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Architecture of EIman’s recurrent
neural network
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An 1iterative solution of

x =input e{a,b,c,d}’

u=C(v)
v=H(x,u)
y=0(») eR"

specifies activities of neurons recurrently as
follows
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Unfolded recurrent neural network
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Unfolded Elman’s recurrent neural network may
be considered as a parametric mapping that maps a
sequence of input vectors onto an output vector

y(t) _ G(x(l),x(z),...,x(t);w,S)

for t=1, 2,..., tax.
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Activities of single neurons
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Adaptation (learning) of
the recurrent neural network
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An adaptation is equivalent to a minimization of
the objective function E with respect to weight and
threshold coefficients

(W 80pt) = arg min E(w,3)

opt ! (W,9)

This optimization problem 1s most frequently
solved by the so-called steepest descent gradient
method of

W, =W, —Agrad E(w,)

where A>0.
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How to calculate partial derivatives

of the objective function with respect to
threshold and weight coefficients?
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These general formulae (they form a background
of the so-called back-propagation approach) are
immediately applicable to wunfolded recurrent
neural networks for calculation of partial
derivatives of the objective function E.
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Partial derivatives with respect
to threshold coefficients
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(2) Iteration, 1<t<t.x

(t)
(agl(fo)] = Yi(t)(l — yi(t)) ®y (Yi(t) — yi(,tr)eq)
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Partial derivatives with respect
to weight coefficients

(1) Initialization, t=t,.,
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(2) Iteration, 1<t<t.x
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Total partial derivatives
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