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Jordan's RNN
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Its activities of single layers are determined as
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[terative solution gives the activities specified in a
recurrent form

X = input

o [0 (t=1)
u = —
C(y('[ 1)) (t > 2) . fort = 1,2,...,tmax

o0 = H(x,u)

y =0y
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Unfolded recurrent neural network

Unfolded Jordan's recurrent neural network may be
considered as a parametric mapping that maps a
sequence of input vectors onto an output vector

y(t) = G(x(l) xP X w,S)

for t=1,2,...,tnax-
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Activities are explicitly determined by

y
©
(H)
Xi(t) mput
0 (fort=1)
Ui(t) = C) . Q. (CO). (t-1
t Si( )+ ZW,(J )ygt_ ) (otherwise)
L j=1

vl = t(é}i(H) + ZW(HC) ) 4 ZWI(J-HI)X?)]
-1 -1

V. Kvasnicka: Jordan's RNN
5



Adaptation (learning) of the recurrent
neural network

Avain =[x oo x®) (g i e vl

1 tmax

2
E = Lo, (" -y}

An adaptation is equivalent to a minimization of
the objective function E with respect to weight and
threshold coefficients

(Wopt ’Sopt) — arg gvllgg E(w,9)

This optimization problem 1s most frequently
solved by the so-called gradient method of
steepest descent

Wi =W, —Agrad E(w,)

where A>0.
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In general, partial derivatives of the objective
function E are determined as follows
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These general formulae (they form a background
of the so-called back-propagation approach) are
immediately applicable to unfolded recurrent
neural networks for calculation of partial
derivatives of the objective function E.
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(1) Initialization, t=t;.x

(tmax )
ok
(88(0)] — y(tmax ( Y. Tmax ) max(yl tmax ) _ i("[rngja())
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(2) Iteration, 1<t<t,.x
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Partial derivatives with respect to weight
coefficients are
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Total partial derivatives are determined as follows
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