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Modified EIman's RNN
(recurrent perceptron)

Standard architecture of Elman's recurrent neural network
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This architecture is substantially simplified if the hidden
neurons are removed, we arrive at the so-called recurrent

perceptron (simples recurrent NN)
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Activities of neurons are formally determined by a
set of equations

x =input e{a,b,c,d}*\
u=C(y) =
y=0(x,u) €(0,1)"

J

x =input e{a,b,c,d}’
—
Y= O(V,C( y)) e(O,l)n (a nonlinearity)

Their iterative solution (X1=f(Xy)) specifies
activities of neurons as follows
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Activities are explicitly determined by
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x\" = input
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Unfolded recurrent perceptron
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The recurrent perceptron can be understood as a

parametric mapping of a sequence of inputs x'",

x3,..., x> onto a real vector y'™e[0,1]".

X 5@ recurrent |y=c[o,1]" .
percepiron
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Adaptation (learning) of the recurrent
neural network

A= {(x“) e ’__’x(tman)/(yreq )}

1
E = E(y(tmaX) _yreq )2

An adaptation is equivalent to a minimization of
the objective function E with respect to weight and
threshold coefficients

(W SOpt) = arg min E(w,9)

opt ? (w,9)

This optimization problem is most frequently
solved by the so-called steepest descent gradient
method

Wi, =W, —Agrad E(x,)
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In general, partial derivatives of the objective
function E are determined as follows

oE) OF
(58}:’[ (E)i)(gi +Zk189kwkij

t’(&»i ) = t(&i )[1 - t(&»i )]

{Xi - Xi,req (I EO)
9i =

0 (i¢0)
OE  OE
ow. 09, !

These general formulae (they form a background
of the so-called back-propagation approach) are
immediately applicable to unfolded recurrent
neural networks for calculation of partial
derivatives of the objective function E.
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(1) Initialization, t=t,,.,
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(2) Iteration, 1<t<t,.x
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Partial derivatives with respect to
coefficients are determined by

(1) Initialization, t=t, .,
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Total partial derivatives are determined as follows
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