PAGE

3. prednáška

Dopredné neurónové siete

(multilayered perceptron)

Vtip, ktorý mi minulý týždeň poslala doc. Beňušková z

Nového Zealandu, ktorá založila spolu s Petrom Tiňom tradíciu prednášok a výskumu neurónových sietí na tejto fakulte

[image: image1.png]3. Find x.

Dopredné neurónové siete

(multilayer perceptron)

logický neuron (MacCulloch a Pitts, 1943)

perceptrón (Rosenblatt, 1967)

dopredné neurónové siete (Rumelhard, 1986)

prudký rozvoj neurónových sietí (subsymbolická UI, konekcionizmus)

[image: image2.jpg]

David Rumelhart

· D. E. Rumelhart, G. E. Hinton, and R. J. Williams: Learning representations by back-propagating errors. Nature, 323(1986), 533-536.

· D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors: Parallel Distributed Processing, volumes I and II. MIT Press, Cambridge, MA, 1986.

Formal definition of a multilayer perceptron

Let us consider an oriented graph G=(V,E) determined as an ordered couple of a vertex set V and an edge set E.

[image: image3.wmf]v

6

v

5

v

5

v

4

v

4

e

4

e

4

v

3

v

3

e

3

e

3

v

1

A

B

v

1

e

1

e

1

e

5

e

5

e

6

e

6

e

7

e

7

e

8

e

8

v

2

cyclic oriented graph

acyclic oriented graph

v

2

e

2

e

2

v

6

	Theorem. An oriented graph G is acyclic iff it may be indexed so that

Vertices of an oriented graph can be classified as follows:

(1) Input vertices that are incident only with outgoing edges.

(2) Hidden vertices that are simultaneously incident at least with one incoming edge and at least with one outgoing edge.

(3) Output vertices, that are incident only with outgoing edges.

[image: image4.wmf]v

6

v

5

v

4

v

3

v

1

v

2

input neurons

hidden neurons

output neuron

The vertex set V is unambiguously divided into three disjoint subsets

that are composed of input, hidden, and output vertices, respectively.

Assuming that the graph G is canonically indexed and that the graph is composed of n input vertices, h hidden vertices, and m output vertices, then the above three vertex subsets can be simply determined by

[image: image5.wmf]v

6

v

5

v

4

v

3

v

1

v

2

input neurons

hidden neurons

output neuron

Vertices and edges of the oriented graph G are evaluated by real numbers. Each oriented edge e=(vi,vj)(E is evaluated by a real number wji called the weight. Each vertex vi(V is evaluated by a real number xi called the activity and each hidden or output vertex vi(V is evaluated by a real number (i called the threshold.

The activities of hidden and output vertices are determined as follows

where t(() is a transfer function. In our forthcoming considerations we will assume that its analytical form is specified by as the sigmoid function.

	Definition. A feed-forward neural network is determined as an ordered triple

=(G,w,()

G is an acyclic, oriented, and connected graph and w and (are weights and thresholds assigned to edges (connections) and vertices (neurons) of the graph. We say that the graph G specifies a topology (or architecture) of the neural network , and that weights w and thresholds (specify parameters of the neural network.

Activities of neurons form a vector x=(x1,x2,...,xp). This vector can be divided formally onto three subvectors that are composed of input, hidden, and output activities

A neural network =(G,w,() with fixed weights and thresholds can be considered as a parametric function

[image: image6.wmf]x

I

G

x

O

x

H

w

,

J

This function assigns to an input activity vector xI a vector of output activities xO

Hidden activities in this expression are not explicitly presented, they play only a role of byproducts.

How to calculate activities of a neural network =(G,w,()?

 (1) We shall postulate that activities of input neurons are kept fixed, in other words, we say that the vector of input activities xI is an inputs to the neural network. Usually its entries correspond to the so-called descriptors that specify a classified pattern.

(2) Activities of hidden and output neurons are calculated by simple recurrent procedure based on the fact that the topology of neural network is determined by an acyclic oriented graph G .

[image: image7.wmf]v

6

v

5

v

4

v

3

v

1

v

2

L

0

Layer :

L

0

Layer :

L

1

Layer :

L

2

Layer :

L

3

L

1

L

2

L

3

xinput constant

1

=

xinput constant

2

=

xtwxwx

33113223

=(++)

J

xtwxwx

55335225

=(++)

J

xtwxwxwx

66336446555

=(+++)

J

xtwx

44114

=(+)

J

Unfortunately, if the graph G is not acyclic (it contains oriented cycles), then the above simple recurrent calculation of activities is inapplicable, in some stage of algorithm we have to know an activity which was not yet calculated, activities are determined by

These equations are coupled, their solution (if any) can be constructed by making use of an iterative procedure, which is started from initial activities, and calculated activities are used as an input for calculation of new activities, etc.

This iterative procedure is repeated until a difference between new and old activities is smaller than a prescribed precision.

Learning (adaptation process) of feed-forward neural networks

A learning of a feed-forward neural network consists in a looking for such weights and thresholds that produced output activities (as a response on input activities) are closely related to the required ones.

First of all what we have to define is the training set composed of examples of input-activity vector and required output-activity vector

[image: image8.wmf](

)

{

}

12

kk

kIO

ˆ

,;k,,...,p

===

xx

AA

The error objective function is determined by

The learning process of the given feed-forward neural network N=(G,(,() specified by the graph G and with unknown weights and thresholds is realized by the following minimization process

If we know the optimal weights and thresholds (that minimize the error objective function), then an active process is a calculation of output activities as a response on input activities for parameters determined by the learning - adaptation process

The active process of neural networks is usually used for a classification or prediction of unknown patterns that are described only by input activities (descriptors that specify a structure of patterns). In order to quantify this process we have to introduce the so-called test set composed of examples of patterns specified by an input-activity vector and a required output-activity vector

[image: image9.wmf](

)

{

}

12

kk

kIO

ˆ

,;k,,...,q

===

yy

test

AA

An analogue of the error objective function is

[image: image10.wmf](

)

(

)

(

)

(

)

(

)

2

2

11

22

test

kkkk

koptoptOOIoptoptO

ˆˆ

E,G;,

=-=-

wyyywy

JJ

[image: image11.wmf](

)

(

)

(

)

(

)

1

q

testtest

optoptkoptopt

k

E,E,

=

=

å

ww

JJ

We say that an adapted neural network correctly interprets patterns from the test set if this objective function is sufficiently small. If this requirement is not fulfilled, then there exists an example from the test set which incorrectly interpreted.

Gradient of error objective function

Partial derivatives of the error objective function (defined over a training set) with respect to weights and thresholds are determined by

[image: image12.wmf](

)

(

)

kkik

ij

ijiiji

kkik

i

iiii

EExE

tx

wxwx

EExE

t

xx

¶¶¶¶

¢

==x

¶¶¶¶

¶¶¶¶

¢

==x

¶J¶¶J¶

where the partial derivatives

is simply calculated by making use the relation xi=t((i), then

 . Similar considerations are applicable also for the partial derivative

. If we compare both these equations we get simple relationship between partial derivatives

 and

[image: image13.wmf]kk

j

iji

EE

x

w

¶¶

=

¶¶J

Let us study the partial derivative

, its calculation depends on whether the index i corresponds to an output neuron or hidden neuron

where summation runs over all neurons that are successors of the i-the neuron. The second above formula results as an application of the well-known theorem called the chain rule for calculation of partial derivatives of the composite function. Last expressions can be unified at one expression

where it is necessary to remember that the summation on r.h.s. is vanishing is the i-th neuron has not successors, that is output neurons.

A final expression for the partial derivatives of error objective function with respect to thresholds

[image: image14.wmf](

)

(

)

for

kk

iiliHO

l

il

EE

tgwiVV

æö

¶¶

¢

=x+ÎÈ

ç÷

¶J¶J

èø

å

(1) In general, the above formula for calculation of partial derivative of the objective function can be characterized as a system of linear equations the solution of which determines partial derivatives

.

(2) For feed-forward neural networks the above formula can be solved recurrently. Starting from top layer Lt we calculate all partial derivatives assigned to output neurons,

. In the next step we calculate partial derivatives from the layer Lt-1, for their calculation we need to know partial derivatives from the layer Lt , which were calculated in the previous step, etc. Therefore this recurrent approach of calculation of partial derivatives based is called the back propagation.
(3) Knowing all partial derivatives

, we may calculate simply partial derivatives

.

(4) An analogue of the above formula was initially derived by Rumelhart et al. in 1986, this work is considered in literature as one of milestones of the development of theory of neural network. They demonstrated that multilayer perceptrons together with the back propagation method for calculation of gradients of error objective functions are able to overcome boundaries of simple perceptrons stated by Minsky and Papert, that is to classify correctly all patterns and not only those ones that are linearly separable.

[image: image15.wmf]v

6

v

5

v

4

v

3

v

1

v

2

input neurons

hidden neurons

output neuron

b

a

c

k

p

r

o

p

a

g

a

t

i

o

n

	Theorem. For feed-forward neural networks the first partial derivatives of the error objective function Ek are determined recurrently by

where in order to calculate

we have to know either gi (for i(VO) or partial derivatives

(for l((i) .

We have to emphasize that in the course of derivation of the above formula we have never used an assumption that the considered neural network corresponds to an acyclic graph. This means that this formula is correct also for neural networks assigned to graphs that are either cyclic or acyclic.

For neural networks assigned to cyclic graphs the above discussed recurrent approach of calculation of partial derivatives is inapplicable. For this type of neural networks the partial derivatives are not determined recurrently, but only as a solution of linear coupled equations

Its matrix form is

where

is a column vector composed of first derivatives of the error objective function Ek with respect to thresholds,

is a diagonal matrix composed of first derivatives of activities, and

is a column vector composed of products

. Assuming that the matrix

is nonsingular, then the solution is determined by

This means, for neural networks represented either by cyclic or acyclic oriented graph, first partial derivatives of Ek are determined as a solution of the above matrix equation.

The present approach is simply generalized also for calculation of partial derivatives of the total error objective function determined over all training patterns

If we know the partial derivatives, then the batch adaptation process is simply realized by a steepest-descent optimization accelerated by a momentum term

where the learning parameter (>0 should be sufficiently small (usually (=0.01-0.1) to ensure a monotonous convergence of the optimization method. Initial values of weights

 and thresholds

 are randomly generated . The last terms in the above formulae correspond to momentum terms determined as a difference of terms from the last two iterations,

and

. The momentum terms may be important at the initial stage of optimization as a simple tool how to escape local minima, the value of the momentum parameter is usually 0.5(((0.7.

Hessian of error objective function

One of the most efficient optimization techniques is the Newton optimization method based on the following recurrent updating formula

where H(xk) is a Hessian matrix composed of partial derivatives of second order and f(x) is an objective function to be minimized. This recurrent scheme is stopped if a norm of gradient is smaller than a prescribed precision, the obtained solution x* is a minimum for a positive definite Hessian H(x*).

Three types of partial derivatives of second order will be calculated

The partial derivatives

(where i,a(VH(VO) can be calculated as follows

[image: image16.wmf](

)

(

)

2

2

kkk

iili

l

aiaial

kk

iiailiiiaiili

ll

lal

EEE

tgw

EE

xgwxOxw

éù

æöæö

¶¶¶

¶¶

¢

==x+

êú

ç÷ç÷

¶J¶J¶J¶J¶J¶J

èøèø

ëû

æöæö

¶¶

¢¢¢¢

=d++dd+

ç÷ç÷

¶J¶J¶J

èøèø

å

åå

where

Symbols

and

are first and second derivative of activities assigned to hidden or output neurons.

This formula allows a recurrent "back propagation" calculation of second partial derivatives

.

The partial derivatives

 are calculated immediately from the above two formulae, we get

[image: image17.wmf]2

2

kkk

b

abiiabia

kk

bibb

iaa

EEE

x

ww

EE

xx

æöæö

¶¶¶

¶¶

==

ç÷ç÷

¶¶J¶J¶¶J¶J

èøèø

¶¶

¢

=+d

¶J¶J¶J

In a similar way we may calculate partial derivatives

, we get

[image: image18.wmf](

)

(

)

2

2

kkk

j

abijabijabi

j

kkkk

jjjjab

abiiabiabi

kkkkbk

bjjjabbjj

iaiiaaii

EEE

x

wwwww

x

EEEE

xxtx

www

EEEExE

xxtxxxxt

æö

æö

¶¶¶

¶¶

==

ç÷

ç÷

ç÷

¶¶¶¶¶¶J

èø

èø

¶

æöæö

¶¶¶¶

¶¶

¢

=+=+xd

ç÷ç÷

¶¶J¶J¶¶J¶¶J

èøèø

æö

¶¶¶¶¶¶

¶

¢¢

=+xd=++x

ç÷

¶J¶J¶J¶J¶J¶J¶J¶J

èø

(

)

2

jjab

kkk

bjibbjjajb

iaai

x

EEE

xxxxxx

d

¶¶¶

¢¢

=+d+d

¶J¶J¶J¶J

A calculation of partial derivatives

 and

 requires only first partial derivatives

 and second partial derivatives

 .

	Theorem. For feed-forward neural networks the second partial derivatives of the error objective function Ek are determined by

where partial derivatives
[image: image19.wmf]2

kia

E

¶¶J¶J

may be calculated recurrently in a back propagation manner whereas other two partial derivatives

 and

are calculated directly.

Partial derivatives of second order of the total objective function determined over all patterns from the training set are determined as summations of partial derivatives of objective functions Ek

[image: image20.wmf]2

2

1

2

2

1

2

2

1

p

k

k

aiai

p

k

k

iabiab

p

k

k

ijabijab

E

E

E

E

ww

E

E

wwww

=

=

=

¶

¶

=

¶J¶J¶J¶J

¶

¶

=

¶J¶¶J¶

¶

¶

=

¶¶¶¶

å

å

å

An adaptation process of neural networks realized in the framework of Newton optimization method is based on the following recurrent updating formulae

[image: image21.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

11

1

11

tt

tttt

ijij

ijabija

aba

aba

tt

tttt

ii

iabia

aba

aba

EE

wwHH

w

EE

HH

w

+

--

+

--

¶¶

=--

¶¶J

¶¶

J=J--

¶¶J

åå

åå

In a similar way as in the previous part of this lecture, where we have studied first partial derivatives of the error objective function Ek, the second partial derivatives were derived so that we did not use any assumption that neural networks correspond to acyclic graphs. Of course, an assumption that neural networks are acyclic considerably simplifies the calculation of second partial derivatives

by a recurrent method. For cyclic neural networks this recurrent approach is inapplicable, the partial derivatives are determined by a system of linear equations

[image: image22.wmf](

)

22

2

kkk

liiiaiiliiaii

ll

aiall

EEE

wxxgwOx

æö

¶¶¶

¢¢¢¢

-=d++dd

ç÷

¶J¶J¶J¶J¶J

èø

åå

This relation may be rewritten in a matrix form as follows

where E" is a symmetric matrix composed of partial derivatives

 and A=(Aai) is a diagonal matrix. Assuming that the matrix (1‑wdiag(x')) is a nonsingular, then the matrix E" composed of second partial derivatives

is determined explicitly by

Illustrative example

Boolean function XOR

An effectiveness of neural networks with hidden neurons is illustrated by Boolean function XOR, which is not correctly classified by simple perceptron without hidden neurons.

The used neural networks will contain three layers, the first layer is composed of input neuron, the second one of hidden neurons, and the third (last) one of output neurons.

Hidden neurons create the so-called inner representation which is already linearly separable, this is the main reason why neural networks with hidden neurons are most frequently used in the whole theory of neural networks.

Parameters of adaptation process are: (=0,1, (=0,5; after 400 iterations the objective function achieved value E=0.031.

[image: image23.wmf]1

2

3

4

5

	Activities of neurons from the feed-forward network composed of five neurons and two hidden neurons.

	No.
	x1
	x2
	x3
	x4
	x5
	
[image: image24.wmf]$

x

5

	1
	0,00
	0,00
	0,96
	0,08
	0,06
	0,00

	2
	0,00
	1,00
	1,00
	0,89
	0,95
	1,00

	3
	1,00
	0,00
	0,06
	0,00
	0,94
	1,00

	4
	1,00
	1,00
	0,96
	0,07
	0,05
	0,00

Hidden activities of XOR problem are linearly separable.

[image: image25.wmf]x

1

x

3

x

2

x

4

A

B

Newtonova metóda
Budeme približne riešiť rovnicu

[image: image26.wmf](

)

grad

f

=

x0

Nech x=x0+(, kde (=((1,(2,...,(n), potom

[image: image27.wmf](

)

gradd

o

f

+=

x0

ľavá strana bude upravená pomocou Taylorovho rozvoja

[image: image28.wmf](

)

(

)

gradd

oo

fH...

++=

xx0

Ak budeme uvažovať len prvé dva členy rozvoja a budeme predpokladať, že Hessián H(xo) je nesingulárna matica, potom

[image: image29.wmf](

)

(

)

1

grad

oo

Hf

-

d»-

xx

Poznámka: Výchylka (je formálne určená dvoma ekvivalentnými spôsobmi: buď ako riešenie systému lineárnych rovníc

[image: image30.wmf](

)

(

)

grad

oo

Hf

d»-

xx

alebo pomocou inverznej matice

[image: image31.wmf](

)

(

)

1

grad

oo

Hf

-

d»-

xx

Riešenie rovnice
[image: image32.wmf](

)

grad

f

=

x0

 má potom tento približný tvar

[image: image33.wmf](

)

(

)

1

grad

ooo

Hf

-

»-

xxxx

Toto riešenie slúži ako podklad pre konštrukciu rekurentnej formule, ktorá je základom Newtonovej optimalizačnej metódy

[image: image34.wmf](

)

(

)

1

1

grad

kkkk

Hf

-

+

=-

xxxx

pre k=0,1,2,... a xo je zadaná počiatočné riešenie. Rekurentná aplikácia tejto formule je ukončená keď začne platiť
[image: image35.wmf]1

kk

+

-<e

xx

, kde (>0 je zadaná presnosť požadovaného riešenia.

Algoritmus Newtonovej metódy

read(xo,kmax,();

k:=0; norm:=(; x:=xo;

while (k<kmax) and (norm>() do
begin k:=k+1;

 solve SLE H(x)(=-grad f(x);

 x':=x+(;

 norm:=|x-x'|;

 x:=x';

end;

write(x,f(x));

Poznámky

(1) Newtonova metóda nájde riešenie rovnice
[image: image36.wmf](

)

grad

f

=

x0

, t.j. nájde stacionárne stavy funkcie f(x). Tieto stacionárne stavy sú klasifikované pomocou Hessiánu H(x):

	Ak x je stacionárny bod a Hessián H(x) je pozitívne negatívny, potom v bode x má funkcia f(x) minimum.

(2) Funkcia f(x) musí byť dvakrát diferencovateľná na celom Rn, počítame gradient a Hessián funkcie.

(3) Výpočet Hessiánu môže byť časovo a pamäťovo veľmi náročný, menovite pre funkcie mnohých (niekoľko sto) premenných.

Linearizovaná Newtonova metóda

Pre určitý typ minimalizovanej funkcie výpočet Hessiánu môže byť podstatne zjednodušený.

[image: image37.wmf](

)

(

)

2

1

p

k

k

fg

=

=

å

xx

Pre túto funkciu platí vlastnosť

[image: image38.wmf](

)

[

]

(

)

01:0

k

fk,pgx

**

=Û"Î=

x

Nutná a postačujúca podmienka pre existenciu takého x* , f(x*)=0, aby pre každé k([1,p] platilo gk(x*)=0 .

Výpočet Hessiánu pre funkciu
[image: image39.wmf](

)

(

)

2

1

p

k

k

fg

=

=

å

xx

[image: image40.wmf](

)

(

)

(

)

1

2

p

k

k

k

ii

fg

g

xx

=

¶¶

=

¶¶

å

xx

x

[image: image41.wmf](

)

(

)

(

)

(

)

(

)

22

11

22

pp

kkk

k

kk

ijijij

fggg

g

xxxxxx

==

¶¶¶¶

=+

¶¶¶¶¶¶

åå

xxxx

x

Budeme predpokladať, že vektor x je blízko x*, potom gk(x)(0, pre k=1,2,..., potom približný výraz pre elementy Hessiánu má tento tvar

[image: image42.wmf](

)

(

)

(

)

(

)

2

1

2

p

kk

ij

k

ijij

fgg

H

xxxx

=

¶¶¶

»»

¶¶¶¶

å

xxx

x

 V maticovom formalizme tento výraz má tvar

[image: image43.wmf](

)

(

)

(

)

(

)

(

)

1

2

p

T

kk

k

Hgradggradg

=

»

å

xxx

PAGE
Priesvitka 2

_934176835

_934179670

_1189998216

_1189999635

_1190000279

_1190000549

_1190000956

_1190001034

_1190001167

_1190001168

_1190001041

_1190001166

_1190000966

_1190000584

_1190000695

_1190000550

_1190000302

_1190000548

_1190000291

_1189999804.unknown

_1190000188

_1190000202

_1190000173

_1189999715

_1189999773.unknown

_1189999651

_1189999445

_1189999547

_1189999572

_1189999546

_1189998516.unknown

_1189998849.unknown

_1189998385

_1189966604.unknown

_1189996743

_1189998090

_1189998214

_1189998213

_1189998039

_1189968618.unknown

_1189969352.unknown

_1189967844.unknown

_934179684

_934179688

_934179689

_934191850

_934179687

_934179682

_934179683

_934179680

_934179660

_934179664

_934179666

_934179668

_934179665

_934179662

_934179663

_934179661

_934176841

_934179647

_934179656

_934179657

_934179650

_934176843

_934179645

_934179646

_934176844

_934179644

_934176842

_934176837

_934176839

_934176836

_934176812

_934176821

_934176826

_934176829

_934176830

_934176827

_934176823

_934176824

_934176822

_934176816

_934176819

_934176820

_934176818

_934176814

_934176815

_934176813

_934172738

_934175120

_934176807

_934176810

_934176811

_934176809

_934175727

_934176806

_934176805

_934175121

_934175115

_934175116

_934172740

_934175114.unknown

_934172730

_934172733.unknown

_934172736

_934172732

_934172727

_934172728

_934172725

_934172726

_934172724

