj � john)/ � 3

Table 3.6: HRR frame vectors representing the sentences in Table 3.5

s1 s2 s3 s4 s5 s6

s1 1.14
s2 0.02 0.98
s3 0.81 0.01 1.11
s4 0.11 0.12 0.25 1.13
s5 0.30 0.05 0.31 0.73 0.99
s6 -.01 0.14 0.01 0.65 0.35 1.14

Table 3.7: Similarities (dot-products) among the frames.

similar vector in the clean-up memory. The clean-up memory contains all feature, token,
role, and frame vectors (i.e., all the vectors listed in Tables 3.2, 3.3, and 3.6).

The extraction of various fillers and roles is shown in Table 3.8. For each extraction, the
three vectors in clean-up memory that are most similar to the result are shown. In all cases
the most similar object is the correct one.

As shown in Row (1), the expression to extract the agent of s1 is

x = s1 � eatagt
�

.

The three objects in clean-up memory most similar to x (with their respective dot-products)
are mark (0.62), john (0.47), and paul (0.41). The filler of the agent role in s1 is indeed mark,
so the extraction has been performed correctly.

The construction of s1 and the determination of the filler of its object role, on row
(1) in Table 3.8, is illustrated in Figure 3.9. In order to enable the perception of
similarities among vectors in this figure, the 512-element vectors were laid out in rectangles
with dimensions permuted (on all vectors simultaneously) so as to reduce the total sum
of variance between neighboring elements. This was done using a simulated annealing
program. The reader should not take the visual similarities of the vectors too seriously
– dot-product similarity is what is important and is very difficult to judge from merely
looking at figures like this.

Row (2) illustrates that the agent of s1 can also be extracted using the generic agent role
(agent) rather than the agent role specific to the eat frame (eatagt). The results are stronger
when the specific agent is used.
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Object to extract Expression Similarity scores (dot-product)
(1) Agent of s1 s1

� eatagt
�

mark (0.62) john (0.47) paul (0.41)
(2) Agent of s1 s1

� agent
�

mark (0.40) john (0.34) human (0.30)
(3) Object of s1 s1

� loveobj
�

the fish (0.69) fish (0.44) food (0.39)
(4) Agent of s2 s2

� causeagt
�

hunger (0.50) state (0.39) thirst (0.31)
(5) Object of s2 s2

� causeobj
�

s1 (0.63) s3 (0.46) eat (0.43)

(6)
Agent of
object of s2

s2
� causeobj

� � eatagt
�

mark (0.27) paul (0.23) luke (0.22)

(7)
Object of
object of s2

s2
� causeobj

� � eatobj
�

the fish (0.39) fish (0.24) food (0.23)

(8) Object of s3 s3
� eatobj

�

food (0.07) the bread (0.06) mark (0.06)
(9) John’s role in s4 s4

� john
�

seeagt (0.66) agent (0.50) seeobj (0.47)
(10)John’s role in s5 s5

� john
�

seeagt (0.58) agent (0.41) eatagt (0.36)

Table 3.8: Results of extracting fillers from the frames. In all cases shown the item most
similar to the result is the correct one. The similarity comparisons are all with the entire
set of features, tokens, roles, and frames. See the text for discussion of each row.

In s2 the object role is filled by another frame. There are two alternative methods for
extracting the components of this subframe. The first method, which is slower, is to clean
up the subframe in clean-up memory (row 5) and then extract its components, as in rows (1)
to (3). The second (faster) method, is to omit the clean-up operation and directly convolve
the result with the approximate inverses of the roles of s1. The expressions for the fast
method are shown in rows (6) and (7). The first method is an example of using chunking
to clean up intermediate results, and gives stronger results at the expense of introducing
intermediate clean-up operations. With the intermediate clean-up omitted the chances of
error are higher; in row (6) the correct vector is only very slightly stronger than an incorrect
one. However, the high-scoring incorrect responses are similar to the correct response; it
is clear that the subframe object role filler is a person.

Row (8) shows what happens when we try to extract the filler of an absent role. The
frame s3 (“John ate.”) has no object. As expected, s3 � eatobj

�

is not significantly similar
to anything. Although food might seem an appropriate guess, all the responses are weak
and it is just a coincidence that food gives the strongest response.

It is possible to determine which role a token is filling, as in rows (9) and (10). In s4, on
row (9), the correct role for john is eatagt, but eatobj also scores quite highly. This is because
john is a person, and a person is also filling the object role in s4. Compare this with s5,
where the object-role filler (the fish) is not at all similar to the agent-role filler (john). The
extracted role for john is not at all similar to the object role, as shown on row (10).

3.10.4 Probabilities of correct decoding

The expectation and variances of the dot-products

s1 � eatagt
�

� mark and s1 � eatagt
�

� p

are calculated in this section (where p is a vector for a person that is not mark). This allows
us to calculate the probability that the agent of s1 will be extracted correctly, as in row
(1) of Table 3.8. It must be emphasized that the behaviour of any particular system (i.e.,
set of vectors) is deterministic. A particular frame in a particular system always will or
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�

�

�

3 closest matches
for s1

� eatagt
�

in
clean-up memory.
Parenthesis contain dot-
product similarity scores.

eatobj
�

(approx inv. of
object role)

s1
� eatagt

�

eatobj
� the fish

eatagt
� mark

eatagt (agent role)

eatobj (object role) paul (0.41)

john (0.47)

mark (0.62)

eat (frame id)

mark (filler)

Noisy decoded agent.

+

Decoding the object of the HRRConstructing the HRR

the fish (filler)

HRR for s1

Figure 3.9: Construction and decoding of a HRR for the sentence “Mark ate the fish.”
(s1 in Section 3.10). The instantiated frame, labelled s1, is the sum of role-filler bindings
and a frame id (shown in the second column). It is the same dimensionality as all other
objects and may be used a filler in another frame (e.g., as in s2 in Section 3.10). A filler
of the HRR can be extracted by convolving the HRR with the approximate inverse of its
role. The extraction of the agent-role filler of this sentence is shown on the right (also see
Table 3.8). Of the items in clean-up memory, the actual filler, mark, is the most similar
(shown in the dotted region). The next two most similar items are also shown, with the
dot-product match value in parenthesis. The dot-products of the decoded agent with john
and paul might seem high, but these values are expected because the expected similarity of
mark to other people is 2/3 (and 2/3 � 0.62 � 0.41). In this high-dimensional space these
differences in similarity (0.62 to 0.47) are significant. See Section 3.10.3 for discussion.

always will not be decoded correctly. The probabilities calculated in this section are the
probabilities that a randomly chosen system will behave in a particular way.

Let d = s1 � eatagt
�

, then

d � mark = d � (being + human + idmark)/ � 3, and

d � p = d � (being + human + idp)/ � 3.

The vector p is used here as a generic “incorrect person” filler. The extraction is judged to
have been performed correctly if d � mark > d � p for all vectors representing people in the
clean-up memory. We can limit the consideration to people-vectors in clean-up memory,
because it is extremely unlikely that other vectors will be more similar to d than the vectors
representing people.
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It is important to note that these two dot-products are correlated because they share
the common term d � (being + human)/ � 3. To calculate the probabilities accurately it is
necessary to take into account the value of this term when choosing the threshold. Let

Xmark = d � idmark/ � 3,

Xp = d � idp/ � 3, and

Z = d � (being + human)/ � 3.

Xmark, Xp, and Z can be regarded as uncorrelated, normally distributed variables, which are
derived from the random vectors.

The calculation of the means and variances of Xmark, Xp, and Z is presented in Ap-
pendix F. For n = 512, they are as follows:

mean variance std dev
Xmark 0.192 0.00116 0.0341
Xp 0 0.000867 0.0294
Z 0.385 0.00246 0.0496

A lower estimate 14 for the probability P that Z + Xmark > Z + Xp for all p is given by

P � = Pr(Z + Xmark > t) � Pr(Z + Xp < t
�

p �=mark),

where t is a threshold chosen to maximize this probability.15

In this example there are three other people, so

P � = Pr(Xmark + Z > t) � Pr(Xp + Z < t)3.

This has a maximum value of 0.996 for t = Z + 0.0955. Thus the probability of correctly
identifying the filler of agent role as mark in s1 is at least 0.996. If there were 100 vectors
representing people in the clean-up memory, the probability of correctly identifying the
decoded agent as mark would drop to 0.984.

The reason for calculating means and variances of signals is to estimate the minimum
vector dimension that will result in an acceptable probability of error. It is not necessary to
calculate the means and variances of all signals, it is sufficient to consider just those pairs
whose means are close and whose variances are large.

3.10.5 Similarity-preserving properties of convolution

Convolution is similarity-preserving – two convolution bindings are similar to the degree
that their components are similar. For example, the two role bindings eatagt � mark and
eatagt � john are similar because mark and john are similar.

The bilinearity and randomizing properties of convolution make it possible to calculate
analytically the expectation and variance of dot-products of convolution sums and prod-
ucts. The calculation is simple, if somewhat laborious. We use several facts (from Table 3.1)
about the dot-products of convolutions of vectors with elements chosen randomly from
N(0, 1/n):

14P ��� P because it can be the case that Z + Xmark < t and Z + Xmark > Z + Xp � p �=mark.
15t is chosen with knowledge of Z but not of Xmark or Xp.
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Compared with Similarity of filler
mark � eatagt 1 2/3 0

Similarity 1 mark � eatagt 1 john � eatagt 2/3 the fish � eatagt 0
of role 1/2 mark � seeagt 1/2 john � seeagt 1/3 the fish � seeagt 0

0 mark � eatobj 0 john � eatobj 0 the fish � eatobj 0

Table 3.9: Expected similarity of mark � eatagt to other role-filler bindings. One binding is
similar to another to the degree that its components are similar.

E[(a � b) � (a � b)] = 1

E[(a � b) � (a � c)] = 0

Let B1 and B4 be two role-filler bindings involving similar entities:

B1 = eatagt � mark

B4 = eatagt � john

mark = (being + human + idmark)/ � 3

john = (being + human + idjohn)/ � 3

where being, human, eatagt, idmark, and idjohn are random base vectors with elements from
N(0, 1/n). The scaling factor 1/ � 3 makes the expected lengths of mark and john equal
to 1. The vectors mark and john are similar – their expected dot-product is 2/3. The
arithmetic is simpler if we replace being + human by � 2person, where person is a random
base vector.

The expected dot-product of B1 and B4 is:

E[eatagt � mark] � (eatagt � john)

= E[(eatagt � (person + idmark)/ � 3) � (eatagt � (person + idjohn)/ � 3)]

= 2/3E[eatagt � person � eatagt � person] + � 2/3E[eatagt � person � eatagt � idjohn]

+ � 2/3E[eatagt � idmark � eatagt � person] + 1/3E[eatagt � idmark � eatagt � idjohn]

= 2/3 + 0 + 0 + 0 = 2/3

In general, the expected similarity of a role-filler binding is equal to the product of the
expected similarities of its components.16 The similarity of a binding to others with varying
role and filler similarity is shown in Table 3.9.

So far I have only mentioned the expected dot-product of two vectors, whereas what is
usually important is the actual dot-product. The dot-product is a fixed value for a particular
pair of vectors. However, we can usefully treat it as a random value that depends on the
choice of random base vectors. The dot-products of convolution products and sums are

16Care must be taken that one base vector does not appear in both components of a binding, because
E[a � a � a � a] = 2 + 2/n.
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0 0.25 0.5 0.75 1

x � mark � eatagt

x � mark � seeagt

x � mark � eatobj

x � john � eatagt

x � john � seeagt

x � john � eatobj

x � the fish � eatagt

x � the fish � seeagt

x � the fish � eatobj

x = mark � eatagt

Figure 3.10: Similarities of the role-filler bindings in Table 3.9, from 200 choices of random
base vectors, with dimension 512. There are 200 points in each cluster. The variances of
the points in each cluster are inversely proportional to the vector dimension. Density-
dependent random vertical displacements were added to make the density of points clear.
Although the clusters overlap, the order within a single run is generally the same.

normally distributed, and their variance is inversely proportional to n. The observed values
of the dot-products in Table 3.9, for 200 choices of random base vectors of dimension 512,
are shown in Figure 3.10. Although some of the clusters overlap, e.g., x � mark � seeagt and
x � john � eatagt (the ones with means at 0.5 and 0.66), these dot-products are rarely out of
order in a single run (114 times in 10, 000 runs). The reason is that they are correlated –
when one is high, the other tends to be high.

In Appendix A, I derive expressions for the means and variances of the similarities
shown in Figure 3.10, and compare them to the observed means and variances. They
match closely.

3.11 Discussion

3.11.1 Learning and HRRs

One of the attractions of distributed representations is that they can be used in neural
networks and trained by example. Hinton’s “Family trees” network [1986] demonstrated
how a neural network could simultaneously learn a task and the representations for objects
in the task. In Chapter 5 I will describe how a recurrent neural can implement the trajectory-
association method for storing sequences. The network learns item representations which
are superior to randomly chosen ones.
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3.11.2 HRRs and Hinton’s reduced descriptions

HRRs are not an exact implementation of Hinton’s [1990] reduced descriptions (Section 1.5,
but they do capture their spirit, and satisfy the four desiderata for reduced descriptions
(adequacy, reduction, systematicity, and informativeness about components). A HRR is a
reduced description for a predicate – the full representation is the set of fillers and predicate
name (and roles). I say that HRRs are not an exact implementation for two reasons: roles
are not fixed (as is implied in Figure 1.1), and the full representation need not be laid out
in parallel on several groups of units – it can composed and decomposed iteratively.

3.11.3 Chunking

The idea of chunking, or breaking large structures in pieces of manageable size, fits together
very well with HRRs. Chunking makes it possible to use HRRs to store structures of
unlimited size, and HRRs provide a way of doing chunking that has some very attractive
properties.

As more items and bindings are stored in a single HRR the noise on extracted items
increases. If too many associations are stored, the quality will be so low that the extracted
items will be easily confused with similar items or, in extreme cases, completely unrec-
ognizable. The number of items and bindings in a HRR grows with both the height and
width of the structure being represented – s1 has 3, while s2 has 5. The number of items
and bindings that can be stored for a given degree of quality of decoding grows linearly
with the vector dimension (Section 3.8), but using vectors with very high dimension is not
a satisfactory way to store large structures. A far superior way is to use chunk informa-
tion. This involves storing substructures in the clean-up memory, and using them when
decoding components of complex structures. For example, to decode the agent of the cause
antecedent of s2 we first extract the cause antecedent. This gives a noisy version of s1, so
we then clean it up by accessing clean-up memory and retrieving the closest match (which
should be s1). Now we have an accurate version of s1 from which we can extract the filler
of the agent role. Using chunks during decoding like this reduces the effective number
of items and bindings in HRRs and thus makes it possible to store structures of nearly
unlimited size (though of course the number of chunks in clean-up memory grows with
the size of the structure).

Any system that uses chunks must have also have a way of referring, or pointing to
the chunks. HRRs provide a very attractive way of constructing chunks because a HRR
is a pointer that tells us something about what it refers to. This is what the “reduced”
in “Holographic Reduced Representation” refers to – a HRR is a compressed, or reduced,
version of the structure it represents. The advantage of having a pointer which encodes
some information about what it refers to is that some operations can be performed without
following the pointer. This can save much time. For example, we can decode nested fillers
quickly if very noisy results are acceptable, or we can get an estimate of the similarity of
two structures without decoding the structures. In Chapter 6, I investigate how HRRs can
be used to compute fast estimates of analogical similarity.

3.11.4 Comparison to other distributed representations for predicates

HRRs have much in common with Smolensky’s [1990] tensor-product role-filler representa-
tion for predicates. The advantage HRRs have over tensor products is that the dimensions
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of HRRs do not expand when they are composed recursively. The natural way of construct-
ing reduced descriptions and chunks in HRRs follows from this. The advantage tensor
products have over HRRs is lower noise (zero under some conditions) in decoding. With
tensor products, one can do such things as rebind multiple variables in parallel. One can
also do this with HRRs, but the noise is considerable.

HRRs differ from Murdock’s [1983] and Halford et al’s [to appear] predicate represen-
tations in that HRRs do not require that any ordering be imposed on the roles, and in the
ease of coping with missing fillers. Some common types of decoding, such as finding the
filler of a given role, appear to be easier with HRRs. Furthermore, HRRs seem to provide
a more natural similarity structure for predicates (see Chapter 6). The type of access that
Halford et al claim is impossible with role-filler representations (finding one component of
a predicate when provided with all the others) can actually be done quite easily with HRRs
if a clean-up memory is used. I give an example of this in Appendix I. HRRs are actually
more versatile for this type of retrieval because a HRR can be retrieved with fewer than
all-but-one components.

Compared to Pollack’s [1990] RAAMs, HRRs have the following computational advan-
tages:

� No lengthy training is required for HRRs.

� The retrieval properties of HRRs are simple and predictable, and amenable to analysis.

� Arbitrary structures of arbitrary vectors can be stored in HRRs. The only structures
and vectors that one can be confident a RAAM will encode are those it was trained
(or tested) on.

� HRRs shed information about nested components, whereas with deeper structures,
RAAMs must pack more and more information into the vector. Not all the infor-
mation about the items in a complex association is stored in the HRR memory trace.
Information storage is shared between the convolution memory trace and the asso-
ciative clean-up memory.

� Many types of structures can be stored in HRRs. HRRs are not constrained to
representing trees of a particular degree.

� HRRs have an infinite variety of roles, whereas RAAMs are limited to a small fixed
number of positional roles.

� HRRs degrade gracefully in the presence of noise. HRRs normally work with a lot
of noise. The effect of adding more noise can be quantified and compensated for by
using higher-dimensional vectors. The effect of adding noise to RAAMs is difficult to
quantify because they involve nonlinear transformations. Also, RAAMs are unlikely
to work well in the presence of noise because they require values to be represented
with high precision.

� HRRs do not depend upon representing floating-point values with high precision.
Rounding to lower-precision values has much the same effect as adding noise.

� Construction and decomposition of HRRs can be done in O(n log n) time, using FFTs,
whereas RAAMs take O(n2) time. However, this advantage is probably offset by the
high vector dimensions that HRRs require.



100

HRRs have several disadvantages compared to RAAMs:

� The association operation in HRRs cannot take advantage of the possibility that some
structures and items are commonly represented and others rarely. In RAAMs, the
association operation is tuned to efficiently represent common structures and items.

� HRRs require very high dimensional vectors.

� For the statistical analysis of HRRs to be valid the elements of the basic vectors must
be randomly independently distributed.

3.12 Conclusion

Memory models using circular convolution provide a way of representing compositional
structure in distributed representations. They implement Hinton’s [1990] suggestion that
reduced descriptions should have microfeatures that are systematically derived from those
of their constituents. HRRs preserve natural similarity structure – similar frames are rep-
resented by similar HRRs. The operations involved are mostly linear and the properties
of the scheme are relatively easy to analyze, especially compared to schemes such Pol-
lack’s [1990] RAAMs. No learning is required and the scheme works with a wide range of
vectors. Systems employing HRRs must have an error-correcting auto-associative mem-
ory to clean up the noisy results produced by convolution decoding. Convolution-based
memories have low capacity compared to matrix memories, but the storage capacity is
sufficient to be usable and scales almost linearly with vector dimension.

HRRs are intended more as an illustration of how convolution and superposition can be
used to represent complex structure than as a strict specification of how complex structure
should be represented. The essence of HRRs is as follows:

� It is a distributed representation.

� They represent predicate-like objects as the superposition of role-filler bindings (and
possibly some additional information).

� The representation of a composition object has the same dimension as the represen-
tation of each of its components.

� Roles and fillers are bound together with associative memory operation, like cir-
cular convolution, which does not increase dimensionality and is randomizing and
similarity preserving.

In any particular domain or application, choices must be made about what will and will
not be included in the representation, and about how the representation will be structured.
For example, in the HRRs I use in Chapter 6 I superimpose fillers and further bindings
derived from the context of fillers. In other domains, fewer or different HRR components
might be appropriate.



Chapter 4

HRRs in the frequency domain

The fact that convolution is equivalent to elementwise complex multiplication in the fre-
quency domain suggests that it might be possible to work with complex numbers and
avoid convolution and Fourier transforms altogether. Indeed, this is the case, and there are
two advantages to doing so. The first is that binding (i.e., convolution) can be computed
in O(n) time. The second is that it is simple to force all vectors to be unitary, i.e., to force
all frequency components to have a magnitude of 1. This is a particularly effective type
of normalization: it makes it possible to use the exact inverse, it normalizes the Euclidean
length of vectors, it reduces noise in decoding and comparison, and it results in simpler
analytic expressions for the variance of dot-products of bindings. The only difficulty with
working with unitary vectors is that there is no operation which corresponds exactly to
superposition: I define a substitute operation in this Chapter.

4.1 Circular vectors

In order to work with unitary vectors in the frequency domain, the major representational
change required is the use of distributed representations over complex numbers. I define
an n-dimensional circular vector as a vector of n angles, each between ��� and � . Each angle
can be viewed as the phase of a frequency component. The magnitude of each frequency
component is 1, which means that circular vectors are unitary. I use the bar symbol to
denote a vector of angles: ��

= [
�

1, . . . ,
�

n]T. In a random circular vector, each of the angles is
independently distributed as U( ��� , � ), i.e., the uniform distribution over ( ��� , � ].

The reader may recall from Section 3.6.2 that there are several constraints on the com-
ponents of the Fourier transform of real-valued vectors: the angles of f0(x) and fn/2(x) are
zero, and for i �=0, fi+n/2(x) is the complex conjugate of fi(x). It is unnecessary to maintain
these constraints when working with circular vectors, since we can work entirely in the
frequency domain. Thus, each angle in a circular vector can independently take on any
value in ( ��� , � ].

4.2 HRR operations with circular vectors

HRRs require three operations: comparison, association (and decoding), and superpo-
sition. With the standard representation (real-valued vectors with elements distributed
as N(0, 1/n)), we use the dot-product, convolution and addition. Using straightforward
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correspondences between operations in the frequency and spatial domains of the Fourier
transform, we can derive comparison and association operations for circular vectors. Su-
perposition is a little more tricky, because in general the sum of unit complex values does
not lie on the unit circle.

As explained in Section 3.6.2, convolution in the spatial domain is equivalent to ele-
mentwise multiplication in the frequency domains. When all values in the frequency
domain lie on the unit circle, this is equivalent to modulo-2 � addition of angles. I use � to
denote this operation.

The similarity of two circular vectors can be measured by the sum of the cosines of the
differences between corresponding angles:

�� � ��
=

1
n

�

j

cos(
�

i �

�
i)

This exactly corresponds to the dot-product in the spatial domain, because of the identity

x � y =
1
n

�

j

cos( � j(x) � � j(y)),

where � j(x) is the phase angle of the jth component of the discrete Fourier transform of
x. This identity is easily proved by substituting (z � y) for x in the discrete version of
Parseval’s theorem, which states that

�
k x2

k = 1
n

�
k

�
fk(x)

�
2, where fk(x) is the kth component

of the discrete Fourier transform f x.
The most obvious way to define superposition with circular vectors is as the angle of the

rectangular sum of complex numbers. This requires storing both the angle and magnitude
(or the real and the imaginary components) of the complex values during computation
of the superposition. At the end of the computation the magnitudes are discarded. This
corresponds to computing to the sum in the spatial domain and normalizing the frequency
magnitudes of the result. It is possible to use weights in superpositions, by multiplying
each vector by a weight before adding it into the superposition. Thus, we can define the
superposition function sp() for k angles (i.e., complex values on the unit circle) with weights
wi as:

sp(w1, . . . , wk,
�

1, . . . ,
�

k) = �

such that cos( � ) =
k�

i=1

wi cos
�

i and sin( � ) =
k�

i=1

wi sin
�

i.

This definition is easily extended to vectors of angles by performing the same operation
with corresponding elements of the vectors. For notational convenience, I omit the weights
when they are all the same. I use the symbol � to denote the superposition of two vectors:
��� �

= sp( � , �
).

This superposition operation differs from standard superposition in that it is not asso-
ciative. In general,

(( ��� �
) �

�
) �=( ��� (

�
�
�

)).

This is due to the normalization of magnitudes. However, this is not a serious problem,
and the same is true for the standard system with normalization.

Table 4.1 summarizes the corresponding entities and operations for standard and circu-
lar systems. In order to predict how well circular vectors and the associated operations will
perform as a basis for HRRs, we need to know the means and variances of the similarity and
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Entity/Opertion Circular system Standard system
Random vector Elements iid as U( ��� , � ) Elements iid as N(0, 1/n)
Superposition Angle of sum �� � ��

, sp() Addition x + y
Weights in superposition Weights in angle of sum Scalar multiplication
Additive zero No corresponding object �0 = [0, 0, . . . , 0]T

Association Modulo-2 � sum of angles
�� � ��

(Elementwise complex
multiplication)

Convolution x � y

Associative identity Vector of zero angles Convolutive identity:
�I = [1, 0, . . . , 0]T

Exact inverse Negation (modulo-2 � ) � �� Inverse x � 1

Approximate inverse Same as exact inverse Involution x
�

Similarity Sum of cosine of differences �� � ��
Dot-product x � y

Normalization Not needed – circular vectors
are normalized

�
x �

Table 4.1: Corresponding entities and operations in the circular and standard systems.
“Iid” means “independently and identically distributed”.

decoding operations. In Appendix H I derive means and variances for some combinations,
and report experimental results. It turns out that the variances for decoding bindings of
circular vectors are lower and more uniform than for normalized or unnormalized stan-
dard vectors, which means that the circular system should be less noisy. However, the
means for dot-products of similar vectors (such as �� � ( �� � ��

)) are also lower, which to some
extent balances the advantage of lower variances. Tables 4.2 and 4.3 show the means and
variances of dot-products of various expressions for circular and unnormalized standard
vectors. In Appendix H, I also compare the circular system to the normalized standard
system. Overall, it appears that the circular system is far superior to the unnormalized
standard system, and slightly superior to the normalized standard system in terms of
signal-to-noise ratios.

4.3 Comparison with the standard system

Overall, the circular system appears to be superior to the standard system. Advantages of
the circular relative to the standard system are these:

� Variances of dot-products are lower, which means that there is less noise in decoding
and in similarity comparisons.

� Variances of dot-products of convolution expressions are simpler and more uniform,
which makes variances easier to calculate (compare Table H.1 in Appendix H with
Table 3.1).

� The involution (which is the approximate inverse in the standard system) of a unitary
circular vector is equal to its exact inverse.



104

Circular system Standard system
Expression mean variance mean variance

(1) a � a 1 0 1 2
n

(2) a � b 0 1
2n 0 1

n

(3) a � a � b 0 1
2n 0 2n+1

n2

(4) a � b � c 0 1
2n 0 1

n

(5) a � a � a � a = a � a � a
�

� a 1 0 2 + 2
n

40n+112
n2

(6) a � b � a � b = a � b � a
�

� b 1 0 1 6n+4
n2

(7) a � b � a � a = a � b � a
�

� a 0 1
2n 0 6n+18

n2

(8) a � b � a � c = a � b � a
�

� c 0 1
2n 0 2n+2

n2

(9) a � b � c � c = a � b � c
�

� c 0 1
2n 0 2n+2

n2

(10) a � b � c � d = a � b � c
�

� d 0 1
2n 0 1

n

Table 4.2: Means and variances of dot-products for decoding and comparing bindings. The
first two columns of numbers are for the circular system (reproduced from Table H.1), and
the last two columns are for the corresponding operations (i.e., using � instead of � ) in the
unnormalized standard system (reproduced from Table 3.1). n is the dimensionality of the
vectors. The dot-products are normally distributed in the limit as n goes to infinity.

Circular system Standard (unnormalized) system
Expression mean variance Expression mean variance
a � a 1 0 a � a 1 2

n

a � b 0 1
2n a � b 0 1

n

a � (a � b) 2
� = 0.637 . . . � 8+ � 2

2 � 2n = 0.0947...
n a � 1�

2
(a + b) 1�

2
3

2n

Table 4.3: Means and variances for comparing similar, dissimilar, and half-similar vectors.
a and b are random vectors. The expressions for the circular system are from Appendix H.

� It is very easy to quantize angles for lower precision representations, and create
lookup tables for faster superposition, association and similarity computation.

� Encoding and decoding bindings can be done in O(n) time, compared to O(n log n)
time for the standard system.

Disadvantages of the circular relative to the standard system are these:

� The means of similarity comparisons are lower, but the lower variances compensate
for this.

� Superposition is slower to compute, because the calculations are more complex. It
still can be done in O(n) time, but the constant is higher.

� The dot-product calculation is slower to compute because it involves n cosines. How-
ever, these could be computed by a fast table lookup, so this is not very important.
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� The scalar values in the distributed representation are angles rather than magnitudes,
which makes it more difficult to use with common neural networks.

The two system are equivalent with respect to scaling properties, because the variance
of decoding and similarity operations is inversely proportional to n.

For the remainder of this thesis I use normalized standard vectors rather than circular
vectors, for two reasons. The first is that I expect standard vectors to be more accessible
to researchers familiar with popular connectionist representations. The second is that the
computational advantage of using circular vectors is less than it might appear. Encoding
and decoding bindings is faster: it takes O(n) time, as opposed to O(n log n) for the standard
representation. However, the computational cost of simulations tends to be dominated by
the clean-up memory, and the circular vector similarity operation is more expensive to
compute.1 In any case, all the experiments in this thesis could be replicated with circular
vectors, and neural networks can be easily adapted to work with complex numbers.

1It table lookup were used for the cosines, the amount of computation for clean-up would be the same in
the two systems.



Chapter 5

Using convolution-based storage in
systems which learn

Hinton [1986] and Miikkulainen and Dyer [1989] showed that useful distributed represen-
tations of objects could be learned using gradient descent in feedforward (backpropagation)
network. Pollack [1990] showed that an auto-encoder network could even learn represen-
tations for compositional structures. This ability to learn representations has two important
applications: developing new representations, and fine-tuning existing ones.

Given the difficulties encountered in learning representational schemes for compo-
sitional structures (such as Pollack’s), and given that there are simple convolution-based
methods for representing compositional structures, it is interesting to consider how
convolution-based storage schemes might be incorporated into networks which could
learn representations using gradient descent training. In this chapter I describe how
the trajectory-association method for representing sequences (Section 3.4.1) can be incor-
porated into a recurrent network. I report some experiments in which these networks
develop representations for objects and sequences, and compare their performance with
that of more conventional recurrent networks.

5.1 Trajectory-association

A simple method for storing sequences using circular convolution is to associate elements
of the sequence with points along a predetermined trajectory. This is akin to the memory
aid called the method of loci which instructs us to remember a list of items by associating
each term with a distinctive location along a familiar path. Elements of the sequence and
loci (points) on the trajectory are all represented by n-dimensional vectors. For example,
the sequence “abc” can be stored as:

sabc = p0 � a + p1 � b + p2 � c,

where the pi are vectors representing the loci, which should not be similar to each other,
and a, b, and c are the vectors representing the items. This representation of a sequence
can be decoded by convolving it with the approximate inverses of the pi in the appropriate
order.

An easy way to generate a suitable sequence of loci is to use convolutive powers of
a random unitary vector k, i.e., pi = ki. Convolutive powers are defined in the obvious
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way: k0 is the identity vector and ki+1 = ki � k. Unitary vectors (Section 3.6.3) have unit
magnitude in each of their frequency components – thus the magnitude of each of their
eigenvalues is one. They are the class of vectors for which the exact inverse is equal to
the approximate inverse. Restricting k to be unitary ensures that k does not blow up or
disappear when raised to high powers, because, for any unitary vector k, and for all t,�

kt �
= 1;

Using convolutive powers for the loci, the trajectory-association representation for the
sequence “abc” is:

sabc = a + b � k + c � k2.

Raising a unitary vector to some power t corresponds to multiplying the phase angles
of its frequency components by t. (Fractional convolutive powers are easily defined in this
way.) The similarity of two unitary vectors depends on how well their corresponding phase
angles match – the dot-product is proportional to the sum of the cosines of the differences
of the angles:

x � y =
1
n

�

j

cos( � j(x) � � j(y)),

where � j(x) is the phase angle of the jth (frequency) component of the discrete Fourier
transform of x.1 Since the phase angles are randomly distributed in ( ��� , � ], different
integer powers of the same unitary vector have low expected similarity. Of course, for
unitary k with phase angles that are rational fractions of � , there is some t such that kt = k.
However, this t is almost always very large. Figure 5.1 shows some plots of the similarity
of kt to k, for unitary vectors of various dimensions. For higher dimensions, the similarity
of k and kt for t >= 2 has lower variance. Note that for t between 0 and 2, k and kt become
more similar as t becomes closer to 1. Also, it is easy to show that the similarity of two
vectors is invariant under translation in power: k � kt = k � � k � +t for all � . This means that
the similarity of k6 and k8 is the same as the similarity of k and k3, for example.

The waveforms in Figure 5.1 are actually the superpositions of n/2 � 1 equally weighted
sinewaves, and a constant 2/n.2 Each sinewave is generated by one frequency component
of k, and its period is 2 � / � , where � is the phase angle (in ( ��� , � ]).

5.1.1 Decoding trajectory-associated sequences

Trajectory-associated sequences can be decoded by repeatedly convolving with the inverse
of the vector that generated the encoding loci. As with all convolution-based associations,
the results are noisy and must be cleaned up. This requires all possible items to be stored
in the clean-up memory.

There are two exactly equivalent methods for decoding a trajectory-associated sequence,
which are shown in Table 5.1. Since the approximate inverses of the loci are equal to their
exact inverses (i.e., (k � )i = k � i), I use negative powers to indicate the inverses of the
loci. In the direct access method, the inverses of each loci are used to probe the sequence
representation:

ri = k � i � s,
1This identity is easily proved by substituting (z � y) for x in the discrete version of Parseval’s theorem,

which states that
�

k x2
k = 1

n

�
k � fk(x) � 2 , where fk(x) is the k component of the discrete Fourier transform f x.

2The constant of 2/n comes from the two frequency components which have a phase angle of zero for real
vectors.
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n = 16 n = 16 n = 16

n = 64 n = 64 n = 64

� 1

0

1

0 8 16 24 32

n = 256 n = 256 n = 256

Figure 5.1: Example trajectory similarities. Each plot shows the similarity (vertical axis) of
k to kt, for t = 0 to 32 (horizontal axis), for randomly selected unitary vectors k of dimension
n. All plots are to the same scale. The first peak in each graph is for t = 1 (because k1 = k).
For large n, randomly chosen k, and t > 2, the expected similarity of k � kt is 2/n, and the
variance decreases with n.

Direct Recursive Expansion Result
k0 � sabc = sabc = a +b � k +c � k2 � a
k � 1 � sabc = k � 1 � sabc = a � k � 1+b +c � k � b
k � 2 � sabc = k � 1 � (k � 1 � sabc) = a � k � 2+b � k � 1+c � c

Table 5.1: The direct and recursive methods of decoding a trajectory-associated sequence.

where ri is the decoded ith element of the sequence represented by s. In the recursive
access method, the sequence representation is repeatedly convolved with k � 1, which steps
through the elements of the sequence:

r0 = s and ri = k � 1 � ri � 1

These two methods are equivalent because convolution is associative.
For example, to retrieve the third element of the sequence sabc we convolve twice with

k � 1, and the result expands to a � k � 2 + b � k � 1 + c. The first two terms are unlikely to be
correlated with any items in the clean-up memory, so the most similar item will probably
be c.

5.1.2 Capacity of trajectory-association

In Appendix D, I calculate the capacity of (circular) convolution-based associative memory.
I assume that the elements of all vectors (dimension n) are chosen randomly from a Gaussian
distribution with mean zero and variance 1/n (giving an expected Euclidean length of 1.0).
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Figure 5.2: Subsystems to encode a sequence of symbols into a trajectory-associated code,
and decode the code back into a sequence of symbols. The encoding and decoding subsys-
tems must store internally the n-dimensional vectors which represent the symbols.

Even for short sequences, quite high vector dimensions are required to ensure a low
probability of error in decoding. For example, with 512 element vectors and 1000 items in
the clean-up memory, 4 pairs can be stored with about a 1% chance of an error in decoding.
The scaling is nearly linear in n – with 1024 element vectors 8 pairs can be stored with
about a 1% chance of error. This works out to an information capacity of about 0.16 bits
per element. The elements are floating-point numbers, but high precision is not required.

These capacity calculations are roughly applicable to trajectory-association – the num-
ber of pairs corresponds to the length of sequences. They slightly underestimate its capacity
because of the restriction that the encoding loci are unitary vectors, which results in lower
decoding noise. Nonetheless this figure provides a useful benchmark against which to com-
pare the capacity of the adaptive networks described in this chapter, which, on account of
the training, should be able to store more.

5.2 Encoding and decoding systems for trajectory-associated se-
quences

Figure 5.2 shows the obvious way in which an encoding subsystem and a decoding subsys-
tem can be composed to form a system which can store and recall sequences. In a system
which uses trajectory-association to form distributed codes for sequences, there are at least
two opportunities for learning representations. We can learn distributed representations
for the individual items (à la Hinton [1986]), and we can fine-tune the distributed code for
a sequence. The latter can be useful if errors occur during recall of the sequence – often we
can adjust the code so that it is read out correctly.

If the error surfaces of the decoder are simple enough, the idea of adjusting the code
for the sequence so that it is read out correctly can be extended to finding the code for
a sequence from an arbitrary starting point. To do this, we instantiate the code units
with some starting vector (e.g., a random vector), run the decoder to see what sequence
it produces, compare that to the sequence we want to produce, backpropagate the errors,
and adjust the code units to better produce the desired sequence. We repeat this until the
code units contain the vector which produces the desired sequence.



110

Output ot

Hidden ht

Context pt

Input a

wc
ij... ...

(train) (test)

wo
ij

HRN

Code c
�

(softmax layer)

Key k

Figure 5.3: A Holographic recurrent network (HRN). The backwards curved arrows denote
a copy of activations to the next timestep. The hidden, code, context, and key layers all
have the same number of units. The left block of input units is used during training, the
right block during testing.

In this chapter I only consider the decoding system, and investigate to what extent
gradient descent methods can learn good representations for items and find codes for pro-
ducing sequences of items. In some ways, this is the opposite of how recurrent networks
are usually used to process sequences, in that the sequence is the output rather than the in-
put. The reason I do this is that I wish to focus on representations for sequences. Decoding
the sequence representation is a convenient way of ensuring that all the sequential infor-
mation is present. Furthermore, at this preliminary stage I wish to avoid the complexity of
constructing both encoding and decoding systems.

5.3 Trajectory-association decoding in a recurrent network

It is straightforward to build the trajectory-association decoding operations (Section 5.1.1)
into a recurrent network. I call the resulting network a Holographic recurrent network (HRN).

5.3.1 Architecture

The HRN used in the experiments described here is shown in Figure 5.3. The clean-up
memory is easily implemented with a “softmax” output layer (See Section 5.3.2). The
output layer does not actually hold distributed representations for symbols, instead it uses
a local representation. The softmax function ensures that the total activity in the output
layer sums to 1, so that the output activities can be interpreted as probabilities. The output
unit with maximum activation will be the one whose incoming weights best match the
activations on the hidden units (the incoming weights on the outputs are the distributed
representations of symbols). Using a local output representation and the softmax function
allows us to take derivatives of the error function. If we wanted to have distributed
representations for symbols on the output, we could add an extra output layer and the
weights to map the local representation to the distributed one.
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The key layer k has fixed activation and contains the generator for the inverse loci
(k here corresponds to k � 1 in Section 5.1, because k here is the decoding rather than the
encoding key.).

The input representation is also local, only one input unit is active for each sequence.
The outgoing weights from the single active input unit determine the activations at the
code layer – these weights form a local-to-distributed map (as discussed in Section 2.2.2.
The code layer injects activation into the hidden layer at the first step. After that the hidden
layer activations are cycled through the context layer, so the input and code units no longer
affect the network.

Each sequence is produced independently – no residual activations from the production
of previous sequences remain in the network.

5.3.2 Unit functions

The HRN computes the following functions. The activations of the input, code and key lay-
ers remain constant during the production of a sequence. The parameter g is an adaptable
input gain shared by all output units.

Code units: cj =
�

i aiwc
ji

Hidden units: (first timestep) h1,j = cj

(subsequent steps) ht,j =
�

i pikj � i (h = p � k)
Context units: pt+1,j = ht,j

Output units: (total input) xt,j = g
�

i ht,iwo
ji

(output) ot,j = ext,j�
i
ext,i (softmax)

On all sequences, the net is cycled for as many timesteps as required to produce the
target sequence. The outputs do not indicate when the net has reached the end of the
sequence. However, other experiments have shown that it is a simple matter to add an
extra output unit to indicate the end of the sequence.

The inputs and outputs to the network look like this:
Output

Sequence Input t = 0 t = 1 t = 2 t = 3��� � �
�������
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��� �

�
� ���
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5.3.3 Objective function

The objective function of the network is the asymmetric divergence between the activations
of the output units (os

t,j) and the targets (ts
t,j) summed over cases s and timesteps t, plus two

weight penalty terms:
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The first weight penalty term is a standard weight cost designed to penalize large
weights (n is the number of hidden units). It is probably superfluous in the HRN, because
the various operations from the wc

jk to the total inputs of the output layer (xj) are all linear,
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and scaling of the wc
jk can be compensated for by the gain g. Later experiments without this

weight cost term indicated that it has no effect on performance.
The second weight penalty term is designed to force the Euclidean length of the weight

vector on each output unit to be one. This makes the output layer more like an ideal
clean-up memory. The generalization performance with this special penalty term for the
output weights is considerably better than that with a standard weight cost for the output
weights (which is in turn better than that with no weight penalty). The reason for the
worse performance with the standard weight cost is that the symbols which occur more
frequently in the training set develop output weight vectors with higher magnitudes.

5.3.4 Derivatives

To do gradient descent learning, partial derivatives for all the adjustable parameters are
required:

�
E�

wo
jk
,

�
E�

wc
jk
, and

�
E�
g . All of these can be easily calculated from the above equations

using the chain rule and Rumelhart, Hinton, and William’s [1986] unfolding-in-time tech-
nique. The only partial derivatives not encountered in common backpropagation networks
are those for the activations of the context units:

�
E

�
pj

=
�

k

�
E

�
hj

yk � j ( ��� p = � h � y
�

)

When there are a large number of hidden units it is more efficient to compute this derivative
via FFTs as the convolution expression on the right ( � p and � h are the vectors of partial
derivatives of E with respect to p and h).

5.3.5 Training and testing productive capacity

To be useful, a trainable storage scheme for structures must be able to store a wide variety of
novel structures without requiring adjustment of its basic parameters after initial training.
In an HRN, the basic parameters are the weights on the output units. The novel structures
are sequences the network was not exposed to in the initial training. I refer to the ability of
the network to store novel sequences as its productive capacity.

I performed initial training on a small number of short sequences in order to find good
values for the basic parameters: the output weights wo

jk and the output gain g. The initial
training also finds code unit instantiations which produce the training sequences, which are
determined by the weights wc

ij coming from the block of input units on the left in Figure 5.3.
To estimate the productive capacity of HRNs I freeze these parameters and test whether
the network is able to produce longer novel sequences. For each novel sequence, I perform
an independent search for a vector of code unit activations which will cause the network
to produce the sequence. These activations are determined by the weights wc

ij coming from
the block of input units on the right in Figure 5.3.

For the initial training I use randomly chosen sequences of length 4 over various
numbers of symbols. The number of symbols corresponds to the number of output units in
the network. The number of sequences in the training set is 4 times the number of symbols,
which means that on average each symbol occurs 16 times in a training set. For example,
there are 12 sequences in the training set over three symbols. I initialize all weights to small
random values, and the output gain to 1. I use conjugate gradient minimization and stop
when all sequences were correctly produced (or when 400 steps have been taken). I judge
a sequence to be correctly produced only if all its symbols are correct. I judge a symbol to
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Figure 5.4: A simple recurrent network (SRN). The backwards curved arrows denote a
copy of activations to the next timestep. The hidden, code, and context layers all have the
same number of units. The left block of input units is used during training, the right block
during testing.

be correct when the activation of the correct output unit exceeds 0.5 and exceeds twice any
other output unit activation.

For estimating the productive capacity I use novel sequences of lengths 3 to 16 (32
sequences of each length). I use a separate conjugate gradient search to find a code for
each sequence (starting from small random values), and stop when the sequence has been
correctly produced, or when 100 steps have been taken.

5.4 Simple recurrent networks

I compare HRNs to other more conventional recurrent networks, both to get some idea
of their relative capacities and because the comparison gives some insight into various
reported difficulties with recurrent networks. Elman [1991] and Servan-Schreiber, Cleere-
mans and McClelland [1991] use Simple Recurrent Networks (SRNs) to process sequential
input and induce small finite-state grammars. However, their training times are extremely
long, even for very simple grammars. Maskara and Noetzel [1992] report similar results
and make the plausible suggestion that the long training times are due to the difficulty of
finding a recurrent operation that preserves information in the hidden units over many
timesteps. Simard and Le Cun [1992] report being unable to train a type of recurrent net-
work to produce more than one trajectory through continuous space, a task which requires
careful control over information in the hidden units.

Given these reported difficulties, I expected that SRNs would perform poorly at the
sequence production task, since it requires preserving and transforming information in the
hidden units over many timesteps. To test this, I built a version of the SRN for the sequence
production task. The architecture of this SRN differs from the HRN in that the hidden layer
receives activation through a weight matrix from the context layer, as with the SRNs. The
network, which I refer to as a SRN, is shown in Figure 5.4.

The only difference between the SRN and the HRN is in the computation of the activa-
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tions of the hidden units:
hj = tanh(cj +

�
k wr

jkpk + bj),

where bj is a bias on each hidden unit. As with the HRN, the activations on the code units
do not change during the production of a sequence. However, in contrast with the HRN,
the activations of the code units flow to the hidden units at every timestep.

The objective function for the SRN is the same as for the HRN, except for the inclusion
of an extra penalty term for large recurrent weights (i.e., wr

ij, the weights from the context
to the hidden layer):
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The SRNs described here differ in two important ways from other SRNs described in the
literature (besides being used to produce rather than process sequences): the tanh function
(symmetric sigmoid) is used on the hidden units, rather than the non-symmetric logistic
function, and full unfolding-in-time is used to calculate correct derivatives, rather than
Elman’s truncated derivative scheme. Experiments showed that both changes significantly
improved training times and productive capacity.

In the simulations, I use almost exactly the same training and testing regime as for
HRNs. The only difference is that I experimented with larger training sets.

5.5 Training and productive capacity results

5.5.1 HRN results

HRNs prove to be easy to train, and to have good productive capacity. They also appear
to have good scaling properties – as the number of hidden units increases they can store
longer sequences or sequences over more symbols. Figure 5.5 shows the performance of
HRNs with eight output units and varying numbers of hidden units. The points shown
are averages of data from five runs, each starting with a randomization of all parameters.
As the number of hidden units increases from 4 to 64 the productive capacity increases
steadily. For a HRN with a fixed number of hidden units, the length of sequences that can
be stored reliably drops as the number of symbols increases, as shown in Figure 5.6. This
is expected because when there are more symbols, more information is required to specify
them. For example, the same amount of information is required to specify a sequence of
length eight over three symbols as a sequence of length four over nine symbols.

To make a rough guess at the information efficiency of HRN sequence codes we can
calculation how much information is in the maximum-length sequence that can be reliably
encoded. For example, Figure 5.5 shows that a HRN with 16 hidden units can reliably
store sequences of length 5 over 8 symbols. Such a sequence contains 15 bits of information
(assuming all symbols are equally likely), which gives an information efficiency of nearly
1 bit per code element (15/16). This figure appears stable for different numbers of hidden
units and for different numbers of symbols. This compares well with the 0.16 bit per
element achieved by random vector circular convolution (Section 5.1.2). The increase in
capacity can be attributed largely to the adaptive method of forming codes.
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Figure 5.5: Percentage of novel sequences that can be produced, versus length of those
sequences for HRNs with varying numbers of hidden unit. The sequences are over 8
symbols. All points are averages of data from 5 different training runs.
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Figure 5.6: Percentage of novel sequences that can be produced by HRNs with 16 hidden
units, versus length of those sequences, for varying numbers of symbols (i.e., varying
numbers of output units). All points are averages of data from 5 different training runs.
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Figure 5.7: Percentage of novel sequences that can be produced, versus length of those
sequences, for various types of networks (all with 16 hidden units, and 3 symbols). “SRN+”
is the SRN with 8 times the as much training data and “SRN++” is the SRN with 32 times
the as much. “SRNZ” is the SRN with frozen random recurrent weights. All points are
averages of data from 5 different training runs.

5.5.2 SRN results

SRNs turned out to be better at this task than expected. Figure 5.7 shows how the per-
formance varies with sequence length for various networks with 16 hidden units. SRNs
required much more training data, which is not surprising since they have more parame-
ters in the form of weights from the context to the hidden layer. The productive capacity
for a SRN trained on 12 sequences of length 4 (the same amount of data as a HRN) was
very poor – compare the bottom and top lines in the graph. However, with more training
data consisting of longer sequences, the productive capacity was better, though never as
high as that of HRNs. In the Figure, “SRN+” is the productive capacity of an SRN trained
on 48 sequences of length 8 (8 times as much training data) and “SRN++” is one trained
on 192 sequences of length 8 (32 times as much training data). The length of training
sequences appeared to have a significant effect on productive capacity. Experiments not
shown here indicated that the increase in productive capacity obtained by doubling the
length of training sequences (4 to 8) was greater that obtained by doubling the number of
training sequences.

Interestingly, freezing the recurrent weights at random values results in a significant
increase in productive capacity for a SRN trained on the small training set (“SRNZ” in the
Figure). Random values for all the weights coming into the hidden units are chosen from
a Gaussian distribution with mean zero and the same variance as those from a sample
trained SRN (0.2 for a net with 16 hidden units). These weights are frozen at the beginning
of training and never changed. The productive capacity achieved with these weights tends
to suggest that the recurrent weights are not doing much more than a random mapping.
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The performance would probably improve further if the weight matrix were chosen so that
all its eigenvalues were of equal magnitude (like the recurrent operation in HRNs).

In general, modifications to SRNs which make them more like HRNs seem to improve
performance. As mentioned before, early experiments with the standard non-symmetric
sigmoid operation on the hidden layer had very poor performance. The symmetric sigmoid
(tanh), which is more like the linear transfer function in the HRN, gives much better
performance. Freezing the hidden weights at random values also improves performance
(for nets with a small training set). Other experiments showed that removing the bias on the
hidden units usually improves performance. Changing the hidden unit transfer function
of the SRN from tanh to linear improves performance on shorter novel sequences, but not
on longer novel sequences. This is probably because the linear transfer function allows
eigenvectors with large eigenvalues to grow exponentially, whereas the tanh function limits
their growth. The only change that makes the SRN more like the HRN, and that consistently
harms performance, is making the code units inject activation into the hidden units at the
first timestep only.

5.5.3 General training and testing issues

The training times for both the HRNs and the SRNs are very short. Both require around
30 passes through the training data to train the output and recurrent weights. Finding a
code for test sequences of length 8 takes the HRN an average of 14 passes, and the SRN
an average of 57 passes (44 with frozen recurrent weights). The SRN trained on more data
takes much longer for the initial training (average 281 passes) but the code search is shorter
(average 31 passes).

Local minima in the space of codes for trained networks are not a significant problem
for either HRNs or SRNs. Experiments with restarts for failed searches for a sequence code
(during testing) show that allowing one restart improves the productive capacity figures
by only 0.3% for HRNs and 1.3% for SRNs.

5.6 Trajectories in continuous space

Simard and Le Cun [1992] devise a “Reverse Time-Delay Neural Network” for producing
trajectories through a continuous space. They train the network to produce pen trajectories
for writing the characters “A” to “Z”. One reported motivation for the complex architecture
of their network is the difficulty they had with training a simpler recurrent network to
produce more than one trajectory. HRNs can be adapted to produce trajectories, and
have a much simpler architecture than Reverse Time-Delay Neural Networks. Only two
modifications need be made: (a) change the function on the output units to sigmoid and
add biases, and (b) use a fractional power of a random vector for the key vector. The hidden
unit activations are still k � c, where c is the code vector. The fractional power key vector
k is derived by taking a random unitary vector x and multiplying the phase angle of each
frequency component by some fraction � , i.e., k = x � . The result is that ki is similar to kj

when the difference between i and j is less than 1/ � , and the similarity is greater when i
and j are closer. This is good for generating smooth trajectories because the decoding key
at one step is similar to the decoding key at the next step. This means that the contents
of the hidden layer will be similar at successive timesteps. The rate at which the output
trajectory is traversed can be adjusted by changing � – smaller values result in a slower
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Figure 5.8: Targets and outputs of a HRN trained to produce trajectories through continuous
space. The trajectory was not one that the network was trained on.

rate of change.
I tested a trajectory producing HRN on a task similar to Simard and Le Cun’s: producing

pen trajectories for the digits zero to nine. The HRN has 16 hidden units and a key vector
with � = 0.06. The trajectories have 100 steps in three dimensions (X, Y, and pen up/down).
As with other HRNs, there are two sets of parameters: the input-to-code weights, and the
output weights. I trained the network on 20 instances of handwritten digits and then froze
the output weights. With the output weights frozen, the network could easily find codes
that produce trajectories for novel digit instances. Figure 5.8 shows the X and Y target
trajectories and the output of the network for one instance. The HRN does not reproduce
trajectories exactly – the code has a very limited number of parameters and can be expected
to impose some sort of regularization on the trajectory.

The code that produces a trajectory is a 16-element vector. One would expect the codes
which produce similar trajectories to be similar. This does seem to be the case: 40 codes
for producing the trajectories for 40 digits clustered into the digit classes with only one
exception. The code vector is potentially useful wherever a compact representation for
trajectories is needed, e.g., in classification.
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It is possible to vary the rate of trajectory traversal by adding a unit to the network
which exponentiates the key vector. Let

�
be the output of this unit. The hidden layer

activations will be k
� � c. The network can be set up so that the value of

�
changes during

the production of a trajectory. The base-line value for
�

should be one. To progress more
rapidly through the trajectory

�
should be greater than one, and to progress more slowly,�

should be less than one. It is not difficult to calculate partial derivatives for
�
, and

preliminary experiments showed that a HRN could learn to control
�

dynamically so as to
align the network output with a target sequence.

5.7 Hierarchical HRNs

The main attraction of circular convolution as an associative memory operator is its poten-
tial for representing hierarchical structure. In order to investigate whether gradient descent
training could be used to find hierarchical codes for sequences I built a two-level HRN. It
consists of two HRNs with the outputs of one (the main HRN) supplying the code for the
other (the sub-HRN). Figure 5.9 shows the overall architecture of this system. The subse-
quence decoder (at the top of the figure) produces sequences of symbols from the codes it
receives from the main sequence generator. When the subsequence decoder has finished a
subsequence it signals the main sequence decoder to produce the next subsequence code.
Each decoder is similar to one of the HRNs already described. The clean-up memory for the
subsequence decoder, i.e., its output units, contains symbol codes. The clean-up memory
for main sequence decoder contains subsequence codes. The clean-up memory uses a local
representation, so the output of the main sequence decoder must be transformed back to a
distributed representation (the subsequence codes) by a local-to-distributed mapping.

For example, suppose the encoding key for subsequence generator is k, and the key for
the main sequence generator is j. Suppose that “abc”, “de”, and “fgh” are chunks the main
sequence generator knows about. Then the sequence “abcdefgh” can be stored as

(a + b � k + c � k2) + (d + e � k) � j + (f + g � k + h � k2) � j2.

This two-level HRN was able to produce sequences given appropriate codes. However
the network was not able to find main sequence codes by using gradient descent with
backpropagated errors from target symbols – there were too many local minima. This was
the case even when the components of the network were trained separately and frozen.
The local minima are most likely due to the presence of an intermediate clean-up memory.

5.8 Discussion

5.8.1 Application to processing sequential input

An issue in processing sequential data with neural networks is how to present the inputs
to the network. One approach has been to use a fixed window on the sequence, e.g., as
in Sejnowski and Rosenberg’s [1986] NETtalk. A disadvantage of this is that any fixed
size of window may not be large enough in some situations. Instead of a fixed window,
Elman [1991] and Cleeremans et al [1991] used a recurrent net to retain information about
previous inputs. A disadvantage of this is the difficulty that recurrent nets have in retaining
information over many timesteps. HRNs offer another approach: use the codes that
produce a sequence as input rather than the raw sequence. This would allow a fixed-size
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Figure 5.9: A two-level system for decoding nested sequences. The main system outputs
a series of codes for subsequences, which are input to the subsequence decoder. When the
subsequence decoder has completed a subsequence it signals the main sequence decoder
to produce the next subsequence.

network to take sequences of variable length as inputs (as long as they were finite), without
having to use multiple input blocks or windows. This would not be immediately applicable
to networks which process sequences without any beginning or end, but some modification
could be made along the lines of using a code which produces the recent relevant inputs.

5.8.2 Application to classification of sequences

The codes that produce sequences have similarity structure, e.g., the code for producing
“abc” is more similar to the code for “acc” than the code for “cab”. This also applies to the
codes for producing trajectories through continuous space.

5.8.3 Improving the capacity of convolution-based memory

Adapting the representations of objects and traces gave a five-fold increase in the storage
capacity of the trajectory-association method. Experiments with networks having many
more output units showed that the information capacity was not affected by the number
of different symbols used in the sequences.

The improvement in capacity is encouraging because it suggests that the capacity of
other types of convolution-based memory could be improved by adapting representations,
and also that traces that fail to decode correctly could be corrected by a simple gradient
descent procedure.
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5.9 Conclusion

It is straightforward to build the decoding operations for trajectory-associated sequences
into a recurrent network. The resulting HRN can be trained using standard neural network
methods. During training, the network simultaneously discovers memory traces for se-
quences and good representations for the objects. My experiments with HRNs demonstrate
four points:

1. Gradient descent techniques are fast and reliable for learning representations for
non-nested sequences from random starting points.

2. Gradient descent techniques are impractical for learning representations for nested
sequences from random starting points.

3. Adapting memory traces and object representations increases the storage capacity of
convolution-based memories.

4. For the task of producing sequences and trajectories, HRNs are as good as, if not
better than, more conventional recurrent networks. They have fewer parameters,
and consequently require less training data.

The convolution operation appears to be ideal for the recurrent operation in situations
where information must be preserved but transformed in the hidden layer, because all the
eigenvalues of the recurrent operation have a magnitude of one.



Chapter 6

Estimating analogical similarity

One of the advantages of reduced representations is the potential for using them in their
reduced form. Such computations could be very fast, since they would not require time-
consuming reconstruction of the full representation. However, the power and usefulness
of this type of computation is limited by what information is made explicit in the reduced
representation.

Similarity judgement is one potentially useful computation which could be performed
with reduced representations. The vector dot-product1 is an efficiently computable mea-
sure of similarity. The usefulness of this computation depends on the usefulness of the
similarity structure this measure induces over structured objects. This in turn depends
upon which aspects of the objects and structure are made explicit in the reduced represen-
tations under consideration.

In this chapter I investigate the similarity structure induced on structured objects by
dot-product comparisons of Holographic Reduced Representations. It turns out that HRR
dot-product similarity captures some aspects of analogical similarity as embodied in two
models of analogical reasoning: ARCS (Analog Retrieval by Constraint Satisfaction) [Tha-
gard et al. 1990] and SME (Structure Mapping Engine) [Falkenhainer, Forbus and Gentner
1989]. I give a set of examples which illustrate which aspects of similarity HRR dot-
products are sensitive to. I also describe how some failings of HRR dot-product similarity
as a measure of analogical similarity can be corrected by the inclusion of further bindings
in the HRRs. ARCS is also a model of analog retrieval (from long-term memory), and
MAC/FAC is a model of analog retrieval which uses SME for evaluation and reasoning.
ARCS and MAC/FAC both require a fast method for estimating structural similarity in
order to avoid expensive structural isomorphism tests on non-contenders. The methods
they use for this are rudimentary and insensitive to structure – dot-product comparison of
HRRs could provide a more discriminating but still efficient alternative.2

6.1 Models of Analogy Retrieval

Gentner and Markman [1993] suggested that the ability to deal with analogy will be a “wa-
tershed or Waterloo” for connectionist models. They identified “structural alignment”,
which is the matching of corresponding components of two structures in a manner which

1For binary representations the vector dot-product is the same as overlap.
2Whether or not this would make ARCS or MAC/FAC better theories is another issue, but the existence of

a fast structure-sensitive estimate of similarity could open up new lines of investigation.

122



123

preserves the relationships, as the central aspect of analogy making, and noted the apparent
ease with which people can do this in a wide variety of tasks. Gentner and Markman won-
dered whether surface forms of connectionist representation of structured objects would be
similar to the degree that the underlying structures were similar, but expressed pessimism
about the prospects for the development of such a model.

In fact, Holographic Reduced Representations provide such a representation. Among
other things, HRRs can be used to obtain fast estimates of structural similarity. As we
have seen, a HRR is a high-dimensional vector. The vector dot-product of two HRRs is
an efficiently computable estimate of the overall similarity between the two structures
represented. This estimate is sensitive to surface similarity and some, but not all, aspects
of structural similarity,3 even though correspondences between structure elements are not
explicitly computed. Comparisons of HRRs can be made more sensitive to structural sim-
ilarity by including additional bindings in the HRRs, which are derived using a technique
I call “contextualization”.

Gentner and Markman [1993] and Gentner, Markman and Wisniewski [1993] remark
that people appear to perform structural alignment in a wide variety of tasks, including
perception, problem solving, and memory recall. One task they and others have investi-
gated is analog recall. A subject reads a number of stories and later reads a probe story. The
task is to recall stories that are similar to the probe story (and sometimes evaluate the de-
gree of similarity and perform analogical reasoning). This task is often thought to involve
two stages – first is recall from long-term memory of stories that are potentially relevant
and analogical to the probe story, and second is evaluation and use of the analogy, which
involves construction of mappings between the recalled stories and the probe story. Two
computer models of this process, Thagard et al’s [1990] ARCS and Gentner and Forbus’s
[1991] MAC/FAC (Many Are Called, Few Are Chosen), also have two stages. The first
stage selects a few likely analogs from a large number of potential analogs. The second
stage searches for an optimal (or at least good) mapping between each selected story and
the probe story and outputs those with the best mappings. MAC/FAC uses Falkenhainer,
Forbus and Gentner’s [1989] “Structure Mapping Engine” (SME) as its second stage. The
two-stage architecture is illustrated in Figure 6.1. Two stages are necessary because it is
too computationally expensive to search for an optimal mapping between the probe and
all stories in memory. An important requirement for a first stage is that its performance
scale well with both the size and number of episodes in long-term memory. This require-
ment prevented the authors of MAC/FAC and ARCS from having the first stage consider
structural features, because they knew of no efficient way to do this.

The evidence that people take structural correspondences into account when evaluating
and using analogies is longstanding and solid (see Gentner, Rattermann and Forbus [1993]
for a review). However, it is less certain whether structural similarity influences access to
long-term memory (i.e., the first-stage reminding process). Gentner and Forbus [1991] and
Gentner, Rattermann and Forbus [1993], found little or no effect of analogical similarity
on reminding. Others, e.g., Wharton et al [to appear], Seifert and Hammond [1989] and
Ross [1989], have found some effect. Wharton et al [to appear] suggest that the experimental
design in earlier studies made it difficult to separate the effects of surface and structural
similarity. In any case, surface features appear to influence the likelihood of a reminding far
more than do structural features. Ross’s [1989] study suggested that the effect of structural

3“Surface features” of stories are the features of the entities and relations involved, and “structural features”
are the relationships among the relations and entities.
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Figure 6.1: Two-stage models of analogy retrieval. The first stage selects potential analogies
to the probe from the large pool of items in long-term memory, using fast but superficial
comparisons. The bottleneck depicted here is not necessary – the computation required by
the first stage could happen in parallel throughout long-term memory (e.g., in a content-
addressable memory). The second stage performs a more expensive structural comparison
between the probe and each potential analogy passed by the first stage.

similarity on reminding is greater in the presence of surface similarity.
The first goal of this chapter is to investigate how the dot-product of HRRs performs

as an estimate of analogical similarity and to spell out the strengths and weaknesses of
this estimate. To this end I show how dot-products of HRRs respond to various surface
and structural aspects of similarity and compare the similarity judgements to those of
ARCS and SME, two widely cited models of analog evaluation and analogical reasoning.
ARCS (Analog Retrieval by Constraint Satisfaction) [Thagard et al. 1990] builds a local
connectionist constraint satisfaction network (in its second stage) whose stable states are
good interpretations of analogy between two structures. An interpretation of an analogy is
a mapping of the entities in one structure to those in the other. The network is allowed to
settle to a stable state and an overall similarity score is derived from how well the various
constraints are satisfied. SME [Falkenhainer, Forbus and Gentner 1989] incorporates an
explicit search for optimal analogical mappings. Both ARCS and SME provide an explicit
interpretation of an analogy as well as a measure of goodness, and both can use the
interpretation to perform analogical reasoning.

The second goal of this chapter is to suggest that dot-products of HRRs could be an
efficient mechanism for the first stage of a model of analog retrieval. This would be more
a powerful mechanism than the current first stages of both ARCS and MAC/FAC because
it would be sensitive to structural as well as surface similarity.

However, a second stage would still be required for accurate evaluations of structural
similarity, because the HRR dot-product is not an infallible measure of structural similarity.
Furthermore, analogical reasoning tasks require an interpretation of an analogy, and this
is not provided by HRR dot-products.

I use two examples to illustrate how analogical similarity can be estimated by dot-
products of HRRs. The first is a set of shape configurations which can be represented
by HRRs containing one relation. I include this set because it is a good illustration of
some of the surface and simple structural features that people take into account when
judging similarity. The similarity rankings given by HRR dot-products are the same as
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those given by people. The second example consists a set of one-sentence “stories”, which
are represented by two or three relations in a nested HRR. These examples illustrate the
extent to which HRRs are sensitive to the more complex aspects of structural similarity,
such as patterns of variable instantiation and structural arrangement of predicates. The
simple HRRs as described in Chapter 3 are shown to be insensitive to patterns of variable
instantiation, but contextualizing HRRs corrects this deficit.

6.2 An experiment with shape configurations

Gentner, Markman, and Wisniewski [1993] report a simple experiment which demonstrates
the importance of relational commonalities to human judgements of similarity. They asked
subjects to judge the relative similarity of the pairs of configurations of geometric shapes
shown in Table 6.1.

Subjects were shown configuration X and then asked to say which of A or B was more
similar to it. A and B were presented in a random order to each subject. The elements of
each comparison are systematically varied in order to find out what aspects of the relations
are important to similarity judgements. The item most frequently selected as more similar
to X is shown in column A in all cases, and the number of times it was selected is shown
beside.

Gentner, Markman, and Wisniewski made the following comments about the stimuli:

Item 1 suggests that having similar objects makes a pair of configurations sim-
ilar, because only the similarity of the objects distinguishes between the two
comparison figures. Items 2a and 2b suggest that having similar relations makes
a pair similar regardless of whether the objects themselves are also similar. Item
3 suggests that having similar objects playing similar relational roles (e.g. both
triangles on top) makes a pair similar. Items 4a and 4b suggest that any time a
similar object plays a similar role it increases similarity, even if all of the objects
taking part in the relation are not similar. Item 5 extends this finding by demon-
strating that multiple relations can be used in the same comparison, as long as
they give rise to the same object correspondences. In the most frequently se-
lected alternative for this stimulus, the triangle is the top item and the smaller
item, just as it is in the standard. Finally, Item 6 suggests that multiple relations
can be matched, even when the objects making up the relations are dissimilar.

This simple study makes four central points. First, both relational similarities
and object similarities contribute to similarity. Second, a relational match can
be made whether or not the objects that make up the relation also match. Third,
similarity is sensitive to the bindings between relations and objects that make
up the relation. Finally, many different relations can contribute to similarity as
long as these relational matches give rise to the same object correspondences.

6.2.1 HRRs and dot-product similarity estimates

I constructed simple Holographic Reduced Representations for each of the configurations,
and then obtained estimates of similarity by computing the dot-product of the HRRs. In
all cases the HRR similarity estimates give the same judgements of relative similarity as
the human subjects. The HRR dot-products (with 512-dimensional vectors) are shown in
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X A B

1
10

(0.545)
[0.506

�
0.032]

0
(0.347)

[0.335
�

0.034]

2a
8

(0.850)
[0.837

�
0.017]

2
(0.529)

[0.506
�

0.032]

2b
10

(0.656)
[0.666

�
0.023]

0
(0.367)

[0.335
�

0.036]

3
10

(1.000)
[1.000

�
0.000]

0
(0.850)

[0.837
�

0.017]

4a
9

(0.817)
[0.831

�
0.014]

1
(0.753)

[0.751
�

0.020]

4b
9

(0.858)
[0.834

�
0.017]

1
(0.745)

[0.753
�

0.019]

5
9

(1.000)
[1.000

�
0.000]

1
(0.837)

[0.836
�

0.014]

6
10

(0.569)
[0.578

�
0.028]

0
(0.369)

[0.415
�

0.036]

Table 6.1: Shape-configuration-matching materials and results from Markman et al [1993].
The number of respondents who judged A or B to be more similar to X is shown with each
row. The HRR dot-product similarity estimate (from one run) of A and B with X is shown
in parentheses. The vector dimension was 512. The means and standard errors over 100
runs are shown in square brackets.

parentheses in Table 6.1 (e.g., 0.643 is the dot-product of the HRRs for A and X in the first
row).

Some of the HRRs are shown in Table 6.2. Two predicates are used. One is “are horizon-
tal”, which has two roles: “left” and “right”. The other predicate is “are vertical”, which
has two roles: “above” and “below”. These predicate names and roles are represented by
the vectors horizontal, left, right, vertical, above, and below. All of these are “random
base vectors” (vectors with elements chosen independently from N(0, 1/n)). The vectors
representing the shapes are derived from the random base vectors large, small, triangle,
circle, square, and star as follows (

�
� � is the normalization operation):
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���
lgCircle + lgSquare � +

�
vertical + above � lgCircle + below � lgSquare ���

���
lgCircle + lgTriangle � +

�
horizontal + left � lgCircle + right � lgTriangle ���

���
smStar + lgSquare � +

�
vertical + above � smStar + below � lgSquare ���

Table 6.2: HRRs for some of the shape configurations. All variables are 512-dimensional
vectors.

smTriangle =
�
small + triangle � lgTriangle =

�
large + triangle �

smCircle =
�
small + circle � lgCircle =

�
large + circle �

smSquare =
�
small + square � lgSquare =

�
large + square �

smStar =
�
small + star � lgStar =

�
large + star �

In these representations I treat size and shape as features and superimpose them to
represent an object of a particular shape and size. This can create problems if the represen-
tations for objects are superimposed, because ownership of features becomes ambiguous
(as discussed in Section 3.5.1). For example, the superposition lgCircle + smSquare is the
same as smCircle+ lgSquare. However, this problem does not arise in these examples. The
representation for “large circle above small square” is not the same as the representation
for “small circle above large square”, because the size features (“small” and “large”) are
bound to the roles “above” and “below”.

I did not represent Items 5 and 6 with multiple predicates, contrary to Markman et al’s
interpretation of their significance. In fact, if the smallness and largeness of the shapes in
Items 5 and 6 were represented with a predicate “is larger than” rather than features, and
simple HRRs constructed, the resulting dot-product ranking for Item 6 would not agree
with the human judgements, unless contextualization was used. I discuss the relationship
between features and predicates in more depth in Section 6.8.3.

6.3 Analogies between multiple relations

To investigate how well the dot-product of HRRs estimates the similarity of complex
descriptions I used a set of stories each involving two or three nested relations. Because
these stories are so simple, I prefer to refer to them as “episodes.” The probe and the
“memorized” episodes are shown in Table 6.3. The memorized episodes are similar in
different ways to the probe episode. These episodes are adapted from an example in
Thagard et al [1990]. I added higher-order relational structure (the “cause” relation) and
created new episodes.

In these episodes Jane, John, and Fred are people, Spot, Fido, and Rover are dogs,
Felix is a cat, and Mort is a mouse. All of these are objects (also referred to as entities).
Tokens of the same type are considered to be similar to each other, but not to tokens of
other types – the example is simple enough not to require a hierarchy of types. ‘Bite’,
‘flee’, ‘stroke’, ‘lick’, and ‘cause’ are relations. First-order relations are those which have



128

Probe: Spot bit Jane, causing Jane to flee from Spot.
Aspects of similarity

Episodes in long-term memory: OA FOR HOR RFB HOS OLI Type
E1: Fido bit John, causing John to flee from Fido.

� � � � � �
LS

E2: Fred bit Rover, causing Rover to flee from Fred.
� � � � � �

ANcm

E3: Felix bit Mort, causing Mort to flee from Felix.
� � � � � �

AN1
E4: Mort bit Felix, causing Felix to flee from Mort.

� � � � � �
AN2

E5: Rover bit Fred, causing Rover to flee from Fred.
� � � 1

2
� �

SS � I

E6: John fled from Fido, causing Fido to bite John.
� � � � � �

SS � H

E7: Mort bit Felix, causing Mort to flee from Felix.
� � � � � �

FA � I

E8: Mort fled from Felix, causing Felix to bite Mort.
� � � � � �

FA � H

E9: Fido bit John, John fled from Fido.
� � � � � �

SS � H

E10: Fred stroked Rover, causing Rover to lick Fred.
� � � � � �

OO1
E11: Fred stroked Rover, Rover licked Fred.

� � � � � �
OO2

Table 6.3: The probe episode and the memorized episodes. Various aspects of similarity
between each episode and the probe are marked with a check or a cross. The aspects of
similarity stand for the following: OA: object attributes, FOR: first-order relations, RFB:
role-filler bindings, HOR: higher-order relations, HOS: higher-order relational structure,
OLI: object-level isomorphism (consistent mapping of objects). These are explained in Sec-
tion 6.3.1 The types in the rightmost column are classifications of similarity, from Gentner
et al [1993]: LS: Literal Similarity, AN: Analogy, SS: Surface Similarity, FA: False analogy,
OO: Objects Only. These are explained in Section 6.3.2 The superscripts on the types are
for later identification and indicate how the episode differs from the probe; cm indicates
a cross-mapping (analogy), � I indicates lack of object-level isomorphism, � H indicates
missing higher-order relations, and � H indicates mismatching higher-order structure.

only objects as arguments, i.e., ‘bite’, ‘flee’, ‘stroke’, and ‘lick’. Relations that have other
relations as arguments are higher-order relations. ‘Cause’ is the only higher-order relation
in these examples. None of these relations are considered to be similar to any other. Each
argument position of a relation corresponds to a role and the argument is the filler of the
role. In “Fido bit John” (i.e., bite(Fido,John)), Fido is the filler of the agent role and John
is the filler of the object role. Objects, relation names, and roles all can have features or
attributes, e.g., is-a-person is a feature of Jane, John, and Fred.

This work does not tackle the problem of how visual or natural language input is
converted into propositional form, which is a difficult problem in its own right. As with
ARCS and MAC/FAC, the propositional form of the stories is the starting point. The
propositional form of the episodes in Table 6.3 is straightforward, e.g., the propositions
corresponding to the probe are:� � �

�����#�������� � � ���������
�  �

 �"$�$�����������&����������
���

� � ����	���� � � � �

�

6.3.1 Aspects of similarity

I have identified six aspects of the similarities between the probe and the memorized
episodes. The distinctions among these aspects relate to different treatment by SME or
different effects on HRR dot-product similarity scores.
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OA: Object attribute similarity – the presence of similar objects in each episode, e.g.,
people, dogs.

FOR: First-order relation similarity – the presence of similar first-order relations, e.g., bite,
flee.

HOR: Higher-order relation similarity – the presence of similar higher-order relations, i.e.,
cause.

RFB: role-filler binding similarity – similar objects are bound to similar roles, e.g., a dog
in the bite agent role. This only applies to bindings where the filler is an object, not
another relation.

HOS: Higher-order relation structure similarity – similar relations are related in the same
way, e.g., bite causes flee.

OLI: Object-level isomorphism – the presence of a consistent one-to-one mapping between
the objects in the two episodes. This aspect is only important when objects fill multiple
roles.

Object attribute similarity (OA), first-order relation similarity (FOR), and higher-order
relation similarity (HOR) all depend on “surface” features – just the attributes of objects
and relations. role-filler bindings similarity (RFB) depends on “local” structural features,
while higher-order relation structure (HOS) and object-level isomorphism (OLI) depend
upon the entire structural arrangement. I distinguish objects as fillers from predicates as
fillers because the SME and ARCS treat objects differently to predicates.

Structural similarity, i.e., isomorphism, is split into two aspects – higher-order structure
(HOS) and object-level isomorphism (OLI). It makes sense to treat the mapping of objects
differently from the mapping of relations. The absence of similar objects does not at all
diminish the strength of an analogy, and consequently object-level isomorphism does not
require mapped objects to be similar. However, if two situations do not share similar
relations, any analogy that can be constructed is likely to be abstract, difficult to find,
and tenuous. Consequently, two episodes are similar in higher-order structure (HOS) if
their higher-order structures are isomorphic and the corresponding predicates are similar.
In SME objects mapped to each other can be dissimilar, but mapped relations must be
identical. ARCS does allow mapping of non-identical relations, but only if they have the
same number of arguments. The third structural aspect of similarity, role-filler binding
(RFB) similarity is included because it has a large effect on HRR similarity but is ignored by
SME and ARCS (although Markman et al[1993]) did note the stronger effect of “matches-
in-place” versus “matches-out-of-place” on reminding and reasoning in human subjects).

In general, the rating of various aspects of similarity is best made on a continuous
scale. However, the examples used here are so simple that a binary classification (

�
or � )

suffices. The exception is E5, which gets half a mark for role-filler binding similarity (RFB).
The fillers of the two bite roles are similar to those of the probe (both have a dog biting a
human), but the fillers of the two flee roles are not.

6.3.2 Classifications of similarity

The final column in Table 6.3 classifies the relationship between each episode and the
probe using Gentner, Rattermann and Forbus’s [1993] types of similarity, which have the
following relationships to the presence of the various aspects of similarity:
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LS (Literal Similarity): all aspects.

AN (Analogy, also called True Analogy): FOR, HOR, HOS, and OLI, but not OA or not
RFB.

SS (Surface Similarity, also called Mere Appearance): OA, FOR, and HOR, but no struc-
tural aspects.

FA (False Analogy4): FOR and HOR only.

OO (Only Objects similarity): OA only.

E2 (ANcm) is called a cross-mapped analogy because it involves the same types of objects as
the probe, but the types of corresponding objects do not match – the types are switched
around.

6.3.3 Ratings of the episodes

The first stages of MAC/FAC and ARCS only inspect surface features (OA, FOR, and HOR).
The first stage of MAC/FAC (the “Many Are Called” stage) uses a vector representation
of the surface features. Each location in the vector corresponds to a surface feature of an
object, relation or function, and the value in the location is the number of times the feature
occurs in the structure. The first-stage estimate of the similarity between two structures is
the dot-product of their feature-count vectors. A threshold is used to select likely analogies.
It would give E1 (LS), E2 (ANcm), E5 (SS � I) and E6 (SS � H) equal and highest scores. The
first stage of ARCS is less selective than that of MAC/FAC. It selects all episodes that share
a relation with the probe, ignoring ubiquitous relations such as “cause” and “if”. It would
select all episodes involving “bite” or “flee”, i.e., E1-E9.

ARCS and SME (the second stage of MAC/FAC) use very similar rules: mapped re-
lations must match, all the arguments of mapped relations must be mapped consistently,
and mapping of objects must be one-to-one. One minor difference is that SME requires
exact matches of relations, while ARCS allows mapping of similar relations. This is only a
minor difference because similar relations can be decomposed into identical and dissimilar
components. SME has two modes – literal similarity mode, and analogy mode. In literal
similarity mode, mappings between similar objects are favored over those between dissim-
ilar objects, which gives literal similarity a higher score than analogy (“literal similarity”
is analogy plus object attribute matches). Where it is relevant in this chapter, it is assumed
that SME is operating in literal similarity mode.

The second stages of both MAC/FAC and ARCS would detect structural correspon-
dences between each episode and the probe and give the literally similar and analogous
episodes the highest rankings, i.e., LS > AN > (SS, FA, OO).

A simplified view of the overall similarity scores from SME and ARCS is shown in
Table 6.4(b). The scores from the MAC similarity estimator (the first stage of MAC/FAC)
are shown in Table 6.4(a). In the next three sections of this chapter I describe HRRs and
how they can be used to compute fast similarity estimates that are more like ratings in
Table 6.4(b).

4Gentner sometimes uses “First-Order Relational similarity” (FOR) instead of False analogy, but I avoid
this term as it uses “First-order” in a different way (to refer to the consideration of relation names).
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Structural Object Attribute Similarity
Similarity YES NO

YES (LS) High (AN) Low
NO (SS) High (FA) Low

Structural Object Attribute Similarity
Similarity YES NO

YES (LS) High (AN)
�
Med-High

NO (SS)
�
Med-Low (FA) Low

(a) Scores from the fast MAC similarity. (b) Scores from a slow similarity estimator,
e.g., SME or ARCS.

Table 6.4: A simplified view of the overall similarity scores from fast and slow similarity
estimators. There are four conditions – the two structures being compared can be similar
in structure and/or in object attributes. In all four conditions, the structures are assumed
to involve similar relations – only structural and object attribute similarities are varied.
Gentner and Forbus’s names for these classes are shown in parentheses. Ideally, the
responses to the mixed conditions should be flexible, and controlled by which aspects of
similarity are currently considered important. Only their relative values of the scores are
important, the absolute values do not matter.

6.4 Estimating similarity by dot-products of HRRs

6.4.1 Experiment 1

The dot-product of two HRRs gives an estimate of the overall similarity of the structures
represented. This estimate combines the similarity on many different aspects, both surface
and structural. The HRR dot-product is only an estimate of analogical match for two
reasons:

1. The dot-product is noisy. The noise depends on essentially unpredictable interactions
among the distributed representations of base vectors.

2. The expected value of the HRR dot-product is an imperfect measure of analogical
similarity.

Experiment 1, described in this section, illustrates the ways in which the dot-product of
ordinary HRRs reflects, and fails to reflect, the similarity of the underlying structures.

The set of base vectors and tokens used in Experiments 1, 2 and 3 is shown in Table 6.5.
The HRR for the probe is constructed as follows, and the HRRs for the other episodes

are constructed in the same way.

Pbite =
�
bite + biteagt � spot + biteobj � jane �

Pflee =
�
flee + fleeagt � jane + fleefrom � spot �

Pobjects =
�
jane + spot �

P =
�
cause + Pobjects + Pbite + Pflee + causeantc � Pbite + causecnsq � Pflee �

Table 6.6 summarizes the dot-products between HRRs for the probe and the episodes
E1-E11.

Experiment 1 was run 100 times, each time with a different choice of random base
vectors. The vector dimension used was 2048. The means and standard deviations of the
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Base vectors Token vectors
person bite jane =

�
person + idjane �

dog flee john =
�
person + idjohn �

cat cause fred =
�
person + idfred �

mouse stroke spot =
�
dog + idspot �

lick fido =
�
dog + idfido �

biteagt biteobj rover =
�
dog + idrover �

fleeagt fleefrom felix =
�
cat + idfelix �

causeantc causecnsq mort =
�
mouse + idmort �

strokeagt strokeobj

lickagt lickobj

Table 6.5: Base vectors and token vectors. All base and id vectors a randomly chosen with
elements independently distributed as N(0, 1/n).

P: Spot bit Jane, causing Jane to flee from Spot.
Aspects of similarity Dot-products

Episodes in long-term memory: OA FOR HOR RFB HOS OLI Type Avg Sd
E1: Fido bit John, causing John to flee from Fido.

� � � � � �
LS 0.70 0.016

E2: Fred bit Rover, causing Rover to flee from Fred.
� � � � � �

ANcm 0.47 0.022
E3: Felix bit Mort, causing Mort to flee from Felix.

� � � � � �
AN1 0.39 0.024

E4: Mort bit Felix, causing Felix to flee from Mort.
� � � � � �

AN2 0.39 0.024
E5: Rover bit Fred, causing Rover to flee from Fred.

� � � 1
2
� �

SS � I 0.58 0.019
E6: John fled from Fido, causing Fido to bite John.

� � � � � �
SS � H 0.47 0.018

E7: Mort bit Felix, causing Mort to flee from Felix.
� � � � � �

FA � I 0.39 0.024
E8: Mort fled from Felix, causing Felix to bite Mort.

� � � � � �
FA � H 0.28 0.025

E9: Fido bit John, John fled from Fido.
� � � � � �

SS � H 0.43 0.019
E10: Fred stroked Rover, causing Rover to lick Fred.

� � � � � �
OO1 0.25 0.024

E11: Fred stroked Rover, Rover licked Fred.
� � � � � �

OO2 0.12 0.023

Table 6.6: Results from Experiment 1. The averages and standard deviations are for
dot-products of the probe with each episode in memory, over 100 runs. The aspects of
similarity required for analogy are first-order relation names (FOR), higher-order relation
names (HOR), higher-order structure (HOS), and object-level isomorphism (OLI).

HRR dot-products of the probe and each episode are shown in Table 6.6. In 94 out of 100
runs, the ranking of the HRR dot-products was consistent with the following order (where
the ordering within the parenthesis varies):

LS > SS � I > (ANcm, SS � H) > (FA � I, AN1, AN2, SS � H) > (FA � H, OO1) > OO2

This is also consistent with the order of the average dot-products. The order violations in
individual runs are due to noise in the dot-products.5 The variance of the noise decreases
as the vector dimension increases. When the experiment was rerun with vector dimension
4096 there was only one violation of this order out of 100 runs.

These results illustrate two important properties of the HRR dot-product estimate of
similarity. The first is that the HRR dot-product is more sensitive to structural similarity

5In each run of an experiment each dot-product has a fixed value, but the values are different with different
choices of base vectors.
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when the objects involved are similar. The second is that the HRR dot-product is very
sensitive to having similar roles filled by similar entities.

6.4.2 Conditions for structural similarity to affect the HRR dot-product

The HRR dot-product (as in Experiment 1) will give a high score to an analogous pair of
episodes if two conditions are satisfied:

1. The corresponding pairs of objects are similar, i.e., they are of the same or similar
types.

2. The objects within each episode are of distinct types.

The episodes E1 (LS), E5 (SS � I) and E6 (SS � H) satisfy these two conditions with respect
to the probe P, and the HRR dot-product ranks them correctly. Each of these episodes
involves one dog and one person, as does the probe. The literally similar episode E1,
which is analogous to the probe, receives a higher score than the two superficially similar
episodes E5 and E6.

The requirement for corresponding pairs of objects to be similar is illustrated by the
low score given to the cross-mapped analogy E2. Even though this episode is structurally
isomorphic to the probe it does not score higher than the two superficially similar episodes
E5 (SS � I) and E6 (SS � H).

The requirement of object attribute similarity for the detection of structural similarity
is illustrated by the relative scores of E3 (AN1) and E7 (FA � I). These two episodes do not
share object attributes with the probe, and receive approximately equal scores despite their
different degrees of structural similarity.

6.4.3 Why the HRR dot-product reflects structural similarity

The HRR for an episode can be expanded to a weighted sum of convolution products. This
is illustrated for the probe in Figure 6.2. These convolution products contain one or more
entities and correspond to the binding chains (hierarchical role-filler paths) in the episode.
The weights come from normalizations performed during the construction of the HRR (and
any relative component weights used). The binding chains provide a way of expressing
structural features of an episode as superficial features of the HRR vector. Consideration
of the binding chains shows both why the HRR dot-product reflects structural similarity
under some conditions and why it is an unreliable indicator when those conditions are not
satisfied. Two binding chains (convolution products) are similar if the entities in them are
similar. Consequently, the HRRs for two episodes are similar if they have similar binding
chains. Two episodes that are structurally similar and have similar fillers in similar roles
will have similar binding chains. However, structurally similar episodes that do not have
similar fillers in similar roles will not have similar binding chains (e.g., cross-mapped
analogies). And episodes that have many similar fillers in similar roles but are structurally
dissimilar may still have many similar binding chains (e.g., superficially similar episodes).

The vectors and binding chains which cause sensitivity to the six aspects of similarity
are as follows:

OA (Object Attributes): Fillers in the top-level relation (e.g., Pobjects in P).
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fleeagt fleefrombiteagt biteobj

causeantc causecnsqcause

bite flee

spotjanejanespot

Figure 6.2: The HRR for the probe is the weighted sum of binding chains. Binding chains
are the vertically connected dots. Weights are not shown. For example, the rightmost
binding chain is causecnsq � fleefrom � spot. Many roles and fillers participate in more than
one binding chain.

FOR (First-order relation names): Relation names in the lower-level relations, and those
relations in the top-level relation (e.g., bite in Pbite and flee in Pflee, and Pbite and Pflee in
P).

HOR (Higher-order relation names): Relation names in the higher-level relations (e.g.,
cause in P).

RFB (Role-filler bindings): First-order role-filler bindings, and those relations in the top-
level relation (e.g., bindings in Pbite and Pflee, and Pbite and Pflee in P).

HOS (Higher-order structure): Relation names in lower-level relations, and the role-filler
bindings those relations participate in (e.g., bite in Pbite and flee in Pflee, and the
bindings causeantc � Pbite and causecnsq � Pflee in P).

OLI (Object-level isomorphism): HRRs are not directly sensitive to this, though, in many
situations OLI is correlated with role-filler binding similarity (RFB).

SME constrains corresponding higher-order relations to be identical. If this is a valid
constraint, or even if just a high degree of similarity is required, then the detection of higher-
order relational similarity is simpler than the detection of object-level isomorphism. Under
this definition, higher-order relational structure is expressed as a superficial feature in a
HRR vector – increasing structural similarity (while keeping the degree surface of surface
similarity constant) will always increase the HRR dot-product. However, the object-level
filler structure is not expressed as a superficial feature in the HRR vector – two episodes
may have completely isomorphic object-level filler structure and low HRR dot-product
similarity.

Compared to the similarity measures embodied in SME and ARCS, HRR dot-products
are especially sensitive to the presence of similar role-filler bindings. In HRRs, binding
similarity is the only mechanism by which structural similarity is detected. SME and
ARCS use different (more rigorous) methods to detect structural isomorphism, and are
more relaxed about binding similarity. However, they do take the similarity of mapped
entities into account, and this is closely related to role-filler binding similarity. SME insists
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that mapped relations should be identical (in name), but does not take account of the
similarity of mapped objects unless it is operating in “Literal similarity” mode. ARCS has
the soft constraint that all mapped entities, objects and relation names, should be similar.

A set of binding chains is not an unambiguous description of a structure – there are
distinct structures that have identical sets of binding chains. The simplest examples of this
are episodes with two instances of the same predicate, and no higher-order predicates. For
example “Spot bit Jane, Fido bit Fred” has the same set of binding chains as “Spot bit Fred,
Fido bit Jane”.6 If this turns out to be a problem, one could include filler-filler bindings
(i.e., spot � jane for “Spot bit Jane”) in order to better indicate which fillers belong to the
same relation. The associativity and commutativity of convolution is another potential
source of ambiguity. These properties result in the convolution product representation for
binding chains being order-insensitive. This means that some binding chains arising from
nested predicates are the same regardless of the nesting order of the predicates. If this turns
out to be a serious problem, there are non-commutative versions of convolution which can
be used (Section 3.6.7).

6.4.4 HRRs and multiple occurrences of objects

HRRs do not encode multiple occurrences of a single object as an explicit feature. Each
occurrence is treated as a separate object – no links are made among multiple occurrences.
This has several consequences for the HRR dot-product as a measure of analogical simi-
larity. One is that HRRs are insensitive to object-level isomorphism (OLI) in the absence
of object attribute similarity (OA). Another is that lack of object-level isomorphism is not
detected if there are multiple objects of the same type. The HRR dot-product of the probe P
and an episode will be high as long as the episode involves a dog biting a person, causing
a person to run away from a dog. It does not matter whether the first person is the same
as the second person, or the first dog the same as the second. For example, “Fido bit
John, causing Fred to run away from Rover” would score just as highly as E1. HRRs dot-
products are only sensitive to object-level isomorphism (OLI) through virtue of sensitivity
to the presence of similar role-filler bindings (RFB). In Section 6.5, I describe how links can
be made among the multiple occurrences of an object.

6.4.5 Weighting different aspects of the HRR

If certain aspects of the structures should have more influence than others on the HRR
similarity scores, then these aspects can be given a higher relative weight in the HRR. For
example, if it were desired that objects should have a very large influence on HRR similarity
scores, the component Pobjects could be scaled up before adding it to the other components of
P. Changes in weighting only need to be done in one HRR of the comparison to produce an
effect. This is computationally convenient – it means that the salience of different aspects
of similarity can be changed by just reweighting components of the probe.

A version of Experiment 1 with Pobjects given higher weight:

P � =
�
cause + 5Pobjects + Pbite + Pflee + causeantc � Pbite + causecnsq � Pflee � .

6If chunks for “Spot bit Jane” and “Fido bit Fred” are stored separately, these episodes can still be correctly
decoded.
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The HRR dot-product scores for this weighted version of the probe with the unweighted
HRRs for each episode satisfied the following order, with one violation out of 100:

LS > (SS � I, SS � H, SS � H, ANcm) > (OO1, OO2) > (AN1, AN2, FA � I) > FA � H)

In this ranking the episodes which share object attributes with the probe score higher than
those which do not.

In the HRRs described in this chapter, some relative weighting is accomplished by the
normalizations. The components Pbite, Pflee, and Pobjects are all normalized (by a factor of
approximately 1/ � 3, 1/ � 3, and 1/ � 2 respectively) so that they have equal weight in the
final HRR. Thus the predicate names bite and flee have less weight in P than cause.

6.4.6 Covariance of HRR dot-products

If two episodes in memory are similar, their dot-products with the probe will tend to
be correlated. This makes ordering of similarity more reliable than might be deduced
by looking at the sample variances (shown in Table 6.6). For example, the difference
between P � E1 and P � E6 (in each run) has an average value of 0.22 and a sample standard
deviation of 0.017. If these two dot-products were uncorrelated the standard deviation of
the difference would be around 0.024 (from summing the variances of P � E1 and P � E6).
The correlation coefficient between P � E1 and P � E6 was 0.46 (which is significant beyond
0.2%). The correlation comes from common terms in the expansion of the dot-product, e.g.,
both E1 and E6 have cause +

�
john + fido � as a component, thus (cause +

�
john + fido � ) �

(cause +
�
john + fido � ) contributes to both P � E1 and P � E6. This effect is much larger when

base vectors and chunks are not normalized, but are chosen to have an expected length of
one. The effect is larger because individual vectors contribute correlated values (e.g., cause �
cause) to the final dot-products, whereas when all entities are normalized these contributed
values are constant (because cause � cause = 1). An experiment without normalization
yielded a correlation coefficient of 0.75 for P � E1 and P � E6. Standard deviations of these
dot-products (and differences) were 50 to 150% higher than with normalization.

6.4.7 Properties of the HRR dot-product as a measure of similarity

Under certain conditions the HRR dot-product provides a good indication of overall simi-
larity. However, it has two weaknesses:

1. It overestimates when structural similarity is low and there are many similar role-filler
bindings.

2. It underestimates when structural similarity is high and there are few similar role-
filler bindings.

These weaknesses are in part due to HRRs not encoding the multiple occurrence of a
single entity as an explicit surface feature. The occurrence of a single entity in a multiple
roles is what makes structural alignment difficult. If each entity occurs only once then
the combinatoric complexity of the problem is much lower, and the problem is one of tree
matching rather than graph matching.

This reliance on the presence of similar role-filler bindings as an indicator of struc-
tural similarity is the underlying reason for the failure of the HRR dot-product to detect
structural similarity when corresponding fillers are not similar. The next section presents
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an enhancement of HRRs intended to address this problem. This enhancement involves
special treatment for objects which fill multiple roles and improves performance on cross-
mapped analogies and on analogies without similar objects

6.5 Contextualized HRRs

Dot-product comparisons of HRRs are not sensitive to object-level isomorphism, especially
in the absence of similarity among objects. This is because the way in which objects fill
multiple roles is not expressed as a surface feature in HRRs. Consequently, the analogical
episodes E2 (ANcm), E3 (AN1), and E4 (AN2) are given lower scores than the superficially
similar episode E5 (SS � I).

We can force role structure to become a surface feature (and thus allow the degree
of role alignment to influence the dot-product comparison) by “contextualizing” the rep-
resentations of fillers. Contextualization involves incorporating information about what
other roles an object fills in the representation of a filler. This is like thinking of Spot (in
the probe) as an entity which bites (a biter) and an entity which is fled from (a “fledfrom”).
Contextualization can be implemented in HRRs by blending the representation for Spot
with a representation for the typical fillers of the other roles Spot fills.

One way to represent a typical bite agent filler (a biter) is:

bitetypagt = bite � bite
�

agt,

where bite
�

agt is the approximate inverse of biteagt. This representation for bitetypagt is
attractive because it is a component of the result of decoding the agent of any “bite”
predicate. The agent of a predicate is decoded by convolving with the approximate inverse
of the appropriate agent vector as follows:

(bite + biteagt � spot + biteobj � jane) � bite
�

agt
� spot + bite � bite

�

agt + biteobj � jane � bite
�

agt

The underlined term is always present when an agent is extracted from a bite predicate,
but would usually be treated as noise. The attractiveness of this representation for typical
fillers is in its potential for developing representations of entities that contain information
about the types of roles and relationships the entity is commonly involved in. If the long-
term memory representation for Spot is somewhat malleable, and if Spot is decoded as the
agent in many bite predicates, then the representation for Spot might over time incorporate
this component which represents a typical biter. However, the implementation of this is
outside the scope of this thesis.

In ordinary HRRs the filler alone is convolved with the role. In contextualized HRRs
a blend of the filler and its context is convolved with the role. The representation for
the context of object in a role is the typical fillers of the other roles the object fills. The
context for Spot in the flee relation is represented by bitetypagt and the context in the bite
relation is represented by fleetypfrom. The degree of contextualization is governed by the
mixing proportion �

o (object) and �

c (context). The contextualized HRR for the probe is
constructed as follows:

Pbite =
�
bite + biteagt � ( �

ospot + �

cfleetypfrom)
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+ biteobj � ( �

ojane + �

cfleetypagt) �
Pflee =

�
flee + fleeagt � ( �

ojane + �

cbitetypobj)

+ fleefrom � ( �

ospot + �

cbitetypagt) �
Pobjects =

�
jane + spot �

Pprobe =
�
cause + Pobjects + Pbite + Pflee + causeantc � Pbite + causecnsq � Pflee �

The degree of contextualization controls the degree to which the pattern of fillers is
expressed as a surface feature, and hence the controls the degree to which role alignment
influences the dot-product.

6.5.1 Flexible salience of object-level isomorphism

Human judgements of similarity are very flexible – the salience of different aspects of
similarity can be changed by context or command. The degree to which role alignment
affects the HRR dot-product can be adjusted by changing the degree of contextualization
in just one episode of a pair. Hence, the items in memory can be encoded with a fixed �

values ( � m
o and � m

c ) and the salience of role alignment can be changed by altering the degree
of contextualization in the probe ( � p

o and � p
c). This is fortunate as it would be impractical to

recode all items in memory in order to alter the salience of role alignment in a particular
comparison.

6.6 Estimating similarity by dot-products of contextualized HRRs

Two experiments were performed with contextualized HRRs, with the same episodes as
used in Experiment 1. In Experiment 2 the probe was non-contextualized ( � p

o = 1, � p
c = 0),

and in Experiment 3 contextualization was used ( � p
o = 1/ � 2, � p

c = 1/ � 2). The episodes in
memory were encoded with the same degree of contextualization ( � m

o = 1/ � 2, � m
c = 1/ � 2)

for both experiments. As before, each set of comparisons was run 100 times, and the vector
dimension was 2048. The results are listed in Table 6.7. Only the means of the dot-products
are shown – the standard deviations were very similar to those in Experiment 1.

6.6.1 Experiments 2 and 3

The dot-products in Experiment 2 were consistent (in 95 out of 100 runs) with the same
order as given for Experiment 1:

LS > SS � I > (ANcm, SS � H) > (FA � I, AN1, AN2, SS � H) > (FA � H, OO1) > OO2

The dot-products in Experiment 3 were consistent (in all 100 runs) with an ordering
which ranks analogical episodes as strictly more similar than non-analogical ones:

LS > ANcm > (AN2, AN1) > (SS � I, SS � H, SS � H) > (FA � I, FA � H) > OO1 > OO2

6.6.2 Discussion of results

When there is no contextualization in probe ( � p
o = 1, � p

c = 0) the ordering of dot-products is
the same as for Experiment 1. With contextualization, the analogous episodes E2 (ANcm),
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P: Spot bit Jane, causing Jane to flee from Spot.
Aspects of similarity Avg. dot-prods

Episodes in long-term memory: OA FOR HOR RFB HOS OLI Type Expt2 Expt3
E1: Fido bit John, causing John to flee from Fido.

� � � � � �
LS 0.63 0.81

E2: Fred bit Rover, causing Rover to flee from Fred.
� � � � � �

ANcm 0.47 0.69
E3: Felix bit Mort, causing Mort to flee from Felix.

� � � � � �
AN1 0.39 0.61

E4: Mort bit Felix, causing Felix to flee from Mort.
� � � � � �

AN2 0.39 0.61
E5: Rover bit Fred, causing Rover to flee from Fred.

� � � 1
2
� �

SS � I 0.55 0.53
E6: John fled from Fido, causing Fido to bite John.

� � � � � �
SS � H 0.44 0.53

E7: Mort bit Felix, causing Mort to flee from Felix.
� � � � � �

FA � I 0.39 0.39
E8: Mort fled from Felix, causing Felix to bite Mort.

� � � � � �
FA � H 0.27 0.39

E9: Fido bit John, John fled from Fido.
� � � � � �

SS � H 0.38 0.51
E10: Fred stroked Rover, causing Rover to lick Fred.

� � � � � �
OO1 0.25 0.25

E11: Fred stroked Rover, Rover licked Fred.
� � � � � �

OO2 0.12 0.12

Table 6.7: Results from Experiments 2 and 3. Average dot-products of non-contextualized
probe (Experiment 2) and contextualized probe (Experiment 3) with contextualized
episodes in memory.

jane

biteobj fleefrom

fleetypfrom

cause

bitetypagtspot

fleeagtflee

jane bitetypobjfleetypagt spot

bite biteagt

causeantc causecnsq

Figure 6.3: The binding chains in the contextualized HRR for the probe. Compare with
Figure 6.2. The incorporation of context almost doubles the number of binding chains.

E3 (AN1), and E4 (AN2) receive a higher score than the superficially similar episode E5
(SS � I).

The example here shows the use of contextualization for objects, but it can also be used
for relations. The example is not complex enough to have a relation appearing in multiple
roles. For example, if “Jane fled from Spot” filled a role in another relation in addition to
filling the cause antecedent role, then causetypcnsq would be the context used in that other
relation.

6.6.3 Extra binding chains introduced by contextualization

Contextualization nearly doubles the number of binding chains in the HRR for an episode
(and would increase their number more if some entities were involved in more than two
relations). Figure 6.3 shows the binding chains in the contextualized HRR for the probe.
The extra binding chains encode the patterns in which objects fill multiple roles.
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6.6.4 Limits of contextualization

Contextualization does not cause all relational structure to be expressed as surface features
in the HRR vector. It only suffices to distinguish analogical from non-analogical structures
when no two entities fill the same set of roles. Sometimes, the distinguishing context for
an object is more than the other roles that the object fills. Consider the situation where two
boys are bitten by two dogs, and each flees from the dog which did not bite him. With
contextualization as described above it is impossible to distinguish this from the situation
where each boy flees from the dog that did bite him. The point is that the structural context
required to distinguish objects is more than the set of roles the objects fill. This example
with two boys and two dogs can be written as follows (where p is the bite relation and q is
the flee relation):

S1 = p(x, y), p(w, z), q(z, x), q(y, w)

S2 = p(a, b), p(c, d), q(d, a), q(b, c)

S3 = p(a, b), p(c, d), q(b, a), q(d, c)

S2 is analogous to S1, but S3 is not. However, if objects are ignored, they all have the
same contextualized representation (where tfq1 is the typical filler of the first role of q etc):

p(tfq2 , tfq1 ), p(tfq2 , tfq1 ), q(tfp2 , tfp1), q(tfp2 , tfp1)

One could try to get around these limits on contextualization by incorporating more
information into filler contexts, but the scheme quickly loses its simplicity. Problems with
circular definitions arise – if other fillers are taken into account then the contextualized
representation of x in p(x, y) involves the contextualized representation of y, which involves
the contextualized representation of x. The solution probably lies in performing deeper
contextualization only where necessary, for example, contextualizing John as “the person
who fled from the dog which didn’t bite him”.

What is important is whether these limitations of contextualization ever manifest them-
selves in practical problems. Contextualization is more powerful than it appears at first
sight – it fails only when there is a high degree of symmetry within as well as between
episodes.

6.7 Interpretations of an analogy

To accurately evaluate the goodness of an analogy, or to use an analogy to help with
reasoning, we need to work out which entities correspond to each other. The dot-product
of HRRs does not provide this. However, corresponding entities can be easily computed
from HRRs, by decoding the appropriate roles and fillers using the same techniques as
described in Section 3.10.3.

Consider the probe P “Spot bit Jane, causing Jane to flee from Spot”, and E1 “Fido bit
John, causing John to flee from Fido.” The entity corresponding to Jane (i.e., John) can be
found in two steps:

1. Extract the roles Jane fills from the probe with the operation:
�
P � jane

� � The roles
which have positive dot-products with this result are:
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�
E1 � (P � jane

�

)
� � john 0.37

�

fido 0.05�
E2 � (P � jane

�

)
� � fred 0.25 �

rover 0.10�
E3 � (P � jane

�

)
� � mort 0.14

�

felix 0.02�
E4 � (P � jane

�

)
� � felix 0.12

�

mort 0.07�
E5 � (P � jane

�

)
� � fred 0.26

�

rover 0.08

�
E1 � R

� � john 0.22
�

fido 0.11�
E2 � R

� � rover 0.25
�

fred 0.08�
E3 � R

� � mort 0.24
�

felix 0.10�
E4 � R

� � felix 0.25
�

mort 0.10�
E5 � R

� � fred 0.21
�

rover 0.17
(a) (b)

Table 6.8: Interpretation of an analogy: extraction of entities from other episodes which
correspond to Jane in P. (a) shows results without intermediate clean-up. (b) shows the
results using intermediate role clean-up (R is specified in the text). Correct extractions are
checkmarked. Intermediate role clean-up is necessary to correctly extract the correspond-
ing entity from E2 (ANcm).

�
P � jane

� � fleeagt 0.17
causeantc 0.16
biteagt 0.13
causecnsq 0.10
strokeagt 0.01

2. Extract the fillers of those roles from E1 and compare (dot-product) with the entities
in E1:

�
E1 � (P � jane

�

)
� � john 0.37

fido 0.05

The most similar entity is John, which is the entity in E1 corresponding to Jane.

The extraction of the entities corresponding to Jane in E1 � E5 is shown in Table 6.8(a).
The correct answer is obtained in E1 (LS), where corresponding objects are similar, and in
E3 (AN1) and E4 (AN2), where there is no object similarity. This extraction process has
a bias towards choosing similar entities as the corresponding ones. There is no correct
answer for E5 (SS � I), because there is no consistent mapping between P and E5. However,
Fred, (the entity more similar to Jane) is strongly indicated to be the one corresponding to
Jane. The wrong answer is given for the cross-mapped analogy E2, where again the more
similar object is indicated to be the corresponding one.

Closer examination of the extraction process reveals both the reason for this bias and a
way of eliminating it. Consider the expansion of P � jane

�

(omitting weighting factors):

P � jane
�

= . . . + biteobj + . . . + fleeagt + . . . + cause � jane
�

+ . . .

The terms biteobj and fleeagt are what we want – they come from biteobj � jane � jane
�

and
fleeagt � jane � jane

�

). However, the other terms like cause � jane
�

are the source of the
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bias. The approximate inverse7 of P � jane
�

is:

(P � jane
�

)
�

= . . . + bite
�

obj + . . . + flee
�

agt + . . . + cause
� � jane + . . .

When this is used to extract the fillers from E2,

(P � jane
�

)
� � E2,

the result includes fido from biteobj � fido � bite
�

obj and fleeagt � fido � flee
�

agt. The result
also includes a large component of jane from the many terms like cause � cause

� � jane.
The jane component is much larger than the fido component, and as jane is similar to fred
the result ends up being more similar to fred than fido.

This bias can be eliminated by performing a special intermediate clean-up on the roles
extracted by the operation P � jane

�

. This more complex clean-up should pass all positive
role components and suppress negative role and non-role components like cause � jane

�

.
For example, the cleaned-up version of P � jane

�

should be:

R = (0.17 � fleeagt + 0.15 � biteobj + 0.13 � causeantc + 0.10 � causecnsq + 0.01 � strokeagt),

where the weights come from the dot-products of P � jane
�

and the roles (listed in step 1 at
the beginning of this section). This clean-up can be viewed as a less competitive version of
the standard clean-up. The corresponding objects extracted using role clean-up are shown
in Table 6.8(b). The process gives the correct answers for all four episodes where there
is a consistent mapping, and gives an ambiguous answer for the episode which has no
consistent mapping with the probe. The process is not sensitive to the weights used in the
clean-up – similar answers are obtained if the roles are added together without weights (as
long as just those roles which have a positive dot-product with P � jane

�

are used), i.e,

R = (fleeagt + biteobj + causeantc + causecnsq + strokeagt).

There are two problems with these techniques for deriving interpretations. One is that
each pair in the mapping is extracted independently. This matters when there is more than
one consistent mapping. For example, if we have two possible mappings

�
X � A, Y � B �

and
�
X � B, Y � A � , then the choice of mapping for X should constrain the choice for

Y. Another problem is that these techniques are unsatisfactory when two different objects
have the same set of roles – ambiguous results can be produced.

6.8 Discussion

6.8.1 The criteria for good analogies in SME and ARCS

The criteria for good analogies in SME and ARCS are very similar and are listed in
Table 6.9. SME and ARCS are intended to model analogical reasoning in people, so these
criteria come from observations, experiments, and theories about how people judge and
reason with analogies.

The degrees to which dot-products of ordinary and contextualized HRRs can be seen
as implementing the criteria in Table 6.9 are as follows:

7The approximate inverse obeys the axioms (a + b) � = a � + b � and (a � b � ) � = a �
� b.
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SME ARCS
Clarity: it is clear which objects in the

two situations correspond to each
other.

Richness: analogies with more
correspondences are better.

Abstractness: correspondences among
abstract entities are better:

� Attributes (one-place predicates) are
not mapped (unless operating in
literal similarity mode).

� Higher-order relations are more
important.

Systematicity: consistent mappings are
required. This involves:

� Presence of only one-to-one
mappings.

� Structural consistency – a relation
can only be in a mapping only if its
arguments are consistently mapped
as well.

Semantic Similarity: Mapped elements
should be similar.

Isomorphism: Consistent mappings are
required:

� Mappings should be one-to-one.
� Structural consistency – if a relation

is mapped, then its arguments
should be mapped consistently as
well.

Pragmatic centrality: Either a
particular correspondence holds or a
particular element is involved in
some correspondence.

Table 6.9: Criteria for good analogies in SME and ARCS.

Clarity: No. However, an indication of clarity can be obtained by computing correspond-
ing objects and seeing how clear the choices are.

Richness: Yes. More similar components means a higher dot-product.

Abstractness: Not with ordinary HRRs, to some degree with contextualized HRRs. Having
similar attributes on corresponding objects does contribute to dot-product similarity,
but can be made less important by using contextualization. Higher-order relations
can be given more importance by using them larger weights for them.

Semantic similarity: Yes. Semantic similarity between corresponding entities increases
the HRR dot-product. (This is the opposite of abstractness.)

Systematicity (isomorphism):

� Structural consistency: To some degree. Two instances of a higher-order relation
will be more similar if their arguments are similar.

� One-to-one mappings: Not with ordinary HRRs, to some extent with contextu-
alized HRRs.

Pragmatic centrality: No. However, if it were important that a particular object or relation
be matched, it could be given a higher weight.
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6.8.2 Flexibility of comparisons

Gentner and Markman [1993] and Goldstone, Medin and Gentner [1991] present convincing
evidence that people are flexible in how they evaluate or use analogies. People can take
different aspects of situations into account, depending on what is salient in the given
context. In the HRR model all aspects are added together but flexibility is retained –
different aspects in the representations can be weighted as appropriate. This requires only
changing the representation of the probe; the representations of items in long-term memory
can be fixed.

6.8.3 Features or predicates?

In HRRs, features and predicates have different representations. This creates the problem
of having to decide which to use. The choice can dramatically affect the similarity of
ordinary HRRs, but has a lesser effect on the similarity of contextualized HRRs.

In their commentary on the shape configuration experiments, Markman et al suggest
Items 5 and 6 demonstrate that multiple relations can be used in the same comparisons
(“small object above large object” is more similar to “small object above large object”
than “large object above small object”). In the HRR encoding I used features rather than
relations to represent the relative sizes, and this gave acceptable results. It would be
possible to encode the relative sizes as a predicate “is larger than” (with roles “larger”
and “smaller”), rather than as features of the objects. However, if this were done the dot-
product comparisons of ordinary HRRs would not produce the correct answers for Item 6,
because there would be no explicit relationship (binding) between “smaller” and “above”.
Using contextualization and a “is larger than” predicate would have a very similar effect to
using the features “large” and “small”, because contextualization would provide a “typical
larger object” feature and a “typical smaller object” feature to be added to the shape features
(circle, star, etc). This suggests that there is something right about contextualization – if it
lessens the artificial distinction between features and predicates

This issue is related to issues that arise with SME and ARCS – what should the
arity of a predicate be, and should single-place predicates (i.e., features or attributes)
match? SME and ARCS represent attributes (i.e., features) as single-place predicates,8

so one does not have to choose between representing something as an attribute or a
predicate. However, the number of arguments of a predicate must be chosen, and the
choice does have consequences. An attribute or feature like “small” can be represented
as a one- or two-place predicate, e.g., as

� 	 ��	 � � "$"�� � ���	���� or
� 	 � 	 � � "�"$����� ������� � � ���	$� �

�$"��������� ���
. The choice is important for two reasons: neither SME nor ARCS allows

matches between predicates with different numbers of arguments, and SME (in analogy
mode) does not allow matches between single-place predicates, unless they are part of some
larger structure. This is a general problem because a multi-place predicate can always be
turned into a single-place predicate by moving arguments into the predicate name, e.g., #�������������$� �#	 ������ ����� � � �� 
#� �#	 �$�� � ������	���� � ������"�"�� .

6.8.4 Inadequacy of vector dot-product models of similarity

Tversky [1977] pointed out the now-well-known reasons why human similarity judgements
cannot be modelled as a simple vector dot-product. The problems arise because there

8Though ARCS’s similarity matrix is an alternative location for representing attributes.
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cases in which people’s similarity judgements violate each of three axioms of metric spaces
(with d( � , � ) as the distance function): minimality, d(x, x) = 0; symmetry, d(x, y) = d(y, x); and
the triangle inequality, d(x, z) � d(x, y) + d(y, z).

However, these problems do not preclude the use of vector dot-products at some level
in a model of similarity. Much of the problematic data could be explained by a vector
dot-product model which allowed vectors to be transformed before computing the dot-
product. The transform would depend on the context of the comparison and possibly
on the items to be compared. It could be something as simple as an adjustment of the
weighting of various components in the vector.

6.8.5 Scaling to have more episodes in memory

In the experiments reported here, the clean-up memory held only 12 episodes. However,
many more episodes could be added without any decrease in accuracy of retrieval, provided
the new episodes were not very similar to the existing ones. Retrieval or rating errors are
most likely to occur with similar episodes; errors are extremely unlikely with non-similar
episodes because the tails of a Gaussian distribution drop off so quickly. Thus, as long as
any one episode is similar to only a small number of others, the system with n = 2048 or
n = 4096 will be able to store many thousands of episodes.

6.8.6 Chunking, scaling, and networks of HRRs

One problem with the HRR dot-product as a measure of similarity is that it does not
distinguish between a poorly matching pair of components and a well-matching but low-
weighted pair of components. A possible solution to this could be to build a spreading
activation network of chunks. Each episode would be represented by a collection of chunks,
and each object and relation, and possibly even features, would be a separate chunk. For
example, the chunks for “small-circle above large-square” could be as follows:

small, circle, smCircle, large, square, lgSquare, vertical,�
vertical + above � smCircle + below � lgSquare � , and� �

smCircle + lgSquare � +
�
vertical + above � smCircle + below � lgSquare� � .

To build a network which matched this structure against another, we would need nodes
for these chunks and those in the other structure, and we would build links between
nodes whose strength was proportional to the dot-product similarity of the corresponding
chunks. Some form of competition would be necessary to prevent all nodes going to
maximum activation. The initial activation of chunks could reflect their a priori importance
or salience. The network would be run by allowing it to settle to a stable state. The final
state of the network would show which components of the structure were similar, and the
degree-of-match between components could be easily extracted.

Another problem will probably occur when the HRR dot-product is used to estimate
the similarity of episodes with many predicates. As recognized in SME and ARCS, a
good analogy can occur when just one coherent part of one structure matches a part of
the other. Thus, for larger episodes, a linear sum of matches of structural features is
probably not a very appropriate measure of similarity. The dot-product measure does not
distinguish between a large number of medium similarity matches and a small number of
high similarity matches. Furthermore, while there is some sensitivity to the matches being
localized in a part of the structure (due to the hierarchical binding chains), this effect is
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probably not very strong. Chunking, and using a spreading activation network of chunks
is also a possible solution for this scaling problem. Large episodes would be stored as a
number of chunks in long-term memory, and the chunks belong to the same episode would
be quite similar. The probe episode would also consist of several chunks. The search for
analogies to the probe in long-term memory would now consist of several steps. In the first
step chunks that were similar to those of the probe would be retrieved. Next, chunks similar
to retrieved chunks would be retrieved, in order to pull in entire (or large parts of) episodes
from long-term memory. Next, a spreading activation network would be constructed as
described above, and activation allowed to settle. The episode with the largest amount of
activation would be considered the most similar. This process would still take structural
similarity into account because chunks would not be similar unless the structures they
came from were similar. It would also allow the weighting of various aspects (i.e., chunks)
of each structure to change during and in response to the matching process. This would
go a long way towards creating flexible connectionist model of similarity assessment like
that speculated about by Gentner and Markman [1993].

6.8.7 Comparison to RAAMs and tensor-product models

Pollack’s [1990] RAAMs are a type of backpropagation network which can learn to encode
recursive structures in a fixed-width vector. Conceivably, one could get estimates of struc-
tural similarity by comparing the reduced representations discovered by RAAMs. Pollack
shows some cluster diagrams which seem to have similar structures grouped together.
However, the strength of this effect is unclear, and I am not aware of any systematic studies
of this effect. Extrapolating from other things known about RAAMs, we could expect them
to have two disadvantages relative to HRRs as a way of getting estimates of structural
similarity:

1. RAAMs require much learning time and the generalization appears weak – there is no
guarantee that a new structure can be represented at all (without extensive training).
For example, if a RAAM were trained on episodes involving the predicates cause,
bite, and flee, it might not even be able to represent episodes involving stroke or lick,
let alone compare them to other episodes.

2. The non-linear nature of RAAMs makes it possible for similar structures to have quite
different representations, even when the structures are similar in both surface and
structural features.

On the other hand, the learning involved in RAAMs offers a potential advantage over HRRs
– RAAMs could learn to devote more representational resources to commonly encountered
structures and thus achieve better performance on them. The downside of this would be
poorer performance on rarely encountered structures.

Smolenksy’s [1990] tensor-product representations are another method for encoding
hierarchical structure in distributed representations. They have much in common with
HRRs, and it would not be difficult to use them to replicate the results in this chapter. The
main difference between the two methods is that the dimensionality of the tensor-product
representation increases exponentially with the depth of the structure, while the dimen-
sionality of HRRs remains constant. This could lead to unreasonable resource requirements
for structures with several levels of nesting. An advantage of tensor product representa-
tions is that they tend to be less noisy than HRRs in decoding, and would probably also
give less noisy similarity estimates.
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Structural Object Attribute Similarity
Similarity YES NO

YES (LS) High (AN) Low
NO (SS) Med (FA) Low

Structural Object Attribute Similarity
Similarity YES NO

YES (LS) High (AN)
�
Med-High

NO (SS)
�
Med-Low (FA) Low

(a) Ordinary-HRR dot-products. (b) Contextualized-HRR dot-product.

Table 6.10: Approximate scores from ordinary and contextualized HRR dot-product com-
parisons. The flexibility comes adjusting the weights of various components in the probe.

The results here would be difficult to replicate with Halford et al’s [to appear] represen-
tation for relations (Section 2.4.3). Their representation for a relation is the tensor product
of its arguments and name. For example, the relation

�����#�������� � � ���������
would be repre-

sented as bite � spot � jane. One problem with this representation is that relations with
just one dissimilar argument are dissimilar, where dissimilar means zero similarity. For
example, bite � spot � jane is dissimilar to bite � spot � fido (assuming jane and fido are
dissimilar). Another problem is that it is not clear how to represent episodes with multiple
or nested predicates. Halford et al do mention chunking, but do not give any details how
it might be done. On the other hand, the computations Halford et al perform are easy to
do with a role-filler binding representation (using either tensor products or convolution),
provided that relations are stored in a content-addressable item memory i.e., a clean-up
memory.

6.9 Conclusion

While it would be overstating the importance of this work to describe it as a watershed
for connectionist modelling, it does adds further evidence that complex structure and
structural alignment is not the Waterloo for connectionist techniques.

The dot-product of HRRs provides a fast estimate of the degree of analogical similarity
and is sensitive to various structural aspects of the match. It is not intended to be a model
of complex or creative analogy making, but it could be a useful first stage in a model of
analogical reminding. The HRR dot-product is only an estimate of analogical similarity for
two reasons: its actual value is noisy, although the noise decreases with increasing vector
dimension, and its expected value is an imperfect measure of analogical similarity.

The dot-product of ordinary HRRs is sensitive to some aspects of analogical similarity.
It improves on the existing fast similarity matcher in MAC/FAC in that it discriminates
the first column of Table 6.4(a) – it ranks literally similar (LS) episodes higher than super-
ficially similar (SS) episodes. However, it is insensitive to object-level isomorphism when
corresponding objects are not similar. Consequently, it ranks both analogies (AN) and false
analogies (FA) lower than superficially similar (SS) episodes. The approximate values of
the estimates it gives are shown in Table 6.10(a) – compare these with Table 6.4(a).

The dot-product of contextualized HRRs is sensitive to more aspects of structural sim-
ilarity. In particular, it is sensitive to object-level isomorphism even when corresponding
objects are not similar. It ranks the given examples in the same order as would SME or
ARCS. The approximate values of its estimates are shown in Table 6.10(b) – these are the
same as the SME and ARCS scores in Table 6.4(b).
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HRR dot-products are flexible – the salience of various aspects of similarity can be
adjusted by changing the weighting of various components in the probe. This is true for
both ordinary and contextualized HRRs.

This technique will scale well with the number of episodes in long-term memory for
the same reason that convolution and superposition memories scale well with the number
of items in clean-up memory (Appendices B and D) – a high-dimensional distributed
representation allows exponentially many different patterns.

This work does to some extent contradict Gentner and Markman’s [1993] implicit claim
that performing structural alignment is a prerequisite to judging analogical similarity. No
explicit structural alignment is performed when computing the HRR dot-product similarity
estimate, yet the estimate is sensitive to the degree of structural alignment.

The HRR dot-product is not without its drawbacks. First, it is an imperfect measure
of similarity, and there are examples where the expected values of HRR dot-products will
result in rankings different from SME or ARCS. Second, high-dimensional vectors are
required to reduce the noise in estimates to acceptable levels. Computing the dot-products
of high-dimensional vectors can still require a significant amount of computation (though
I suggest ways to reduce this in Section 3.7). Third, I do not expect the scaling with the
number of predicates in an episode to be particularly good – the sum of structural-feature
matches becomes a less appropriate measure of similarity as the episodes get larger. A
possible solution to this problem is to construct a spreading activation network of HRRs in
which each episode is represented as a number of chunks.



Chapter 7

Discussion

In this chapter I briefly discuss several issues which I have not had the opportunity to
deal with elsewhere in the thesis: how HRRs can be transformed without decomposition;
conflicts between HRRs and some psychological notions of chunks; how other vector-space
multiplication operations could be used instead of convolution; how a disordered variant
of convolution might be implemented in neural tissue; and weaknesses of HRRs.

7.1 Transformations without decomposition

One of the things that makes reduced representations interesting is the potential for op-
erating on them without decomposition. This could be a fast type of computation with
no obvious parallel in conventional symbol manipulation. Various authors have demon-
strated that this can be done with RAAMs and with tensor products. Pollack [1990] trained
a feedforward network to transform reduced descriptions for propositions like (LOVED
X Y) to ones for (LOVED Y X), where the reduced descriptions were found by a RAAM.
Chalmers [1990] trained a feedforward network to transform reduced descriptions for sim-
ple passive sentences to ones for active sentences, where again the reduced descriptions
were found by a RAAM. Niklasson and van Gelder [1994] trained a feedforward network
to do material conditional inference (and its reverse) on reduced descriptions found by a
RAAM. This involves transforming reduced descriptions for formulae of the form (A � B)
to ones of the form ( � A � B) (and vice-versa). Legendre, Miyata, and Smolensky [1991]
showed how tensor product representations for active sentences could be transformed
to ones for passive sentences (and vice-versa) by a pre-calculated linear transformation.
Dolan [1989] showed how multiple variables could be instantiated in parallel, again using
a pre-computed linear transformation.

It is easy to do transformations like these with HRRs. Consider Niklasson and van
Gelder’s task, which was to perform the following transformations:

p � q � ( � p � q)

( � p � q) � (p � q)

(p � (q � r)) � ( � p � (q � r))

( � p � (q � r)) � (p � (q � r)

(p � (q � r) � ( � p � (q � r))

149
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( � p � (q � r)) � (p � (q � r)

We need two relations to represent these formulas: implication and disjunction. Im-
plication has two roles, antecedent and consequent, and disjunction also has two roles,
negative (negated) and positive (these can be duplicated). I use the following HRRs to
represent ( � p � q) and (p � (q � r)):

R � p � q =
�
disj + neg � p + pos � q �

Rp � (q � r) =
�
impl + ante � p + cnsq � �

disj + pos � q + pos � r � �
To transform an implication into a disjunction, we need to do three things: change

impl to disj, change ante � x to neg � x, and change cnsq � y to pos � y. The first can be
accomplished by convolving the implication with impl

� � disj, the second by convolving
with ante

� � neg, and the third by convolving with cnsq
� � pos. In all cases, there are other

convolution products such as impl
� � disj � ante � x, but these products can be treated

as noise. These three vectors can be superimposed to give a vector which transforms
implications to disjunctions:

t1 =
�
impl

� � disj + ante
� � neg + cnsq

� � pos � .

When we convolve R � p � q with t1, we get a noisy version of Rp � q. A similar vector can be
constructed to transform disjunctions to implications:

t2 =
�
disj

� � impl + neg
� � ante + pos

� � cnsq � .

The transformation vectors t1 and t2 can be superimposed to give one vector which will
transform implications to disjunctions and disjunctions to implications:

t =
�
t1 + t2 � .

This results in more noise products, but these will not make the result unrecognizable
if the vector dimension is high enough. The strength of non-noise components in the
transformed HRR is 1/ � k times their strength in the original HRR, where k is the number
of components in the transformation vector (k = 6 for t).

I simulated the above task, checking the result by decoding its various roles. For
example, t � Rp � (q � r) should give R � p � (q � r) , which should decode as follows:

t � Rp � (q � r)
� disj

t � Rp � (q � r) � neg
� � p

t � Rp � (q � r) � pos
� � impl

t � Rp � (q � r) � pos
� � ante

� � q
t � Rp � (q � r) � pos

� � cnsq
� � r

I tried the various formulae with all possible instantiations of five different variables, which
gave 550 different formulae, and 4800 retrieval tests. For 10 runs with n = 4096, there were
an average of 1.2 retrieval errors per run (out of 4800). Five of the runs had no errors.
With lower dimensions, there were more errors. For example, with n = 2048 there were an
average of 58.5 retrieval errors per run (over 10 runs).

It turns out that the most difficult thing to do is to leave something untransformed.
This is because when we leave one thing untransformed, we must leave all the things
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superimposed with it untransformed as well. Consider what happens if we want change
all x to y, but leave other things untransformed. Then we must have a transformation
vector like this:

t = x
� � y + �I.

The identity vector is included so that the result will have an untransformed component
of the original. However, this cannot target particular bindings in the original – it applies
generally. Thus, when we apply it to a HRR like

R = x � a + z � b

we get
t � R = y � a + x � a + z � b + noise.

This problem does not arise when we transform everything, because in that case, the cross
terms are not similar to anything else we might be using. The only way to solve the
problem is to do transformations separately, and clean up intermediate results. It would
be interesting to see whether a similar difficulty arises with representations developed by
RAAMs.

One thing to note when considering transformations on structures is that result of
a transformation will be noisy, and usually can only be cleaned up by decoding and
reassembly. This is because the transformed structure will most likely be novel and thus
cannot have been stored in clean-up memory. This is different from the situation where
we decode chunked structures, and can clean up intermediate structures because they are
stored in the clean-up memory.

7.2 Chunks and the organization of long-term memory

7.2.1 The organization of long-term memory

In this thesis, I have been concerned mainly with the internal organization of memory
chunks, rather than with how long-term memory for a large set of chunks could be imple-
mented. All I have assumed about long-term (clean-up) memory is that it can keep chunks
distinct, and perform closest-match associative retrieval.

I only use superposition and convolution on the small scale, as ways of building chunks
with a high degree of internal structure. It seems that we need a third auto-associative
operation for long-term memory, if chunks are to be kept distinct. Using the same operator
for both the internal organization of chunks and the organization of long-term memory
would seem to be prone to ambiguity.

Psychological matrix-based memory models, e.g., those of Halford et al [to appear],
Humphreys et al [1989], and Pike [1984], treat long-term memory as the superposition of
chunks (which are the tensor products of their components). This type of scheme appears
to have several disadvantages relative to HRRs: chunks have limited and inflexible internal
organization; associative retrieval based on partial information is more complicated; and
chunks must have very high dimensionality if many of them are to be superimposed
and remain distinct. In any case, additional memory mechanisms may be necessary with
these models – Halford et al recognize the need to clean up the results of their analogy
computations. They only need to clean up the representations of atomic objects, but it is
hard to see how a principled distinction could be made between atomic and composite
objects in anything more complex than a toy system.
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7.2.2 The opacity of chunks

Some writers in the psychological literature, e.g., Johnson [1972], have regarded chunks
as “opaque containers”. This means that a code for chunk reveals nothing about the
contents of the chunk until it is unpacked. It implies that the similarity of codes for chunks
cannot reflect the similarity of their contents. If we regard chunks as equivalent to
reduced descriptions, this is at odds with the desideratum for reduced descriptions that
they should give information about their components without decoding, and with the idea
that distributed representations should make similarity explicit.

Murdock [1992; 1993] describes the chunks in TODAM2 as opaque, and likens a chunk
to objects in a suitcase: to find out what is inside you must open the suitcase. However,
TODAM2 chunks are better described as at most semi-opaque, because they do reveal
some of their contents without unpacking, and because the similarity of codes for chunks
does reflect the similarity of their contents.

From a computational viewpoint, opacity seems to be an undesirable property. Opac-
ity makes retrieval based on partial information about components difficult, and makes
transformation without decomposition impossible.

The opacity of chunks has some consequences for the structure of long-term memory:
if chunks are opaque, then it is more feasible to superimpose chunks in long-term memory.

7.3 Convolution, tensor products, associative operators, conjunc-
tive coding, and structure

Hinton [1981] and Hinton, McClelland, and Rumelhart [1986] originally described conjunc-
tive coding in terms of outer or tensor products. It is well known that both convolution
and the tensor product can be used as the associative operator in pairwise and higher-
order associative memories. In this thesis I have tried to show that conjunctive coding
can also be based on convolution. It is interesting to consider whether other vector-space
multiplication operations could serve as associative operators and as a basis for conjunc-
tive coding. There are two reasons to consider other operations: it widens the space of
available associative operators, and it allows us to view some existing network models in
these terms.

The properties of convolution which make it a good basis for HRRs are as follows:

1. Bilinearity – ( � a+ � b) � c = � a � c+ � b � c,1 for all vectors a, b, and c, and scalars � and
� . This makes convolution similarity-preserving – if a is similar to a � (i.e., a � = a + � b
where � is small) then a � c will be similar to a � � b.

2. Invertibility – if vector elements are independently distributed as N(0, 1/n) there is a
simple stable approximate inverse of circular convolution.2 This makes it possible to
extract components from HRRs.

3. Randomization – the expected similarity of a � b to a or b is zero (provided that the
expected similarity a (and b) with the identity vector is zero). This helps to avoid
unwanted correlations.

1Convolution is commutative, so c � ( � a +
�

b) = � c � a +
�

c � a is also true.
2An exact inverse also exists, but as explained in Section 3.6.4, it is less stable unless the vectors are

constrained to be unitary.
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4. Maps onto same space – the circular convolution of two vectors from
� n is a vector

in
� n. This allows easy representation of recursive structures.

5. Distribution preservation – if the elements of a and b are independently distributed
as N(0, 1/n), then the elements of a � b will be close to being distributed as N(0, 1/n).3

The distribution can be made closer by normalizing vectors after convolution. This
is equivalent to saying that all the eigenvalues of the operation fa(x) = a � x have
a magnitude around 1. This property is important for the usability of higher-order
associations.

6. Efficient computation – the circular convolution of n-dimensional vectors can be
computed in O(n log n) time using Fast Fourier Transforms.

7. Commutativity and associativity – convolution has both these algebraic properties.
While they make the algebra simple, they are not essential properties.

Table 7.1 lists various vector-space multiplication operations, all of which can be viewed
as compressions of a tensor product. I would expect that most of the results in this thesis

Range Domain Operations
vector � vector � matrix outer product, tensor product
matrix � vector � vector matrix-vector multiplication
matrix � matrix � matrix matrix multiplication
vector � vector � vector convolution, permuted convolution (Section 3.6.7),

random convolution (Section 7.4)

Table 7.1: Vector-space multiplication operations.

could be achieved with any of the operators from this table taking the place of convolution.
The implementation for those which expand vector dimensionality is not as elegant, but
it is still possible. To do this, it would be necessary to find distributions of vectors (or
matrices) which the operation preserved, and for which there were stable inverses.

It is possible to view Hinton’s [1981] triple memory as conjunctive code based on
matrix-vector multiplication, in which the ����
� units are a reduced representation of the
relation.

Smolensky [personal communication] observed that Pollack’s [1990] RAAMs can be
viewed as using association by matrix-vector multiplication. The fillers (input unit activa-
tions) are vectors, and the roles (the weights from input to hidden units) are matrices. The
input to the hidden units inputs is the superposition of matrix-vector products of roles and
fillers. The weights from the hidden to output units must implement the inverse operation,
and clean up output vectors as well. The non-linearities on the hidden and output units
probably help with the clean-up, but the also complicate this interpretation.

Recurrent networks can be viewed in a similar fashion, with the recurrent weights
implementing a type of trajectory-association (Chapter 5), though again the non-linearities
complicate this interpretation.

3Distributions are exactly preserved for unitary vectors.
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7.4 Implementation in neural tissue

Researchers experimenting with distributed associative memories often succumb to the
temptation to explain how their favorite associative memory scheme might be implemented
in “neural tissue”. I have no greater ability to resist than others.

Recall that the circular convolution of x and y can be viewed as a compression of the
outer product (Section 3.1). For n = 4, the circular convolution of x and y is:����

�
z0

z1

z2

z3

�����
� =

����
�

x0y0 + x1y3 + x2y2 + x3y1

x0y1 + x1y0 + x2y3 + x3y2

x0y2 + x1y1 + x2y0 + x3y3

x0y3 + x1y2 + x2y1 + x3y0

�����
�

Each zi is the sum of n xjyk terms, and each xj (and yk) appears exactly once in the sum.
Each product appears in the sum for only one zi. Decoding by correlation works (when the
xi and yi are independently distributed as N(0, 1/n)) because x #

� z � y, since

x #
� z =

����
�

(x2
0 + x2

1 + x2
2 + x2

3)y0 + . . .
(x2

0 + x2
1 + x2

2 + x2
3)y1 + . . .

(x2
0 + x2

1 + x2
2 + x2

3)y2 + . . .
(x2

0 + x2
1 + x2

2 + x2
3)y3 + . . .

�����
� = (1 +

�
)y + ��

where
�

and the � i can be regarded as zero-mean Gaussian noise (Section 3.1.2).
The specific regular nature of the outer product compression makes it possible to

perform convolution quickly via FFTs. It seems unlikely that either FFTs or this highly-
ordered compression could be happening anywhere in the brain.

It turns out that it is not necessary to compress the outer product in such a highly
ordered manner. Even if the terms in the sum for zi are randomly selected, the resulting
z vector is an association of x and y which has all the essential properties of convolution.
The decoding noise is the same as for circular convolution if (a) each xj (and yk) appears
exactly once in the sum for each zi, and (b) each product appears in the sum for only one
zi. However, these conditions do not appear to be essential – breaking them will just result
in more noise.

Consider the disordered outer product compression z = x � d y in Figure 7.1. The
expressions for the zi are as follows:����

�
z0

z1

z2

z3

�����
� =

����
�

x0y3 + x1y2 + x2y0 + x3y1

x0y2 + x1y1 + x2y3 + x3y0

x0y0 + x1y3 + x2y1 + x3y2

x0y1 + x1y0 + x2y2 + x3y3

�����
�

To reconstruct y from z (= x � d y) and x, we need to find the appropriate compression, #
�

d,
of the outer product of z and x (i.e., the analogue of correlation), so that x #

�
dz � y. Call the

elements of this vector [x #
�

dz]i. Then we want

[x #
�

dz]i = (x2
0 + x2

1 + x2
2 + x2

3)yi + . . .

where the dots are xjxkyl terms which can be treated as zero-mean Gaussian noise.
We can find this compression by selecting for [x #

�
dz]i those terms in the outer product

of x and z which contain x2
j yi. For example, we want [x #

�
dz]0 = x2z0 + x3z1 + x0z2 + x1z3. The
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z3z2z1z0

y3y2y1y0

x0

x1

x2

x3

Figure 7.1: A disordered compression of the outer product of x and y.

x2z0 term is present because x2y0 appears in z0, the x3z1 term because x3y0 appears in z1,
the x0z2 term because x0y0 appears in z2, and the x1z3 term because x1y0 appears in z3. The
whole expression for x #

�
dz is:

x #
�

dz =

����
�

x2z0 + x3z1 + x0z2 + x1z3

x3z0 + x1z1 + x2z2 + x0z3

x1z0 + x0z1 + x3z2 + x2z3

x0z0 + x2z1 + x1z2 + x3z3

�����
�

This expands to

x #
�

dz =

����
�

(x2
0 + x2

1 + x2
2 + x2

3)y0 + . . .
(x2

0 + x2
1 + x2

2 + x2
3)y1 + . . .

(x2
0 + x2

1 + x2
2 + x2

3)y2 + . . .
(x2

0 + x2
1 + x2

2 + x2
3)y3 + . . .

�����
� = (1 +

�
)y + ��

where
�

and �� i can be treated as zero mean noise, assuming the xi and yi are independently
distributed as N(0, 1/n).

Turning to the matter of neural implementation, the sum-of-products could be com-
puted by sigma-pi units. Feldman and Ballard [1982] proposed this type of unit and
suggested the sum-of-product interactions might happen in the dendritic tree. In neural
tissue, the encoding map could be fixed. The appropriate decoding map could be learned,
provided one started with sigma-pi units which had a dense sampling of zjxk products.
The learning would attenuate the contribution of inappropriate zjxk terms in [x #

�
dz]i. This

could be done by simple Hebbian learning in an auto-associative framework – it would not
require backpropagation of errors through multiple layers. A considerable amount of train-
ing would be required, since there would be n3 parameters. However, auto-associations of
random vectors would suffice for training examples, so there should be no problem getting
enough training data.

7.5 Weaknesses of HRRs

HRRs have several weaknesses as a representation for nested relations. While these are
not fatal, it is good to be aware of them.
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� Representing types and tokens as a superposition of features (Section 3.5) makes
superpositions of tokens subject to crosstalk. To a large extent, this problem can be
avoided by making sure that objects are bound to different roles. A further possible
remedy is to give tokens more internal structure, e.g., by convolving features together.

� Relations which have identical or symmetric roles (e.g., conjunction, same-as, addi-
tion) have identical role vectors. In a HRR, this has the same effect and problems as
superimposing the fillers of these roles.

� The decoding of binding chains for nested structures can be ambiguous, because of
the commutativity and associativity of convolution. This is mainly a problem when
one relation appears more than once in a HRR – e.g., the agent of the object has the
same binding chain as the object of the agent (since r1 � r2 � x = r2 � r1 � x). One
solution to this problem is to use chunking. Another is to use a non-commutative
version of convolution (Section 3.6.7).

� If there can be more than one object retrieved from clean-up memory (as happens
when there are identical role vectors and the filler is decoded), we need to set cutoff
threshold below which similarity is judged to be merely due to noise. It is possible to
analyze a particular scenario to derive an appropriate threshold, but this is probably
impractical in general.

In the literature, there are several claims about weaknesses of conjunctive codes and
HRRs which I believe are not true. Hummel and Holyoak [1992] claim that the most serious
limitation of conjunctive codes is that they lose the natural similarity structure of predicates
and objects. By this, they mean that the proposition

� � ��� 	���� �����"������ "$" � is naturally
more similar to

� � � � 	$����� "�"�� ���  "��#� than to
�
	�� �#	 ������$ � �������  � #���'��� � � ��
#��	 � � � �

������� ���	 �
. While this claim might be true for some implementations of conjunctive coding,

I showed in Chapter 6 how the natural similarity structure of predicates and objects can
be neatly captured by conjunctive coding in the form of HRRs. On the topic of how this is
achieved, there is a tension between wanting the bindings of a filler with different roles (e.g.,
bill bound to agent versus bill bound to object) to be similar (to aid with the recognition of
similarity) and wanting them to be different (to be able to tell which role the filler is bound
to). In HRRs, different components are responsible for each of these (bill for the similarity
to other predicates involving Bill, and bill � agent for the role binding), and they can be
weighted appropriately.

Smolensky, Legendre and Miyata [1992] remark that HRRs appeared to be an adequate
representation, “at least for stimuli with only a small degree of structure” (p21-22). HRRs
can in fact cope with quite a high degree of structure, both in depth and width. Without
chunking, the width of structures is limited by the vector dimension (the relationship is
linear). HRRs cope quite well with deep structures if vectors are either normalized or
constrained to be unitary. With chunking, structures of unlimited depth and width can be
stored, by breaking them up into chunks of manageable size.

7.6 Conclusion

HRRs provide a solution to the longstanding problem of how to encode nested relational
structure (i.e., compositional structure) in a fixed-width distributed representation. HRRs
can be seen as an implementation of Hinton’s reduced representations, and satisfy all the
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desiderata for reduced representations: adequacy, reduction, systematicity, and informa-
tiveness. HRRs inherit all the major advantages of distributed representations of atomic
objects: they allow explicit representation of relevant aspects, they make similarity among
composite objects explicit, they store information in a redundant fashion, they use repre-
sentational resources efficiently, and they exist in a continuous vector space. HRRs are
based on circular convolution, a bilinear associative memory operator. It is possible to
analyze from the first principles the properties of systems which use HRRs. The storage
capacity and probabilities of correct operation can be derived from the analysis.

One of the major drawbacks of convolution-based memory is the low signal-to-noise
ratio of the results of decoding. However this problem can be overcome by using HRRs
in conjunction with an auto-associative memory to clean up decoding results. Storing
HRRs and atomic objects4 in the auto-associative memory allows for a complex network of
relationships among the entities in memory.

HRRs encode nested structures in such a way that many aspects of the underlying
structure are made explicit in the surface form of the representation. This allows the
degree of structural alignment (i.e., structural similarity) between two HRRs to be estimated
by their dot-product. Thus, the use of HRRs allows the results of a exponential-time
computation (structure matching) to be estimated by a linear-time computation. This
technique has possible applications as a filter in psychological models of memory retrieval,
and in reasoning systems.

HRRs make it easy to encode structure in a distributed representation. Although I have
not investigated learning over hierarchical structures, HRRs have the potential to allow a
learning system to devote its computational resources to the truly difficult task of learning
about the relationships in the stimuli it is exposed to, rather than merely learning how to
represent the stimuli.

4Whether or not atomic, or base-level, objects are useful in sophisticated systems, or have any psychological
reality, does not really matter in this scheme.



Appendix A

Means and variances of similarities
between bindings

The means and variances of the dot-products of convolution bindings can be calculated
using the expressions in Table 3.1. For the calculation of the variance of the dot-product of
B1 and B4 from Section 3.10.5 we need the following two expressions from Table 3.1:

var[(a � b) � (a � b)] =
6n + 4

n2

var[(a � b) � (a � c)] =
2n + 2

n2

The variance of B1 � B4 is:

var[(eatagt � mark) � (eatagt � john)]

= var[(eatagt � (person + idmark)/ � 3) � (eatagt � (person + idjohn)/ � 3)]

= var[2/3eatagt � person � eatagt � person]

+ var[ � 2/3eatagt � person � eatagt � idjohn]

+ var[ � 2/3eatagt � idmark � eatagt � person]

+ var[1/3eatagt � idmark � eatagt � idjohn]

=
4
9

6n + 4
n2

+
2
9

2n + 2
n2

+
2
9

2n + 2
n2

+
1
9

2n + 2
n2

=
34n + 26

9n2

The variances of the dot-products of B1 with other bindings from Section 3.10.5 can
be calculated in a similar fashion and are shown in Table A.1. The sample means and
variances from 10, 000 trials are shown in the same table. The sample statistics agree with
the derived expressions within the margin of error. (The standard deviation of a variance
statistic for samples from a normal distribution is approximately � 2/N � 2, where N is the
number of samples. This works out to about 1.4% of the variances here.)
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Dot-product Expected Variance Variance Sample Sample
(x = mark � eatagt) value (n = 512) mean variance
x � mark � eatagt 1 (6n + 4)/(n2) 0.0117 1.0009 0.0118
x � mark � seeagt 1/2 (6xn + 5)/(2n2) 0.00586 0.5003 0.00586
x � mark � eatobj 0 (2n + 2)/(n2) 0.00391 0.0010 0.00385
x � john � eatagt 2/3 (34n + 26)/(9n2) 0.00739 0.6665 0.00749
x � john � seeagt 1/3 (73n + 50)/(36n2) 0.00397 0.3328 0.00398
x � john � eatobj 0 (13n + 8)/(9n2) 0.00283 0.0003 0.00281
x � the fish � eatagt 0 (2n + 2)/(n2) 0.00391 0.0009 0.00398
x � the fish � seeagt 0 (5n + 2)/(4n2) 0.00244 0.0004 0.00253
x � the fish � eatobj 0 n/(n2) 0.00195 0.0000 0.00192

Table A.1: Means and variances of the dot-products of the bindings. The sample statistics
are from a 10, 000 runs (i.e., different choices of base vectors) with 512-dimensional vectors.



Appendix B

The capacity of a superposition
memory

In Section 3.2.1 I discussed how the probability of correct recognition in a superposition
memory could be calculated. Knowing how to calculate this probability enables us to
calculate the capacity, i.e., how many vectors can be stored, for a given dimension and
probability of error. However, the formula for this probability involves an optimization,
and it is difficult to find an analytic form for the solution. In the first section of this
Appendix I report the results of numerical solutions of this formula. These results show
how the number of vectors stored in the trace, and the number of vectors in the clean-up
memory, scale with vector dimension. I call this a simple superposition memory because I
assume that all the vectors in the clean-up memory are independently chosen, i.e., there is
no systematic similarity among them. In Appendix C, I gave an analytic lower bound on
the capacity of a simple superposition memory.

In the second section of this Appendix I calculate the recognition probabilities and
scaling properties for superposition memory in the case where there is similarity among
the vectors in the clean-up memory.

B.1 Scaling properties of a simple superposition memory

I use the following symbols and definitions (which are the same as in Section 3.2.1):
� n, the vector dimension. “Random” vector have elements independently drawn from

N(0, 1/n).
�

�
, a set of m random vectors, a, b, c, d etc. These are the vectors stored in clean-up

memory.
� t, a memory trace which is the (unnormalized) superposition of k distinct vectors

from
�

.
� Pr(All Correct), the probability of correctly determining which vectors are and are

not stored in the memory trace.

Equation 3.2 in Section 3.2.1 gives the probability of correct recognition in a simple
superposition memory:

Pr(All Correct) = Pr(Hit)k Pr(Reject)m � k

160



161

0

200

400

600

800

1000

0 2 4 6 8 10 12 14
k (# of vectors stored in trace)

m (# of vectors in clean-up memory)
n

m = 100, 000
m = 10, 000

m = 1, 000

Figure B.1: Scaling of n with k for Pr(Error) = 0.01 with various m in a simple superposition
memory. The threshold was adjusted to maximize the capacity for each data point.

= max
t

Pr(sa > t)k Pr(sr < t)m � k

I wrote a computer program to find the threshold (t) which maximizes Pr(All Correct)
for given values of k, m, and n. I used it to find the vector dimension (n) which gives
Pr(All Correct) = 0.99 for various values of k and m. The results are plotted in Figures B.1
and B.2. The threshold was adjusted to maximize the capacity for each data point.

The scaling of k with n is slightly less than linear (Figure B.1). This scaling is due to two
factors. The linear part is due to the variances being equal to the ratio of k to n (in the limit).
This means that if k is increased by some factor, then n should be increased by the same
factor to keep the variance constant. The sublinear part is due to the exponentiation of
Pr(Hit) by k in the equation for Pr(All Correct). When the threshold is chosen to optimize
Pr(All Correct), Pr(Hit) is much smaller than 1 � Pr(False Alarm). If k increases, while the
ratio k/n is held constant, Pr(All Correct) decreases.

The scaling of m with respect to n is very good. m can increase exponentially with
n while maintaining Pr(All Correct) constant. This scaling is shown in Figure B.2. The
exponential nature of the scaling is due to the rapid drop-off of the area under the tail of
the normal distribution.

The scaling of Pr(Error) with n is also very good. The probability of error drops
exponentially with linear increase in n, as illustrated in Figure B.3.

B.1.1 Computation involved

Computing the dot-product of the trace with all the vectors in
�

may seem like an unrea-
sonable amount of computation. However, any process which does closest match retrieval
must effectively do this. If we have a particularly efficient closest match process we can
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Figure B.2: Scaling of n with m for k = 3 and Pr(Error) = 0.01 in a simple superposition
memory.
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Figure B.3: Scaling of n with Pr(Error) for k = 3 and m = 1000 in a simple superposition
memory.
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in most situations use it to quickly find all the vectors whose dot-product with the trace
exceeds some threshold. Furthermore, this is a computation which is very amenable to
implementation in parallel hardware.

B.2 A superposition memory with similarity among the vectors

When there is similarity among vectors the analysis becomes more complex, because
recognition signals will come from more than two distributions. Having similarity among
vectors is the rule rather than the exception, so it is important to know how similarity
affects the scaling properties.

Suppose than in our set
�

of m vectors there is a subset
�

p of mp vectors which are
similar to each other. Suppose the vectors in

�
p have the general form pi = � p + � di, where

p is the component the vectors in
�

p have in common, di is a random vector, and the scalars
� and � are positive weighting constants such that � 2 + � 2 = 1 (so that E[

�
pi

�
] = 1). The

expected value of the dot-product of pi and pj �
�

p is � 2. The other m � mp vectors in
�

are
randomly chosen. The expected value of the dot-product of two different vectors from

�

is zero, provided at least one them is not from
�

p .
Since the vectors in

�
p are similar, they are much more likely to be confused with

each other than with random vectors. This results in a lower capacity for a superposition
memory storing similar vectors than for a superposition memory storing random vectors.

In this analysis I consider only the situation in which all the vectors stored in the trace
are from

�
p . The reasons for this are related to the limitations of superposition memories

and will be explained later.
Suppose we have stored k distinct vectors from

�
p in the trace, so that

t =
k�

i=1

pi pi �
�

p .

The signal for probing the trace with a vector x will be distributed in one of three ways,
depending on whether x is one of the vectors stored in the trace, or is similar to the stored
vectors (i.e., x is some other element of

�
p ,) or is some other non-similar element of

�
.

Since p can be a component of both the trace and the probe, the value p � p appears in
both the accept and the reject-similar signals. This value will be a constant for constant p.
Better discrimination can be achieved if this value is taken into account when the threshold
is chosen. One way of doing this is to choose p so that p � p is exactly equal to 1, which is
what I assume in this analysis.

Let sa (the accept signal) be the signal for probing with a vector stored in the trace.
Without loss of generality, we can assume that p1 is in the trace and that the probe is equal
to vp1. Assuming that p � p = 1 (and thus var[p � p] = 0), the mean and variance of sa are:

E[sa] = E[t � p1]

= E[
k�

i=1

pi � p1]

= E[(k � p +
k�

i=1

di) � ( � p + � d1)]
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Signal E var
sa k � 2 + � 2 1

n (k(k + 3) � 2 � 2 + (k + 1) � 4)
rs k � 2 1

n (k(k + 1) � 2 � 2 + k � 4)
rd 0 1

n (k2 � 2 + k � 2)

Table B.1: Means and variances of signals for a superposition memory with similarity.

= k � 2E[p � p] + k � � E[p � d1] + � �
k�

i=1

E[di � p] + � 2E[d1 � d1] + � 2
k�

i=2

E[di � d1]

= k � 2 + 0 + 0 + � 2 + 0

= k � 2 + � 2

var[sa] = var[t � pa]

= var[(k � p +
k�

i=1

di) � ( � p + � d1)]

= k2 � 4var[p � p] + (k + 1)2 � 2 � 2var[p � d1]

+ + � 2 � 2
k�

i=2

var[di � p] + � 4var[d1 � d1] + � 4
k�

i=2

var[di � d1]

=
1
n

(0 + (k + 1)2 � 2 � 2 + (k � 1) � 2 � 2 + 2 � 4 + (k � 1) � 4

=
1
n

((k2 + 3k) � 2 � 2 + (k + 1) � 4)

There are two other signals; the reject-similar signal rs, for when the probe is from
�

p

but is not in the trace, and the reject-dissimilar signal rd, for when the probe is not from
�

p . The means and variances of the three signals are listed in Table B.1. The probability of
correctly identifying all the vectors in the trace, for a threshold t is

Pr(All Correct) = Pr(sa > t)k Pr(rs < t)mp � k Pr(rd < t)m � mp .

The distributions of sa, rs, and rd, for n = 512, m = 1000, mp = 100, � 2 = 0.5, and k = 3,
are shown in Figure B.4. For these parameter values, the optimal threshold is 1.79 and
the probability of correctly identifying all the components of t is 0.906.

The way n must vary with � to give a constant Pr(All Correct) is shown in Figure B.5.
As � gets larger the similarity between the elements of

�
p grows, and it is necessary to use

much higher dimensional vectors to discriminate them.
The scaling of n with k is shown in Figure B.6. The required dimensionality of the

vectors is proportional to k2. This is because the variances are proportional to the ratio of
k2 to n, which in turn is due to the component k � p in the trace.

B.2.1 The effect of the decision process on scaling

It is possible to design more complex decision procedures that increase the probability of
making correct decisions. This was done to some extent in the above analysis by assuming
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Figure B.4: Probability density functions for signals in an superposition memory with
similarity among vectors, with n = 512, m = 1000,
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p
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= 100, � 2 = 0.5, and k = 3.
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Figure B.5: Scaling of n with � for k = 3, m = 1000, and Pr(Error) = 0.01 in a superposition
memory with similarity.
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Figure B.6: Scaling of n with k for � 2 = 0.5, m = 1000, and Pr(Error) = 0.01 in a superposition
memory with similarity.

that p � p = 1. This has nearly the same effect as taking into account the value of p � p when
setting the threshold.

Another way to improve the decision procedure would be to take into account the value
of (a+b+c) � p when setting the threshold. For a particular trace, sa and rs have the common
term � � (a + b + c) � p. This will cause the values of sa and rs to be correlated, and their
distributions will be tighter than shown in Figure B.4 (the distributions in Figure B.4 are for
a randomly selected trace.) This will increase the probability of making correct decisions,
but the scaling of n with k will remain quadratic.

A way to more radically improve the decision procedure would be to subtract k � p from
the trace, and then probe it with the token parts of the vectors from

�
p , i.e., a rather than pa.

This would not only increase the probability of making correct decisions, but would also
make the scaling of n with k near to linear. However, it would be a far more complicated
procedure.

Another point worth noting is that a k-closest match procedure (i.e. choosing the k
members of

�
that have the highest dot-product with t) will give better results than a

procedure using threshold tests. For any particular trace it is more likely that all the accept
signals are greater than all the reject signals than that all the accept signals are greater than
some threshold and all the reject signals are less than some threshold. A problem with this
type of procedure is knowing the value of k. Unless there is some other way of knowing
how many items to accept, some type of threshold is necessary.
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B.3 Limitations of superposition memories

Superposition memories suffer badly from crosstalk when the vectors stored are similar.
This is reason that the means of sa and rs (in the previous section) are so high. The
significance of this limitation becomes clear if we consider what happens when we try
to store two vectors from

�
p (whose average similarity � 2 = 0.5) and one vector from

�
�

�
p , e.g., t = pa + pb + c. There will be two distributions of accept signals – the accept

similar (as) and the accept dissimilar signals (ad). The problem is that the accept dissimilar
signal (ad = (pa + pb + c) � c)) will have the same mean (=1.0) as the reject similar signal
(rs = (pa + pb + px) � x, px � (

�
p �

�
pa, pb � )). Thus, no single-threshold or k-closest-match

procedure will be able to discriminate the signals. A possible solution is to use a high
threshold when probing with a similar vector and a lower threshold when probing with
a dissimilar vector. However, this makes for a very complex decision process. A better
solution is to avoid the situation where vectors of high similarity are superimposed.



Appendix C

A lower bound for the capacity of
superposition memories

In this Appendix I derive a lower bound (Inequality C.8) on the number of vectors that
can be stored in a simple superposition memory, for given vector dimension, probability
of error, and total number of vectors in clean-up memory.

I use the following symbols and definitions (which are the same as in Section 3.2.1 and
Appendix B):

� n, the vector dimension. “Random” vector have elements independently drawn from
N(0, 1/n).

�
�

, a set of m random vectors, a, b, c, d etc. These are the vectors stored in clean-up
memory.

� t, a memory trace which is the (unnormalized) superposition of k distinct vectors
from

�
.

� Pr(All Correct), the probability of correctly determining which vectors are and are
not stored in the memory trace.

� q = 1 � Pr(All Correct)

� sa and sr, the accept and reject signals: sa
d= N(1, (k + 1)/n) and sr

d= N(0, k/n).

� erfc(x), the standard “error function”: erfc(x) =
2� �
���

x
e � t2

dt

� tail(x), the area under the (normalized) normal probability density function beyond
x (in one tail):

tail(x) =
1� 2 �

� �
x

e
� t2

2 dt =
1
2

erfc � x� 2 �
Equation 3.2 in Section 3.2.1 gives the probability of correct recognition in a simple

superposition memory:

Pr(All Correct) = Pr(Hit)k Pr(Reject)m � k

= max
t

Pr(sa > t)k Pr(sr < t)m � k
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I use the following inequality from Abramowitz and Stegun [1965], and a simplification
of it:

erfc(x) <
2� � e � x2 1

x +
�

x2 + 4
�

erfc(x) <
1

x � � e � x2
(C.1)

The first step in finding a lower bound for Pr(All Correct) is to use a threshold of
0.5. Pr(All Correct) must be greater than the probability of correctly discriminating the
signals using a non-optimal threshold. The second step involves several applications of
the inequality (1 �

� )k > 1 � k � (which is true for 0 � � � 1).

Pr(All Correct) = max
t

Pr(sa > t)k Pr(sr < t)m � k (C.2)

> Pr(sa > 0.5)k Pr(sr < 0.5)m � k

= (1 � Pr(sa < 0.5))k(1 � Pr(sr > 0.5))m � k

> (1 � k Pr(sa < 0.5))(1 � (m � k) Pr(sr > 0.5))

> 1 � k Pr(sa < 0.5) � (m � k) Pr(sr > 0.5) (C.3)

Now consider q, the probability of one or more errors. This can be simplified by first
using Inequality C.3 to give Inequality C.4, then next replacing smaller variances with
the maximum variance to give Inequality C.5. After that we use Inequality C.1 to give
Inequality C.6 and finally replace the square root factor by one to give Inequality C.7, since
it is safe to assume that that factor is less than 1.

q = 1 � Pr(All Correct)

< k Pr(sa < 0.5) + (m � k) Pr(sr > 0.5) (C.4)

= k tail � 1
2

�
n

k + 1 � + (m � k)tail � 1
2

�
n
k �

< k tail � 1
2

�
n

k + 1 � + (m � k)tail � 1
2

�
n

k + 1 � (C.5)

= m tail � 1
2

�
n

k + 1 �
=

m
2

erfc

	
1
2 � n

2(k + 1)



<
m� � � 2(k + 1)

n
e

� n
8(k+1) (C.6)

< m e
� n

8(k+1) if � 2(k + 1)
� n

< 1 (C.7)

Rearranging gives:

n < 8(k + 1) ln(
m
q

) if n >
2(k + 1)
�

or k >
n

8 ln(m/q)
� 1 if k <

n �
2

� 1 (C.8)
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This lower bound on the capacity (k) is reasonably close. Numerical solutions of the
exact expression for Pr(All Correct) (Equation C.2) for k in the range (2..14), m in (102 . . . 1010),
and q in (10 � 2 . . . 10 � 10) are reasonably well approximated by

n = 3.16(k � 0.25) ln
m
q3

.



Appendix D

The capacity of convolution-based
associative memories

The simplest type of convolution memory is one that stores pairs. In this appendix I analyze
the capacity and scaling of this type of memory. In the first section I analyze the case where
there is no systematic similarity among vectors. In the second section I analyze the case
where there is some similarity. I will avoid duplicating derivations analogous to those in
Appendix B.

D.1 A memory for paired-associates with no similarity among
vectors

I use the following symbols and definitions:
� n, the vector dimension. “Random” vector have elements independently drawn from

N(0, 1/n).

�
�

, a set of m random vectors.

� t, a memory trace which is the (unnormalized) superposition of k distinct unordered
pairs of vectors from

�
, with the conditions that the two vectors in a pair must be

different, and vectors in different pairs must be different:

t =
k�

i=1

xi � yi, xi, yi �
�

, xi �=yj
�

i, j, xi �=xj
�

i �=j, yi �=yj
�

i �=j

� Pr(All Correct), the probability of correctly determining which vectors are and are
not stored in the memory trace.

In this analysis I assume that we do not know what the appropriate cues are, so to find
all the pairs we must try every combination of cue and probe. In order to allow the retrieval
process to be simple I assume that it tests for an identical cue and probe, even though no
such pair is stored in the trace.

To test for the presence of a pair (c, p) in t we first decode it with the cue c, and calculate
the dot-product with the probe p. This gives a scalar signal:

s = t � c
�

� p
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Signal Example E var Number of tests Description (referring to t � c
�

� p)
a t � x1

�

� y1 1 k+5
n k c �=p and (c, p) is a pair in the trace.

r1= t � x
�

1 � x1 0 2k+4
n 2k c = p and appears in the trace.

r2 t � x
�

1 � x2 0 k+2
n 2k(k � 1)

c �=p and both c and p are in the
trace (but are not members of the
same pair.)

r1 t � x
�

1 � z 0 k+1
n 2k(m � 2k) c �=p and one of them is in the trace.

r0= t � z
�

� z 0 2k
n m � 2k c = p and does not appear in the

trace.
r0 t � z

�

� w 0 k
n

(m � 2k)(m � 2k � 1)
2

c �=p and neither of them are in the
trace.

Table D.1: Means and variances of signals in a paired-associates convolution memory. The
examples refer to the trace t =

�
k
i=1 xiyi, and two vectors z and w from

�
not in the trace.

Calculating the dot-product of t � c
�

with the probe corresponds to what a clean-up memory
does, for each vector stored in it. Swapping the cue and probe gives identical results, as
does probing the trace directly with c � p, since

t � c
�

� p = t � p
�

� c = t � c � p

are identities of convolution algebra.
There are five distributions of reject signals and one distribution of accept signals. The

distribution of a reject signal depends on how many of the cue and probe occur in the trace
(0, 1, or 2) and on whether the cue is equal to the probe. Table D.1 lists the six different
signals, along with their means and variances, and the number of each of these signals
that must be tested to probe exhaustively for each pair in the trace. The variances were
calculated by adding the appropriate variances from Table 3.1, ignoring the terms of order
1/n2.

The derivations of all the signals are similar. I show the derivation of the signal (r1) for
when one of the cue and probe is in the trace. Without loss of generality I assume the cue
is equal to x1, and the probe is z, some element of SetE not in the trace.

r1 = t � x
�

1 � z

=
k�

i=1

xi � yi � x
�

1 � z

E[r1] = E

�
k�

i=1

xi � yi � x
�

1 � z �
=

k�

i=1

E[xi � yi � x
�

1 � z]

=
k�

i=1

0 = 0

var[r1] = var

�
k�

i=1

xi � yi � x
�

1 � z�
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Figure D.1: Scaling of n with k for Pr(Error) = 0.01 and m = 1000 in a paired-associates
convolution memory.

= var[x1 � y1 � x
�

1 � z] +
k�

i=2

var[xi � yi � x
�

1 � z]

=
2
n

+ k
1
n

=
k + 1

n

The variance of the sum is equal to the sum of the variance because the covariance
between all the terms in the sum is zero (e.g., cov[x1 � y1 � x

�

1 � z, x2 � y2 � x
�

1 � z] = 0).1 This
is true for the sums of variances for all the signals in this scenario.

Since there are 2k(n � 2k) cue-probe pairs that will generate a signal from this distribution,
the r1 signal must be rejected this many times.

For a threshold t the probability of correctly identifying all the pairs in the trace is:

Pr(All Correct) = Pr(a > t)k + Pr(r1= < t)2k

+ Pr(r2 < t)2k(k � 1) + Pr(r1 < t)2k(m � 2k)

+ Pr(r0= < t)m � 2k + Pr(r0 < t)(m � 2k)(m � 2k � 1)/2 (D.1)

The scaling of k with n to give a constant Pr(All Correct) is slightly less than linear. It
is shown in Figure D.1. This scaling is of the same nature as that of the simple superpo-
sition memory, for the same reasons. Likewise, the scaling of Pr(Error) and m with n is
exponential.

1This would not be true if pairs of identical vectors were allowed in the trace, since cov[x2
� x2

� x �1 � z, x3
�

x3
� x �1 � z] �=0.
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D.2 A memory for paired-associates with some similarity among
vectors

I now consider a convolution memory used to store variable-value bindings, where there is
similarity among some of the values. In order to avoid complicating the analysis, I assume
variables and values come from different sets.

The following symbols are used:

� n, the vector dimension. “Random” vector have elements independently drawn from
N(0, 1/n).

�
�

p , a set of mp value-vectors with average similarity � 2. They have the general form
pi = � p + � di, where p is the component the vectors in

�
p have in common, di is a

random vector, and the scalars � and � are positive weighting constants such that
� 2 + � 2 = 1 (so that E[

�
pi

�
] = 1). p is a random vector. In contrast with Appendix B, I

do not assume that
�
p

�
= 1.

�
�

, the set of m value-vectors, containing
�

p and (m � mp) random vectors. The set� �
�

�
p � is denoted by

�
� p .

�
�

, a set of v variable vectors, all of which are random.

� t, a trace with k variable-value bindings for similar values (from
�

p), and j variable-
value bindings for dissimilar values (from

�
� p ):

t = x1 � p1 + x2 � p2 + x3 � p3 + � � �� ��� �

Similar values (k pairs)

+ xk+1 � y1 + xk+2 � y2 + � � �� ��� �

Non-similar values (j pairs)

,

where xi �
�

, pi �
�

p , and yi �
�

� p . No value or variable appears more than once in
the bindings in the trace.

Variables are unbound by using the variable as the cue and the possible values as the
probes. To find out which value is associated with a variable x in the trace t we compute
t � x

�

and compare (using dot-product) the result to each of the vectors in
�

. It is also
possible to use a value as a probe to discover which variable it is bound to.

For the purposes of calculating the distributions of accept and reject signals, there are
four classes of values and three classes of variables. These are explained in Table D.2. The
example vectors in this table correspond to the vectors in the typical trace just mentioned,
assuming that p0 is some value-vector in

�
p that is not in the trace, z is some value-vector

in
�

� p that is not in the trace, and x0 is some variable-vector that is not in the trace. A
signal is generated by a cue (variable) and a probe (value). Consequently there are two
distributions of accept signals and twelve distributions of reject signals. These signals are
their relationship to the classes are illustrated in Figure D.2. The rows are the variable
classes and the columns are the value classes. The means and variances, and the number
of instances of each of the fourteen signals are shown in Table D.3.

If nothing is known about what variables or values are stored in the trace, then the
probability of correctly identifying all the variables and values is the probability that all
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Class Value E.g. Variable E.g.
1 � �

p in the trace p1 x1

2 � �
p not in the trace p0 N/A

3 � �
� p in the trace y1 xj+1

4 � �
� p not in the trace z not bound x0

Table D.2: Classes of values and variables in a variable-binding memory with similarity.
The class of a variable is determined by which (if any) value it is bound to. The example
vectors refer to the typical trace shown above.

v � k � j

v
Variables

mp m � mp

42 31

a33j r31 r33
r34r32

k j

k r14r11

r41 r42 r43 r44

r13r12
a11 1

3

4

j

Values

Class

Figure D.2: The different signals in a variable-binding memory with similarity. The num-
bers of variables and values are shown beside the arrows. Each square is labelled with the
name of the signal distribution which results from using a cue and probe from that row
and column.

reject signals are less than the threshold and all accept signals are greater than the threshold.
The signals can be assumed to be independent as in the previous models.2

The scaling of n with k and j, the numbers of items stored in the trace, is shown in
Figure D.3. The three steeper lines are for n versus k, the number of similar values stored.
The three lines are for j = 0, 1, and 2. The three less steep lines are for n versus j, the number
of non-similar values stored. The gradient for k is steeper because higher dimensionality
is needed to discriminate similar vectors. Note that in all cases the relationship between n
and k (or j) is near linear, just the gradient differs.

The scaling of n with � and k is shown in Figure D.4. As in the superposition memory
model with similarity, the capacity is relatively unaffected by small values of � .

2This assumption is not entirely correct, as in any particular model there will be some correlations due to
the similarity among the members of

�
p , e.g., x1

� p1
� x �1 � p2 will be correlated with x1

� p1
� x �1 � p3. This

leads to a slight underestimation of Pr(All Correct), because the expected number of errors is correct, but errors
will tend to occur in clusters. Experiments give similar Pr(All Correct) to those predicted by the model. For
example, in 10, 000 trials with n = 1024, m = 200, mp = 100, v = 200, k = 3, j = 1, � 2 = 0.5, for 10 different sets
�

, there were a total of 699 trials in which not all elements of the trace were correctly identified. The above
analysis gives Pr(All Correct) = 0.907, which predicts 930 failures (with standard deviation 9.2) out of 10, 000
trials.



176

Signal Mean Variance Number
a11 1 1

n (5 + k + j + (k � 1) � 4) k
a33 1 1

n (5 + k + j) j
r11

� 2 1
n (j + (k + 2)(1 + � 4)) k(k � 1)

r12
� 2 1

n ((3 + k)(1 + � 4) + j � 2) k(mp � k)
r13 0 1

n (k + j + 2) kj
r14 0 1

n (k + j + 1) k(m � mp � j)
r31 0 1

n ((k � 1)(1 + � 4) + j + 3) jk
r32 0 1

n (k(1 + � 4) + j + 1) j(mp � k)
r33 0 1

n (k + j + 2) j(j � 1)
r34 0 1

n (k + j + 1) j(m � mp � j)
r41 0 1

n ((k � 1)(1 + � 4) + j + 2) (v � j � k)k
r42 0 1

n (k(1 + � 4) + j) (v � j � k)(mp � k)
r43 0 1

n (k + j + 1) (v � j � k)j
r44 0 1

n (k + j) (v � j � k)(m � mp � j)

Table D.3: Means, variances, and numbers of signals in a variable-binding memory with
similarity.
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n vs. j for k = 1
n vs. j for k = 0

Figure D.3: Scaling of n with k and j for Pr(Error) = 0.01, m = 100, 000, v = 100, 000, mp = 100,
and � 2 = � 2 = 0.5 in a variable-binding memory with similarity.
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Figure D.4: Scaling of n with � for various values of k for Pr(Error) = 0.01, m = 100, 000,
v = 100, 000, mp = 100, and j = 3 in a variable-binding memory with similarity.

Figure D.5 shows the scaling of n with the number of similar items in the clean-up
memory. As with the previous scenarios, the number of items in clean-up memory (similar
items in this case) can increase exponentially with the vector dimension.

Figure D.6 shows the scaling of n with the number of non-similar items in the clean-
up memory. This graph shows how the number of similar items dominates the capacity
equation: n is nearly constant for less than 1014 non-similar items in memory. Beyond that,
the number of non-similar items can increase exponentially with the vector dimension.

D.3 Comments on the variable-binding memory with similarity

Unlike in a simple superposition memory for similar vectors, the similar value-vectors
stored in the variable binding memory do not interfere with means of the accept and
reject signals. This is due to the “randomizing” property of convolving with a random
variable; x1 � a and x2 � a have an expected similarity of zero if x1 and x2 are random. Any
combination of similar and non-similar values can be bound without affecting the means of
signals. The similarity among values only acts to increase the signal variances. However,
this is not the case when there is similarity among the variable vectors used in the trace.
Furthermore, the signal variances will increase dramatically if the variables are similar to
the values (due to the high variance of x � x � x � x).

It is possible to associate the same value with two different variables. E.g., t = x1 � y1 +
x2 � y2. The same process as before can be used to find which value is bound to a give
variable. The signal variances will be marginally higher, but the means will be the same.

If the same variable is associated with two different values, then correlating with that
variable will give a blend of the two values. E.g. (x1 � y1 + x1 � y2) � x

�

1 will give a noisy
version of a + b. This can be treated it as a superposition memory trace.
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Figure D.5: Scaling of n with mp (the number of similar items in memory) for Pr(Error) =
0.01, m = 108, v = 100, 000, k = 3, j = 3, and � 2 = � 2 = 0.3 in a variable-binding memory
with similarity.
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Figure D.6: Scaling of n with m � mp (the number of non-similar items in memory) for
Pr(Error) = 0.01, mp = 100, k = 3, j = 3, and � 2 = � 2 = 0.3 in a variable-binding memory
with similarity.



Appendix E

A lower bound for the capacity of
convolution memories

In this appendix I give an analytic lower bound on the capacity of a convolution memory
in the case where there is not any systematic similarity among vectors.

I use the following symbols and definitions (which are the same as in Section D.1):
� n, the vector dimension. “Random” vector have elements independently drawn from

N(0, 1/n).

�
�

, a set of m random vectors.
� t, a memory trace which is the (unnormalized) superposition of k distinct unordered

pairs of vectors from
�

, with the conditions that the two vectors in a pair must be
different, and vectors in different pairs must be different:

t =
k�

i=1

xi � yi, xi, yi �
�

, xi �=yj
�

i, j, xi �=xj
�

i �=j, yi �=yj
�

i �=j

� Pr(All Correct), the probability of correctly determining which vectors are and are
not stored in the memory trace.

Equation D.1 from Section D.1 gives the probability of correctly identifying all the pairs
in the trace:

Pr(All Correct) = Pr(a > t)k + Pr(r1= < t)2k

+ Pr(r2 < t)2k(k � 1) + Pr(r1 < t)2k(m � 2k)

+ Pr(r0= < t)m � 2k + Pr(r0 < t)(m � 2k)(m � 2k � 1)/2

Using the same inequalities as in Appendix C we get:

q <
m(m + 1)

2
tail(

1
2 � 2k + 4)

n
)

< m2 e
� n

16(k+2) if n >
4(k + 2)
�

or n < 16(k + 2) ln
m2

q
if n >

4(k + 2)
�
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Numerical solutions of the Equation D.1 for k in the range (2..14), m in (102 . . . 1010), and
q in (10 � 2 . . . 10 � 10) are reasonably well approximated by

n = 4.5(k + 0.7) ln
m

30q4
.



Appendix F

Means and variances of a signal

The detailed calculation of the mean and variance one of the components of one of the
signals in Section 3.10.4 is presented in this appendix.

Expanding the signal Xmark gives

Xmark = s1 � eatagt
�

�
1� 3

idmark

=
1� 3

(eat + eatagt � mark + eatobj � the fish)

� eatagt
�

�
1� 3

idmark

=
1
3

(eat + eatagt � 1� 3
(being + person + idmark)

+eatobj � the fish) � eatagt
�

� idmark

=
1
3

eat � eatagt
�

� idmark

+
1

3 � 3
eatagt � being � eatagt

�

� idmark

+
1

3 � 3
eatagt � person � eatagt

�

� idmark

+
1

3 � 3
eatagt � idmark � eatagt

�

� idmark

+
1
3

eatobj � the fish � eatagt
�

� idmark

The expectations and variances of these terms can be found by consulting Table 3.1. It
is not necessary to expand the vectors eatagt, eatobj or the fish, as the components of these
are independent of the other vectors appearing in the same terms. The expectation of the
fourth term is 1

3
�

3
(row 4 in Table 3.1), and all the expectation of the remaining terms is

zero. These five terms are independent and thus the variance of the sum is the sum of
the variances. The variance of the first term is 1

9n (row 3 in Table 3.1), the variance of the
second and third terms is 2n+2

27n2 (row 8), the variance of the fourth term is 6n+4
27n2 (row 6), and the

variance of the fifth term is 1
9n (row 10). These terms are uncorrelated, so their expectations
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and variances can be summed to give

E[Xmark] =
1

3 � 3
, var[Xmark] =

16n + 8
27n2

� 0.593/n.

The expectations and variances of Xp and Z can be calculated in a similar manner. They
are:

E[Xp] = 0, var[Xp] =
12n + 6

27n2
� 0.444/n

E[Z] =
2

3 � 3
, var[Z] =

34n + 20
27n2

� 1.26/n



Appendix G

The effect of normalization on
dot-products

As discussed in Section 3.5.3, it is usually preferable to normalize all vectors so that their
magnitude is 1. However, the means and variances of dot-products reported in Table 3.1 in
Section 3.6.1 do not apply when vectors are normalized. With normalized vectors, means
of dot-products are generally the same or slightly lower, and variances are the same or
much lower.

Recall that
�
x � denotes the normalized version of x (so that

�
x � �

�
x � = 1):

�
x � =

1� �
n � 1
i=0 xi

x

For the purposes of this section, a random vector of dimension n is one whose elements
are chosen randomly from N(0, 1/n).

G.1 Means and variances of dot-products of vectors with varying
similarity

Consider the first two rows in Table 3.1, for x � x and x � y, where x and y have elements
independently drawn from N(0, 1/n). For scaled vectors the variances are:

var[x � x] = 2/n and var[x � y] = 1/n.

However, if we normalize the vectors, the variances are:1

var[
�
x � �

�
x � ] = 0 and var[

�
x � �

�
y � ] = 1/n.

Using these two rows in Table 3.1 we can calculate the expected value and variance of
the dot-product of x with vectors which have varying similarity to x (if normalization is
not used). For example, for d = x � 1/ � 3(x + a + b) (where x, a, and b are random vectors)
we have:

E[d] = 1/ � 3 and var[d] = 4/3n.
1I am indebted to Radford Neal for a proof that var[

�
x � �

�
y � ] = 1/n.
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Figure G.1: Variances of the dot-product of x with superpositions of x with (k-1) other
vectors. The experimental data are for n = 1024 and 10, 000 runs.

The 1/ � 3 scale factor makes the expected magnitude of 1/ � 3(x + a + b) equal to 1. In
general, for

dk = 1�
k
(x +

�
k � 1
i=1 yi) � x

(where x and yi are random vectors) we have

E[dk] =
1� k

and var[dk] =
1
n

k + 1
k

.

G.1.1 Experimentally observed means and variances of dot-products

The expected and experimentally observed variances for dot-products of scaled vectors
(d) are shown in Figure G.1. As expected, these are almost identical. The experimentally
observed variances for dot-products of normalized vectors (d � ) are also shown:

d �k =
� � �

x � +
�

k � 1
i=1

�
yi � � � �

�
x � ,

These variances are considerably lower, though they tend to the same limit (1) as k tends
to infinity. The experiments were done with n = 1024 and 10, 000 runs.

The experimentally observed means for dot-products of scaled and normalized vectors
were indistinguishable from the expected values (i.e., 1/ � k).

G.2 Means and variances of dot-products of convolution expres-
sions

Rows 3 through 10 in Table 3.1 concern the means and variances of dot-products that arise
when convolution bindings are decoded or compared.
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Unnormalized Unnormalized Normalized Normalized
Expected Experimental Experimental Experimental

(Analytical) Decoding Similarity
Expression mean n � var mean n � var mean n � var mean n � var

(1) a � a 1 2 1.0003 2.0094 1.0000 0.0000 1.0000 0.0000
(2) a � b 0 1 � 0.0007 1.0251 0.0002 0.9952 0.0000 0.9842
(3) a � a � b 0 2.0001 � 0.0002 2.0122 � 0.0001 1.9897 � 0.0002 2.0480
(4) a � b � c 0 1 0.0006 1.0014 � 0.0004 0.9995 � 0.0001 0.9926
(5) a � a � a

�

� a 2.0020 40.109 2.0038 39.9667 1.0000 0.0000 0.8201 0.5014
(6) a � b � a

�

� b 1 6.0039 0.9998 5.9699 1.0000 0.0000 0.7088 0.4524
(7) a � b � a

�

� a 0 6.0176 � 0.0015 6.1133 0.0003 2.9795 0.0002 2.9631
(8) a � b � a

�

� c 0 2.0020 � 0.0003 2.0184 � 0.0001 1.9378 � 0.0001 0.9974
(9) a � b � c

�

� c 0 2.0020 � 0.0004 1.9866 0.0000 1.0049 0.0006 1.9434
(10) a � b � c

�

� d 0 1 0.0006 1.0073 � 0.0001 1.0135 0.0003 1.0149

Table G.1: Experimentally observed means and variances of dot-products of common
convolution expressions, for normalized and unnormalized versions. In the normalized
version, normalization is performed at every step. For example, for (10), the expression
for normalized decoding is

� � �
a � � �

b � � � �
c � � � �

�
d � and the expression for normalized

similarity is
� �

a � � �
b � � �

� �
c � � �

d � � . The statistics are over 10, 000 runs, and n = 1024. The
variances are multiplied by n to make them easier to read and compare.

The experimentally observed means and variances for various dot-products of convo-
lution products are shown in Table G.1. The means and variances for the decoding and
similarity expressions are reported separately, since the decoding/similarity identity

a � b � c
�

� d = a � b � c � d

does not hold if vectors are normalized. It turns out that in general
� � �

a � � �
b � � � �

c � � � �
�
d � �= � �

a � � �
b � � �

� �
c � � �

d � � ,

and the expected values are the same only when they are zero.
The variances are significantly lower with normalization. The non-zero means for

decoding convolution bindings with normalization are also lower. For example, the sample
mean of

� � �
a � � �

b � � � �
a � � � �

�
b � is 0.7088, whereas without normalization the mean of this

is 1. However, the decrease in variance outweights the decrease in means – performance
is still likely to be superior when normalization is used.



Appendix H

HRRs with circular vectors

In this appendix, I present analytic and experimental results concerning the means and
variances for dot-products of superpositions and bindings in the circular system described
in Chapter 4. I also compare the circular system with unnormalized and normalized
versions of the standard system.

H.1 Means and variances of dot-products of vectors with varying
similarity

For the standard system, it is easy to show that the similarity of x and the scaled (but not
normalized) superposition of x with k � 1 other vectors (1/ � k + 1(x +

�
k � 1
i=1 yi)) is 1/ � k.

This remains true if vectors are normalized rather than scaled. Variances are also easily
calculated, at least in the unnormalized version. For circular vectors, these calculations
are more difficult. I present simulation results for k = 1 . . . 10 and analytic derivations for
means and variances in the cases of k = 0 and k = 1.

Figures H.1 and H.2 show the experimentally observed means and variances of

sc = �� � sp( �� , ��
1, . . . ��

k � 1)

for k = 0 to 10, where �� and the ��
i are random vectors. For comparison, the corresponding

observations for unnormalized and normalized standard vectors are also plotted. These
observations are for

su = x � � 1
k

(x +
k � 1�

i=1

yi)

and

sn =
�
x � �

� �
x � +

k � 1�

i=1

�
yi � �

where x and the yi are random vectors.
For the analytic derivations I only consider single angles rather than a vector of angles.

It is clear that the variance of a dot-product of circular vectors is proportional to 1/n,
because it is a sum of n independent random variables, multiplied by 1/n. For the same
reason, the expected value of the dot-product does not vary with n.

First, consider the dot-product of dissimilar angles: � and
�

independently distributed
as U( ��� , � ). We can substitute

� d= U( ��� , � ) for ( � �

�
mod 2 � ) because the latter is

distributed uniformly in ( ��� , � ].
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Figure H.1: Means of the dot-product of a random vector with superpositions of it and and
(k � 1) other random vectors. The data are for n = 512 and 10, 000 runs. The results for the
normalized and unnormalized systems overlap on this plot.
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Figure H.2: Variances of the dot-product of a random vector with superpositions of it and
(k � 1) other vectors. The data are for n = 512 and 10, 000 runs.
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E[ � �
�

] = E[cos( � �

�
)]

= E[cos(
�

)] for
� d= U( ��� , � )

=
� �

� �
2
� cos(

�
)d
�

= 0

var[ � �
�

] = E[cos2( � �

�
)]

= E[cos2(
�

)] for
� d= U( ��� , � )

=
� �

� �
2
� cos2(

�
)d
�

=
1
2

Next consider the dot-product of an angle with itself (i.e., k = 0 in the graphs). Since
cos(0) = 1, we have

E[ � � � ] = 1

var[ � � � ] = 0

Finally consider the dot-product of � with � � �
(i.e., k = 1 in the graphs). The experi-

mentally observered means and variances are shown in parenthesis.

E[ � � ( � � �
)] = E[cos( � � ( � � �

))]

= E[cos(
�

/2)]

=
� �

� �
2
� cos(

�
/2)d

�

=
2
� = 0.63662 . . . (0.6365)

var[ � � ( ��� �
)] = E[(

2
� � cos( � � ( ��� �

)))2]

= E[(
2
� � cos(

�
/2))2]

=
� �

� �
2
� (

2
� � cos(

�
/2))2d

�

=
� 8 + � 2

2 � 2
= 0.094715 . . . (0.09552)

H.2 Means and variances of dot-products for similarity and de-
coding

The means and variances of dot-products for similarity and decoding are easy to calculate,
especially in cases where no superposition is involved. Consider the various dot-products
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Circular Decoding Normalized Normalized
and Similarity Decoding Similarity

Analytic Experimental Experimental Experimental
Expression mean n � var mean n � var mean n � var mean n � var

(1) a � a 1 0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
(2) a � b 0 1/2 0.0000 0.5003 0.0002 0.9952 0.0000 0.9842
(3) a � a � b 0 1/2 0.0006 0.5028 � 0.0001 1.9897 � 0.0002 2.0480
(4) a � b � c 0 1/2 � 0.0004 0.4989 � 0.0004 0.9995 � 0.0001 0.9926
(5) a � a � a

�

� a 1 0 1.0000 0.0000 1.0000 0.0000 0.8201 0.5014
(6) a � b � a

�

� b 1 0 1.0000 0.0000 1.0000 0.0000 0.7088 0.4524
(7) a � b � a

�

� a 0 1/2 0.0000 0.5003 0.0003 2.9795 0.0002 2.9631
(8) a � b � a

�

� c 0 1/2 0.0005 0.4903 � 0.0001 1.9378 � 0.0001 0.9974
(9) a � b � c

�

� c 0 1/2 0.0001 0.4998 0.0000 1.0049 0.0006 1.9434
(10) a � b � c

�

� d 0 1/2 � 0.0006 0.4954 � 0.0001 1.0135 0.0003 1.0149

Table H.1: Means and variances of dot-products for decoding and comparing bindings.
The experimental results for the circular system are for n = 512 and 10, 000 runs. The last
four columns of data for the corresponding operations in the normalized standard system
are from Table G.1, repeated here for easy comparison. There is only one set of statistics
for circular vectors because the decoding/similarity identity holds.

of convolution expressions from Table 3.1. For “hits” in decoding (or comparison), the
dot-product is one and the variance is zero, because the decoding is exact. For “misses”,
the expected dot-product is zero, and the variance is 1/2, as with � �

�
in the previous

section. The means and variances of dot-products involving higher-order bindings follow
the same simple pattern. Results from simulations are shown in Table H.1; these agree
with these calculations.

There is no need to consider decoding and similarity separately, as there was with
normalized standard vectors, since the decoding/similarity identity

(a � b) � c
�

� d = (a � b) � (c � d)

holds for circular vectors:

( � �
�

) � ( �

�
) � � = cos(( � +

�
) �

�
�
� )

= cos(( � +
�

) � (
�

+ � ))

= ( � �
�

) � (
�

� � )

H.3 Results on analogical similarity estimation

Circular vectors can be used for estimation of analogical similarity. I ran Experiment 3 from
Chapter 6 with circular vectors (with 2048 angles). The results are very similar to what is
achieved with the standard representation. The means come in the same rank order, but
there are more individual violations of the ordering

LS > ANcm > (AN2, AN1) > (SS � I, SS � H, SS � H) > (FA � I, FA � H) > OO1 > OO2
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P: Spot bit Jane, causing Jane to flee from Spot. Dot-products
Standard Circular

Episodes in long-term memory: Type Avg Sd Avg Sd
E1: Fido bit John, causing John to flee from Fido. LS 0.81 0.011 0.63 0.010
E2: Fred bit Rover, causing Rover to flee from Fred. ANcm 0.69 0.016 0.54 0.012
E3: Felix bit Mort, causing Mort to flee from Felix. AN1 0.61 0.018 0.48 0.013
E4: Mort bit Felix, causing Felix to flee from Mort. AN2 0.61 0.018 0.48 0.014
E5: Rover bit Fred, causing Rover to flee from Fred. SS � I 0.53 0.025 0.40 0.013
E6: John fled from Fido, causing Fido to bite John. SS � H 0.53 0.023 0.35 0.015
E7: Mort bit Felix, causing Mort to flee from Felix. FA � I 0.39 0.022 0.31 0.016
E8: Mort fled from Felix, causing Felix to bite Mort. FA � H 0.39 0.026 0.27 0.015
E9: Fido bit John, John fled from Fido. SS � H 0.51 0.020 0.35 0.012
E10: Fred stroked Rover, causing Rover to lick Fred. OO1 0.25 0.024 0.19 0.017
E11: Fred stroked Rover, Rover licked Fred. OO2 0.12 0.022 0.06 0.017

Table H.2: Results from Analogy Experiment 3 for normalized standard vectors and for
circular vectors.

(11 violations for circular vectors compared to 0 for standard vectors). However, these
violations are all with the order of SS and FA, which are less important. Overall, the means
are somewhat lower, which is not good, but the variances are lower and more uniform,
which is good.

Table H.2 shows the means and variances for each of the comparisons, for Experiment
3 and vectors with dimension 2048. The means for standard vectors are the same as in
Table 6.7.



Appendix I

Arithmetic tables: an example of
HRRs with many items in memory

Distributed representations are generally more efficient than local representations, because
they allow many more than n objects to be represented over n units. The analysis of capacity
given in Appendix D indicates that HRRs should share this property. In this Appendix I
describe a simulation which demonstrates this. I store approximately 5000 different HRRs
in a clean-up memory, using 512 dimensional vectors.

Also, this simulation provides a counterexample to Halford et al’s [to appear] claim that
role-filler representations do not permit one component of a relation can be retrieved given
the others.

In Section 3.7 I suggested that a fast estimate of the dot-product (computing using
bitwise comparison) could be used to speed up the comparison process. I used this
technique in the simulations reported here, and found that it worked well.

I.1 The objects and relations

The base vectors, which have elements distributed as N(0, 1/n) (n = 512) are:

optimes opplus
operand result
numberx for x = 0..2500

The relations concern multiplication and addition. They are statements like “two times
eight equals sixteen”. In general, the relations are:

timesx,y =
�
optimes + operand � (numberx + numbery) + result � numberx � y �

plusx,y =
�
opplus + operand � (numberx + numbery) + result � numberx+y �

where x and y range from 0 to 50 with y � x. I use the same role for each operand, since
they have equivalent status (x � y = y � x).

There are 1326 instances of each relation. Examples are:

times21,12 =
�
optimes + operand � (number21 + number12) + result � number252 �

plus42,25 =
�
opplus + operand � (number42 + number25) + result � number67 �

The 2501 number vectors, along with the 2652 relation vectors, are stored in the clean-up
memory.
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I.2 Queries to the memory

We can “look up” a relation by supplying sufficient information to distinguish it from other
relations. For example, we can look up “21 times 12 equals 252” by finding the most similar
relation to any of the following:

�
optimes + operand � (number21 + number12) ��
optimes + operand � number12 + result � number252 ��
optimes + operand � number21 + result � number252 ��
operand � (number21 + number12) + result � number252 �

In the first three cases, the remaining component can be found by decoding the retrieved
relation with the role vector for the missing component, e.g.,

times21,12 � result
�

,

and retrieving the most similar vector in the clean-up memory, which will be number252

for this example. To discover a missing relation name, we need to have a separate clean-up
memory containing only relation names (or use an alternative encoding in which there is
a role for relation names).

I tried one run of the system, with n = 512, making a query for each component missing
in every relation. This amounted to 10, 608 queries. After retrieving the relation, I decoded
the missing component (except for the relation name). This was a further 7, 956 queries.
The system made no errors.

Relations can be retrieved using fewer components. For example, the most similar
relation to

�
result � number221 � is times17,13.

The above retrieval process requires that we know the roles of each component. If we
wish to be able to retrieve relations given some components whose roles we do not know,
then we must store the fillers in plain form in the relation, e.g.,

timesx,y =
�
optimes +

�
numberx + numbery + numberx � y �

+ operand � (numberx + numbery) + result � numberx � y �

This is the type of representation I used for the analogy experiments (Chapter 6).

I.3 Using fast estimates of the dot-product

Comparing a 512-dimensional vector against 5, 153 vectors in clean-up memory takes
considerable time. The technique described in Section 3.7 reduces the computation by
using a fast bitwise estimate of the dot-product to judge when it is necessary to compute
the floating-point dot-product. Table I.1 shows the CPU times1 for 10, 608 accesses to
clean-up memory, with each access involving comparing against 5, 153 vectors.

The first column is half the width of the interval s (see Section 3.7 for a definition), in
approximate standard deviations. A spread of 4 standard deviations on each side should
be very safe. The second column shows the number of times that the use of the fast estimate
resulted in the wrong vector being selected by the clean-up memory. The third column

1On an SGI machine with a MIPS R4400 CPU and a MIPS R4010 FPU, and a 150MHz clock.
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Spread Errors Total Time Percent of
(seconds) F.P. dot-products

N/A 0 6824 100
4 0 4287 46
3 0 3512 33
2 0 2876 23
1 0 2002 9.1
0.5 0 1623 3.1
0.1 1 1438 0.60
0 1 1460 0.49

Table I.1: CPU times from runs using fast bitwise comparisons. The times are for 10, 608
accesses to a clean-up memory containing 5, 135 512-dimensional vectors.

shows the total execution time for the entire program, including the construction of the
base and relations vectors and the loading of clean-up memory. This startup time was
negligible – around 80 seconds. The last column shows the percentage of vectors for which
the floating-point dot-product was calculated. The first row is from a run which did not
use the fast estimates at all.

The number of errors is surprisingly low, even for very low spreads. This is probably
due to the fact that in this task the best match is nearly always significantly better than
the next best match. This makes it very likely that the fast estimate of the dot-product for
the true best match is greater than the fast estimate for any other vector. In general, it is
probably not safe to use low spreads.

The speedup achieved ( � 1.4 to 4 times) is reasonable, but not exceptionally good. The
speedup will be greater for higher n and for more vectors in the clean-up memory. Further
speedup could probably be gained by optimizing the code and the memory organization
for the fast comparisons.
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