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Preface

It is no exaggeration to say that linear algebra is a subject of central importance in both mathematics and a
variety of other disciplines. It is used by virtually all mathematicians and by statisticians, physicists, biologists,
computer scientists, engineers, and social scientists. Just as the basic idea of first semester differential calculus
(approximating the graph of a function by its tangent line) provides information about the function, the
process of linearization often allows difficult problems to be approximated by more manageable linear ones.
This can provide insight into, and, thanks to ever-more-powerful computers, approximate solutions of the
original problem. For this reason, people working in all the disciplines referred to above should find the
Handbook of Linear Algebra an invaluable resource.

The Handbook is the first resource that presents complete coverage of linear algebra, combinatorial lin-
ear algebra, and numerical linear algebra, combined with extensive applications to a variety of fields and
information on software packages for linear algebra in an easy to use handbook format.

Content

The Handbook covers the major topics of linear algebra at both the graduate and undergraduate level as well
as its offshoots (numerical linear algebra and combinatorial linear algebra), its applications, and software
packages for linear algebra computations. The Handbook takes the reader from the very elementary aspects
of the subject to the frontiers of current research, and its format (consisting of a number of independent
chapters each organized in the same standard way) should make this book accessible to readers with divergent
backgrounds.

Format

There are five main parts in this book. The first part (Chapters 1 through Chapter 26) covers linear algebra;
the second (Chapter 27 through Chapter 36) and third (Chapter 37 through Chapter 49) cover, respectively,
combinatorial and numerical linear algebra, two important branches of the subject. Applications of linear
algebra to other disciplines, both inside and outside of mathematics, comprise the fourth part of the book
(Chapter 50 through Chapter 70). Part five (Chapter 71 through Chapter 77) addresses software packages
useful for linear algebra computations.

Each chapter is written by a different author or team of authors, who are experts in the area covered. Each
chapter is divided into sections, which are organized into the following uniform format:

* Definitions
* Facts

* Examples
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Most relevant definitions appear within the Definitions segment of each chapter, but some terms that
are used throughout linear algebra are not redefined in each chapter. The Glossary, covering the terminol-
ogy of linear algebra, combinatorial linear algebra, and numerical linear algebra, is available at the end of
the book to provide definitions of terms that appear in different chapters. In addition to the definition,
the Glossary also provides the number of the chapter (and section, thereof) where the term is defined. The
Notation Index serves the same purpose for symbols.

The Facts (which elsewhere might be called theorems, lemmas, etc.) are presented in list format, which
allows the reader to locate desired information quickly. In lieu of proofs, references are provided for all facts.
The references will also, of course, supply a source of additional information about the subject of the chapter.
In this spirit, we have encouraged the authors to use texts or survey articles on the subject as references, where
available.

The Examples illustrate the definitions and facts. Each section is short enough that it is easy to go back
and forth between the Definitions/Facts and the Examples to see the illustration of a fact or definition. Some
sections also contain brief applications following the Examples (major applications are treated in their own
chapters).

Feedback

To see updates and provide feedback and errata reports, please consult the web page for this book: http://
www.public.iastate.edu/~lhogben/HLA.html or contact the editor via email, LHogben®iastate.edu, with HLA
in the subject heading.
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Preliminaries

This chapter contains a variety of definitions of terms that are used throughout the rest of the book, but are
not part of linear algebra and/or do not fit naturally into another chapter. Since these definitions have little
connection with each other, a different organization is followed; the definitions are (loosely) alphabetized and
each definition is followed by an example.

Algebra

An (associative) algebra is a vector space A over a field F together with a multiplication (x,y) + xy from
A x A to A satisfying two distributive properties and associativity, i.e., foralla,b € F and allx,y,z € A:

(ax + by)z = a(xz) + b(yz), x(ay + bz) = a(xy) + b(xz) (xy)z = x(yz).

Except in Chapter 69 and Chapter 70 the term algebra means associative algebra. In these two chapters,
associativity is not assumed.

Examples:

The vector space of n x n matrices over a field F with matrix multiplication is an (associative) algebra.

Boundary

The boundary 9S of a subset S of the real numbers or the complex numbers is the intersection of the closure
of S and the closure of the complement of S.

Examples:
The boundaryof S ={x e C: |z] < 1}isdS ={x € C: |z| = 1}.

Complement

The complement of the set X in universe S, denoted S \ X, is all elements of S that are not in X. When the
universe is clear (frequently the universe is {1, .. ., n}) then this can be denoted X°.

Examples:

For S ={1,2,3,4,5}and X = {1,3}, S\ X = {2,4,5}.

Complex Numbers

Leta,b € R. The symbol i denotes /—1.

The complex conjugate of a complex number ¢ = a + bi isc = a — bi.
The imaginary part of a + bi is im(a + bi) = b and the real part is re(a + bi) = a.
The absolute value of c = a + bi is |c| = «/a? + b2.
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The argument of the nonzero complex number rel? is @ (withr,0 e Rand0 < r and 0 < 0 < 27).
The open right half plane C* is {z € C : re(z) > 0}.

The closed right half plane C{ is {z € C : re(z) > 0}.

The open left half plane C™ is {z € C : re(z) < 0}.

The closed left half plane C™ is {z € C : re(z) < 0}.

Facts:

1. |c] =cc

2. ré?| =r

3. r¢'® =r cos® + rsin i
—i6

4. rel? =re

Examples:
24+3i=2—3i,1.4=14,1+i=+2e"4

Conjugate Partition

Letv = (uy, Uy, ..., u,) beasequence of integers such that u; > u, > --- > u, > 0. The conjugate partition
of visv* = (uf,...,u}), where u is the number of js such that u; > i. t is sometimes taken to be u;, but is
sometimes greater (obtained by extending with 0s).

Facts: If ¢ is chosen to be the minimum, and u,, > 0, v** = v.

Examples:
(4) 3,2,2, 1)* = (5)4$ 2, 1)

Convexity
Let V be a real or complex vector space.

Let{vy, v, ..., vk} € V.Avector of the forma; v, +a,v,+- - - +ax vy with all the coefficients a; nonnegative
and " a; = 1 is a convex combination of {v,v,,... ,vi}.

Aset S € V is convex if any convex combination of vectors in S is in S.

The convex hull of S is the set of all convex combinations of S and is denoted by Con(S).

An extreme point of a closed convex set S is a point v € S that is not a nontrivial convex combination of
other pointsin S, i.e, ax+ (1 —a)y=vand 0 <a < limpliesx =y = .

A convex polytope is the convex hull of a finite set of vectors in R".

Let S C V be convex. A function f:S — Risconvexifforalla e R,0 <a < 1,x,ye S, f(ax+(1—

a)y) <af(x)+ (1 —a)f(y).

Facts:

1. Aset S C Vis convex if and only if Con(S) = S.
2. The extreme points of Con(S) are contained in S.
3. [HJ85] Krein-Milman Theorem: A compact convex set is the convex hull of its extreme points.

Examples:

1. [1.9,0.8]7 is a convex combination of [1,—1]7 and [2,1]7, since [1.9,0.8]T = 0.1[1,—1]T +
0.9[2,1]7.

2. The set K of all v € R? such that v; > 0,i = 1,2,3 is a convex set. Its only extreme point is the
Zero vector.
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Elementary Symmetric Function

The kth elementary symmetric functionof o;,i = 1,...,n is

Sk(ab---)an): Z oo, .. O

1<ij<ip<--<ip<n

Examples:

Sa(ag, @, 003) = oy + gz + @03,
Sl(al)« . ~aan) =0 +Olz + - +O(n: Sn(alw . ~aan) =010y ... Oy

Equivalence Relation

A binary relation = in a nonempty set S is an equivalence relation if it satisfies the following conditions:

1. (Reflexive) Foralla € S,a = a.
2. (Symmetric) Foralla,b € S,a = b implies b = a.
3. (Transitive) For alla,b,c € S,a =banda = b implya = c.

Examples:

Congruence mod # is an equivalence relation on the integers.

Field

A field is a set F with at least two elements together with a function F x F — F called addition, denoted
(a,b) - a + b, and a function F x F — F called multiplication, denoted (a,b) — ab, which satisfy the
following axioms:

Commutativity) For eacha,b € F,a+b =b +a and ab = ba.

Associativity) For each a,b,c € F,(a +b)+c =a + (b +c) and (ab)c = a(bc).

Identities) There exist two elements 0 and 1 in F such that0 +a = a and 1a = a foreacha € F.

Inverses) For each a € F, there exists an element —a € F such that (—a) + a = 0. For each
nonzero a € F, there exists an element a~! € F such thata™'a = 1.

5. (Distributivity) For each a,b,c € F,a(b +¢) = ab + ac.

L .
—_——~ =

Examples:

The real numbers, R, the complex numbers, C, and the rational numbers, Q, are all fields. The set of integers,
7Z, is not a field.

Greatest Integer Function

The greatest integer or floor function |x| (defined on the real numbers) is the greatest integer less than or
equal to x.

Examples:
|15/ =1,[1] =1, |—1.5] = —2.
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Group

(See also Chapter 67 and Chapter 68.)
A group is a nonempty set G with a function G x G — G denoted (a,b) — ab, which satisfies the following
axioms:

1. (Associativity) For each a,b,c € G, (ab)c = a(bc).

2. (Identity) There exists an element e € G such that ea = a = ae foreacha € G.

3. (Inverses) For each a € G, there exists an element a~! € G suchthata™'a =e =aa~!.

A group is abelian if ab = ba foralla,b € G.

Examples:

1. Any vector space is an abelian group under +.
2. The set of invertible n x n real matrices is a group under matrix multiplication.
3. The set of all permutations of a set is a group under composition.

Interlaces

Leta; >a, > --- >a,and b; > b, > --- > b,_;, two sequences of real numbers arranged in decreasing
order. Then the sequence {b;} interlaces the sequence {a;} ifa, < b,—; < a,_;--- < b; < a;. Further, if
all of the above inequalities can be taken to be strict, the sequence {b;} strictly interlaces the sequence {g;}.
Analogous definitions are given when the numbers are in increasing order.

Examples:

7 > 2.2 > —1 strictly interlaces 11 > 7 > 0 > —2.6.

Majorization
Leto = (ay,az,...,a,), B = (b1,ba, ..., b,) be sequences of real numbers.
at = (af,ai, ... ,a})isthe permutation of o« with entries in nonincreasing order, i.e.,af > a% >...>al.
al = (af, al,..., a)) is the permutation of o with entries in nondecreasing order, i.e., af <al <...<
1
al.

n
« weakly majorizes 8, written >, B or B <,, «, if:

k k
Z“z‘l Zzb# forallk =1,...n.
i=1 i=1

o majorizes 8, written o > Bor B < o, ife =, Band Y [ a; = > 1, b;.
Examples:

1. Ifa =(2,2,—1.3,8,7.7), then ¥ = (8,7.7,2,2,—1.3) and " = (—1.3,2,2,7.7,8).
2. (5,3,1.5,1.5,1) > (4,3,2,2,1) and (6,5,0) >, (4,3,2).

Metric

A metric on a set S is a real-valued function f:S x S — R satisfying the following conditions:

1. Forallx,y € S, f(x,y) > 0.

2. Forallx € S, f(x,x) =0.

3. Forallx,y € S, f(x,y) = 0implies x = y.

4. Forallx,y € S, f(x,y) = f(y,x).

5. Forallx,y,ze S, f(x,y)+ f(y,2) > f(x,2).

A metric is intended as a measure of distance between elements of the set.
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Examples:

If || - || is a norm on a vector space, then f(x,y) = [|x — y|| is a metric.

Multiset

A multiset is an unordered list of elements that allows repetition.

Examples:

Any set is a multiset, but {1, 1, 3, —2, —2, —2} is a multiset that is not a set.

Oando

Let, f, g be real valued functions of Nor R, i.e.,, f,g : N — Ror f,g : R — R.
f is O(g) (big-oh of g) if there exist constants C, k such that | f(x)| < C|g(x)]| for all x > k.

f is o(g) (little-oh of g) if lim,._. . | {2

Examples:

x% 4+ x is O(x?) and In x is o(x).

Path-connected

A subset S of the complex numbers is path-connected if for any x, y € S there exists a continuous function
p:[0,1] - Swith p(0) =xand p(1) = y.

Examples:
S={z€C:1<|z| <2}and theline {a + bi : a = 2b + 3} are path-connected.

Permutations

A permutation is a one-to-one onto function from a set to itself.

The set of permutations of {1,...,n} is denoted S,,. The identity permutation is denoted &,. In this book,
permutations are generally assumed to be elements of S,, for some #.
A cycle or k-cycle is a permutation T such that there is a subset {ay, ..., ax} of {1,...,n} satisfying t(a;) =

ai+1 and t(ax) = ay; this is denoted T = (ay, g, . . ., ax). The length of this cycle is k.

A transposition is a 2-cycle.

A permutation is even (respectively, odd) if it can be written as the product of an even (odd) number of
transpositions.

The sign of a permutation 7, denoted sgn 7, is +1 if 7 is even and —1 if 7 is odd.

Note: Permutations are functions and act from the left (see Examples).

Facts:

1. Every permutation can be expressed as a product of disjoint cycles. This expression is unique up to
the order of the cycles in the decomposition and cyclic permutation within a cycle.

2. Every permutation can be written as a product of transpositions. If some such expression
includes an even number of transpositions, then every such expression includes an even num-
ber of transpositions.

3. S, with the operation of composition is a group.
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Examples:

1. If T = (1523) € Sg,then t(1) =5,7(2) =3,7(3) =1,7(4) =4,7(5) = 2,7(6) = 6.
2. (123)(12)=(13).
3. sgn(1234) = —1, because (1234) = (14)(13)(12).

Ring

(See also Section 23.1)
Aringis aset R together with a function R x R — R called addition, denoted (a,b) — a + b, and a function
R x R — R called multiplication, denoted (a,b) — ab, which satisfy the following axioms:

1. (Commutativity of +) For eacha,b € R,a+b=0b+a.

2. (Associativity) For each a,b,c € R, (a+b) +c =a + (b + ¢) and (ab)c = a(bc).
3. (+ identity) There exists an element 0 in R such that 0 + a = a.

(+ inverse) For each a € R, there exists an element —a € R such that (—a) +a = 0.
5. (Distributivity) For each a,b,c € R,a(b +c) = ab + ac and (a + b)c = ac + bc.

~

A zero divisor in a ring R is a nonzero element a € R such that there exists a nonzero b € R withab =0
or ba = 0.

Examples:

* The set of integers, Z, is a ring.
* Any field is a ring.
* Let F be a field. Then F"*", with matrix addition and matrix multiplication as the operations, is

. 1 0 0 0 .. .
aring. By = {0 0] and E, = [0 1} are zero divisors since E 1 E;; = 0,.

Sign

(For sign of a permutation, see permutation.)
The sign of a complex number is defined by:

. z/|z|, ifz #0;
51gn(z):{/|1| ifziO

If z is a real number, this sign function yields 1 or —1.
This sign function is used in numerical linear algebra.
The sign of a real number (as used in sign patterns) is defined by:

+, ifa > 0;
sgn(a) =4 0, ifa=0;
—, ifa <0.

This sign function is used in combinatorial linear algebra, and the product of a sign and a real number is
interpreted in the obvious way as a real number.
Warning: The two sign functions disagree on the sign of 0.

Examples:

sgn(—1.3) = —, sign(—1.3) = —1, sgn(0) = 0, sign(0) = 1,
(1+1)

7

sign(1+1)=

References

[HJ85] [H]J85] R. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.

XXX



Linear Algebra

Basic Linear Algebra
1 Vectors, Matrices, and Systems of Linear Equations JaneDay.................. 1-1
2 Linear Independence, Span,and Bases Mark Mills........................c.... 2-1
3 Linear Transformations Francesco Barioli ....................cccuiiiiiininin. 3-1
4 Determinants and Eigenvalues Luz M. DeAlba ................c..coocoivenn... 4-1
5 Inner Product Spaces, Orthogonal Projection, Least Squares,

and Singular Value Decomposition Lixing Han and Michael Neumann . ... ..... 5-1

Matrices with Special Properties

6
7
8
9
10

Canonical Forms  Leslie Hogben .............coooiiiiiiiiiiniiiiiiniiniiiiinn.. 6-1
Unitary Similarity, Normal Matrices, and Spectral Theory = Helene Shapiro .. ... 7-1
Hermitian and Positive Definite Matrices Wayne Barrett ...................... 8-1
Nonnegative and Stochastic Matrices  Uriel G. Rothblum ....................... 9-1
Partitioned Matrices  Robert ReAms . .......cc.ueuiuuien it 10-1

Advanced Linear Algebra

11
12
13
14
15
16
17
18
19

Functions of Matrices  Nicholas J. Higham ..................cccoiiiiiiinii.. 11-1
Quadratic, Bilinear, and Sesquilinear Forms  Raphael Loewy ................... 12-1
Multilinear Algebra  José A. Dias da Silva and Armando Machado ............... 13-1
Matrix Equalities and Inequalities = Michael Tsatsomeros........................ 14-1
Matrix Perturbation Theory Ren-CangLi............c..coiiiiiiiiiiniiiinn.. 15-1
Pseudospectra  Mark EmbDree ........o.ouiuneee ittt 16-1
Singular Values and Singular Value Inequalities Roy Mathias .................. 17-1
Numerical Range  Chi-KWong Li ........o.iuuiiiiin ittt 18-1
Matrix Stability and Inertia  Daniel Hershkowitz ................cocooiiiinn.. 19-1

Topics in Advanced Linear Algebra

20
21
22
23
24
25
26

Inverse Eigenvalue Problems  Alberto Borobia ...................ccoovviiinii... 20-1
Totally Positive and Totally Nonnegative Matrices  Shaun M. Fallat ............ 21-1
Linear Preserver Problems  Peter Semrl ......................c..ceiiiiiiiin... 22-1
Matrices over Integral Domains  Shmuel Friedland ............................. 23-1
Similarity of Families of Matrices ~ Shmnuel Friedland ........................... 24-1
Max-Plus Algebra  Marianne Akian, Ravindra Bapat, Stéphane Gaubert ......... 25-1
Matrices Leaving a Cone Invariant  Bit-Shun Tam and Hans Schneider .......... 26-1






Basic Linear
Algebra

Vectors, Matrices, and Systems of Linear Equations JaneDay..................

Vector Spaces * Matrices * Gaussian and Gauss—Jordan Elimination * Systems of Linear
Equations ¢ Matrix Inverses and Elementary Matrices * LU Factorization

Linear Independence, Span, and Bases Mark Mills........................c....

Span and Linear Independence + Basis and Dimension of a Vector Space * Direct Sum
Decompositions * Matrix Range, Null Space, Rank, and the Dimension

Theorem * Nonsingularity Characterizations *+ Coordinates and Change

of Basis * Idempotence and Nilpotence

Linear Transformations  Francesco Barioli ............. .. .. ..o,

Basic Concepts * The Spaces L(V, W) and L(V, V) * Matrix of a Linear
Transformation * Change of Basis and Similarity « Kernel and Range * Invariant
Subspaces and Projections * Isomorphism and Nonsingularity Characterization

+ Linear Functionals and Annihilator

Determinants and Eigenvalues Luz M. DeAlba ............................ ...

Determinants * Determinants: Advanced Results * Eigenvalues and Eigenvectors
Inner Product Spaces, Orthogonal Projection, Least Squares,

and Singular Value Decomposition Lixing Han and Michael Neumann . ... .....

Inner Product Spaces « Orthogonality * Adjoints of Linear Operators on Inner
Product Spaces ¢ Orthogonal Projection * Gram-Schmidt Orthogonalization and QR
Factorization * Singular Value Decomposition * Pseudo-Inverse * Least Squares
Problems






Vectors, Matrices, and
Systems of Linear
Equations

1.1 Vector SPaces .....vuvenininii i 1-1
1.2 MALTICES - evveee ettt e 1-3
1.3  Gaussian and Gauss—Jordan Elimination .............. 1-7
1.4 Systems of Linear Equations ........................... 1-9
1.5 Matrix Inverses and Elementary Matrices .............. 1-11
Jane Day 1.6 LU Factorization ..........c.oviiniiiiineiiiieannnn.. 1-13
San Jose State University References ... ..ot e 1-16

Throughout this chapter, F will denote a field. The references [Lay03], [Leo02], and [SIF00] are good
sources for more detail about much of the material in this chapter. They discuss primarily the field of real
numbers, but the proofs are usually valid for any field.

1.1 Vector Spaces

Vectors are used in many applications. They often represent quantities that have both direction and
magnitude, such as velocity or position, and can appear as functions, as n-tuples of scalars, or in other
disguises. Whenever objects can be added and multiplied by scalars, they may be elements of some vector
space. In this section, we formulate a general definition of vector space and establish its basic properties.
An element of a field, such as the real numbers or the complex numbers, is called a scalar to distinguish it
from a vector.

Definitions:

A vector space over F is a set V together with a function V' x V — V called addition, denoted (x,y) —
X+, and a function F x V — V called scalar multiplication and denoted (c,x) — cx, which satisfy
the following axioms:

(Commutativity) For eachx,y e V,x+y=y+x

(Associativity) For each x,y,z€e V, (x+y) +z=x+ (y + 2).

(Additive identity) There exists a zero vector in V, denoted 0, such that 0 + x = xfor eachx € V.
(Additive inverse) For each x € V, there exists —x € V such that (—x) +x=0.

(Distributivity) For eacha € F andx,y € V,a(x +y) = ax + ay.

(Distributivity) For eacha,b € F andx € V, (a + b) x=ax + bx.

S e
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7. (Associativity) For each a, b € F andx € V, (ab) x = a(bx).
8. Foreachxe V, Ix=x.

The properties that forallx,y € V,anda € F,x+ye V andax € V, are called closure under addition
and closure under scalar multiplication, respectively. The elements of a vector space V are called vectors.
A vector space is called real if F = R, complex if F = C.

If n is a positive integer, F" denotes the set of all ordered n-tuples (written as columns). These are

X1 Y1
sometimes written instead asrows [x; --- x,]or(x,...,x,). Forx= S hy=|:|€eF" andc € F,
Xn Yn
x1 +n X1
define addition and scalar multiplication coordinate-wise: x + y = andex= | . |.Let0
Xy + Vn CXp

denote the n-tuple of zeros. For x € F" x; is called the j™ coordinate of x.

A subspace of vector space V over field F is a subset of V, which is itself a vector space over F when
the addition and scalar multiplication of V are used. If S; and S, are subsets of vector space V, define
Si+S={x+y:xe S;andye S}

Facts:

Let V be a vector space over F.

1. F"is a vector space over F.
2. [FIS03, pp. 11-12] (Basic properties of a vector space):

* The vector 0 is the only additive identity in V.
* For each x € V, —x is the only additive inverse for x in V.
* Foreachxe V, —x = (—1)x.
* Ifa e Fandx € V,thenax=0ifand onlyifa = 0orx=0.
* (Cancellation) If x,y,z€ Vandx+y=x+z, theny =z
3. [FISO03, pp. 16-17] Let W be a subset of V. The following are equivalent:
* Wisa subspace of V.
* W is nonempty and closed under addition and scalar multiplication.
* 0c Wandforanyx,ye Wanda,b € F,ax+ by e W.

4. For any vector space V, {0} and V itself are subspaces of V.

[FISO03, p. 19] The intersection of any nonempty collection of subspaces of V is a subspace of V.

6. [FIS03, p. 22] Let W; and W, be subspaces of V. Then W) + W, is a subspace of V containing W;
and W;. It is the smallest subspace that contains them in the sense that any subspace that contains
both W; and W; must contain Wy + W;.

o

Examples:

1. The set R" of all ordered n-tuples of real numbers is a vector space over R, and the set C" of

3
all ordered n-tuples of complex numbers is a vector space over C. For instance, x = 0| and

-1

2i 342i —2i -2

y= 4 are elements of C’; x + y = 4 |,—-y= —4 |,andiy=| 4 |.
2-3i 1-3i —2+43i 3+ 2i |

2. Notice R" is a subset of C" but not a subspace of C", since R" is not closed under multiplication
by nonreal numbers.
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3. The vector spaces R, R?, and R® are the usual Euclidean spaces of analytic geometry. There are
three types of subspaces of R*: {0}, a line through the origin, and R? itself. There are four types of
subspaces of R”: {0}, aline through the origin, a plane through the origin, and R itself. For instance,
letv=(5—1,—1) and w = (0,3, —2). The lines W; = {sv:s € R} and W, = {sw:s € R} are
subspaces of R’. The subspace W, + Wy = {sv+tw:s,t € R} isaplane. The set {sv+w:s € R}
is a line parallel to Wj, but is not a subspace. (For more information on geometry, see Chapter 65.)

4. Let F[x] be the set of all polynomials in the single variable x, with coefficients from F. To add
polynomials, add coefficients of like powers; to multiply a polynomial by an element of F, multi-
ply each coefficient by that scalar. With these operations, F [x] is a vector space over F. The zero
polynomial z, with all coefficients 0, is the additive identity of F [x]. For f € F[x], the function
— f defined by — f(x) = (—1) f(x) is the additive inverse of f.

5. In F[x], the constant polynomials have degree 0. For n > 0, the polynomials with highest power
term x" are said to have degree n. For a nonnegative integer n, let F [x; n] be the subset of F [x]
consisting of all polynomials of degree # or less. Then F [x;n] is a subspace of F [x].

6. When n > 0, the set of all polynomials of degree exactly #n is not a subspace of F [x] because it is
not closed under addition or scalar multiplication. The set of all polynomials in R[x] with rational
coefficients is not a subspace of R[x] because it is not closed under scalar multiplication.

7. Let V be the set of all infinite sequences (a,,a,,as, .. .), where each a; € F. Define addition and
scalar multiplication coordinate-wise. Then V is a vector space over F.

8. Let X be a nonempty setand let (X, F ) be the set of all functions f: X — F.Let f,g € F(X, F)
and define f 4 g and ¢f pointwise, as ( f +¢)(x) = f(x) +g(x) and (¢f )(x) = ¢f (x) forall x € X.
With these operations, F (X, F) is a vector space over F. The zero function is the additive identity
and (—1) f = — f, the additive inverse of f.

9. Let X beanonempty subset of R”. The set C(X) ofall continuous functions f: X — Risasubspace
of F(X,R). The set D(X) of all differentiable functions f: X — R is a subspace of C(X) and also
of F(X,R).

1.2 Matrices

Matrices are rectangular arrays of scalars that are used in a great variety of ways, such as to solve linear
systems, model linear behavior, and approximate nonlinear behavior. They are standard tools in almost
every discipline, from sociology to physics and engineering.

Definitions:
an e alp
Anm x p matrix over F isanm x p rectangulararray A= | @ [, withentries from F. The

At - Amp
notation A = [a;;] that displays a typical entryis also used. The element a;; of the matrix A is called the (i, )
entry of A and can also be denoted (A);;. The shape (or size) of Ais m x p,and A is square if m = p;in
this case, m is also called the size of A. Two matrices A = [a;;] and B = [b;;] are said to be equal if they have
the same shape and a;; = bjj foralli, j. Let A = [a;;] and B = [b;j] be m x p matrices, and let ¢ be a scalar.
Define addition and scalar multiplication on the set of all m x p matrices over F entrywise,as A+ B =
[a;j + bjj] and cA = [ca;;]. The set of all m x p matrices over F with these operations is denoted F"*?.

611]‘

If Aism x p,rowiis[ap, ..., ajp]andcolumn jis | : |. These are called a row vector and
Amj

a column vector respectively, and they belong to F"*! and F!*", respectively. The elements of F" are

identified with the elements of F"*! (or sometimes with the elements of F'*"). Let 0,,, denote the m x p
matrix of zeros, often shortened to 0 when the size is clear. Define —A = (—1)A.
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b
Let A=[a; ... a,] € F" P wherea;isthe jth columnof A,andletb = | : | € FP*1 The
bP
matrix—vector product of A and bis Ab = b,a; +--- 4 bya,. Notice Abism x 1.
IfAe F™Pand C =[¢; ... c¢,] € FP*" define the matrix product of A and C as AC =

[Ac; ... Ac,].Notice ACism X n.

Square matrices A and B commute if AB= BA. When i = j, a;; is a diagonal entry of A and the set of
all its diagonal entries is the main diagonal of A. When i # j, a;; is an off-diagonal entry.

The trace of A is the sum of all the diagonal entries of A, tr A = Z?:l aji.

A matrix A = [a;] is diagonal if a;; = 0 whenever i # j, lower triangular if a;; = 0 whenever i < j,
and upper triangular if a;; = 0 whenever i > j. A unit triangular matrix is a lower or upper triangular
matrix in which each diagonal entry is 1.

The identity matrix I,,, often shortened to I when the size is clear, is the n x n matrix with main
diagonal entries 1 and other entries 0.

A scalar matrix is a scalar multiple of the identity matrix.

A permutation matrix is one whose rows are some rearrangement of the rows of an identity matrix.

Let A € F™*?, The transpose of A, denoted AT, is the p x m matrix whose (i, j) entry is the (j,i)
entry of A.

The square matrix A is symmetric if AT = A and skew-symmetric if AT = —A.

When F = C, thatis, when A has complex entries, the Hermitian adjoint of A is its conjugate transpose,
A* = AT; that is, the (7, j) entry of A* is @j;. Some authors, such as [Leo02], write AH instead of A*.

The square matrix A is Hermitian if A* = A and skew-Hermitian if A* = —A.

Let o be a nonempty set of row indices and 8 a nonempty set of column indices. A submatrix of A is
a matrix A[a, 8] obtained by choosing the entries of A, which lie in rows & and columns 8. A principal
submatrix of A is a submatrix of the form A[a, «]. A leading principal submatrix of A is one of the form
Al{1,.. . kL {L, ..., k}].

Facts:
1. [SIF00, p. 5] F™*? is a vector space over F. Thatis, if0, A, B,C € F"*?,and c,d € F, then:
* A+B=B+A
*(A+B)+C=A+(B+C)
*cA+0=04+A=A
c A+ (-A)=(—A)+A=0
* c(A+B)=cA+ B
* (c+d)A=cA+dA
(cd) A = c(dA)
c1A=A
2. If A e F™? and C € FP*", the (i, j) entry of AC is (AC);; = Zle aixay;. This is the matrix
product of row i of A and column j of C.

3. [SIFOO, p. 88] Let ¢ € F, let A and B be matrices over F, let I denote an identity matrix, and
assume the shapes allow the following sums and products to be calculated. Then:

s AI=IA=A

* A0O=0and0A=0

* A(BC) = (AB)C

* A(B+C)=AB+AC

* (A+ B)C=AC+ BC

c(AB) = A(cB) = (cA) B for any scalar ¢
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4. [SIF00, p. 5 and p. 20] Let ¢ € F,let A and B be matrices over F, and assume the shapes allow the
following sums and products to be calculated. Then:

s (AT =4
* (A+B)T=AT + BT
o (cA)T = AT
* (AB)T = BT AT
5. [Leo02, pp. 321-323] Let ¢ € C, let A and B be matrices over C, and assume the shapes allow the
following sums and products to be calculated. Then:

o« (A" = A
* (A+ B)* = A*+ B*
e (cA)* =CcA*

* (AB)* = B*A*

6. If Aand B are n x n and upper (lower) triangular, then AB is upper (lower) triangular.

Examples:

1 2 3

7 1 2 3 —4
45 6}andb: 8 .Bydeﬁnition,Ab:7[}+8{]—9[}:{ }Hand

1. LetA:[ 4 5 6 14
-9
4.745-8—6-9 14

—1 8
3 0|. Then A + B =

calculation of Ab can be done more quickly using Fact 2: Ab = [1 TA28=3 9} = [_4} .
1
1
1 2 =2

2. Let A = [1 -3 4},3: [_i i 0],andC:

2 -2 0]

ﬂ and 2A = L _g 12} . The matrices A + C, BA, and AB are not defined, but
1 8
1
10 14 0

1

Al 3] A| O =[
-2

3. Even when the shapes of A and B allow both AB and BA to be calculated, AB and BA are not usually

b];thenAB: {a b} and BA = {a Zb} ,

. 1 0 a
equal. For instance, let A = {0 2} and B = L d e 2d ¢ 2d

which will be equal only if b = ¢ = 0.
4. The product of matrices can be a zero matrix even if neither has any zero entries. For example, if

A= [; :;] and B = E ﬂ , then AB = {8 g} . Notice that BA is also defined but has no

. 3 -3
zero entries: BA = { } .

3 =3
. L0 0 1 0 . Lo 0 1 0 0
5. The matrices [0 0 0| and 0 -3 0 are diagonal, |2 0 0| and s _3 0 are
0 0 -9 1 5 -9
1 —4 7 (1) i 2 1 0 0
lower triangular,and | 0 1 2| and 0 0 ol 2reupper triangular. Thematrix (2 1 0
0 0 -9 00 0 1 5 1

is unit lower triangular, and its transpose is unit upper triangular.
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10.

11.

12.
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. L . . . 101 001 001
. Examples of permutation matrices include every identity matrix, L ol 0 1 Of,and |1 0 O
1 00 010
. . 141 142 1—i 1—-2i
1 —3i 4 . . . .
. Let A= L _:_211 5; O] .Then AT = | —3i 5i and A* = | 3i —5i
4 0 4 0
[1 2 3 i 2 3+42i
. The matrices |2 4 5| and 2 4—i 5i are symmetric.
3 5 6 342 5i 6
[0 2 3 0 2 342
. The matrices [—2 0 5| and -2 0 —5 | areskew-symmetric.
-3 -5 0 ~3-2i 5 0
1 241 1-—3;
The matrix | 2 —i 0 1 is Hermitian, and any real symmetric matrix, such as
1+ 3i 1 6
4 2 3]
2 0 5|,isalso Hermitian.
3 5 —1
[ 2 —3+42i
The matrix -2 4i 5 is skew-Hermitian, and any real skew-symmetric matrix,
3+2i =5 0
0 2 =3
suchas | —2 0 5] ,is also skew-Hermitian.
3 =5 0
1 2 3 4 3
Let A= > 6 7 8 RowlofAis[l 2 3 4],column3is 7 and the submatrix
9 10 11 12 ’ 11’
13 14 15 16 15
2 3 4
in rows {1, 2, 4} and columns {2, 3, 4} is A[{1,2,4},{2,3,4}] = 6 7 8| .A principal
14 15 16
1 2 4
submatrix of A is A[{1,2,4},{1,2,4}]= | 5 6 8]. Theleading principal submatrices of
13 14 16
1 2 1 2 3
Aare [1], [5 6]’ 5 6 7|,and A itself.

9 10 11
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1.3 Gaussian and Gauss-Jordan Elimination

Definitions:

Let A be a matrix with m rows.
When a row of A is not zero, its first nonzero entry is the leading entry of the row. The matrix A is in
row echelon form (REF) when the following two conditions are met:

1. Any zero rows are below all nonzero rows.
2. For each nonzero row i,i < m — 1, either row i + 1 is zero or the leading entry of row i + lisina
column to the right of the column of the leading entry in row i.

The matrix A is in reduced row echelon form (RREF) if it is in row echelon form and the following
third condition is also met:

3. Ifajg is the leading entry in row 7, then ajx = 1, and every entry of column k other than aj is zero.
Elementary row operations on a matrix are operations of the following types:

1. Add a multiple of one row to a different row.
2. Exchange two different rows.
3. Multiply one row by a nonzero scalar.

The matrix A is row equivalent to the matrix B if there is a sequence of elementary row operations
that transforms A into B. The reduced row echelon form of A, RREF(A), is the matrix in reduced row
echelon form that is row equivalent to A. A row echelon form of A is any matrix in row echelon form
that is row equivalent to A. The rank of A, denoted rank A or rank(A), is the number of leading entries
in RREF(A). If A is in row echelon form, the positions of the leading entries in its nonzero rows are called
pivot positions and the entries in those positions are called pivots. A column (row) that contains a pivot
position is a pivot column (pivot row).

Gaussian Elimination is a process that uses elementary row operations in a particular way to change,
or reduce, a matrix to row echelon form. Gauss—Jordan Elimination is a process that uses elementary row
operations in a particular way to reduce a matrix to RREE See Algorithm 1 below.

Facts:
Let A € F™*P,

[Lay03, p. 15] The reduced row echelon form of A, RREF(A), exists and is unique.

A matrix in REF or RREF is upper triangular.

Every elementary row operation is reversible by an elementary row operation of the same type.
If A is row equivalent to B, then B is row equivalent to A.

If A is row equivalent to B, then RREF(A) = RREF(B) and rank A = rank B.

The number of nonzero rows in any row echelon form of A equals rank A.

NN LD

If B is any row echelon form of A, the positions of the leading entries in B are the same as the
positions of the leading entries of RREF(A).

8. [Lay03, pp. 17-20] (Gaussian and Gauss—Jordan Elimination Algorithms) When one or more piv-
ots are relatively small, using the algorithms below in floating point arithmetic can yield inaccurate
results. (See Chapter 38 for more accurate variations of them, and Chapter 75 for information on
professional software implementations of such variations.)
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Algorithm 1. Gaussian and Gauss-Jordan Elimination

Let A € F™*P_ Steps 1 to 4 below do Gaussian Elimination, reducing A to a matrix that is in row
echelon form. Steps 1 to 6 do Gauss—Jordan Elimination, reducing A to RREF(A).

1. LetU =Aandr =1.IfU =0, U is in RREE.

2. If U # 0, search the submatrix of U in rows r to m to find its first nonzero column, k, and
the first nonzero entry, ajk, in this column. If i > r, exchange rows r and i in U, thus getting a
nonzero entry in position (r, k). Let U be the matrix created by this row exchange.

3. Add multiples of row r to the rows below it, to create zeros in column k below row r. Let U
denote the new matrix.

4. Ifeitherr = m — 1orrowsr + 1,...,mare all zero, U is now in REF. Otherwise, letr =r + 1
and repeat steps 2, 3, and 4.

5. Letky,...,ks be the pivot columns of U, so (1, k1), .. ., (s, k) are the pivot positions. Fori = s,
s —1,...,2,add multiples of row i to the rows above it to create zeros in column k; above row i.

6. Fori =1,...,s, divide row s by its leading entry. The resulting matrix is RREF(A).

Examples:
1. The RREF of a zero matrix is itself, and its rank is zero.

1 3 4 -8 1 3 4 -8
2.LetA=1{0 0 2 4{andB= (0 0 0 4/[.Bothareupper triangular, but A is in REF
0 0 0 0 0 0 1 0

and B is not. Use Gauss—Jordan Elimination to calculate RREF(A) and RREF(B).

1 3 0 -16
For A,add (—2)(row2) to rowlandmultiplyrowzby%.ThisyieldsRREF(A) =10 0 1 2
0 0 0
1 3 4 -8
For B, exchange rows 2 and3toget |0 0 1 0|, which is in REE. Then add 2(row 3) to
0 0 0 4

row 1 to get a new matrix. In this new matrix, add (—4)(row 2) to row 1, and multiply row 3 by i.

1 3 0 0
This yields RREF(B) = [0 0 1 0.
0 0 0 1

Observe that rank (A) = 2 and rank (B) = 3.

2 6 4 4
-4 -12 -8 -7

0 0 —1 —4f°

1 3 1 =2

3. Apply Gauss—Jordan Elimination to A =

Step . Let UV = Aandr = 1.
Step 2. No row exchange is needed since a;; # 0.

2 6 4 4

) @ 00 o 1

Step 3. Add (2)(row 1) to row 2, and (—3)(row 1) to row 4 to get U'¥ = 0 0 1 4
00 -1 —4

Step 4. The submatrix in rows 2, 3, 4 is not zero, so let r = 2 and return to Step 2.
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Step 2. Search the submatrix in rows 2 to 4 of U to see that its first nonzero column is column 3
and the first nonzero entry in this column is in row 3 of U, Exchange rows 2 and 3 in U®® to get

2 6 4 4
0 0 1 4
3 _
v 0 0 0 1
0o 0 -1 —4
2 6 4 4
. 0 0 1 4
Step 3. Add row 2 to row 4 in U®® to get U = 00 0 1l°
0 0 0 O

Step 4. Now U™ is in REF, so Gaussian Elimination is finished.
Step 5. The pivot positions are (1,1), (2, 3), and (3, 4). Add —4(row 3) to rows 1 and 2 of U™ to get

2 6 4 0 2 6 0 0
0 0 1 0 0 0 1 0
(5) — (5) (5) (6) —
U 00 0 1 . Add —4(row 2) of U™ torow 1 of U™ to get U'® = 00 0 1
0 0 0 O 0 0 0 O
1 3 0 0
. (6) 1 . . (7) _ 0 0 1 O . .
Step 6. Multiply row 1 of U'® by 3, obtaining U = o0 o 1’ which is RREF(A).
0 0 0 O
1.4 Systems of Linear Equations
Definitions:
Alinear equation is an equation of the forma,x, +- - - +-a,x, = bwhereay,...,a,,b € Fandx,...,x,

are variables. The scalars a; are coefficients and the scalar b is the constant term.
A system of linear equations, or linear system, is a set of one or more linear equations in the same

anx; +---+apx, = b

20X + -+ axx, =b;

. a . .
variables, such as . A solution of the system is a p-tuple (ci,. ..,c,) such that

X1+ -+ AmpXp = by
letting x; = c; for each j satisfies every equation. The solution set of the system is the set of all solutions. A
system is consistent if there exists at least one solution; otherwise it is inconsistent. Systems are equivalent
if they have the same solution set. If b; = 0 for all j, the system is homogeneous. A formula that describes
a general vector in the solution set is called the general solution.

anx +--~+a1pxp :bl an

aip
For the system fl?l.xz tootayxy =b sthemx pmatrix A= | ¢ | isthe coefficient
A1 X1 + -+ AmpXp = by A1 -0 Amp
by X1
matrix,b= | . | isthe constantvector,andx= | : | is the unknown vector. The m x (p + 1) matrix
b Xp

[A b] is the augmented matrix of the system. It is customary to identify the system of linear equations
C1
with the matrix-vector equation Ax = b. This is valid because a column vector x = | . | satisfies Ax =

Cp
b if and only if (cy, . .., c,) is a solution of the linear system.
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Observe that the coefficients of x; are stored in column k of A. If Ax = b is equivalent to Cx = d and
column k of C is a pivot column, then xj is a basic variable; otherwise, xy is a free variable.

Facts:

Let Ax = b be a linear system, where A is an m x p matrix.

1. [SIF0O, pp.27, 118] Ifelementary row operations are done to the augmented matrix [ A b], obtaining
a new matrix [C d], the new system Cx = d is equivalent to Ax =b.

2. [SIF00, p. 24] There are three possibilities for the solution set of Ax = b: either there are no solutions
or there is exactly one solution or there is more than one solution. If there is more than one solution
and F is infinite (such as the real numbers or complex numbers), then there are infinitely many
solutions. If there is more than one solution and F is finite, then there are at least | F | solutions.

3. A homogeneous system is always consistent (the zero vector 0 is always a solution).

The set of solutions to the homogeneous system Ax = 0 is a subspace of the vector space F?.

[SIFOO0, p. 44] The system Ax = b is consistent if and only if b is not a pivot column of [ A b], that

is, if and only if rank([ A b]) = rank A.

6. [SIF0O, pp. 29-32] Suppose Ax = b is consistent. It has a unique solution if and only there is a
pivot position in each column of A, that is, if and only if there are no free variables in the equation
Ax = b. Suppose there are t > 1 nonpivot columns in A. Then there are ¢ free variables in the
system. If RREF([A b]) = [C d], then the general solution of Cx = d, hence of Ax = b, can
be written in the form x = s;v; + --- + s;v; + w where vi,..., v;, w are column vectors and
S1,...,S; are parameters, each representing one of the free variables. Thus x = w is one solution of
Ax =b. Also, the general solution of Ax = 0isx = s5;v] + -+ + 5;V;.

7. [SIFOO, pp. 29-32] (General solution of a linear system algorithm)

Yo

Algorithm 2: General Solution of a Linear System Ax =b

This algorithm is intended for small systems using rational arithmetic. It is not the most efficient and
when some pivots are relatively small, using this algorithm in floating point arithmetic can yield inaccu-
rate results. (For more accurate and efficient algorithms, see Chapter 38.) Let A € F™*? andbe F?*!,

1. Calculate RREF([ A b]), obtaining [C d].
2. If there is a pivot in the last column of [C d], stop. There is no solution.

3. Assume the last column of [C d] is not a pivot column, and letd = [d, ..., d,]T.
a. Ifrank(C) = p, so there exists a pivot in each column of C, then x = d is the unique solution
of the system.

b. Supposerank C =r < p.

i. Write the system of linear equations represented by the nonzero rows of [C d]. In each
equation, the first nonzero term will be a basic variable, and each basic variable appears
in only one of these equations.

ii. Solve each equation for its basic variable and substitute parameter names for the p —r
free variables, say si,...,s,_,. This is the general solution of Cx = d and, thus, the
general solution of Ax =b.

iii. To write the general solution in vector form, asx = s w4 '—i—sp_,v("”) +w,let (i, k;)
be the it" pivot position of C. Definew € F? bywy, = d; fori = 1,...,r,andall other en-
triesof ware 0. Let x,,, be the jt free variable, and define the vectorsv\/) € F? asfollows:

Forj=1,...,p—r,
the u;-entry of viis 1,
fori =1,...,r, the k;-entry of v is —Ciuj>
and all other entries of v/) are 0.
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Examples:
. =0 . 10 .. 1100
1. Thelinearsystem _2 IZ —0 hasaugmented matrix [_ 11 0} . The RREF of thisis [O ) 0] )
S . . =0 -
which is the augmented matrix for the equivalent system il o Thus, the original system has a
2 ==
. . . 0
unique solution in R, (0,0). In vector form the solution is x = Bl} = [ 0} .
2
2. The system X1+ has a unique solution in R2, (1,1),orx= Ll .
X1 — Xy = 0 X2 1
X1 + X + X3 = 2 0
3. The system X, + x3 = 2 has a unique solution in R? (0,2,0),orx= |2
X3 = 0 0
X1 + Xy = 2 . . . . 2 .
4. The system has infinitely many solutions in R°. The augmented matrix reduces
2x1 + 2X2 =14

1.5

. The system

. These systems have no solutions:

1 1 2 . . . . . .
to { 0 0 O] , so the only equation left is x; + x, = 2. Thus x; is basic and x; is free. Solving

Xy =-—s+2

Xy =S

for x; and letting x, = s gives x; = —s + 2. Then the general solution is , or all

vectors of the form (—s + 2,s). Letting x = [xl} , the vector form of the general solution is
2

=D

X1+x+x3+x=1

has infinitely many solutions in R*. Its augmented matrix
X + X3 — X4 = 3

1 1 1 1 1 1 0 0 2 =2 . .
{O 1 1 -1 3} reduces to 01 1 -1 3} . Thus, x; and x;, are the basic variables, and

x3 and x; are free. Write each of the new equations and solve it for its basic variable

X = —2X4 -2

to see . Let x3 = s; and x4, = s, to get the general solution
Xy = —X3 + X4 + 3 3 ! 4 2 8 8
X1 = —252 -2 0 -2 -2
= — 3 —1 1 3
2 Sut s Jorx = s;vi) 4+ 5,v® 4w =g + 5, +
X3 = 8§ 1 0 0
X4 = $p 0 1 0

x1+x+x=0
and x; — x; — x3 = 0. This can be verified by
X +x3=1

X1+X2:O
x1+x =1

inspection, or by calculating the RREF of the augmented matrix of each and observing that each
has a pivot in its last column.

Matrix Inverses and Elementary Matrices

Invertibility is a strong and useful property. For example, when a linear system Ax = b has an invertible
coefficient matrix A, it has a unique solution. The various characterizations of invertibility in Fact 10
below are also quite useful. Throughout this section, F will denote a field.
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Definitions:

An n x n matrix A is invertible, or nonsingular, if there exists another # x n matrix B, called the inverse
of A, such that AB = BA = I,,. The inverse of A is denoted A~! (cf. Fact 1). If no such B exists, A is not
invertible, or singular.

For an n x n matrix and a positive integer m, the mthpowerof Ais A” = AA... A.Itisalso convenient

m copies of A

to define A° = I,,. If A is invertible, then A™" = (A~1)™.
An elementary matrix is a square matrix obtained by doing one elementary row operation to an identity
matrix. Thus, there are three types:

1. A multiple of one row of I,, has been added to a different row.
2. Two different rows of I, have been exchanged.
3. One row of I,, has been multiplied by a nonzero scalar.

Facts:

1. [SIFO0O, pp. 114-116] If A € F™"*" is invertible, then its inverse is unique.

2. [SIF00, p. 128] (Method to compute A~') Suppose A € F"*". Create the matrix [A I,] and
calculate its RREFE, which will be of the form [RREF(A)X]. If RREF(A) = I,,, then A is invertible
and X = A™'. If RREF(A) # I, then A is not invertible. As with the Gaussian algorithm, this
method is theoretically correct, but more accurate and efficient methods for calculating inverses
are used in professional computer software. (See Chapter 75.)

3. [SIF0O0, pp. 114-116] If A € F"™ " is invertible, then A~! is invertible and (A~!)~! = A.

4. [SIF00, pp. 114-116] If A,B € F™" are invertible, then AB is invertible and (AB)™! =
B71A7L,

5. [SIF00, pp. 114-116] If A € F™*" is invertible, then AT is invertible and (AT)~! = (A~})T.

6. If A € F™"isinvertible, then for each b € F"*!, Ax = b has a unique solution, and itisx = A~'b.

7. [SIF00, p. 124] If A € F™*" and there exists C € F"*" such that either AC = I,, or CA = I,,, then
Aisinvertible and A~! = C. That s, a left or right inverse for a square matrix is actually its unique
two-sided inverse.

8. [SIF0O, p. 117] Let E be an elementary matrix obtained by doing one elementary row operation to
I,,. If that same row operation is done to an n X p matrix A, the result equals EA.

9. [SIF00, p. 117] An elementary matrix is invertible and its inverse is another elementary matrix of
the same type.

10. [SIFO0O, pp. 126] (Invertible Matrix Theorem) (See Section 2.5.) When A € F"*", the following
are equivalent:

* Aisinvertible.

* RREF(A) = I,.

* Rank(A) = n.

* The only solution of Ax=0isx=0.

* For everyb € F™*!, Ax = b has a unique solution.

* For everyb € F"*!, Ax =b has a solution.

* There exists B € F"*" such that AB = I,,.

* There exists C € F"*" such that CA = I,.

» AT is invertible.

* There exist elementary matrices whose product equals A.

11. [SIFO0O, p. 148] and [Lay03, p.132] Let A € F"*" be upper (lower) triangular. Then A is invertible
if and only if each diagonal entry is nonzero. If A is invertible, then A~! is also upper (lower)
triangular, and the diagonal entries of A~ are the reciprocals of those of A. In particular, if L is a
unit upper (lower) triangular matrix, then L~ is also a unit upper (lower) triangular matrix.
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12.

Matrix powers obey the usual rules of exponents, i.e., when A and A’ are defined for integers
s and t, then ASA! = AT (AS)' = A¥.

Examples:

1.

1.6

A=

. The matrix A = {1

For any #, the identity matrix I, is invertible and is its own inverse. If P is a permutation matrix,
itis invertible and P! = PT.
1

IfA= {; ﬂ and B = {_ 5 _i] , then calculation shows AB = BA = I, so A is invertible and

A= B.
0 5 —-10 -5
1|,then A=t = [0 0.5 0.5|,as can be verified by multiplication.

-1 0 0 -1

o o
[=H SIS

5 ﬂ is not invertible since RREF(A) # I,. Alternatively, if B is any 2 x 2

matrix, AB is of the form { er 255} , which cannot equal I,.

. Let A be an n x n matrix A with a zero row (zero column). Then A is not invertible since

RREF(A) # I,. Alternatively, if B is any n x n matrix, AB has a zero row (BA has a zero column),
so B is not an inverse for A.

IfA= {? Z] is any 2 X 2 matrix, then A is invertible if and only if ad — bc # 0; further, when

1 _
ad — bc # 0,A7! = d b . The scalar ad — bc is called the determinant of A.
ad —bc |—c a

(The determinant is defined for any n X n matrix in Section 4.1.) Using this formula, the matrix

A= [Z i] from Example 2 (above) has determinant 1, so A is invertibleand A~! = [_; _;} R

.12 . . . . . .
as noted above. The matrix { 5 4} from Example 3 (above) is not invertible since its determinant

is 0.

Let A = . Then RREF([A I,]) =

—_— DN =
— N W
-0 O
S O
S = O
- o O
o

0
0|, so A™! exists and
1

7 =3 0
equals | —2 1 0
-5 2 1

LU Factorization

This section discusses the LU and PLU factorizations of a matrix that arise naturally when Gaussian
Elimination is done. Several other factorizations are widely used for real and complex matrices, such as
the QR, Singular Value, and Cholesky Factorizations. (See Chapter 5 and Chapter 38.) Throughout this
section, F will denote a field and A will denote a matrix over F. The material in this section and additional
background can be found in [GV96, Sec. 3.2].

Definitions:

Let A be a matrix of any shape.
An LU factorization, or triangular factorization, of A is a factorization A = LU where L is a square
unit lower triangular matrix and U is upper triangular. A PLU factorization of A is a factorization of
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the form PA = LU where P is a permutation matrix, L is square unit lower triangular, and U is upper
triangular. An LDU factorization of A is a factorization A = LDU where L is a square unit lower triangular
matrix, D is a square diagonal matrix, and U is a unit upper triangular matrix.

A PLDU factorization of A is a factorization PA = LDU where P is a permutation matrix, L is a square
unit lower triangular matrix, D is a square diagonal matrix, and U is a unit upper triangular matrix.

Facts: [GV96, Sec. 3.2]

1. Let A be square. If each leading principal submatrix of A, except possibly A itself, is invertible,
then A has an LU factorization. When A is invertible, A has an LU factorization if and only if each
leading principal submatrix of A is invertible; in this case, the LU factorization is unique and there
is also a unique LDU factorization of A.

2. Any matrix A hasa PLU factorization. Algorithm 1 (Section 1.3) performs the addition of multiples
of pivot rows to lower rows and perhaps row exchanges to obtain an REF matrix U. If instead, the
same series of row exchanges are done to A before any pivoting, this creates PA where P is a
permutation matrix, and then PA can be reduced to U without row exchanges. That is, there exist
unit lower triangular matrices E; such that Ey ... E;(PA) = U. It follows that PA = LU, where
L = (Ey...E;)"!is unit lower triangular and U is upper triangular.

3. In most professional software packages, the standard method for solving a square linear system
Ax =D, for which A is invertible, is to reduce A to an REF matrix U as in Fact 2 above, choosing row
exchanges by a strategy to reduce pivot size. By keeping track of the exchanges and pivot operations
done, this produces a PLU factorization of A. Then A = PTLUand PTLUx = b is the equation to
be solved. Using forward substitution, PTLy = b can be solved quickly for y, and then Ux =y can
either be solved quickly for x by back substitutution, or be seen to be inconsistent. This method
gives accurate results for most problems. There are other types of solution methods that can work
more accurately or efficiently for special types of matrices. (See Chapter 7.)

Examples:
1 1 2 3
. -1 -1 -3 1 . ST
1. Calculate a PLU factorization for A = 0 ] L If Gaussian Elimination is performed
-1 0 -1 1
on A, after adding row 1 to rows 2 and 4, rows 2 and 3 must be exchanged and the final result is
1 1 2 3
0 1 1 1 . . .
U = E;PE,E1A = 00 —1 4 where E, E,, and E3 are lower triangular unit matrices and
0 0 0 3
P is a permutation matrix. This will not yield an LU factorization of A. But if the row exchange
1 0 0 0 1 1 2 3
. o 0 01 0 0 1 1 1
is done to A first, by multiplying A by P = 0o 1 o ol one getsPA= | L -1 -3 1]
0 0 0 1 -1 0 -1 1
then Gaussian Elimination can proceed without any row exchanges. Add row 1 to rows 3 and 4 to get
1 1 2 3 1 0 0 O 1 0 0 0
0 1 1 1 1 0 0 1 0 0
F,F,PA = here F; = F, = . Th
2 0 0 —1 g M=y gy gl mdR=1y o g Thenadd
0 1 1 4 0 0 0 1 1 0 01
1 1 2 3 1 0 0 0
0 1 1 1 0 1 0 0
(=1)(row2)torow4togetU = F5 F, F{ PA= 00 —1 4 , where F3 = 0 01 o
0 0 0 3 0 -1 0 1
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Note that U is the same upper triangular matrix as before. Finally, L = (F; F, F;)™! is unit lower
triangular and PA = LU is true, so this is a PLU factorization of A. To get a PLDU factorization,

1 0 0 0 1 1 2 3
0 1 0 0 01 1 1
use the same P and L, and define D = 00 —1 0 and U = 0 0 1 —4
0 0 0 3 0 0 0 1
1 3 4
2. Let A=LU = |—1 —1 —5| . Each leading principal submatrix of A is invertible so A has
2 12 3
both LU and LDU factorizations:
100]|1 3 4 100|110 O
A=LU=|—-11 0[]0 2 —1|. Thisyieldsan LDUfactorizationof A, [—1 1 0|0 2 0
23 1||00 =2 23 1|({00 =2
1 3 4 1
0 1 —0.5|.WiththeLU factorization, an equation suchas Ax= | 1| canbesolved efficiently
0 0 1 0
1 1
as follows. Use forward substitution to solve Ly = | 1|, gettingy = 2|, and then backward
0 -8
—24
substitution to solve Ux =y, getting x = 3
4

0 -1 5
. . . . 0 1
3. Any invertible matrix whose (1, 1) entry is zero, such as [ ] ] or |1 1|, does not have
3

an LU factorization.

1 3 4
4. The matrix A = |—1 —3 —5| is not invertible, nor is its leading principal 2 x 2 submatrix,
2 6 6
1 0 0| (1 3 4
but it does have an LU factorization: A =LU= |—-1 1 0| |0 0 —1]. To find out if an
2 3 1] (0 0 1
1 1 1
equation such as Ax = [ 1| is consistent, notice Ly = |1| yieldsy = 2(,but Ux =yis
0 —8

0
1
inconsistent, hence Ax = | 1| has no solution.
0
5
1
2

0o -1
5. The matrix A = |1 1 has no LU factorization, but does have a PLU factorization with
0
0 1 0 1 0 0 1 1 1
P=1|1 0 O0|,L=(0 1 0|,andU= |0 -1 5
0 0 1 1 1 1 0 0 —14
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2.1 Span and Linear Independence

Let V be a vector space over a field F.

Definitions:

A linear combination of the vectors v, v,, ..., vy € V isasum of scalar multiples of these vectors; that is,
c1V1 +¢avy + - - - + ¢V, for some scalar coefficients ¢y, ¢y, ...,c; € F.If Sisaset of vectorsin V, alinear
combination of vectors in S is a vector of the form c¢;v; + c,v, + - -+ 4+ cxvi with k € N,v; € S,¢c; € F.
Note that S may be finite or infinite, but a linear combination is, by definition, a finite sum. The zero
vector is defined to be a linear combination of the empty set.

When all the scalar coefficients in a linear combination are 0, it is a trivial linear combination. A sum
over the empty set is also a trivial linear combination.

The span of the vectors v, v,, ..., vk € V is the set of all linear combinations of these vectors, denoted
by Span(vy,va, ..., V). If S is a (finite or infinite) set of vectors in V, then the span of S, denoted by
Span(S), is the set of all linear combinations of vectors in S.

If V = Span(S), then S spans the vector space V.

A (finite or infinite) set of vectors S in V is linearly independent if the only linear combination of
distinct vectors in S that produces the zero vector is a trivial linear combination. That is, if v; are distinct
vectors in S and ¢;vq + ¢,V + --- + vk = O, thenc; = ¢, = -+ = ¢ = 0. Vectors that are not
linearly independent are linearly dependent. That is, there exist distinct vectors v;,v,,...,vx € S and
C1,€2 ... ¢k notall 0 such that c;vy + covo + -+ + v = 0.

2-1
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Facts: The following facts can be found in [Lay03, Sections 4.1 and 4.3].

1. Span(¥) = {0}.

2. Alinear combination of a single vector v is simply a scalar multiple of v.

3. In a vector space V, Span(vy, vy, ..., Vi) is a subspace of V.

4. Suppose the set of vectors S = {v},va,...,Vi} spans the vector space V. If one of the vectors, say
v;, is a linear combination of the remaining vectors, then the set formed from S by removing v;
still spans V.

5. Any single nonzero vector is linearly independent.

6. Two nonzero vectors are linearly independent if and only if neither is a scalar multiple of the other.

7. If Sspans Vand § C T, then T spans V.

8. If T is a linearly independent subset of V and S C T, then S is linearly independent.

9. Vectors vi,V,,. ..,V are linearly dependent if and only if v; = ¢yvi + -+ 4+ ¢;—1Vie1 + Cit1Vigq1
~+ - 4 kg, for some 1 < i < k and some scalars ¢y, ...,¢;—1,Cit1,-..,Ck. A set S of vectors in
V is linearly dependent if and only if there exists v € S such that v is a linear combination of other
vectors in S.

10. Any set of vectors that includes the zero vector is linearly dependent.
Examples:
, o { 0 1 0] ¢
1. Linear combinations of , € R? are vectors of the form ¢, + ¢ = ,
- 3 —1 3 —C1 + 3C2

1], [0} ) In fact,
—1 3

for any scalars ¢;,c; € R. Any vector of this form is in Span(

1 0
Span ( [ ) ] ) [3 } ) = RR? and these vectors are linearly independent.

2. If v e R" and v # 0, then geometrically Span(v) is a line in R” through the origin.

. In R?,

. Suppose n > 2 and vy, v, € R" are linearly independent vectors. Then geometrically Span(vy, v;) is

a plane in R” through the origin.

. Any polynomial p(x) € R[x] of degree less than or equal to 2 can easily be seen to be a linear

combination of 1, x, and x2. However, p(x) is also a linear combination of 1,1 + x, and 1 + x2. So
Span(1, x,x?) = Span(1,1 + x, 1 + x?) = R[x;2].

1 0 0
0 1 0
. The n vectors ¢; = 0], e = 0f,..., e, = | . | span F", for any field F. These vectors are
: : 0
0 0 1

also linearly independent.

0
3

1 0 1
1] and {3} are linearly independent. However, [ 1], [

)

:| , and |:;:| are linearly

1

+2
-1

dependent, because {;} = {

. The infinite set {1, x,x?%,...,x",...} is linearly independent in F [x], for any field F.
. In the vector space of continuous real-valued functions on the real line, C(R), the set {sin(x), sin(2x),

..»sin(nx), cos(x), cos(2x), ..., cos(nx)} is linearly independent for any n € N. The infinite
set {sin(x), sin(2x), .. .,sin(nx),.. ., cos(x), cos(2x),. .., cos(nx), ...} is also linearly independent

in C(R).
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Applications:

2

dy

1. The homogeneous differential equation 2y 39 + 2y = 0 has as solutions y;(x) = ¢>* and

2.2

dx? dx
y2(x) = e*. Any linear combination y(x) = ¢;y1(x) + c2y2(x) is a solution of the differential
equation, and so Span(e?*,e*) is contained in the set of solutions of the differential equation
(called the solution space for the differential equation). In fact, the solution space is spanned by
e?* and €%, and so is a subspace of the vector space of functions. In general, the solution space
for a homogeneous differential equation is a vector space, meaning that any linear combination of
solutions is again a solution.

Basis and Dimension of a Vector Space

Let V be a vector space over a field F.

Definitions:

A set of vectors 3 in a vector space V is a basis for V' if

* Bisalinearly independent set, and

e Span(B) = V.
1 0 0
0 1 0
ThesetE, =4e; = |0],e,=101,...,e, = is the standard basis for F".
: 0
0 0 1

The number of vectors in a basis for a vector space V is the dimension of V, denoted by dim(V). If a
basis for V contains a finite number of vectors, then V is finite dimensional. Otherwise, V is infinite
dimensional, and we write dim(V') = oc.

Facts: All the following facts, except those with a specific reference, can be found in [Lay03, Sections 4.3
and 4.5].

1.
2.
3.

Every vector space has a basis.

The standard basis for F" is a basis for F”, and so dim F" = n.

A basis B in a vector space V is the largest set of linearly independent vectors in V that contains B,
and it is the smallest set of vectors in V that contains B and spans V.

The empty set is a basis for the trivial vector space {0}, and dim({0}) = 0.

If the set S = {vy,...,V,} spans a vector space V, then some subset of S forms a basis for V. In
particular, if one of the vectors, say v;, is a linear combination of the remaining vectors, then the
set formed from S by removing v; will be “closer” to a basis for V.. This process can be continued
until the remaining vectors form a basis for V.

If S is a linearly independent set in a vector space V, then S can be expanded, if necessary, to a basis
for V.

No nontrivial vector space over a field with more than two elements has a unique basis.

If a vector space V has a basis containing n vectors, then every basis of V' must contain n vectors.
Similarly, if V' has an infinite basis, then every basis of V must be infinite. So the dimension of V
is unique.

Let dim(V) = n and let S be a set containing # vectors. The following are equivalent:

* Sisabasis for V.

e Sspans V.

* S is linearly independent.
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10. If dim(V) = n, then any subset of V containing more than n vectors is linearly dependent.

11. If dim(V) = n, then any subset of V containing fewer than n vectors does not span V.

12. [Lay03, Section 4.4] If B = {by,...,b,} is a basis for a vector space V, then each x € V can be
expressed as a unique linear combination of the vectors in B. That is, for each x € V there is a

unique set of scalars ¢y, ¢35 . .., ¢p such that x = ¢;b; +¢c;by + - - + ¢, by,
Examples:
) 1 0 . . 2 . 2
1. InR?, ) and 3 are linearly independent, and they span R*. So they form a basis for R* and
dim(R?) = 2.
2. InF[x],theset{1,x,x2,...,x"}isabasisfor F [x;n] foranyn € N. Theinfiniteset {1, x, x, x>, ...}

is a basis for F [x], meaning dim(F [x]) = oo.
3. The set of m x n matrices E;; having a 1 in the i, j-entry and zeros everywhere else forms a basis
for F™*", Since there are mn such matrices, dim(F™*") = mn.

1 0 1
4. ThesetS = { {0] , [ ) } , L} } clearly spans R?, but it is not a linearly independent set. However,

removing any single vector from S will cause the remaining vectors to be a basis for R?, because
any pair of vectors is linearly independent and still spans R

1 0
1 0 - . . . 4o
5. Theset S = NEE is linearly independent, but it cannot be a basis for R* since it does
0 1
not span R*. However, we can start expanding it to a basis for R* by first adding a vector that is not
1
. 0 . . 4
in the span of S, such as ol Then since these three vectors still do not span R*, we can add a
0

vector that is not in their span, such as . These four vectors now span R* and they are linearly

oS = O O

independent, so they form a basis for R%,
6. Additional techniques for determining whether a given finite set of vectors is linearly independent
or spans a given subspace can be found in Sections 2.5 and 2.6.

Applications:
1. Because y;(x) = e* and y,(x) = e* are linearly independent and span the solution space for the
d? d
homogeneous differential equation d—)z/ -3 d—y + 2y = 0, they form a basis for the solution space
X X

and the solution space has dimension 2.

2.3 Direct Sum Decompositions

Throughout this section, V will be a vector space over a field F, and W;, fori = 1,.. ., k, will be subspaces
of V. For facts and general reading for this section, see [HK71].
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Definitions:

The sum of subspaces W, fori = 1,...,k,ist:1W,- =W+ 4+We={wi+---4+w|w € W}
The sum W; + --- + W is a direct sum if for all i = 1,...,k, we have W; N > ., W; = {0}.
W =W & --- @& W denotes that W = W; + --- + W and the sum is direct. The subspaces W;,

fori =1,...,k,areindependentif forw; € W;,w; +---+w; = 0impliesw; = Oforalli = 1,...,k. Let
Vi, fori = 1,...,k, be vector spaces over F. The external direct sum of the V;, denoted V; x - -+ X V4, is
the cartesian product of V;, fori = 1,..., k, with coordinate-wise operations. Let W be a subspace of V.

An additive coset of Wis a subset of the formv+ W = {v+w | w € W} withv € V. The quotient of V by
W, denoted V/W, is the set of additive cosets of W with operations (vi + W)+ (v, + W) = (vi +v,)+ W
and c(v + W) = (cv) + W, foranyc € F.Let V. = W@ U, let By and By be bases for W and U
respectively, and let B = By, U By. The induced basis of B in V/ W is the set of vectors {u + W | u € By}.

Facts:
1. W=WwW, @ Wy ifandonlyif W = W) + W, and W; N W, = {0}.
2. If Wis a subspace of V, then there exists a subspace U of V such that V. = W @ U. Note that U is
not usually unique.
3. Let W = Wj + - - - + Wg. The following are equivalent:

e W= V\/l@~-~69Wk.Thatis,f0ralli=1,...,k,wehave1/\/iﬂz#im = {0}.

* WiNYZ Wi = (0}, foralli =2,...,k.

* For each w € W, w can be expressed in exactly one way as a sum of vectors in W, ..., W;. That
is, there exist unique w; € W;, such thatw = wy + - - - + wg.
* The subspaces W;, fori = 1,...,k, are independent.

e If BB; is an (ordered) basis for W;, then B = ULI B; is an (ordered) basis for W.

4. If B is a basis for V and B is partitioned into disjoint subsets B;, for i = 1,...,k, then
V = Span(B,) @ - - - © Span(By).

5. If Sisalinearlyindependent subset of V and S is partitioned into disjoint subsets S;, fori = 1,.. ., k,
then the subspaces Span(S;), . .., Span(Sy) are independent.

6. If V is finite dimensional and V. = W} + - - - + W, then dim(V) = dim(W;) + - - - + dim(W;) if
andonlyif V=W, ®&-.-- & W;.

7. Let Vj,fori = 1,...,k, be vector spaces over F.

e Vi x -+ x Vi isa vector space over F.

. Vl = {(0,...,0,v;,0,...,0) | v; € V;} (where v; is the ith coordinate) is a subspace of
‘/1 X o0 X V'k

e If V;,fori = 1,...,k, are finite dimensional, then dim\A/i =dim V; and dim(V; x --- x V}) =

dimV; + -+ dim V.

8. If W is a subspace of V, then the quotient V/W is a vector space over F.
9. Let V.= W@ U, let By and By be bases for W and U respectively, and let B = By U By. The
induced basis of B in V/W is a basis for V/W and dim(V/W) = dim U.

Examples:
1. Let B = {vy,...,v,} be abasis for V. Then V = Span(v,) @ - - - @ Span(v,).

([2] iseshor = {[] iverhomaz = {[2] 12cs). e -

XeY=Y®Z=XZ.

2. Let X
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3. In F"*", let W, be the subspace of symmetric matrices and W, be the subspace of skew-symmetric

. A+ AT A— AT A+ AT
matrices. Clearly, W; N W, = {0}. Forany A € F"*", A = 5 + 5 , where 3 €
T

W) and € Ws. Therefore, F*" = W, & W;.

4. Recallthatthe function f € C(R)isevenif f(—x) = f(x)forallx,and fisoddif f(—x) = — f(x)
for all x. Let W; be the subspace of even functions and W, be the subspace of odd functions.
Clearly, Wy N W, = {0}. For any f € C(R), f = f1 + f2, where fi(x) = w

fx) = f(=x)

2
5. Given a subspace W of V, we can find a subspace U such that V.= W @ U by choosing a basis

for W, extending this linearly independent set to a basis for V, and setting U equal to the span of

eEW

and fi(x) = € W,. Therefore, C(R) = W) & Ws.

a 1
the basis vectors not in W. For example, in R?, Let W = —2a| |laeR).Ifw= | =2/,
a 1

then {w} is a basis for W. Extend this to a basis for R?, for example by adjoining e, and e,. Thus,
V = W @ U, where U = Span(e;, e;). Note: there are many other ways to extend the basis, and

many other possible U.
2 0 1
3(x%+4x -2, =

4
})BZ =

, respectively. Then Bxy = By U By and Bxz = Bx U By are bases for R%. In R?/ X, the

6. Intheexternal direct sum R[x;2] x R?*2, (sz +7,

).

1
7. The subspaces X, Y, Z of R? in Example 2 have bases By = { [0] } ,By = { {

5

<5x2 +12x + 1, .

0
1

0
induced bases of Byy and By are { ) + X } and { + X }, respectively. These are equal
1 0 1 0
b X = X = X.
ecause ] + ) + 0 + ] +

2.4 Matrix Range, Null Space, Rank,
and the Dimension Theorem

Definitions:

For any matrix A € F™*", the range of A, denoted by range(A), is the set of all linear combinations of
the columns of A. If A = [m; m, ... m,], then range(A) = Span(m;, my,...,m,). The range of A is
also called the column space of A.

The row space of A, denoted by RS(A), is the set of all linear combinations of the rows of A. If
A=[vivy ... v,]T, then RS(A) = Span(vy,va,..., V).

The kernel of A, denoted by ker(A), is the set of all solutions to the homogeneous equation Ax = 0.
The kernel of A is also called the null space of A, and its dimension is called the nullity of A, denoted by
null(A).

The rank of A, denoted by rank(A), is the number of leading entries in the reduced row echelon form
of A (or any row echelon form of A). (See Section 1.3 for more information.)
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A, B € F™" are equivalent if B = CflACZ for some invertible matrices C; € F™*™ and C, € F™*",
A,B € F™" are similar if B = C~'AC for some invertible matrix C € F™", For square matrices

Ay € Fmxm, ., Ax € F™*™, the matrix direct sum A = A; @ - - - @ Ay is the block diagonal matrix
Ay 0 ‘

with the matrices A; down the diagonal. That is, A= ,where A € F"*" withn = Zni.
0 Ay i=1

Facts: Unless specified otherwise, the following facts can be found in [Lay03, Sections 2.8, 4.2, 4.5,
and 4.6].

1. The range of an m X n matrix A is a subspace of F".
2. The columns of A corresponding to the pivot columns in the reduced row echelon form of A
(or any row echelon form of A) give a basis for range(A). Let v;,v,,..., vy € F™. If matrix
A = [v1 v, ... v¢], then a basis for range( A) will be a linearly independent subset of v, v, .. ., Vg
having the same span.
3. dim(range(A)) = rank(A).
4. The kernel of an m x n matrix A is a subspace of F".
5. If the reduced row echelon form of A (or any row echelon form of A) has k pivot columns, then
null(A) =n — k.
6. If two matrices A and B are row equivalent, then RS(A) = RS(B).
7. The row space of an m x n matrix A is a subspace of F".
8. The pivot rows in the reduced row echelon form of A (or any row echelon form of A) give a basis
for RS(A).
9. dim(RS(A)) = rank(A).
10. rank(A) = rank(AT).
11. (Dimension Theorem) Forany A € F"™*", n = rank(A) 4+ null(A). Similarly, m = dim(RS(A)) +
null(AT).
12. Avectorb € F™isinrange(A)ifand onlyifthe equation Ax = bhasasolution. Sorange(A) = F™"
if and only if the equation Ax = b has a solution for everyb € F".
13. Avectora € F"isin RS(A) if and only if the equation ATy = a has a solution. So RS(A) = F" if
and only if the equation ATy = a has a solution for everya € F".
14. Ifais a solution to the equation Ax = b, then a + v is also a solution for any v € ker(A).
15. [HJ85, p. 14] If A € F™*" is rank 1, then there are vectorsv e F™ andu € F" so that A = vu’.
16. If A € F™" is rank k, then A is a sum of k rank 1 matrices. That is, there exist Ay,..., Ay with
A=A+ ---+ Arandrank(A;) = 1,fori = 1,...,k.
17. [HJ85, p. 13] The following are all equivalent statements about a matrix A € F"*".
(a) Therank of A is k.
(b) dim(range(A)) = k.
(c) The reduced row echelon form of A has k pivot columns.
(d) A row echelon form of A has k pivot columns.
(e) The largest number of linearly independent columns of A is k.
(f) The largest number of linearly independent rows of A is k.
18. [HJ85, p. 13] (Rank Inequalities) (Unless specified otherwise, assume that A, B € F™*".)
(a) rank(A) < min(m,n).

(b) If a new matrix B is created by deleting rows and/or columns of matrix A, then rank(B) <
rank(A).

(c) rank(A 4 B) < rank(A) + rank(B).
(d) If Ahasa p x g submatrix of Os, then rank(A) < (m — p) + (n — q).
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(e) If A e F™%and B € F¥*" then
rank(A) + rank(B) — k < rank(AB) < min{rank(A), rank(B)}.
19. [HJ85, pp. 13-14] (Rank Equalities)

(a) If A € C"™*" then rank(A*) = rank(A”) = rank(A) = rank(A).

(b) If A € C"™*" then rank(A* A) = rank(A). If A € R™*", then rank(AT A) = rank(A).

(c) Rankisunchanged by left or right multiplication by a nonsingular matrix. Thatis,if A € F"*"
and B € F™" are nonsingular, and M € F"*", then

rank(AM) = rank(M) = rank(MB) = rank(AMB).

(d) If A,B € F"™", then rank(A) = rank(B) if and only if there exist nonsingular matrices
X e F™™andY € F™" such that A = XBY (i.e, if and only if A is equivalent to B).

(e) If A € F™" has rank k, then A = XBY, for some X € F"™* Y € F¥*" and nonsingular
B € Fkxk,

(f) If Ay € F"™m ., Ay € F"™>*" thenrank(A; @ --- @ Ax) = rank(A;) + - - - + rank(Ag).

20. Let A, B € F™*" with A similar to B.

(a) Aisequivalentto B.
(b) rank(A) = rank(B).
(c) tr A=trB.

21. Equivalence of matrices is an equivalence relation on F"*".

22. Similarity of matrices is an equivalence relation on F"*".

I .

23. If A € F™" and rank(A) = k, then A is equivalent to { 8 (0)} , and so any two matrices of the
same size and rank are equivalent.

24. (For information on the determination of whether two matrices are similar, see Chapter 6.)

25. [Lay03, Sec. 6.1] If A € R"™*", then for any x € RS(A) and any y € ker(A), x'y = 0. So the
row space and kernel of a real matrix are orthogonal to one another. (See Chapter 5 for more on
orthogonality.)

Examples:
1 72 a+7b—2c 1 a
1. fA=|0—-1 1|¢eR¥»3, thenanyvectoroftheform —b+c 0-1 11|b
2 13 -3 2a + 13b — 3¢ 2 13 -3{| ¢
1 7 =2
is in range(A), for any a, b, ¢ € R. Since a row echelon formof Ais [0 1 —1 |, we know that
0 0 0
1 7 1 0
the set 0], -1 is a basis for range(A), and the set 71, 1 is a basis for
2 13 -2 1
1 0 5 1 0
RS(A). Since its reduced row echelon formis [0 1 —1 |, the set 0], 1 is another
0 0 0 5 1

basis for RS(A).
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1 7 =2
22IfA=10 -1 1| € R¥3, then using the reduced row echelon form given in the previ-
2 13 -3
—5
ous example, solutions to Ax = 0 have the form x = ¢ 1|, for any ¢ € R. So ker(A) =
1
=5
Span 1
1
1 0 30

3. If A € R*>* has the reduced row echelon form [0 1 —2 0 7|, then any solution to

Ax = 0 has the form

-3 -2
2 -7
X = 1 | +c2| O
0 1
0 1
for some ¢y, ¢, € R. So,
-3 -2
2 -7
ker(A) = Span 1,0
0 1
0 1
1
4. Example 1 above shows that 0 is a linearly independent set having the same span
2
1 -2
as the set 0 1
2 -3
—1
5 ! 7 is similar to —46 because —a6) _ 12 3 ! 7172 3
2 -3 -39 -39 " | 3 —4 2 -3 3 —4)

2.5 Nonsingularity Characterizations

From the previous discussion, we can add to the list of nonsingularity characterizations of a square matrix
that was started in the previous chapter.

Facts: The following facts can be found in [HJ85, p. 14] or [Lay03, Sections 2.3 and 4.6].

1. If A € F™", then the following are equivalent.
(a) Aisnonsingular.
(b) The columns of A are linearly independent.

(c) The dimension of range(A) is #.
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(d) Therangeof Ais F".

(e) The equation Ax = b is consistent for eachb € F".

(f) If the equation Ax = b is consistent, then the solution is unique.
(g) The equation Ax = b has a unique solution for each b € F".
(h) The rows of A are linearly independent.

(i) The dimension of RS(A) is n.

(j) The row space of Ais F".

(k) The dimension of ker(A) is 0.

(I) The only solution to Ax = 0isx = 0.
(m) The rank of A is n.

(n) The determinant of A is nonzero. (See Section 4.1 for the definition of the determinant.)

2.6 Coordinates and Change of Basis

Coordinates are used to transform a problem in a more abstract vector space (e.g., the vector space of
polynomials of degree less than or equal to 3) to a problem in F".
Definitions:

Suppose that B = (by, by, ...,b,) is an ordered basis for a vector space V over a field F and x € V. The
coordinates of x relative to the ordered basis B (or the B-coordinates of x) are the scalar coefficients

€1,€25...,¢y € F such that x = ¢;x; + 3% + - -+ + ¢,X,. Whenever coordinates are involved, the
vector space is assumed to be nonzero and finite dimensional.
Ifcy,co,. .., ¢, are the B-coordinates of x, then the vector in F",
C1
2
[XJB - >
Cn

is the coordinate vector of x relative to 3 or the B-coordinate vector of x.

The mapping x — [x]p is the coordinate mapping determined by 5.

If B and B’ are ordered bases for the vector space F", then the change-of-basis matrix from B to 3’ is
the matrix whose columns are the B-coordinate vectors of the vectors in B and is denoted by 5 [I]3. Such
a matrix is also called a transition matrix.

Facts: The following facts can be found in [Lay03, Sections 4.4 and 4.7] or [H]85, Section 0.10]:

1. For any vector x € F" with the standard ordered basis £, = (ej, e3,. . .,e,), we have x = [x]¢,.

2. For any ordered basis B = (b, ...,b,) of a vector space V, we have [b; |5 = e;.

3. If dim(V) = n, then the coordinate mapping is a one-to-one linear transformation from V onto
F". (See Chapter 3 for the definition of linear transformation.)

4. If Bisan ordered basis for a vector space V and vy, v, € V,thenv, = vy ifandonlyif [v,]5z = [v2]5.

5. Let V be a vector space over a field F, and suppose B is an ordered basis for V. Then for any
X,V,...,Vg € Vandcy,...,cp € F,x=cvi + -+ cpvi ifand only if [x]p = c1[vilg + - +
ck[vi]p. So, for any x,vy,..., vk € V,x € Span(vy,...,v;) if and only if [x]s € Span([v1]5,...,
[Vk]5).

6. Suppose Bisan ordered basis for an n-dimensional vector space V overafield F andvy,...,v, € V.
The set S = {vy, ..., vy} is linearly independent in V if and only if the set " = {[v1]g,. .., [Vk]5}
is linearly independent in F".
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7. Let V be a vector space over a field F with dim(V) = n, and suppose B is an ordered basis for V.
Then Span(vy,v,,...,vx) = V for some vy,V,,...,vx € V if and only if Span([v,]g, [v2]5, - - .»
[Vi]ls) = F".

8. Suppose B is an ordered basis for a vector space V over a field F with dim(V) = n, and let
S ={vi,...,v,} beasubset of V. Then S is a basis for V if and only if {[v]5,. .., [v,]s} is a basis
for F" if and only if the matrix [[v;]g,. .., [v,]5] is invertible.

9. If B and B’ are ordered bases for a vector space V, then [x]p = p[I]
Furthermore, 5 [I]3 is the only matrix such that foranyx € V, [x]p =

10. Any change-of-basis matrix is invertible.

11. If B is invertible, then B is a change-of-basis matrix. Specifically, if B = [b; --- b,] € F"*", then
B = ¢, [I]p, where B = (by,...,b,) is an ordered basis for F".

12. If B = (by,...,b,) is an ordered basis for F", then ¢, [I]z = [b; --- b,].

13. If Band B’ are ordered bases for a vector space V, then 5[I1s = (g [I]5)"".

14. If B and B’ are ordered bases for F", then g [I1z = (g [I]¢,) (¢, [I]5)-

B [x]p for any x € V.
(115 [x]5.

Examples:

L If p(x) = apx" + a1 x" ' + -+« +ayx + ap € F[x;n] with the standard ordered basis
ap
a
B=(1,x,x%...,x"),then [p(x)]5 =

ay
2. The set B = ( { ﬂ , {(3)} > forms an ordered basis for R2. If &, is the standard ordered basis

for R?, then the change-of-basis matrix from B to & is ¢,[T]p = [ -

0],and (e, T]s)"! =

3

0] .Soforv = { i] in the standard ordered basis, we find that [v]g = (¢, [T]5) v = [

1

11

3
0
NE

1
3. Theset B’ = (1,1+x, 1 + x?) is an ordered basis for R[x; 2], and using the standard ordered basis

3
To check this, we can easily see that v = { ) } =3 { . + %

1 1 1 1 -1 -1
B = (1,x,x?) for R[x;2] we have s[P]lp = [0 1 0].So, (5[Plg)™! = |0 1 0
0 0 1 0 0 1
5 4
and [5 — 2x + 3x%]p = (3[Plg) ' | =2 | = | =2 |. Of course, we can see 5 — 2x + 3x> =
3 3

4(1) —2(1 4+ x) + 3(1 + x2).
1
-1

0
4. If we want to change from the ordered basis B; = ( [ } , { 3 } ) in R? to the ordered basis 5,

1

BN R |

2 5
<[ ] R [0] ) , then the resulting change-of-basis matrix is 5,[T1s, = (&[T1s,) " (5 [T]s,) =
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5. Let S = {5 — 2x + 3x%,3 — x + 2x%,8 + 3x} in R[x;2] with the standard ordered basis B =

5 3 8
(1,x,x?). Thematrix A= | —2 —1 3 | contains the B-coordinate vectors for the polynomials
3 2 0
5 3 8
in S and it has row echelon form [0 1 31 |. Since this row echelon form shows that A is
0 0 1

nonsingular, we know by Fact 8 above that S is a basis for R[x; 2].

2.7 Idempotence and Nilpotence

Definitions:

A is an idempotent if A2 = A.
A is nilpotent if, for some k > 0, A* = 0.

Facts: All of the following facts except those with a specific reference are immediate from the definitions.

1. Every idempotent except the identity matrix is singular.
2. Let A € F"*". The following statements are equivalent.

(a) Aisanidempotent.

(b) I — Aisanidempotent.

(c) If v e range(A), then Av=v.
(d) F" =ker A @ rangeA.

.. 1
(e) [HJ85, p. 37 and p. 148] A is similar to [ (k) g] , for some k < n.

3. If A; and A, are idempotents of the same size and commute, then A; A; is an idempotent.

4. If A; and A, are idempotents of the same size and AjA; = AA; = 0, then A; + A is an
idempotent.

5. If A € F™" is nilpotent, then A" = 0.

6. If Ais nilpotent and B is of the same size and commutes with A, then AB is nilpotent.

7. If A} and A, are nilpotent matrices of the same size and AjA; = A;A; = 0, then A} + A, is
nilpotent.

Examples:

1 -8 127, n idempotent b=l is nilpotent
e 91s.'¢11epoe.1_1151poe.
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3.1 Basic Concepts

Let V, W be vector spaces over a field F.

Definitions:

A linear transformation (or linear mapping) is a mapping T: V' — W such that, for each u,v € V, and
foreachc € F,T(u+v)=T(u) + T(v),and T(cu) = cT(u).

V is called the domain of the linear transformation T: V — W.

W is called the codomain of the linear transformation T: V — W.

The identity transformation Iy: V — V is defined by Iy (v) = v for each v € V. Iy is also denoted
by I.

The zero transformation 0: V.— W is defined by 0(v) = 0y for each v € V.

A linear operator is a linear transformation T: V — V.

Facts:

Let T: V — W be a linear transformation. The following facts can be found in almost any elementary
linear algebra text, including [Lan70, IV§1], [Sta69, §3.1], [Goo03, Chapter 4], and [Lay03, §1.8].

T Vaivi)=>"1a;T(v;),foranya; € F,v; e V,i=1,...,n.
T(0y) = Oy.

T(—v) = —T(v),foreachve V.

The identity transformation is a linear transformation.

The zero transformation is a linear transformation.

MR

3-1
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6. If B = {vy,...,v,}is a basis for V, and wy,...,w, € W, then there exists a unique T: V — W
such that T'(v;) = w; for each 1.
Examples:

Examples 1 to 9 are linear transformations.

—

AN

10.

11.

3.2

x
. T:R®P > R2where T | |y| | =
z

xX+y

2x — z

T:V — V,definedby T(v) = —vforeachv e V.

IfAe F™" T:F" — F™ where T(v) = Av.

T:F™" — F,where T(A) = trA.

LetC([0, 1]) be the vector space of all continuous functionson [0, 1] intoR,andlet T: C([0,1]) — R
be defined by T(f) = [, f(t)dt.

Let V be the vector space of all functions f:R — R that have derivatives of all orders, and
D:V — V bedefined by D(f) = f'.

The transformation, which rotates every vector in the plane R* through an angle 6.

x x
The projection T onto the xy-plane of R%,ie., T | [y| | = | ¥].
z 0

T:R?> — R3? where T(v) = b x v, for some b € R>.
Examples 10 and 11 are not linear transformations.

f:R2—>R2,wheref<[x]>= y+l
y

xX—y—2
x 1
f:R? > R, where f > = x? is not a linear transformation because f (2 {0} > =4#2=
y
2f !
ol |-

The Spaces L(V,W) and L(V,V)

is not a linear transformation because f(0) # 0.

Let V, W be vector spaces over F.

Definitions:

L(V, W) denotes the set of all linear transformations of V into W.
Foreach T, T, € L(V, W) the sum T} + T; is defined by (T} + T5)(v) = T;(v) + Tr(v).
Foreachc € F, T € L(V, W) the scalar multiple ¢ T is defined by (¢ T)(v) = ¢ T(v).
Foreach T}, T, € L(V, V)theproduct T; T; is the composite mapping defined by (77 T;) (v) = T; (Tz(v)).
T, T, € L(V,V)commuteif ; T, = T, Tj.

T € L(V, V) is a scalar transformation if, for somec € F, T(v) = cvforeachv e V.

Facts:

Let T, T, T, € L(V, W). The following facts can be found in almost any elementary linear algebra text,
including [Fin60, §3.2], [Lan70, IV §4], [Sta69, §3.6], [SW68, §4.3], and [Goo03, Chap. 4].

1.
2.

T+ T, e L(V,W).
cT € L(V,W).
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3. f 1, T, € L(V,V),then T T, € L(V, V).

4. L(V, W), with sum and scalar multiplication, is a vector space over F.

5. L(V, V), with sum, scalar multiplication, and composition, is a linear algebra over F.

6. LetdimV = nand dim W = m. Then dim L(V, W) = mn.

7. If dim V > 1, then there exist T, T, € L(V, V'), which do not commute.

8. Ty € L(V, V) commutes with all T € L(V, V) if and only if Tj is a scalar transformation.
Examples:

1. Foreach j =1,...,nletT; € L(F", F") bedefined by T;(x) = x;e;. Then > T; is the identity
transformation in V.

2. Let T; and T; be the transformations that rotates every vector in R? through an angle 6, and 6,
respectively. Then T, T, is the rotation through the angle 6, + 6,.

3. Let T; be the rotation through an angle  in R? and let T5 be the reflection on the horizontal axis,
thatis, T,(x, y) = (x, —y). Then T and T, do not commute.

3.3 Matrix of a Linear Transformation

Let V, W be nonzero finite dimensional vector spaces over F.

Definitions:

The linear transformation associated to a matrix A € F"*" is Ty: F" — F™ defined by T4(v) = Av.
The matrix associated to a linear transformation T € L(V, W) and relative to the ordered bases B =
(bi,...,b,) of V,and C of W, is the matrix ¢[T]|g = [[T(b1)]c --- [T(b,)]c].
IfT € L(F", F™),thenthestandardmatrixof Tis[T] = ¢ [T ]¢,, where &, is the standard basis for F".
Note: If V.= W and B = C, the matrix g[T] will be denoted by [T]z.
If T € L(V, V) and B is an ordered basis for V, then the trace of T istr T =tr [T]p.

Facts:

Let B and C be ordered bases V and W, respectively. The following facts can be found in almost
any elementary linear algebra text, including [Lan70, V §2], [Sta69, §3.4-3.6], [SW68, §4.3], and
[Goo03, Chap. 4].

The trace of T € L(V, V) is independent of the ordered basis of V used to define it.

For A,B € F"™", Ty = Ty ifand only if A = B.

Forany T}, T, € L(V, W), ¢[Tilp = ¢c[Tz]gifand only if T} = T5.

If T € L(F",F™),then [T] = [T(ey)---T(e,)].

The change-of-basis matrix from basis B to C, ¢[I]3, as defined in Chapter 2.6, is the same matrix
as the matrix of the identity transformation with respect to 3 and C.

6. Let A € F™*" and let T, be the linear transformation associated to A. Then [T] = A.

7. T € L(F",F"),then Tij;) = T.
8
9

AR

. Forany T}, T, € L(V, W), c[Ti + L]z = c[Tilg + c[T2]s-
. Forany T € L(V,W),andc € F,¢[cT]g =cc[T]z.
10. Forany T1, T, € L(V, V), [T 1] = [T1]5 [ T2]5.
11. If T € L(V, W), then, for each v € V, [T(v)]¢c = ¢[T]5 [v]g. Furthermore ¢[T]3 is the only
matrix A such that, foreachv e V, [T(v)]¢ = A[v]3z.
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Examples:
1. Let T be the projection of R? onto the xy-plane of R®. Then
1 0 0
(T]=10 1 0
0 0 O
2. Let T be the identity in F". Then [T]g = I,.
3. Let T be the rotation by § in R2. Then
cosf —sinf
(T]=| . .
sin cosf
4. Let D:R[x;n] — R[x;n — 1] be the derivative transformation, and let B = {1,x,...,x"},C =
{I,x,...,x"'}. Then
0 1 0 0
0 ... 0
clTlg =
0 0 0 n—1
3.4 Change of Basis and Similarity
Let V, W be nonzero finite dimensional vector spaces over F.
Facts:

The following facts can be found in [Gan60, III §5-6] and [Goo03, Chap. 4].

1.

Let T € L(V, W) and let B, B’ be bases of V, C,C’ be bases of W. Then

elTlg = ellleelTlsslI]p.

. Two m x n matrices are equivalent if and only if they represent the same linear transformation

T € L(V, W), but possibly in different bases, as in Fact 1.

. Any m x n matrix A of rank r is equivalent to the m x n matrix

Lo
L=|" 1.
0 0

Two m x n matrices are equivalent if and only if they have the same rank.

Two n x n matrices are similar if and only if they represent the same linear transformation T €
L(V, V), but possibly in different bases, i.e., if A; is similar to A,, then thereis T € L(V, V) and
ordered bases B;, B, of V such that A; = [T]p, and conversely.

Examples:

1.

Let T be the projection on the x-axis of R?, i.e., T(x,y) = (x,0). If B = {e;,e;} and C =
10 1/2 1)2 .
{el + €,€ — e2}) then [T]B == ) [T]C - > and [T]C = Q_I[T]BQ Wlth

0 0 12 1/2
o
Q= 1 -1
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3.5

Kernel and Range

Let V, W be vector spaces over F andlet T € L(V, W).

Definitions:

T is one-to-one (or injective) if v; # v, implies T'(vy) # T(v,).
The kernel (or null space) of T isthesetker T = {ve V | T(v) = 0}.
The nullity of T, denoted by null T, is the dimension of ker T.
T is onto (or surjective) if, for each w € W, there exists v € V such that T'(v) = w.

The range (or image) of T is the setrange T = {w € W | Iv,w = T(v)}.

The rank of T, denoted by rank T}, is the dimension of range T.

Facts:

The following facts can be found in [Fin60, §3.3], [Lan70, IV §3], [Sta69, §3.1-3.2], and [Goo03, Chap. 4].

1. ker T is a subspace of V.

2. The following statements are equivalent.
(a) T is one-to-one.
(b) ker T = {0}.
(c) Each linearly independent set is mapped to a linearly independent set.
(d) Each basis is mapped to a linearly independent set.
(e) Some basis is mapped to a linearly independent set.

3. range T is a subspace of W.

4. rank T = rank¢[T] for any finite nonempty ordered bases 53,C.

5. For A € F"™*", ker Ty = ker A and range T4 = range A.

6. (Dimension Theorem) Let T € L(V, W) where V has finite dimension. Then
null T 4+ rank T = dim V.

7. Let T € L(V, V), where V has finite dimension, then T is one-to-one if and only if T is onto.

8. LetT(v)=w.Then{fue V| T(u) =w}=v+kerT.

9. Let V = Span{vy,...,v,}. Thenrange T = Span{T(vy),..., T(v,)}.

10. Let T}, T, € L(V, V). Then ker T T, D ker T, and range T; T, C range T;.
11. Let T € L(V, V). Then
{0) CkerT CkerT?>C --- CkerTFC ...
V Drange T QrangeT2 D... QrangeTk D.e.,
Furthermore, if, for some k, range Th+1 — range Tk, then, for eachi > 1, range Tk — range Tk,
If, for some k, ker T**! = ker T*, then, for each i > 1, ker T** = ker T*.
Examples:

1. Let T be the projection of R* onto the xy-plane of R*. Then ker T = {(0,0,2):z € R}; range T =
{(x,7,0):x,y e Ri;null T = I;and rank T = 2.

2. Let T be the linear transformation in Example 1 of Section 3.1. Then ker T = Span{[1 — 1 2]7},
while range T = R2.

3. Let D € L(R[x],R[x]) be the derivative transformation, then ker D consists of all constant poly-

nomials, while range D = R[x]. In particular, D is onto but is not one-to-one. Note that R[x] is
not finite dimensional.
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4. Let Ty, T, € L(F™", F™") where T;(A) = 1(A — AT), Th(A) = (A + AT), then

ker T} =range T = {n x n symmetric matrices};

ker T, = range T} = {n x n skew-symmetric matrices};

1 -1
null Ty = rank T, = @; null T, = rank T} = %

5. Let T(v) = b x v as in Example 9 of Section 3.1. Then ker T' = Span{b}.

3.6 Invariant Subspaces and Projections

Let V be a vector space over F, and let V = V; @ V; for some V;, V, subspaces of V. For each v € V, let
v; € V; denote the (unique) vector such that v = v; + v, (see Section 2.3). Finally, let T € L(V, V).

Definitions:
Fori,j € {1,2},i # j, the projection onto V; along V; is the operator projy, v : V. —> V defined by
projV”V] (v) = v; for each v € V (see also Chapter 5).

The complementary projection of the projection projy, v, 1s the projection proj Vv

T is an idempotent if T2 = T.

A subspace V; of V is invariant under T or T-invariant if T(V;) C V.

The fixed spaceof Tisfix T = {ve V| T(v) =v}.

T is nilpotent if, for some k > 0, T = 0.

Facts:
The following facts can be found in [Mal63, §43—44].

1. Projv,»,vj e L(V,V).
2. projy, y, + projy, v, = I, the identity linear operator in V.
3. range (Projv,-,v]) = ker(projvj,v‘) =V.
4. Sum and intersection of invariant subspaces are invariant subspaces.
5. If V has a nonzero subspace different from V that is invariant under T, then there exists a suitable
. A Ap . Ay Ap
ordered basis B of V such that [T]|z = . Conversely, if [T]p = , where
0 Ap An
Ay, is an m-by-m block, then the subspace spanned by the first m vectors in B is a T-invariant

subspace.

6. Let T have two nonzero finite dimensional invariant subspaces V; and V3, with ordered bases 5,
and B,, respectively, such that V; @ V, = V. Let T}y € L(V}, V1), T, € L(V,, V,) be the restrictions
of T on V;j and V3, respectively, and let B = B; U B,. Then [Tz = [T1]5, @ [T2]5,-

The following facts can be found in [Hohé4, §6.15; §6.20].

7. Every idempotent except the identity is singular.

8. The statements 8a through 8e are equivalent. If V is finite dimensional, statement 8f is also
equivalent to these statements.

(a) T isanidempotent.

(b) I — T is an idempotent.
(c) ixT =rangeT.

(d) V=kerT & fixT.
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(e) T is the projection onto V; along V; for some Vy, V5, with V.=V, @ V5.

I o

(f) There exists a basis B of V such that [T]z = o 0

9. If T} and T, are idempotents on V and commute, then T} T; is an idempotent.
10. If T} and T; are idempotents on V and T\ T, = T, T; = 0, then T} + T is an idempotent.
11. IfdimV =nand T € L(V, V) is nilpotent, then T" = 0.

Examples: x x
1. Example 8 of Section 3.1, T:R* — R?,where T | |y | | = |y| isthe projection onto Span{e;, ,}
0
along Span{e;}.

2. The zero subspace is T-invariant for any T.

3. Ty and Ty, defined in Example 4 of Section 3.5, are the projection of F"*" onto the subspace of
n-by-n
symmetric matrices along the subspace of n-by-n skew-symmetric matrices, and the projection of
F™" onto the skew-symmetric matrices along the symmetric matrices, respectively.

4. Let T be a nilpotent linear transformation on V. Let T# = 0 and T?"!(v) # 0. Then S =
Span{v, T(v), T?(v),..., TP~!(v)} is a T-invariant subspace.

3.7 Isomorphism and Nonsingularity Characterization

Let U, V, W be vector spaces over F andlet T € L(V, W).

Definitions:

T is invertible (or an isomorphism) if there exists a function S: W — V such that ST = Iy and
TS = Iy. S is called the inverse of T and is denoted by T~

V and W are isomorphic if there exists an isomorphism of V onto W.

T is nonsingular if ker T = {0}; otherwise T is singular.

Facts:
The following facts can be found in [Fin60, §3.4], [Hoh64, §6.11], and [Lan70, IV §4]:

. The inverse is unique.

. T7!is alinear transformation, invertible, and (T~!)~! = T.

LI e L(V,W)and T, € L(U, V), then T} T; is invertible if and only if T} and T, are invertible.
T e L(V,W)and T € L(U, V), then (T, 1)~ = T, ' T,

. Let T € L(V, W), and let dim V = dim W = n. The following statements are equivalent:

U= W N =

(a) T isinvertible.
(b) T is nonsingular.
(¢) T is one-to-one.
(d) ker T = {0}.

(e) null T = 0.

(f) T is onto.

(g) range T = W.



3-8 Handbook of Linear Algebra

(h) rank T = n.
(i) T maps some bases of V' to bases of W.

6. If V.and W are isomorphic, then dim V = dim W.

7. If dim V = n > 0, then V is isomorphic to F” through ¢ defined by ¢(v) = [v]z for any ordered
basis 5 of V.

8. LetdimV =#n > 0,dim W = m > 0, and let B and C be ordered bases of V and W, respectively.
Then L(V, W) and F"™*" are isomorphic through ¢ defined by ¢(T) = ¢[T]3.

Examples:
1. V= Flx;n] and W = EF"! are isomorphic through T € L(V, W) defined by T aix’) =
[ag...a,]".

2. If V is an infinite dimensional vector space, a nonsingular linear operator T € L(V, V) need not
be invertible. For example, let T € L(R[x],R[x]) be defined by T(p(x)) = xp(x). Then T is
nonsingular but not invertible since T is not onto. For matrices, nonsingular and invertible are
equivalent, since an n x n matrix over F is an operator on the finite dimensional vector F".

3.8 Linear Functionals and Annihilator

Let V, W be vector spaces over F.

Definitions:
A linear functional (or linear form) on V is a linear transformation from V to F.

The dual space of V is the vector space V* = L(V, F) of all linear functionals on V.

If V is nonzero and finite dimensional, the dual basis of a basis B = {vy,...,v,} of V is the set
B*={fi,..., fa} € V*, suchthat f;(v;) = §;; for each i, j.

The bidual space is the vector space V** = (V*)* = L(V*, F).

The annihilator ofaset S € Vis S* ={f € V*| f(v) =0,V¥v e S}.

The transpose of T € L(V, W) is the mapping TT € L(W*, V*) defined by setting, for each g € W*,

TT(¢):V— F
v = g(T(v)).

Facts:
The following facts can be found in [Hoh64, §6.19] and [SW68, §4.4].

1. Foreachv € V,v # 0, there exists f € V* such that f(v) # 0.
2. For eachv € V define hy € L(V*, F) by setting hy( f) = f(v). Then the mapping

@: V>V

v hy

isa one-to-one linear transformation. If V is finite dimensional, ¢ is an isomorphism of V onto V**.

3. S§%is a subspace of V*.

4. {0} = v+ V* = {0}.

5. §% = (Span{S})“.

The following facts hold for finite dimensional vector spaces.

6. If V is nonzero, for each basis B of V, the dual basis exists, is uniquely determined, and is a basis
for V*.

7. dimV = dim V*.

8. If V is nonzero, each basis of V* is the dual basis of some basis of V.
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9. Let B be a basis for the nonzero vector space V. Foreachve V, f € V*, f(v) = [f]g* [v]s.
10. If S is a subspace of V, then dim S 4+ dim §% = dim V.
11. If S is a subspace of V, then, by identifying V and V**, S = (§)“.
12. Let S}, S; be subspaces of V such that S§ = S§. Then §; = S,.
13. Any subspace of V* is the annihilator of some subspace S of V.
14. Let Sy, S; be subspaces of V. Then (§; N $;)* = ¢ + 8§ and (S; + $)* = S{ N S5.
15. ker TT = (range T)“.
16. rank T = rank T7.
17. If B and C are nonempty bases of V and W, respectively, then z-[T7]¢- = (C[T]B)T.

Examples:

1. Let V = C[a, b] be the vector space of continuous functions ¢ : [a,b] — R, and let ¢ € [a,b].
Then f(¢) = ¢(c) is a linear functional on V.

2. Let V=Cla,b],¢ € V,and f(¢) = fub @(t)y(¢)dt. Then f is a linear functional.

The trace is a linear functional on F"*".

4. let V=F"" B={E;:1<i<m1 < j<n}isabasisfor V. The dual basis B* consists of the
linear functionals f;;, 1 <i < m,1 < j < n,defined by f;;(A) = a;;.

w
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4.1 Determinants

Definitions:

The determinant, det A, of a matrix A = [a;;] € F"*" is an element in F defined inductively:

* det[a] = a.
¢ Fori, j € {1,2,...,n},theijthminor of A correspondingto a;; is defined by m;; = det A({i}, {;j}).
* The ijth cofactor of a;; is ¢;; = (—l)i”m,-j.
* detA= Z;’:l(—l)l“a,-]—mij = Zf;:l a;jCij fori € {1,2,...,n}.
This method of computing the determinant of a matrix is called Laplace expansion of the determinant
by minors along the ith row.

The determinant of a linear operator T : V — V on a finite dimensional vector space, V, is defined as
det(T) = det ([T]p), where B is a basis for V.

Facts:

All matrices are assumed to be in F"*", unless otherwise stated. All the following facts except those with
a specific reference can be found in [Lay03, pp. 185-213] or [Goo03, pp. 167-193].

1. det | alz] = day1dax — apdsl.
azy A
apn  diz a3
2. detA = det ay dy a4 = 41102433 + a141343; + 431412023 — A31d13dyy — d1412033
as; dsz  asz
—a11a32a23.

3. The determinant is independent of the row i used to evaluate it.

4. (Expansion of the determinant by minors along the jth column) Let j € {1,2,...,n}. Then
det A = Z?Zl(—l)i”aijm,-j = Z?:l aijCij-

5. detl, =1.

6. If A is a triangular matrix, then det A = ajjay; - - - ap,.

4-1
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7. If B is a matrix obtained from A by interchanging two rows (or columns), then det B = — det A.
8. If B is a matrix obtained from A by multiplying one row (or column) by a nonzero constant r,

then det B = r det A.
9. If B is a matrix obtained from A by adding to a row (or column) a multiple of another row (or
column), then det B = det A.

10. If A, B, and C differ only in the rth row (or column), and the rth row (or column) of C is the sum
of the rth rows (or columns) of A and B, then det C = det A + det B.

11. If A is a matrix with a row (or column) of zeros, then det A = 0.

12. If A is a matrix with two identical rows (or columns), then det A = 0.

13. Let B be a row echelon form of A obtained by Gaussian elimination, using k row interchange
operations and adding multiples of one row to another (see Algorithm 1 in Section 1.3). Then
det A = (—=1)*det B = (—1)by1byy - - - by

14. det AT = det A.

15. If A € C*™", then det A* = det A.

16. det AB = det A det B.

17. If ¢ € F, then det(c A) = c" det A.

18. A is nonsingular, that is A™! exists, if and only if det A # 0.

19. If A is nonsingular, then det (A_l) = deiA.

20. If S is nonsingular, then det (S™'AS) = det A.

21. [HJ85] det A =", SgN0 A15(1)A25(2) * * * Gno(n)> Where summation is over the n! permutations, o,
of the n indices {1,2, ..., n}. The weight “sgno” is 1 when o is even and —1 when o is odd. (See
Preliminaries for more information on permutations.)

22. Ifx,y € F", thendet(I +xy’) = 1 +y'x.

23. [FIS89] Let T be a linear operator on a finite dimensional vector space V. Let 3 and B’ be bases
for V. Then det(T) = det ([T]g) = det([T]g).

24. [FIS89] Let T be a linear operator on a finite dimensional vector space V. Then T is invertible if
and only if det(T') # 0.

25. [FIS89] Let T be an invertible linear operator on a finite dimensional vector space V. Then
det(T™") = det(T)

26. [FIS89] Let T and U be linear operators on a finite dimensional vector space V. Then det(TU) =
det(T) - det(U).

Examples:

3 2 4
1. Let A = 2 5 —6]|. Expanding the determinant of A along the second column: det A =
-3 5
2-det[_§ +5- det 3 4 |:3 _2]:2-(—8)+5~27+26:145.
(-1 3 —2 4
2 5 8 1
2. Let A = 7 _4 0 —6 . Expanding the determinant of A along the third row: det A =
0 3 1 5
3 -2 4 -2 4 -1 3 =2
7-det |5 8 1| +4-det 8 1| +6-det 2 5 8| = 557.
3 1 5 1 5 0 3 1
3. LetT:R? — R%definedby T ( { D — |P¥ %) Wi = { H , N },thendet([T]B) _
X1 + 6x; 0 1

2 =3
1 6

1

7
det =15
¢ 8 1

] = 15.Now let B’ = {[1] [0]} Then det ([T]g) = det [
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Applications:

1. (Cramer’s Rule) If A € F™*" is nonsingular, then the equation Ax = b, where x,b € F", has the

S1
L)) d
unique solutions = | , [, wheres; = deettlj{ and A; is the matrix obtained from A by replacing
Sn
the ith column with b.
1 1 - 1
X1 X) e Xp
. 2 2,2
2. [Mey00, p. 486] (Vandermonde Determinant) det | *1 %2 X | = [Ticicjen(xi — x)).

3. [FB90, pp. 220-235] (Volume) Letay, a,, . . . , a, belinearly independent vectors in R™. The volume,
V, of the n-dimensional solid in R, defined by S = {>_"_, %2;,0 < ; < 1,i = 1,2,...,n},is
givenby V = |/det (AT A), where A is the matrix whose ith column is the vector a;.

Letm > nand T:R" — R" be a linear transformation whose standard matrix representation is
the m x n matrix A. Let S be a region in R” of volume Vs. Then the volume of the image of S
under the transformation T is Vy(s) = \/det (ATA) - Vs.

4. [Uhl02, pp. 247-248] (Wronskian) Let f1, f,..., f, be n — 1 times differentiable functions of the
real variable x. The determinant

filx) fa(x) e fu(x)

fl(x) A fl)
W(f1, f2r- .. fu)(x) = det : : . :
V) V) e f ()

is called the Wronskian of fi, f5,..., fu. f W(f1, f2,..., fu)(x) # 0 for some x € R, then the
functions fi, f2,. .., fu are linearly independent.

4.2 Determinants: Advanced Results

Definitions:

A principal minor is the determinant of a principal submatrix. (See Section 1.2.)
A leading principal minor is the determinant of a leading principal submatrix.
The sum of all the k x k principal minors of A is denoted Sy (A).

The kth compound matrix of A € F™*" is the (7:) X (Z

) matrix Ci(A) whose entries are the k x k

minors of A, usually in lexicographical order.
The adjugate of A € F™*" is the matrixadj A = [cj;] = [cij] T where cij is the i jth-cofactor.

The kth adjugate of A € F"*" is the Z X <Z matrix adj ® A, whose a ji entry is the cofactor,

in A, of the (n — k)th minor, of A, in the i jth position of the compound.
Leta € {1,2,...,n}and A € F"*" with A[e] nonsingular. The matrix

A/Ala] = Alaf] — AlaS, o] Ala] Alo, af]

is called the Schur complement of A[«].
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Facts:
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All matrices are assumed to be in F"*", unless otherwise stated. All the following facts except those with
a specific reference can be found in [Lay03, pp. 185-213] or [Goo03, pp. 167-193].

1.
2.
3.

10.

11.

A(adj A) = (adj A) A = (det A) .
det (adj A) = (det A)" 1.
If det A # 0, then adj A is nonsingular, and (adj A)~! = (det A) ' A.

apn app a3z e Qi
dz axp 4z - Oy

[Ait56] (Method of Condensation) Let A = |431 @32 43 -** a3n| and assume without
anl  An2  Apz -+ Apn

loss of generality that a;; # 0, otherwise a nonzero element can be brought to the (1, 1) position by
interchanging two rows, which will change the sign of the determinant. Multiply all the rows of A
exceptthefirstbya;;.Fori = 2,3,. .., n, perform the row operations: replace row i withrowi —a;;-

an ann a3 ce Ain
0 apdp; — dzidiz  Adndzs —dadiz - Andzy — d21d1y
row 1. Thus “?1_1 det A = det | 0 anas —asan ands —asaiz -0 ands, — asdi
0 anam —anan ana,; —amndi - A110wn — An1in
ap  an apn a3 an a4
det det <o det "
daz; axn (53 WX} azy  dap
an  dn an dis an  d
det det <o det "
So, det A = a”I*Z . det _6131 ﬂ32_ _ﬂ31 6133_ _5131 ﬂ32_
11
a4 ap  an an a4
det det det "
L anl [£27%) anl au3 anl Ann |

. [Ait56] AP (adj P A) = (adj P A)AK) = (det A)I,,.

[Ait56] det (A(k)) = det (A"), wherer = Z: i .

[Ait56] det (A”~F)) = det(adj ¥ A).

[HJ85] If A € F™", B € F™ ™ then det (A B) = (det A)"™ (det B)". (See Section 10.5 for the
definition of A B.)

[Uhl02] For A € F™", det A is the unique normalized, alternating, and multilinear function
d:F™" — F. Thatis,d(I,) = 1,d(A) = —d(A’), where A’ denotes the matrix obtained from
A, by interchanging two rows, and d is linear in each row of A, if the remaining rows of A are held
fixed.

[HJ85] (Cauchy-Binet) Let A € F"*k, B € F**" and C = AB. Then

detCla, ] = ) _ det Ala, y] det B[y, 8],
Y

where o C {1,2,...,m}, 8 C {1,2,...,n}, with |¢| = |B] = r, 1 < r < min{m,k, n}, and the
sum is taken over all sets y € {1,2,...,k} with |y| =r.
[HJ85] (Schur Complement). Let A[o] be nonsingular. Then

det A = det A[o] det (A[otc] — AlaS 0] Ala]tA [a,ac]) .
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12. [HJ85] (Jacobi’s Theorem) Let A be nonsingular and let o, 8 € {1,2,...,n}, with |e| = |8]. Then

_ - ydet A[B,«]
det A 1 E) ] — —1 (Zi6d1+2]6 ])—.
ot (o5 B = (=1) ’ det A

In particular, if @ = B. Then det A~ [a¢] = %.
13. [HJ85] (Sylvester’s Identity) Leta € {1,2,...,n} with || = k,and 7, j € {1,2,...,n}, withi,j ¢

a.For A e F™" let B = [bj;] € F (=R (n1=k) he defined by b;; = det A[a U {i},a U {j}]. Then

det B = (det A[a])" %! det A.

Examples:
01 0 L1
1. Let A = 0 _3 NE S3(A) = 23 because det A[{1,2,3}] = det|0 1 0f = -3,
0 -1 -2 —4 00 =3
1 1 o 1 0 0
det A[{1,2,4}] = det |0 1 1| = =3, det A[{1,3,4}] = det|0 -3 2| = 16, and
0 -1 —4 0 —2 —4
1 0 1
det A[{2,3,4}] = det| 0 —3 2| = 13. From the Laplace expansion on the first column
-1 -2 —4

and det A[{2, 3,4}] = 13, it follows that S4(A) = det A = 13. Clearly, S;(A) =tr A = —5.

—1 0 3 1 4
1 1 1 1 0 -1 0 -1 0
1 0 1 4 3 -1 0 —4 -3
2. (kthcompound)LetA = 110 1 . Thendet A =9,C,(A) = 1 —1 -3 —1 -4
1 4 0 1 4 —-1 -3 —4 -—16
3 0 0 0 -3
and det (C,(A)) = 729.
_; (3) _(1) 32 =3 0
3. (Cauchy-Binet) Let A = ; 4 0 ,B=10 —4 4 3i|,and C = AB.
0 1+i 1 7ooe 5 4
Then det C[{2,4},{2,3}] =
det A[{2,4},{1,2}] det B[{1,2},{2,3}] +
det A[{2,4},{1,3}] det B[{1,3},{2,3}] +
det A[{2,4),{2,3}] det B[{2,3},{2,3}] = 12 — 44i.
4. (Schur Complement) Let A = E cl wherea € C,b e C*',and C € C %=1 1 C is
nonsingular, then det A = (a — b*C~'b) det C. If a # 0, then det A = a det (C - %bb*).
1 -2 0
5. (Jacobi’s Theorem) Let A = 3 4 0| anda = {2} = B. By Jacobi’s formula, det A71(2) =
—1 0 5
Lo
% = sio = %.This can be readily verified by computing A™! = —13—0 1—10 0| ,and verifying
2 1 1
25 25 5

det A71[{1,3}] = 2.

O = = = = W
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-7 i -3
6. (Sylvester’s Identity) Let A = | —i —2 1+4i| anda = (1}. Define B € C**?, with entries
-3 1—4 5
bll = detA[{l)z}] = 13) blZ = detA[{1)2}>{l)3}] = -7 311) b21 = detA[{l,3},{1,2}] =
—7 + 31i, by, = det A[{1,3}] = —44. Then —1582 = det B = (det A[{1}])det A = (—7) det A,

so det A = 226.

4.3 Eigenvalues and Eigenvectors

Definitions:

Anelement A € F isan eigenvalue of a matrix A € F"*" if there exists a nonzero vector x € F" such that
Ax = Ax. The vector x is said to be an eigenvector of A corresponding to the eigenvalue A. A nonzero row
vector y is a left eigenvector of A, corresponding to the eigenvalue A, if yA = Xy.

For A € F"*", the characteristic polynomial of A is given by pa(x) = det(xI — A).

The algebraic multiplicity, & (1), of . € o (A) is the number of times the eigenvalue occurs as a root in
the characteristic polynomial of A.

The spectrum of A € F"*", ¢ (A), is the multiset of all eigenvalues of A, with eigenvalue A appearing
a()) timesin o (A).

The spectral radius of A € C"*" is p(A) = max{|A|: 1 € o(A)).

Let p(x) = cpx" + cpo1x" ™1 + -+ + c2x% + ¢1x + ¢o be a polynomial with coefficients in F. Then
P(A) = A" + ¢ 1 A" o+ AP+ A+ ool

For A € F"*", the minimal polynomial of A, g4(x), is the unique monic polynomial of least degree
for which g4(A) = 0.

The vector space ker(A — A1), for A € o (A), is the eigenspace of A € F"*" corresponding to X, and is
denoted by E; (A).

The geometric multiplicity, y (1), of an eigenvalue A is the dimension of the eigenspace E; (A).

An eigenvalue A is simple if ¢ (1) = 1.

An eigenvalue X is semisimple if ¥(1) = y (X).

For K = C or any other algebraically closed field, a matrix A € K"*" is nonderogatory if y (A) = 1 for
allA € o(A), otherwise A is derogatory. Over an arbitrary field F, a matrix is nonderogatory (derogatory)
if it is nonderogatory (derogatory) over the algebraic closure of F.

For K = C or any other algebraically closed field, a matrix A € K"*" is nondefective if every eigenvalue
of A is semisimple, otherwise A is defective. Over an arbitrary field F, a matrix is nondefective (defective)
if it is nondefective (defective) over the algebraic closure of F.

A matrix A € F"™" is diagonalizable if there exists a nonsingular matrix B € F"*", such that
A = BDB™! for some diagonal matrix D € F"™*".

For a monic polynomial p(x) = x" + ¢, 1x"~! + -+ + %% + ¢1x + ¢o with coefficients in F, the

00 0 --- 0 —c
1 0 0 --- 0 —c

n x nmatrix C(p) = 0 10 0 —c2 | iscalled the companion matrix of p(x).
00 0 -+ 1 —cpy

Let T be a linear operator on a finite dimensional vector space, V, over a field F. An element A € F is
an eigenvalue of T if there exists a nonzero vector v € V such that T(v) = Av. The vector v is said to be
an eigenvector of T corresponding to the eigenvalue A.

For a linear operator, T, on a finite dimensional vector space, V, with a basis, 3, the characteristic
polynomial of T is given by pr(x) = det([T])s.

A linear operator T on a finite dimensional vector space, V, is diagonalizable if there exists a basis, 53,
for V such that [T]p is diagonalizable.
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Facts:

These facts are grouped into the following categories: Eigenvalues and Eigenvectors, Diagonalization,
Polynomials, Other Facts. All matrices are assumed to be in F"*” unless otherwise stated. All the following
facts, except those with a specific reference, can be found in [Mey00, pp. 489-660] or [Lay03, pp. 301-342].

Figenvalues and Figenvectors

1. A eo(A)ifandonlyif pa(X) = 0.

2. For each eigenvalue A of a matrix A, 1 < y (1) < a()).

3. A simple eigenvalue is semisimple.

4. Forany F, |0(A)| < n.If F = C or any algebraically closed field, then |0 (A)| = n.

5. If F = C or any algebraically closed field, then det A = [/, A;,A; € o (A).

6. If F = C or any algebraically closed field, thentr A = > | A;,4; € o (A).

7. For Ae C"™", A € 6(A)ifand only if A € o (A*).

8. For A € R™", viewing A € C"™", A € o(A) ifand only if X € o(A).

9. If A € C"" is Hermitian (e.g., A € R™" is symmetric), then A has real eigenvalues and A can be
diagonalized. (See also Section 7.2.)

10. Aand AT have the same eigenvalues with same algebraic multiplicities.

11. If A = [a;;] is triangular, then 0 (A) = {a11, a2, ..., au}.

12. If A has all row (column) sums equal to r, then r is an eigenvalue of A.

13. Aissingular if and only if det A = 0, if and only if 0 € o (A).

14. If A is nonsingular and A is an eigenvalue of A of algebraic multiplicity o()), with corresponding
eigenvector x, then A ™! is an eigenvalue of A~! with algebraic multiplicity & () and corresponding
eigenvector X.

15. Let A1,Xs,...,As be distinct eigenvalues of A. For each i = 1,2,...,s let Xi1,Xj2,...,Xi,, be
linearly independent eigenvectors corresponding to A;. Then the vectors X1, . . ., X1r,>Xa1> - - - » Xar,»

..»Xs1> . - -, Xsp, are linearly independent.

16. [FIS89] Let T be a a linear operator on a finite dimensional vector space over a field F, with basis
B. Then A € F is an eigenvalue of T if and only if A is an eigenvalue of [T] .

17. [FIS89] Let A1, Az, ..., A be distinct eigenvalues of the linear operator T, on a finite dimensional
space V. For eachi=1,2,...,s let Xj1,Xi2,...,Xj,, be linearly independent eigenvectors corres-
pondingto A;. Thenthevectorsxyy, ..., X1, Xo15 -« - >Xar - - -» X515 - - - » Xgp, arelinearlyindependent.

18. Let T be linear operator on a finite dimensional vector space V over a field F. Then A € F is an
eigenvalue of T if and only if pr(X) = 0.

Diagonalization

19. [Lew9l, pp. 135-136] Let Ay, As,...,As be distinct eigenvalues of A. If A € C"™", then A is
diagonalizableifand onlyifa(A;) = y(A;) fori = 1,2,...,s.If A € R"", then A is diagonalizable
by a nonsingular matrix B € R"*" ifand only if all the eigenvalues of A are real and (%;) = y (A;)
fori =1,2,...,s.

20. Method for Diagonalization of A over C: This is a theoretical method using exact arithmetic and
is undesirable in decimal arithmetic with rounding errors. See Chapter 43 for information on
appropriate numerical methods.

* Find the eigenvalues of A.

* Find a basis xi1, . . ., X, for Ej, (A) for each of the distinct eigenvalues Ay, ..., A of A.

o Ifr;+---+r; = n,thenlet B=[xy;... X, .. .Xk1. . Xk, ]. Bisinvertibleand D = B~'ABisa
diagonal matrix, whose diagonal entries are the eigenvalues of A, in the order that corresponds
to the order of the columns of B. Else A is not diagonalizable.

21. A is diagonalizable if and only if A has n linearly independent eigenvectors.
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22. Ais diagonalizable if and only if [0 (A)| = n and A is nondefective.

23. If A has n distinct eigenvalues, then A is diagonalizable.

24. A is diagonalizable if and only if g4 (x) can be factored into distinct linear factors.

25. If A is diagonalizable, then so are AT A* k e N.

26. If A is nonsingular and diagonalizable, then A~! is diagonalizable.

27. If Ais an idempotent, then A is diagonalizable and o (A) C {0, 1}.

28. If A is nilpotent, then o (A) = {0}. If A is nilpotent and is not the zero matrix, then A is not
diagonalizable.

29. [FIS89] Let T be a linear operator on a finite dimensional vector space V with a basis 3. Then T is
diagonalizable if and only if [ T] 5 is diagonalizable.

30. [FIS89] A linear operator, T, on a finite dimensional vector space V is diagonalizable if and only
if there exists a basis B = {vy,...,v,} for V, and scalars Ay, ..., A,, such that T(v;) = A;v;, for
1<i<n.

31. [FIS89] If a linear operator, T, on a vector space, V, of dimension #, has n distinct eigenvalues,
then it is diagonalizable.

32. [FIS89] The characteristic polynomial of a diagonalizable linear operator on a finite dimensional
vector space can be factored into linear terms.

Polynomials

33. [HJ85] (Cayley—Hamilton Theorem) Let pa(x) = x" +a,_1x" "' + - -- 4+ a;x + ao be the charac-
teristic polynomial of A. Then p4(A) = A" +a, A" ' + ... +a;A+apl, =0.

34. [FIS89] (Cayley-Hamilton Theorem for a Linear Operator) Let pr(x) = x" + a,_1x" ! +--- +
a1x + ag be the characteristic polynomial of a linear operator, T, on a finite dimensional vector
space, V. Then pr(T) = T" + a,_1T" ' +--- +a,T + agl, = Ty, where Tj is the zero linear
operator on V.

35. par(x) = pa(x).

36. The minimal polynomial g4 (x) of a matrix A is a factor of the characteristic polynomial p(x) of
A.

37. If 1 is an eigenvalue of A associated with the eigenvector x, then p(A) is an eigenvalue of the matrix
p(A) associated with the eigenvector x, where p(x) is a polynomial with coefficients in F.

38. If B is nonsingular, p4(x) = pp-145(x), therefore, A and B! AB have the same eigenvalues.

39. Let pa(x) = x" +a,_1x" "'+ .- +a,x + ag be the characteristic polynomial of A. If |6 (A)| = n,
thenay = (=1)" %S, (A1,...,An), k =0,1,...,n—1,where Sg(A,...,A,)is the kth symmetric
function of the eigenvalues of A.

40. Let pa(x) = x" + a,_1x" "' 4+ -+ + a,x + ay be the characteristic polynomial of A. Then a; =
(=1)" k8, 1 (A),k=0,1,...,n— 1.

41. If |0 (A)| = n, then Sg(A) = S (A1,. .., An).

42. If C(p) is the companion matrix of the polynomial p(x), then p(x) = pc(p)(x) = gc(p)(%).

43. [HJ85, p. 135] If |6 (A)| = n, A is nonderogatory, and B commutes with A, then there exists a
polynomial f(x) of degree less than n such that B = f(A).

Other Facts:

44. If A is nonsingular and A is an eigenvalue of A of algebraic multiplicity «()), with correspond-
ing eigenvector x, then det(A)A~! is an eigenvalue of adj A with algebraic multiplicity a(1) and
corresponding eigenvector X.

45. [Lew91]IfA € 0(A), then any nonzero column ofadj (A—XI)isan eigenvector of A corresponding
to A.

46. If AB = BA, then A and B have a common eigenvector.

47. If A€ F™"and B € F"™", then 6 (AB) = o(B A) except for the zero eigenvalues.
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48. If A € F™™and B € F™", A € 0(A), n € o(B), with corresponding eigenvectors u and v,
respectively, then A € o (A B), with corresponding eigenvector u @ v. (See Section 10.5 for
the definition of A ) B.)

Examples:
—1 .. nxn .. . .
1. Let A = ] 0} . Then, viewing A € C"", 0(A) = {—i,1}. That is, A has no eigenvalues over
the reals.
-3 7 -1
2.LetA=| 6 8 —2|.Then pa(x) = (x +6)(x — 15)? = ga(x), A} = =6, (X)) = 1,
72 =28 19
y (A1) 1, 2, = 15, a(Ay) = 2, y(Ay) = 1. Also, a set of linearly independent eigenvectors is

—1] [-1
—2] , 1 . So, A is not diagonalizable.
4

4
[ 57 —21 21
3, Let A= | —14 22 —7|.Then pa(x) = (x + 6)(x — 15)%, qa(x) = (x + 6)(x — 15),
—140 70 =55
A o= —6,ar) = 1, y(A&1) = 1, &y = 15, a(ry) = 2, y(r;) = 2. Also, a set of linearly
—1 1 -3
independent eigenvectors is 0|,[2],| 1| p.So, Aisdiagonalizable.
2 0 10

[—5+4i 1 i

4. Let A = | 248 —4 2i|.Then 0(A) = {—6,—3,3i}. If B = {A? + 2A — 4, then
20—4i —4 —i

o(B) = {—12,-9,-5+6i}.

2 10 -2 10
5. Let A = 0 —3i 0| and B = 3 —1 1|. B is nonsingular, so A and B~'!AB =
0 0 1 4 0 1
—1+3i 1—i i
546i —1—2i 1+ 2i| have the same eigenvalues, which are given in the diagonal of A.

8—12i —4+4i 1-—4

30
6. Let A = 2_loandB: 2 1|. Then AB = 4_1,0(AB):
0 3 1 7 3
1 0
6 =3 0
{%(7+3ﬁi),%(7—3ﬁi)},BA= 4 11 ,anda(BA):{%(74—3«/51’),%(7—3«/51’),0}.
2 -1 0
1 1 0 =2 7 0 =2 5 0
7. Let A= [0 1 OlandB=| 0 -2 0|.ThenAB=BA=| 0 -2 0|.AandB
0 0 —3i 0 0 i 0 0 3
1
share the eigenvector x= |0 |, corresponding to the eigenvalues . = 1 of A and u = —2 of B.

0



4-10 Handbook of Linear Algebra
1 1 0 0
0 1 o0 1 PP
8. Let A= 0 _3 5 .Then pa(x) = x*+5x° +4x* —23x+13. S4(A), S3(A),and S, (A)
0 -1 -2 —4

were computed in Example 1 of Section 4.2, and it is straightforward to verify that S,(A) = 4.
Comparing these values to the characteristic polynomial, S;(A) = 13 = (—1)*13, S;(A) =
23 = (=1)3(=23), S2(A) = (—1)*4, and S;(A) = (=1)(5). It follows that Sy(A1, A, A3, Ag) =
)\.1)\.2}\,3)\.4 = 13, 53()\1,)\.2,)\3,)\4) = 23, Sz()\l,)\.z,)\.3,)\4) = 4, and Sl()\,l,)\Q,)\,3,)\4) = )\,1 + )\.2 +

A3 + Ay = —5 (these values can also be verified with a computer algebra system or numerical
software).
0 0 =2
9. Let p(x) =x>—7x>—3x+2,C=C(p)= |1 0 3|.Then pc(x) =x>—-7x>—-3x+2 =
0 1 7
-2 —14 -104 0 -2 -—14
p(x). Also, pc(C) = —=C3 +7C*+3C -2 =—| 3 19 142| +7|0 3 19
7 52 383 1 7 52
0 0 =2 1 0 0 0 0 O
+3(1 0 3] =210 1 O0[=1]0 0 O
0 1 7 0 0 1 0 0 O
Applications:

1. (Markov Chains) (See also Chapter 54 for more information.) A Markov Chain describes a

process in which a system can be in any one of n states: sj,s,,...,5,. The probability of en-
tering state s; depends only on the state previously occupied by the system. The transition
probability of entering state j, given that the system is in state 7, is denoted by p;;. The tran-
sition matrix is the matrix P = [p;;]; its rows have sum 1. A (row or column) vector is
a probability vector if its entries are nonnegative and sum to 1. The probabilty row vector
70 = (™, 7P, 7®), k > 0, is called the state vector of the system at time k if its ith
entry is the probability that the system is in state s; at time k. In particular, when k = 0, the
state vector is called the initial state vector and its ith entry is the probability that the system

begins at state s;. It follows from probability theory that 7+ = 7® P and thus inductively
that #® = 7@ Pk If the entries of some power of P are all positive, then P is said to be
T TT) e T,
T ) cee T,
regular. If P is a regular transition matrix, then as n — oo, P" — | . . . |. The
Nl 7'[2 ... 7'[”
row vector w = (1,7, ...,7,) is called the steady state vector, 7 is a probability vector, and

as n — oo, ™ — . The vector 7 is the unique probability row vector with the property
that wP = 7. That is, 7r is the unique probability row vector that is a left eigenvector of P for
eigenvalue 1.

2. (Differential Equations) [Mey00, pp. 541-546] Consider the system of linear differential equations

X{ = apx; + apxx, + ... + aux,

xé = ayx; + apx, + ... + adux,
, where each of the unknowns xi,x,,...,%,

X, = amx1 + apxa + ... 4+  dgx,
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is a differentiable function of the real variable . This system of linear differential equations can

x1(2) x(1)
x(1) x;(t)

be written in matrix form as X' = Ax, where A = [g;;], x = . |,and X = 2. JIFA
X (t) x,()

is diagonalizable, there exists a nonsingular matrix B (the columns of the matrix B are linearly
independent eigenvectors of A), such that B"!AB = D is a diagonal matrix, sox' = BDB~!'x, or

B~!'x' = DB~!x. Letu = B~!x. The linear system of differential equations w' = Du has solution
kle)‘"
k2eA2t

u= . , where Ay, X,,. .., , are the eigenvalues of A. It follows that x = Bu. (See also
kn eknt

Chapter 55.)
3. (Dynamical Systems) [Lay03, pp. 315-316] Consider the dynamical system given by uz,; = Auy,

ai
a
where A = [a;;],uy = | . |.If Aisdiagonalizable, there exist n linearly independent eigenvectors,
an
X1,X2, . - ., Xy, of A. The vector ug can then be written as a linear combination of the eigenvectors,
that is, wp = ¢1x] + 2% + -+ 4+ ¢,X,. Then u; = Aug = A(c1x; + X + -+ ¢pX,) =

C1MX1 A% + - - -+ Ay X,. Inductively, ugy = Aug = cl)»’l”'lx] +Cz)~]z(+1X2 e it
Thus, the long-term behavior of the dynamical system can be studied using the eigenvalues of the
matrix A. (See also Chapter 56.)
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5.1 Inner Product Spaces

Definitions:

Let V be a vector space over the field F, where F = R or F = C. An inner product on V is a function
(,+): V. x V — F such that for allu,v,w € Vand a,b € F, the following hold:

* (v,v) > 0and (v,v) = 0ifand only if v= 0.
* (au+ bv,w) = a(u,w) + b(v,w).
¢ For F = R: (1,v) = (v,u); For F = C: (u,v) = (v, u) (where bar denotes complex conjugation).
A real (or complex) inner product space is a vector space V over R (or C), together with an inner
product defined on it.
In an inner product space V, the norm, or length, of a vector v € V is ||v|]| = 4/{v, V).
A vector v € V is a unit vector if ||v| = 1.
The angle between two nonzero vectors u and v in a real inner product space is the real number 0,
0 < 6 < 7, such that (u,v) = ||ul|||v]| cos8. See the Cauchy—Schwarz inequality (Fact 9 below).
Let V be an inner product space. The distance between two vectors u and vis d(u,v) = |jlu — v||.

5-1
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A Hermitian matrix A is positive definite if x* Ax > 0 for all nonzero x € C". (See Chapter 8 for more
information on positive definite matrices.)

Facts:

All the following facts except those with a specific reference can be found in [Rom92, pp. 157-164].

1. The vector space R” is an inner product space under the standard inner product, or dot product,

defined by
(u,v) = ulv = Z u; v;.
i=1

This inner product space is often called n—dimensional Euclidean space.
2. The vector space C" is an inner product space under the standard inner product, defined by

n
(w,v) =viu= Z u; v;.
i=1

This inner product space is often called n-dimensional unitary space.

3. [HJ85, p. 410] In R", a function (-, -): R” x R"” — R is an inner product if and only if there exists
a real symmetric positive definite matrix G such that (u,v) = u’ Gv, for all u,v € R".

4. [HJ85, p. 410] In C", a function (-, -): C" x C" — C is an inner product if and only if there exists
a Hermitian positive definite matrix H such that (u,v) = v* Hu, for allu,v € C".

5. Let I? be the vector space of all infinite complex sequences v = (v,) with the property that
[0.9)

Z [va]* < 0o. Then I? is an inner product space under the inner product

n=1

o0
(u,v) = Z UV,
n=1

6. The vector space Cla, b] of all continuous real-valued functions on the closed interval [a, b] is an
inner product space under the inner product

b
(fig) = [ fgodx.

7. If V is an inner product space and (u,w) = (v,w) forallw € V, thenu =v.

8. The inner product on an inner product space V, when restricted to vectors in a subspace S of V,
is an inner product on S.

9. Let V be an inner product space. Then the norm function || - || on V has the following basic
properties for allu,v € V:

* |Ivll = Oand ||v|]| = 0 ifand only if v = 0.

llav]l = |a|||v||, foralla € F.
* (The triangle inequality) ||u + v|| < [lu|l + ||v|| with equality if and only if v = au, for some
acF.

* (The Cauchy-Schwarz inequality) |(u, v)| < |lu||||v|| with equality if and only if v = au, for some
acF.

all = Ivlil < fla = v].
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* (The parallelogram law) [[u + v||* + [[u — v||? = 2[ju||? + 2| v|%.

* (Polarization identities)

lu+v|> = lu—v|? if F =R.
4(u,v) =
lu+vll> = [lu—=v|* +illutivl]> —iJu—iv|?* if F=C.

Examples:

1. Let R* be the Euclidean space with the inner product (u,v) = ulv. Letx = [1,2,3,4]7 € R* and
y = [3,—1,0,2]T € R* be two vectors. Then

* (%y) =9 x| = +/30,and |ly| = v14.
* The distance between x and y is d(x,y) = ||x — y|| = +/26.

A 1.116 radians.

* The angle between x and y is = arccos ——— = arccos

9
V30+/14 24/105

2. (W) = uyvy + 2u1vy + 2uavy + 6usv; = u’ {; 2} v is an inner product on R?, as the matrix
G = [; 2} is symmetric positive definite.

3. Let C[—1, 1] be the vector space with the inner product ( f, g) = /11 f(x)g(x)dxandlet f(x) =1
andg(x) = x*betwo functionsin C[—1,1]. Then(f,g) = /11 x*dx =2/3,(f, f) = /]1 ldx =2,

1
and (g, g) = / x*dx = 2/5. The angle between f and g is arccos(+/5/3) ~ 0.730 radians.
J-1
4. [Mey00, p. 286] (A, B) = tr(AB*) is an inner product on C"*",

5.2 Orthogonality

Definitions:

Let V be an inner product space. Two vectors u,v € V are orthogonal if (u,v) = 0, and this is denoted
byu L v.

A subset S of an inner product space V is an orthogonal set if u L v, for allu,v € S such thatu # v.

A subset S of an inner product space V is an orthonormal set if S is an orthogonal set and eachv € §
is a unit vector.

Two subsets S and W of an inner product space V are orthogonal ifu L v, forallu e Sandve W,
and this is denoted by S L W.

The orthogonal complement of a subset S of an inner product space V is St = {w € V|(w,v) =
0 forall ve S}.

A complete orthonormal set M in an inner product space V is an orthonormal set of vectors in V such
that forv e V,v L M implies that v = 0.

An orthogonal basis for an inner product space V is an orthogonal set that is also a basis for V.

An orthonormal basis for V is an orthonormal set that is also a basis for V.

A matrix U is unitary if U*U = I.

A real matrix Q is orthogonal if QTQ=1.
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Facts:
1.

o]

10.
11.

12.

13.

14.

15.

16.

Handbook of Linear Algebra

[Mey00, p. 298] An orthogonal set of nonzero vectors is linearly independent. An orthonormal set
of vectors is linearly independent.

. [Rom92, p. 164] If S is a subset of an inner product space V, then S+ is a subspace of V. Moreover,

if S is a subspace of V, then S N S+ = {0}.

. [Mey00, p. 409] In an inner product space V, {0}* = V and V1 = {0}.
. [Rom92, p. 168] If S is a finite dimensional subspace of an inner product space V, then for any

veV,
* There are unique vectors s € S and t € S* such that v = s + t. This implies V = S @ S*.

* There is a unique linear operator P such that P(v) =s.

. [Mey00, p. 404] If S is a subspace of an n—dimensional inner product space V, then

e (SHt =5s.
e dim(St) = n — dim(S).

. [Rom92, p. 174] If S is a subspace of an infinite dimensional inner product space, then S C (S+)*,

but the two sets need not be equal.

. [Rom92, p. 166] An orthonormal basis is a complete orthonormal set.
. [Rom92, p. 166] In a finite-dimensional inner product space, a complete orthonormal set is a basis.
. [Rom92, p. 165] In an infinite-dimensional inner product space, a complete orthonormal set may

not be a basis.

[Rom92, p. 166] Every finite-dimensional inner product space has an orthonormal basis.

[Mey00, p. 299] Let B = {u;,u,,...,u,} be an orthonormal basis for V. Every vector v € V can
be uniquely expressed as

n

V= Z(V,Uj>Uj.

i=1

The expression on the right is called the Fourier expansion of v with respect to 13 and the scalars
(v,u;) are called the Fourier coefficients.
[Mey00, p. 305] (Pythagorean Theorem) If {v;}*_, is an orthogonal set of vectors in V, then

I vill? = S vl

[Rom92, p. 167] (Bessel’s Inequality) If {ui}f‘:1 is an orthonormal set of vectors in V, then
VP = 328 (v )

[Mey00, p. 305] (Parseval’s Identity) Let B = {u;,uy, ..., u,} be an orthonormal basis for V. Then

foreachv e V, ||v|? = Z |(v,w;) [

[Mey00, p. 405] Let A ez?mx”, where F = R or C. Then
¢ ker(A)! = range(A*), range(A)1 = ker(A*).

¢ F" = range(A) @ range(A)* = range(A) @ ker(A*).
o F" =ker(A) @ ker(A)* = ker(A) @ range(A*).
[Mey00, p. 321] (See also Section 7.1.) The following statements for a real matrix Q € R"*" are
equivalent:

* Q is orthogonal.

* Q has orthonormal columns.

* Q has orthonormal rows.

* QQT = I, where I is the identity matrix of order 7.

* Forallve R”, ||Qv| = |v].
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17.

[Mey00, p. 321] (See also Section 7.1.) The following statements for a complex matrix U € C"*"
are equivalent:

* U is unitary.

* U has orthonormal columns.

* U has orthonormal rows.

* UU* = I, where [ is the identity matrix of order n.
* Forallve C", |Uv| = |v]|.

Examples:
1
1. Let C[—1, 1] be the vector space with the inner product ( f, g) = / f(x)g(x)dxandlet f(x) =1
-1

5.3

1
and g(x) = x be two functions in C[—1,1]. Then (f,g) = / xdx = 0. Thus, f L g.
1

The standard basis {e;, e,, . .., e,} is an orthonormal basis for the unitary space C".

If {vy, vy, - -, Vy,} is an orthogonal basis for C" and S = span {v;, vz, -+, vt} (1 <k < n—1), then
St = span {Viy1,- -+, Val.

Thevectorsv; = [2,2,1]7,v, = [1,—1,0]7,and vs = [—1, —1,4] T are mutually orthogonal. They

can be normalized tou; = v, /||v|| = [2/3,2/3,1/317,u, = v,/ |[v2|l = [1/+/2,—1/+/2,0]7, and
us = vi/|lvsll = [—+/2/6,—+/2/6,2+/2/3]". The set B = {u;, us,u3} forms an orthonormal
basis for the Euclidean space R?.

« Ifv=[v;,v2,v3]T € R% thenv = (v,u;)u; + (v,u)u, + (v, us)us, that is,

i+ 2+ Vi — V2 —vi—vy+4v;

u u u;.
3 1 ﬁz 32 3

v

* The matrix Q = [u;,u;,u3] € R¥ is an orthogonal matrix.

. Let S be the subspace of C* spanned by the vectors u = [i,1,1]7 and v = [1,7,1]7. Then the

orthogonal complement of S is

St ={ww=«[1,1,—1+i]T, wherea € C}.

. Consider the inner product space /> from Fact 5 in Section 5.1. Let £ = {e;|i = 1,2,...}, where

e; has a 1 on ith place and Os elsewhere. It is clear that £ is an orthonormal set. If v = (v,) L &,
then for each n, v, = (v, e,) = 0. This implies v = 0. Therefore, £ is a complete orthonormal set.
However, £ is not a basis for > as S = span{&} # I?. Further, S* = {0}. Thus, (St)* =12 ¢ S
andI? # S @ S*.

Adjoints of Linear Operators on Inner Product Spaces

Let V be a finite dimensional (real or complex) inner product space and let T be a linear operator on V.

Definitions:

A linear operator T* on V is called the adjoint of T'if (T'(u),v) = (u, T*(v)) forallu,v € V.
The linear operator T is self-adjoint, or Hermitian, if T = T*; T is unitary if T*T = Iy.
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Facts:
The following facts can be found in [HK71].

1. Let f be alinear functional on V. Then there exists a unique v € V such that f(w) = (w,v) for
alwe V.

2. The adjoint T* of T exists and is unique.

3. Let B = (uj,uy,...,u,) be an ordered, orthonormal basis of V. Let A = [T]z. Then

ai; = (T(w),w), i4,j=12,...,n

Moreover, [T*]g = A*, the Hermitian adjoint of A.

4. (Properties of the adjoint operator)
(a) (T*)* = T for every linear operator T on V.
(b) (aT)* = aT* for every linear operator T on V and everya € F.
(¢) (T+ T1)* = T* + Ty* for every linear operators T, T; on V.
(d) (TTy)* = T,*T* for every linear operators T, T; on V.

5. Let B be an ordered orthonormal basis of V and let A = [T]g. Then
(a) T is self-adjoint if and only if A is a Hermitian matrix.

(b) T is unitary if and only if A is a unitary matrix.

Examples:

1. Consider the space R equipped with the standard inner product and let f(w) = 3w, — 2ws.
Then with v=[3,0,-2]7, f(w) = (w,V).

X
2. Consider the space R® equipped with the standard inner product. Let v = |y | and T(v) =
z
2x +y 2 0 2 0 1 2x +z
y—3z |.Then[T] = |0 —3|,s0[T]*= |1 1 1|,and T*(v) = |x+y+ z|.
x+y+z 11 1 0 -3 1 —3y+z

3. Consider the space C"*" equipped with the inner product in Example 4 of section 5.1. Let A, B €
C™" and let T be the linear operator on C"*" defined by T(X) = AX + XB, X € C"™". Then
T*(X) = A*X + XB*, X € C™",

4. Let V be an inner product space and let T be a linear operator on V. For a fixedu € V, f(w) =
(T(w), u) is a linear functional. By Fact 1, there is a unique vector v such that f(w) = (w,v). Then
T*(u) = v.

5.4 Orthogonal Projection

Definitions:

Let S be a finite-dimensional subspace of an inner product space V. Then according to Fact 4 in Section 5.2,
each v € V can be written uniquely as v = s +t, where s € S and t € S*. The vector s is called the
orthogonal projection of v onto S and is often written as Proj¢v, where the linear operator Projg is called
the orthogonal projection onto S along S*. When V = C” or V = R" with the standard inner product,
the linear operator Projg is often identified with its standard matrix [Projs] and Projg is used to denote
both the operator and the matrix.
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Facts:

1.
2.

An orthogonal projection is a projection (as defined in Section 3.6).
[Mey00, p. 433] Suppose that P is a projection. The following statements are equivalent:

* P is an orthogonal projection.

* P*=P.

* range(P) L ker(P).

[Mey00, p. 430] If S is a subspace of a finite dimensional inner product space V, then

Projg. = I — Projs.

[Mey00, p. 430] Let S be a p—dimensional subspace of the standard inner product space C", and
let the columns of matrices M € C"*? and N € C"*("~P) be bases for S and S, respectively. Then
the orthogonal projections onto S and S+ are

Projg = M(M*M)"'M* and Proj;. = N(N*N)™'N*.

If M and N contain orthonormal bases for S and S+, then Proj; = MM* and Projg. = NN*.

. [Lay03, p. 399] If {uy, . . . , u,} is an orthonormal basis for a subspace S of C", then for any v e C",

Projgv = (ujv)u; +--- + (u’;V)up.
[TB97, p. 46] Let v € C" be a nonzero vector. Then

w*
* Proj, = — is the orthogonal projection onto the line L = span{v}.
Vv

*

* Proj,,=1— is the orthogonal projection onto L=.

vty
[Mey00, p. 435] (The Best Approximation Theorem) Let S be a finite dimensional subspace of an
inner product space V and let b be a vector in V. Then Proj¢b is the unique vector in S that is
closest to b in the sense that

min ||b — s|| = ||b — Projsb||.
ses

The vector Projb is called the best approximation to b by the elements of S.

Examples:

1.
2.

Generally, an orthogonal projection P € C"*" is not a unitary matrix.

Let {vi,v2,---,V,} be an orthogonal basis for R” and let S the subspace of R" spanned by
{vi,---,v}, where 1 < k < n—1.Thenw = ¢yvi + ¢c;v2 + --- + ¢,v, € R" can be writ-
tenasw=s-+t,wheres =c;vi + -+ cvi € Sand t = x4 Vipy + - - + ¢,v, € ST

. Letu, = [2/3,2/3,1/3]7, u, = [1/3,—-2/3,2/3]T, and x = [2,3,5]". Then {u;, u,} is an or-

thonormal basis for the subspace S = span {u;,u,} of R3.

* The orthogonal projection of x onto S is
PrOjSX = (u{>xul + (ugx) w = [4) 27 3] T'

* The orthogonal projection of x onto St is y = x — Projyx = [—2,1,2]7.

* The vector in S that is closest to x is Proj¢x = [4, 2, 3] T,
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* Let M = [u;, uy]. Then the orthogonal projection onto S is

NEE A
Projy=MM"' =—- |2 8 -2
s 2 s

* The orthogonal projection of any v € R?® onto S can be computed by Proj;v = MMv. In
particular, MMTx = [4,2,3]7.

4. Letw; = [1,1,0]T and w, = [1,0,1]". Consider the subspace W = span{w;, w,} of R>. Define

1 1
2 1
the matrix M = [w;,w,] = |1 0|.Then M'M = [1 2].
0 1

* The orthogonal projection onto W is Proj,, = M(MTM)"'MT =
-1
bl 2 1 1 1 0 1 2 ! !
1 0 1 2 Lo 1l = 3 1 2 -1
0 1 1

-1 2
* The orthogonal projection of any v € R® onto W can be computed by Proj,,v. Forv = [1,2,3]7,
Proj,,v = Proj,,[1,2,3]% = [7/3,2/3,5/3].

5.5 Gram—Schmidt Orthogonalization and QR Factorization

Definitions:
Let {aj,a,...,a,} be a basis for a subspace S of an inner product space V. An orthonormal basis
{u;,uy,...,u,} for S can be constructed using the following Gram—Schmidt orthogonalization process:
k-1
a a — > (apui)y;
1= u = - , for k=2,...,n.
llayll llax — > 2 (@ wi)ui ||

A reduced QR factorization of A € C™*" (m > n) is a factorization A = QR, where Q € C™" has
orthonormal columns and R € C"*" is an upper triangular matrix.

A QR factorization of A € C"*" (m > n) is a factorization A = QR, where Q € C"™*™ is a unitary
matrix and R € C"™*" is an upper triangular matrix with the last 1 — n rows of R being zero.

Facts:

1. [TB97, p. 51] Each A € C"™*" (m > n) has a full QR factorization A = QR.If A € R™*", then
both Q and R may be taken to be real.

2. [TB97, p. 52] Each A € C™*" (m > n) has a reduced QR factorization A = QR.If A € R™*n,
then both Q and R may be taken to be real.

3. [TB97,p.52] Each A € C"™*" (m > n) of full rank has a unique reduced QR factorization A = OR,
where Q € C"™ and R € C"™" with real r;; > 0.

4. [TB97, p. 48] The orthonormal basis {u;,u,,...,u,} generated via the Gram—Schmidt ortho-
gonalization process has the property

Span({ulxub ... auk}) = Span({a1>a2> e )ak}))

fork=1,2,...,n.
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5.

6.

10.

11.
12.

13.

[TB97, p. 51]

Algorithm 1: Classical Gram—Schmidt Orthogonalization:
input: a basis {a;,a,, . ..,a,} for a subspace S
output: an orthonormal basis {u;, u,,...,u,} for S
forj=1:n
uj;=a;
fori=1:j—1
rij = (aj,u;)
u; i=u; —rijju
end
rij = llujll
uj = u;/rj
end

[TB97, p. 58]

Algorithm 2: Modified Gram—Schmidt Orthogonalization
input: a basis {a;, a, . ..,a,} for a subspace S
output: an orthonormal basis {u;, u,,...,u,} for S
wii=a,i=1:n
fori=1:n
rii = [lwill
u; = wi/rij
forj=i+1:n
rij == (Wj,ll,‘)
W = W; — 71U
end
end

[Mey00, p. 315] If exact arithmetic is used, then Algorithms 1 and 2 generate the same ortho-
normal basis {u;, uy, . . .,u,} and the same r;;, for j > i.

[GV96, pp. 230-232] If A = [a;,a,,...,a,] € C™" (m > n) is of full rank #n, then the classic
or modified Gram-Schmidt process leads to a reduced QR factorization A = OR, with O =
[u,uy,...,u,] and ﬁij = rjj, for j > i, and ﬁij =0,forj <i.

[GV96, p. 232] The costs of Algorithm 1 and Algorithm 2 are both 2mn? flops when applied to
compute a reduced QR factorization of a matrix A € R™*".

[Mey00, p. 317 and p. 349] For the QR factorization, Algorithm 1 and Algorithm 2 are not numer-
ically stable. However, Algorithm 2 often yields better numerical results than Algorithm 1.
[Mey00, p. 349] Algorithm 2 is numerically stable when it is used to solve least squares problems.
(Numerically stable algorithms for computing the QR factorization using Householder reflections
and Givens rotations are given in Chapter 38.)

[TB97, p. 54] (See also Chapter 38.) If A = QR isa QR factorization of the rank n matrix A € C"™",
then the linear system Ax = b can be solved as follows:

* Compute the factorization A = QR.
* Compute the vector c = Q*Db.

* Solve Rx = c by performing back substitution.
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Examples:

1. Consider the matrix A =

S N =

2
0].
2

* A hasa (full) QR factorization A = QR:

L 4 2 2
12 5 s s [Ve &
N 1 6
2 0 = NG 33 3 0 7
V5 2
0 2 0 5 5 0 0
* A has a reduced QR factorization A = QR:

1 2 = = >
BERE 3.5 0o S|

0 2 0o £ v

3 1 =2
. . 3 —4 1 . . . .
2. Consider the matrix A = 3 a4 1| Using the classic or modified Gram-Schmidt process

3 1 0

gives the following reduced QR factorization:

[ R |
3 1 =2 2 2 T2
1 1 1| (6 =3 -1
3 -4 1 2 T2 2
3 4 1| =1 o1 1|0 At
2 7z Tz o0 o0 2
3 1 0 111
3 2 2

5.6 Singular Value Decomposition

Definitions:

A singular value decomposition (SVD) of a matrix A € C"*" is a factorization
A=UXV*, X =diag(oy,0,...,0,) € R™", p = min{m,n},

whereo) > 0, > ... >0, > 0andboth U = [u},w,...,u,] € C""and V = [v},vs,...,Vv,] € C""
are unitary. The diagonal entries of X are called the singular values of A. The columns of U are called left
singular vectors of A and the columns of V are called right singular vectors of A.

Let A € C"*" withrankr < p = min{m, n}. A reduced singular value decomposition (reduced SVD)
of A is a factorization

A=UsV* = diag(oy,07,...,0,) € R™,

where 6y > 03 > ... > o, > 0 and the columns of U = [uj,u,...,u,] € C"™ and the columns of

A

V = [vi,v2,...,V,] € C"™" are both orthonormal.
(See §8.4 and §3.7 for more information on singular value decomposition.)
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Facts:

All the following facts except those with a specific reference can be found in [TB97, pp. 25-37].

1.

*®

10.

11.

12.
13.

Every A € C™" has a singular value decomposition A = UZV*. If A € R™*", then U and V
may be taken to be real.

The singular values of a matrix are uniquely determined.

If A € C"™*" has a singular value decomposition A = UX V*, then

Av; =oju;j, Au; =0jVj, u]-Av] =o0j,

for j = 1,2,..., p = min{m, n}.

If UX V* is a singular value decomposition of A, then VX7 U* is a singular value decomposition
of A*.

If A € C™*" has r nonzero singular values, then

e rank(A) =r.
r
c A= Zojujv;f.
j=1

* ker(A) = span{v,41,...,v,}.
* range(A) = span{uy,...,u,}.

Any A € C"™" of rankr < p = min{m, n} has a reduced singular value decomposition,
A=UxV* = diag(oy,07,...,0,) € R™,

where gy > 0, > -+ > 0, > 0and the columns of U = [u,u,...,u,] € C™ and the columns
of V.= [vi,va,...,v,] € C"™ are both orthonormal. If A € R"™*", then U and V' may be taken
to be real.

If rank(A) = r, then A has r nonzero singular values.

The nonzero singular values of A are the square roots of the nonzero eigenvalues of A*A or AA*.
[HJ85, p. 414] If UX V* is a singular value decomposition of A, then the columns of V are
eigenvectors of A* A; the columns of U are eigenvectors of AA*.

[HJ85, p. 418] Let A € C™*" and p = min{m, n}. Define

0 A
G = e C(m+n)><(m+n).
A* 0
If the singular values of A are 01,...,0,, then the eigenvalues of G are 01,...,0,,—01,..., =0,
and additional |n — m| zeros.
If A € C"™" is Hermitian with eigenvalues A;,A;, -+, A,, then the singular values of A are

|)\1|’ MZI’ Tt |)‘n|

For A € C"™", |det A| = 010, - - - 0,,.

[Autl5; Sch07] (Eckart-Young Low Rank Approximation Theorem)

Let A= UXV*bean SVD of A € C"*" and r = rank(A). For k < r, define Ay = Zl](»:l Gjujv’]f.
Then

* ||A— A = min ||A— Bl; = oxt1;
IA= Al = _min |4~ Bl = o

* ||A— A = min ||A— Bl =
IA= Ay = min_ A~ Bl

m n
E E mfj are the 2-norm and Frobenius norm of

where || M|, = Hnﬁax1 [|Mx||, and [|[M||p =
x|[2= : p
i=1 j=I1

matrix M, respectively. (See Chapter 37 for more information on matrix norms.)
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Examples:

2
0| and B = AT =
2

Consider the matrices A =

S N =

1 2 0
2 0 2|

1. The eigenvalues of ATA = z] are 9 and 4. So, the singular values of A are 3 and 2.

2 1

1 2
2. Normalized eigenvectors for AT A are v; = [ﬁ] andv, = { ‘/g] .

NG NG
5 0
3. 0 = %Avl = % and u, = %sz = % . Application of the Gram—Schmidt process to
4 _ L
EW5 NG

WIN W= Wt

uy, Uy, and e; produces u; =

4. A has the singular value decomposition A = UX VT, where

5 0 245 3 0
1 1 (1 2
U=72 6 —/5/, =10 2,\/:—[2 _1].
Wols 3 a5 0 0 3

Il
<
M
<
U=
=
5
(¢}
I

5. A has the reduced singular value decomposition A

5 0
N 1 A 30 . 1 |1 2
U=——|{2 6, Y= , V=—
3.5 0 2 s [2 —1]
4 -3
6. B has the singular value decomposition B = UpXp VBT , where
2
U V, LI 2] )Y |:3 00 Vi U ; 2 ﬁ
B= VA= —~= > B — > B — A= — ~—= -
2 -1 0 2 0
V5 Wi ly L3 Lags

(Up = U and V4 = V for A were given in Example 4.)

5.7 Pseudo-Inverse

Definitions:

A Moore—Penrose pseudo-inverse of a matrix A € C"*" isa matrix AT € C"*" that satisfies the following
four Penrose conditions:

AATA = A; ATAAT = AT, (AAT)* = AAT; (ATA) = ATA.
Facts:
All the following facts except those with a specific reference can be found in [Gra83, pp. 105-141].

1. Every A € C"™*" has a unique pseudo-inverse Af. If A € R™*", then A' is real.
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2.

15.

16.
17.
18.

19.

[LH95, p.38] If A € C"™*" of rankr < min{m, n}hasan SVD A = UX V¥, then its pseudo-inverse
is At = VXTU*, where

»f = diag(1/01,...,1/0,,0,...,0) € R™™.

Oinn =0,,, and ]Jm = ﬁ]nm, where 0,,,, € C™*" is the all 0s matrix and J,,, € C™*" is the all 1s
matrix.

(AD)* = (A9)T; (AT = A

If A is a nonsingular square matrix, then AT = A71,

If U has orthonormal columns or orthonormal rows, then UT = U*.

If A= A*and A = A% then AT = A.

Af = A* if and only if A* A is idempotent.

If A= A*, then AAT = ATA.

If U € C"*" is of rank # and satisfies UT = U*, then U has orthonormal columns.

. IfU € C™™ and V e C™" are unitary matrices, then (UAV)' = V*ATU*,
. If A € C™" (m > n) has full rank n, then AT = (A*A)~1A*.

. If A € C™" (m < n) has full rank m, then AT = A*(AA*)" 1.

. Let A € C"™*". Then

« ATA, AAT, I, — ATA, and I,, — AA" are orthogonal projections.

+ rank(A) = rank(AT) = rank(AA") = rank(ATA).

o rank(I, — ATA) = n — rank(A).

* rank(I, — AAT) = m — rank(A).

IfA=A+ A+ -+ A, AfA; = 0, and AiA;‘- =0, foralli,j = 1,---,k, i # j, then
A=Al 4 Al .. 4 Al

If Aisanm x r matrix of rank r and B is an r x n matrix of rank r, then (AB)' = Bt Af.
(A*A)T = AT(A")T; (AA")T = (A")TAT.

[Gre66] Each one of the following conditions is necessary and sufficient for (AB )i = BTAT:

* range(BB*A*) C range(A*) and range(A*AB) C range(B).

« ATABB* and A*ABB' are both Hermitian matrices.

* ATABB*A* = BB*A*and BBTA*AB = A*AB.

« ATABB*A*ABB' = BB*A*A.

* ATAB = B(AB)'AB and BBYA* = A*AB(AB)'.

Let A € C™" and b € C™. Then the system of equations Ax = b is consistent if and only if

AA'b = b. Moreover, if Ax = b is consistent, then any solution to the system can be expressed as
x=Ab+ (I, — ATA)y for somey € C".

Examples:

1.

2.

b2 2 8§ =2
The pseudo-inverse of the matrix A = [2 0| is AT = %8 [ } .
0 2

(AB)! = BT A' generally does not hold. For example, if

1 0 1 1
A= 0 0} and B_[O 1},
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then

However,

Least Squares Problems

Definitions:

Given A € F™" (F =R or C), m > n,and b € F", the least squares problem is to find an x, € F"
such that ||b — Ax|| is minimized: ||b — Axy|| = m}n IIb — Ax]|.
xeF"

Such an x, is called a solution to the least squares problem or a least squares solution to the linear
system Ax = b.

The vectorr = b — Ax € F™ is called the residual.

If rank(A) = n, then the least squares problem is called the full rank least squares problem.
Ifrank(A) < n, then the least squares problem is called the rank—deficient least squares problem.

The system A*Ax = A*b is called the normal equation for the least squares problem.
(See Chapter 39 for more information on least squares problems.)

Facts:

1.

4.

[Mey00, p. 439] Let A € F"*" (F = Ror C, m > n) and b € F" be given. Then the following
statements are equivalent:

* Xy is a solution for the least squares problem.

* min||b — Ax|| = |[b — Axo|.

* Axy = Pb, where P is the orthogonal projection onto range(A).
e A*rg = 0, wherery = b — Ax,.

* A*Axy) = A*Db.

e xo= ATb+ Yo for some y, € ker(A).

[LH95, p. 36] If A € F™" (F = Ror C, m > n) and rank(A) = r < n, thenxg = A'b is the
unique solution of minimum length for the least squares problem.

[TB97,p.81] If A € F"™" (F = R or C, m > n) has full rank, then x, = Atb = (A*A)"'A*b is
the unique solution for the least squares problem.

[TB97, p. 83]

Algorithm 3: Solving Full Rank Least Squares via QR Factorization
input: matrix A € F™" (F = R or C, m > n) with full rank # and vectorb € F™
output : solution xg for mingcp» ||b — Ax||

compute the reduced QR factorization A = OR;

compute the vector ¢ = Q*b;

solve Rxy = ¢ using back substitution.
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5. [TB97, p. 84]

Algorithm 4: Solving Full Rank Least Squares via SVD
input: matrix A € F™" (F = R or C, m > n) with full rank # and vectorb € F™
output : solution X, for mingcp» |b — Ax||
compute the reduced SVD A = UsV*with S = diag(oy,02,- -+, 0,);
compute the vector ¢ = U*b;
compute the vectory: y; = ¢;/0;,i = 1,2, -+, 1
compute xy = Vy.

6. [TBY7, p. 82]

Algorithm 5: Solving Full Rank Least Squares via Normal Equations
input: matrix A € F™" (F = R or C,m > n) with full rank n and vectorb € F™
output : solution x, for mingcp» ||b — Ax||

compute the matrix A* A and the vector c = A*b;

solve the system A* Ax, = c via the Cholesky factorization.

Examples:

1. Consider the inconsistent linear system Ax = b, where

Then the normal equations are given by AT Ax = A”b, where

5 2
ATA =
2 8 8

and ATb= {5} .

A least squares solution to the system Ax = b can be obtained via solving the normal equations:

2/3
5/6

xo = (ATA) AT = ATb = {

2. We use Algorithm 3 to find a least squares solution of the system Ax = b given in Example 1. The
reduced QR factorization A = QR found in Example 1 in Section 5.5 gives

T

1 4
- = 1
QTb_f_f 2_«/3
— |5 35 BRNAE
0 NEN K

3

Now solving Rx = [/5,4/5]7 gives the least squares solution xo = [2/3,5/6]".
3. We use Algorithm 4 to solve the same problem given in Example 1. Using the reduced singular
value decomposition A = US V7 obtained in Example 5, Section 5.6, we have

1 5 0 1 7
WVoly 3| |3
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Now we computey = [y, y»]7:

7 1
=c¢;/o; = —= and =)0, = —=.
)4l 1/01 3\/5 V2 2/02 2\/5

Finally, the least squares solution is obtained via
7
1o2] [5E] [
V= .
2 -1 |5 5/6
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A canonical form of a matrix is a special form with the properties that every matrix is associated to a matrix
in that form (the canonical form of the matrix), it is unique or essentially unique (typically up to some
type of permutation), and it has a particularly simple form (or a form well suited to a specific purpose).
A canonical form partitions the set matrices in F ™" into sets of matrices each having the same canonical
form, and that canonical form matrix serves as the representative. The canonical form of a given matrix
can provide important information about the matrix. For example, reduced row echelon form (RREF) is
a canonical form that is useful in solving systems of linear equations; RREF partitions F ™" into sets of
row equivalent matrices.

The previous definition of a canonical form is far more general than the canonical forms discussed in
this chapter. Here all matrices are square, and every matrix is similar to its canonical form. This chapter
discusses the two most important canonical forms for square matrices over fields, the Jordan canonical
form (and its real version) and (two versions of) the rational canonical form. These canonical forms
capture the eigenstructure of a matrix and play important roles in many areas, for example, in matrix
functions, Chapter 11, and in differential equations, Chapter 55. These canonical forms partition F"*"
into similarity classes.

The Jordan canonical form is most often used when all eigenvalues of the matrix A € F"*" lie in the
field F, such as when the field is algebraically closed (e.g., C), or when the field is R; otherwise the rational
canonical form is used (e.g., for Q). The Smith normal form is a canonical form for square matrices over
principal ideal domains (see Chapter 23); it is discussed here only as it pertains to the computation of the
rational canonical form. If any one of these canonical forms is known, it is straightforward to determine
the others (perhaps in the algebraic closure of the field F). Details are given in the sections on rational
canonical form.

Results about each type of canonical form are presented in the section on that canonical form, which
facilitates locating a result, but obscures the connections underlying the derivations of the results. The
facts about all of the canonical forms discussed in this section can be derived from results about modules
over a principal ideal domain; such a module-theoretic treatment is typically presented in abstract algebra
texts, such as [DF04, Chap. 12].
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None of the canonical forms discussed in this chapter is a continuous function of the entries of a matrix
and, thus, the computation of such a canonical form is inherently unstable in finite precision arithmetic.
(For information about perturbation theory of eigenvalues see Chapter 15; for information specifically
about numerical computation of the Jordan canonical form, see [GV96, Chapter 7.6.5].)

6.1 Generalized Eigenvectors

The reader is advised to consult Section 4.3 for information about eigenvalues and eigenvectors. In this
section and the next, F is taken to be an algebraically closed field to ensure that an n x »n matrix has
n eigenvalues, but many of the results could be rephrased for a matrix that has all its eigenvalues in F,
without the assumption that F is algebraically closed. The real versions of the definitions and results are
presented in Section 6.3.

Definitions:

Let F be an algebraically closed field (e.g., C), let A € F"*", let uy,..., i, be the distinct eigenvalues of
A, and let A be any eigenvalue of A.

For k a nonnegative integer, the k-eigenspace of A at A, denoted NF(A), is ker(A — AI).

The index of A at A, denoted v, (A), is the smallest integer k such that N,{‘(A) = Nf“ (A). When A and
A are clear from the context, v, (A) will be abbreviated to v, and v, (A) to v;.

The generalized eigenspace of A at A is the set N}’ (A), where v is the index of A at A.

The vector x € F" is a generalized eigenvector of A for A if x # 0 and x € N} (A).

Let V be a finite dimensional vector space over F, and let T be a linear operator on V. The definitions
of k-eigenspace of T, index, and generalized eigenspace of T are analogous.

Facts:

Facts requiring proof for which no specific reference is given can be found in [HJ85, Chapter 3] or [Mey00,
Chapter 7.8].

Notation: F is an algebraically closed field, A € F"*", V is an n dimensional vector space over F,
T € L(V,V), 1,..., 1 are the distinct eigenvalues of A or T, and A = pu; for somei € {1,...,r}.

1. An eigenvector for eigenvalue A is a generalized eigenvector for A, but the converse is not necessarily
true.

2. The eigenspace for A is the 1-eigenspace, i.e., E;(A) = N} (A).

3. Every k-eigenspace is invariant under multiplication by A.

4. The dimension of the generalized eigenspace of A at A is the algebraic multiplicity of A, i.e.,
dim N} (A) = aa(i).

5. Ais diagonalizable ifand only if v, = 1 fori = 1,...,r.

6. F" is the vector space direct sum of the generalized eigenspaces, i.e.,

F'"=N!(A)®--- & Ny (A).

This is a special case of the Primary Decomposition Theorem (Fact 12 in Section 6.4).

7. Facts 1 to 6 remain true when the matrix A is replaced by the linear operator T.

8. If T denotes T restricted to Ny (T), then the characteristic polynomial of T'is p4(x) = (x—pu; yerlwi),
In particular, T — ;I is nilpotent.
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Examples:

65 18 —21 4
-201 —-56 63 —12
1. Let A= 6 18 —23 . € CY™ . palx) = x* +8x” +24x? +32x 4+ 16 = (x +2)*,

134 36 —42 6

so the only eigenvalue of A is —2 with algebraic multiplicity 4. The reduced row echelon form of

18 2 4

1 & % & —18 21 —4

.10 0 0 0 1 67 0 0
A+2lis 0 0 o ol N_,(A) = Span ol le7l 1 o
0 0 0 0 0 0 67

(A+2I)* = 0,50 N2,(A) = C*. Any vector notin N',(A), e.g., e; = [1,0,0,0]7, is a generalized
eigenvector for —2 that is not an eigenvector for —2.

6.2 Jordan Canonical Form

The Jordan canonical form is perhaps the single most important and widely used similarity-based canonical
form for (square) matrices.

Definitions:
Let F be an algebraically closed field (e.g., C), and let A € F"*". (The real versions of the definitions and
results are presented in Section 6.3.)

For A € F and positive integer k, the Jordan block of size k with eigenvalue A is the k x k matrix having
every diagonal entry equal to A, every first superdiagonal entry equal to 1, and every other entry equal to
0, i.e.,

A1 0 0

0 A 1 0
Jk(A) =

0 0 A1

0 0 0 A

A Jordan matrix (or a matrix in Jordan canonical form) is a block diagonal matrix having Jordan
blocks as the diagonal blocks, i.e., a matrix of the form Ji, (A1) @ - - - @ J, () for some positive integers
t,ki,...,k; and some Ay,...,A; € F. (Note: the A; need not be distinct.)

A Jordan canonical form of matrix A, denoted J 4 or JCF(A), is a Jordan matrix that is similar to A. It
is conventional to group the blocks for the same eigenvalue together and to order the Jordan blocks with
the same eigenvalue in nonincreasing size order.

The Jordan invariants of A are the following parameters:

* The set of distinct eigenvalues of A.
* For each eigenvalue A, the number b, and sizes py, ..., pp, of the Jordan blocks with eigenvalue A
in a Jordan canonical form of A.

The total number of Jordan blocks in a Jordan canonical form of A is ) b, where the sum is taken
over all distinct eigenvalues .

If Jo = C ' AC, then the ordered set of columns of C is called a Jordan basis for A.

Let x be an eigenvector for eigenvalue A of A. If x € range(A — At — range(A — A" Then h is
called the depth of x.
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Let x be an eigenvector of depth h for eigenvalue A of A. A Jordan chain above x is a sequence of vectors
Xo = X,X),...,X, satisfyingx; = (A — Al)xj4 fori =0,...,h — 1.

Let V be a finite dimensional vector space over F, and let T be a linear operator on V.

A Jordan basis for T is an ordered basis B of V, with respect to which the matrix g[T]g of T is a
Jordan matrix. In this case, g[ T]g is a Jordan canonical form of T, denoted JCF(T) or Jr, and the Jordan
invariants of T are the Jordan invariants of JCF(T) =5 [T 3.

Facts:

Facts requiring proof for which no specific reference is given can be found in [HJ85, Chapter 3] or [Mey00,
Chapter 7.8].
Notation: F is an algebraically closed field, A, B € F"*", and A is an eigenvalue of A.

1. A has a Jordan canonical form J 4, and J 4 is unique up to permutation of the Jordan blocks. In
particular, the Jordan invariants of A are uniquely determined by A.

2. A, B are similar if and only if they have the same Jordan invariants.

3. TheJordan invariants and, hence, the Jordan canonical form of A can be found from the eigenvalues
and the ranks of powers of A — AI. Specifically, the number of Jordan blocks of size k in J 4 with
eigenvalue A is

rank(A — A1) + rank(A — A1) — 2 rank(A — AT)k.

4. The total number of Jordan blocks in a Jordan canonical form of A is the maximal number of
linearly independent eigenvectors of A.

5. The number b, of Jordan blocks with eigenvalue A in J 4 equals the geometric multiplicity y4 (1)
of A. A is nonderogatory if and only if for each eigenvalue A of A, J 4 has exactly one block with A.

6. The size of the largest Jordan block with eigenvalue A equals the multiplicity of A as a root of the
minimal polynomial g4(x) of A.

7. The size of the largest Jordan block with eigenvalue A equals the size of the index v; (A) of A at A.

8. The sum of the sizes of all the Jordan blocks with eigenvalue A in J 4 (i.e., the number of times A
appears on the diagonal of the Jordan canonical form) equals the algebraic multiplicity or4 (1) of A.

9. Knowledge of both the characteristic and minimal polynomials suffices to determine the Jordan
block sizes for any eigenvalue having algebraic multiplicity at most 3 and, hence, to determine the
Jordan canonical form of A if no eigenvalue of A has algebraic multiplicity exceeding 3. This is
not necessarily true when the algebraic multiplicity of an eigenvalue is 4 or greater (cf. Example 3
below).

10. Knowledge of the the algebraic multiplicity, geometric multiplicity, and index of an eigenvalue A
suffices to determine the Jordan block sizes for A if the algebraic multiplicity of A is at most 6. This
is not necessarily true when the algebraic multiplicity of an eigenvalue is 7 or greater (cf. Example
4 below).

11. The following are equivalent:

(a) Aissimilar to a diagonal matrix.
(b) The total number of Jordan blocks of A equals n.
(c) The size of every Jordan block in a Jordan canonical form J 4 of Ais 1.

12. If A is real, then nonreal eigenvalues of A occur in conjugate pairs; furthermore, if X is a nonreal
eigenvalue, then each size k Jordan block with eigenvalue A can be paired with a size k Jordan block
for A.

13. fA=A @ - ® A then J4, ® -+ @ J 4, is aJordan canonical form of A.

14. [Mey00, Chapter 7.8] A Jordan basis and Jordan canonical form of A can be constructed by using
Algorithm 1.
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15.

16.

17.

18.

19.

Algorithm 1: Jordan Basis and Jordan Canonical Form
Input: A € F™*", the distinct eigenvalues uy,. .., i,, the indices vy, . .., v,.
Output: C € F™" such that C"'AC = ] 4.
Initially C has no columns.
FORi=1,...,r % working on eigenvalue
Step 1: Find a special basis B, for E, (A).
(a) Initially B,,, has no vectors.
(b) FORk =v; — 1downto 0
Extend the set of vectors already found to a basis for range(A — w; 1) N E,,, (A).
(c) Denote the vectors of B, by b; (ordered as found in step (b)).
Step 2: For each vector b; found in Step 1, build a Jordan chain above b;.
FORj =1,...,dimker(A — u;I) % working on b;
(a) Solve (A — pciI)hfuj = b; for u; where h; is the depth of b;.
(b) Insert (A — M,‘I)hfuj, (A — /Lif)hf_lu]‘, o (A— uiI)uj,uj
as the next h + 1 columns of C.

A and its transpose AT have the same Jordan canonical form (and are, therefore, similar).

For a nilpotent matrix, the list of block sizes determines the Jordan canonical form or, equivalently,
determines the similarity class. The number of similarity classes of nilpotent matrices of size n is
the number of partitions of n.

Let ] 4 be a Jordan matrix, let D be the diagonal matrix having the same diagonal as J 4, and let
N = J4 — D. Then N is nilpotent.

A can be expressed as the sum of a diagonalizable matrix Ap and a nilpotent matrix Ay, where
Ap and Ay are polynomials in A (and Ap and Ay commute).

Let V be an n-dimensional vector space over F and T be a linear operator on V. Facts 1, 3 to 10,
16, and 18 remain true when matrix A is replaced by linear operator T’ in particular, JCF(T') exists
and is independent (up to permutation of the diagonal Jordan blocks) of the ordered basis of V'
used to compute it, and the Jordan invariants of T are independent of basis.

Examples:

1.

S O W
S W =

0
1
3

— o O

J4(3) =

=]

0 0 3
Let A be the matrix in Example 1in Section 6.1. p 4(x) = x*+8x> +24x>+32x+16 = (x+2)*,s0
the only eigenvalue of A is —2 with algebraic multiplicity 4. From Example 1 in section 6.1, A has 3
linearly independent eigenvectors for eigenvalue —2, so J 4 has 3 Jordan blocks with eigenvalue —2.
-2 1 0 0
0 -2 0 0
0 0 -2 0"
0 0 0 -2

In this case, this is enough information to completely determine that J 4, =

. The Jordan canonical form of A is not necessarily determined by the characteristic and minimal

polynmials of A. For example, the Jordan matrices A = J,(0)®];(0)®J;(0)and B = J,(0)&J,(0)
are not similar to each other, but have pa(x) = p(x) = x*, qa(x) = qp(x) = x%.

The Jordan canonical form of A is not necessarily determined by the eigenvalues and the algebraic
multiplicity, geometric multiplicity, and index of each eigenvalue. For example, the Jordan matrices
A = J3(0) @ J3(0) ® J,1(0) and B = J3(0) @ J,(0) & J,(0) are not similar to each other, but
have @4(0) = a5(0) = 7,y4(0) = y5(0) = 3,1(A) = vo(B) = 3 (and pa(x) = pp(x) =
x7,qa(x) = qp(x) = x°).
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TABLE6.1 rank(A — AI)F
k= 1 2 3 4 5
A=1 11 10 9 9 9

A=2 12 10 10 10 10
A=3 12 11 10 9 9

5. We use Algorithm 1 to find a matrix C such that C"'AC = ], for
-2 3 0 1 —1
4 0 3 0 -2
A=| 6 =3 3 —1 —1|.Computations show that p,(x) = x° and kerA = Span(z,,z,,23),
-8 6 -3 2 0
2 3 3 1 -3
where z, = [3,2,-4,0,0]7,z, = [0,1,0,—3,0]T,2; = [3,4,0,0,6].
For Step 1, A> = 0, and range(A%) = Span(b,) where b; = [—-1,—1,0,—1,—2]".
Then B = {by,z;,2,} is a suitable basis (any 2 of {z,, 25, z3} will work in this case).
For Step 2, construct a Jordan chain above b, by solving A>u; = b;. There are many possible

solutions; we choose u; = [0,0,0,0,1]7. Then Au; = [—1,—2,—1,0,—3]7,
-1 -1 0 3 0
-1 -2 0 2 1 01 0

C= 0 -1 0 —4 0|, and J4= 1|0 0 1| & [0]]0].
—1 0 0 0 -3 0 0 O
-2 =31 0 0

6. We compute the Jordan canonical form of a 14 x 14 matrix A by the method in Fact 3, where the
necessary data about the eigenvalues of A and ranks is given in Table 6.1.
A =1 - The number of blocks of size 1is 14 + 10 — 2 - 11 = 2.
— The number of blocks of size 2is 11 +9 — 2 - 10 = 0.
— The number of blocks of size 3is 10 +9 —2-9 = 1.
Sov; =3and b, = 3.

A =2 — The number of blocks of size 1is 14 +10 —2-12 = 0.
— The number of blocks of size 2is 12 + 10 — 2 - 10 = 2.
So,v; = 2and b, = 2.

A =3 - The number of blocks of size 1is 14 + 11 —2- 12 = 1.
— The number of blocks of size 2is 12 + 10 — 2 - 11 = 0.
— The number of blocks of size 3is 11 +9 — 2 - 10 = 0.
— The number of blocks of size 4is 10 +9 —2-9 = 1.
So, v3 = 4 and b; = 2.

From this information,

Ja=T31)@ J1(1) @ J1(1) @ J(2) @ J2(2) & J4(3) & J1(3).

6.3 Real-Jordan Canonical Form

The real-Jordan canonical form is used in applications to differential equations, dynamical systems, and
control theory (see Chapter 56). The real-Jordan canonical form is discussed here only for matrices and
with limited discussion of generalized eigenspaces; more generality is possible, and is readily derivable
from the corresponding results for the Jordan canonical form.
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Definitions:

Let A € R™" o, B, 8 € R.
The real generalized eigenspace of A at eigenvalue o + i is

ker((A%? — 20 A + (a® + B2)I)") ifB#0

E(d o+ pi) = {N;(A) = ker((A—al)") iff =0.

The vector x € R" is a real generalized eigenvector of A for o + Bi ifx # 0 andx € E(A, o + Bi).
For o, B € R with 8 # 0, and even positive integer 2k, the real-Jordan block of size 2k with eigenvalue

a+ Bi is the 2k x 2k matrix having k copies of M, (e, 8) = _ole ﬂ on the (block matrix) diagonal, k — 1
. 1 0 . . . 0 0
copiesof [, = [ 0 1} on the first (block matrix) superdiagonal, and copies of 0, = { 0 0] everywhere
else, i.e.,
MQ(O[,/S) 12 02 s 02
02 My(a, 8) I e 02
Jaelo + i) = : . . :
02 e 0, M(a,pB) L
0, e 0, 0, M;(a, B)

Areal-Jordan matrix (or amatrixinreal-Jordan canonical form) is a block diagonal matrix having diag-
onal blocks that are Jordan blocks or real-Jordan blocks, ie., a matrix of the form
T (1) ® -+ @ T, () B JQR,;H (tsy1 + Brr1i) B -+ D ]211112 (s + Bsi) (or a permutation of the direct
summands).

A real-Jordan canonical form of matrix A, denoted J§ or JCFR(A), is a real-Jordan matrix that is
similar to A. It is conventional to use 8; > 0, to group the blocks for the same eigenvalue together, and to
order the Jordan blocks with the same eigenvalue in nonincreasing size order.

The total number of Jordan blocks in a real-Jordan canonical form of A is the number of blocks
(Jordan or real-Jordan) in J }5.

Facts:

Facts requiring proof for which no specific reference is given can be found in [H]85, Chapter 3].
Notation: A, B € R™",a, B,a;, Bj € R.

1. The real generalized eigenspace of a complex number A = « + i and its conjugate A = o — Bi
are equal, i.e., E(A,a + Bi) = E(A, o — Bi).

2. The real-Jordan blocks with a nonreal complex number and its conjugate are similar to each other.

3. Ahasareal-Jordan canonical form ], and J ¥ is unique up to permutation of the diagonal (real-)
Jordan blocks.

4. A, B are similar if and only if their real-Jordan canonical forms have the same set of Jordan and
real-Jordan blocks (although the order may vary).

5. If all the eigenvalues of A are real, then | }5 is the same as J 4 (up to the order of the Jordan blocks).

6. The real-Jordan canonical form of A can be computed from the Jordan canonical form of A.
The nonreal eigenvalues occur in conjugate pairs, and if 8 > 0, then each size k Jordan block with
eigenvalue o + i can be paired with a size k Jordan block for & — Bi. Then Ji (o + Bi) ® Ji (o — Bi)
is replaced by J 2]1,%(05 + Bi). The Jordan blocks of J 1]}3 with real eigenvalues are the same as the those
Of ] A

7. The total number of Jordan and real-Jordan blocks in a real-Jordan canonical form of A is the
number of Jordan blocks with a real eigenvalue plus half the number of Jordan blocks with a
nonreal eigenvalue in a Jordan canonical form of A.
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8. If B # 0, the size of the largest real-Jordan block with eigenvalue o + Bi is twice the multiplicity
of x? — 2ax + (a? + B?) as a factor of the minimal polynomial g4 (x) of A.
9. If B # 0, the sum of the sizes of all the real-Jordan blocks with eigenvalue o + Bi in ] 4 equals twice
the algebraic multiplicity a4 (o + B1).
10. If B # 0, dim E (A, + Bi) = as(a + Bi).
11. A=A & ---® A,, then ]}51 @D ]fm is a real-Jordan canonical form of A.

Examples:
-10 6 —4 4 0
—-17 10 -4 6 -1
1. Leta=| —4 2 =3 2 1. Since the characteristic and minimal polynomials of A are
-11 6 —11 6 3

—4 2 —4 2 2
both x* — 5x* + 12x* — 16x? + 12x —4 = (x — 1) (x* — 2x + 2)2,

11 1 00
-1 1 01 0
JE=] 00 1 1 of.
00 -1 10
00 0 01 00 1 0
, . 0.0 0 1. .
2. The requirement that 8 # 0 is important. A = 0 0 0 o is not a real-Jordan matrix;
0 0 0 O

Ja

Il
o o o o
© o o o
o - o o

S O O =

6.4 Rational Canonical Form: Elementary Divisors

The elementary divisors rational canonical form is closely related to the Jordan canonical form (see Fact
7 below). A rational canonical form (either the elementary divisors or the invariant factors version, cf.
Section 6.6) is used when it is desirable to stay within a field that is not algebraically closed, such as the
rational numbers.

Definitions:

Let F be a field.
For a monic polynomial p(x) = x" + ¢,_1x" ' 4+ -+ + 25 + c1x + ¢o € F[x] (withn > 1), the

0 0 e —Co

1 0 e —C
companion matrix of p(x) is the n x n matrix C(p) =

o ... 1 —Cn_1

An elementary divisors rational canonical form matrix (ED-RCF matrix) (over F ) is a block diagonal
matrix of the form C(h{") @ --- @ C(h{") where each h;(x) is a monic polynomial that is irreducible
over F.
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The elementary divisors of the ED-RCF matrix C(h]") @ - - - & C(h;") are the polynomials h; (x)™,
i=1,...t

An elementary divisors rational canonical form of matrix A € F"*", denoted RCFgp(A), is an ED-
RCF matrix that is similar to A. It is conventional to group the companion matrices associated with powers
of the same irreducible polynomial together, and within such a group to order the blocks in size order.

The elementary divisors of A are the elementary divisors of RCFgp(A).

Let V be a finite dimensional vector space over F, and let T be a linear operator on V.

An ED-RCEF basis for T is an ordered basis B of V, with respect to which the matrix z[T]p of T is
an ED-RCF matrix. In this case, g[T]3 is an elementary divisors rational canonical form of T, denoted
RCFgp(T), and the elementary divisors of T are the elementary divisors of RCFgp(T) =g [T]5.

Let g (x) be a monic polynomial over F.

A primary decomposition of a nonconstant monic polynomial q(x) over F is a factorization g (x) =
(hy(x))™ - - (h(x))™, where the h; (x),i = 1,...,r are distinct monic irreducible polynomials over F.

The factors (h;(x))™ in a primary decomposition of g (x) are the primary factors of g (x).

Facts:

Facts requiring proof for which no specific reference is given can be found in [HK71, Chapter 7] or [DF04,
Chapter 12].

1. The characteristic and minimal polynomials of the companion matrix C(p) are both equal to p(x).

2. Whether or nota matrix is an ED-RCF matrix depends on polynomial irreducibility, which depends
on the field. See Example 1 below.

3. Every matrix A € F™*" is similar to an ED-RCF matrix, RCFgp(A), and RCFgp(A) is unique
up to permutation of the companion matrix blocks on the diagonal. In particular, the elementary
divisors of A are uniquely determined by A.

4. A, B € F™" are similar if and only if they have the same elementary divisors.

5. (See Fact 3 in Section 6.2) For A € F"*", the elementary divisors and, hence, RCFgp(A) can be
found from the irreducible factors h;(x) of the characteristic polynomial of A and the ranks of
powers of h;(A). Specifically, the number of times /; (x)* appears as an elementary divisor of A is

;(rank(hi(A))k_l + rank(h; (A)**! — 2 rank(h; (A))X).
degh;(x)

6. If A € F™" hasn eigenvalues in F, then the elementary divisors of A are the polynomials (x — A)¥,
where the J; (L) are the Jordan blocks of J 4.

7. There is a natural association between the diagonal blocks in the elementary divisors rational
canonical form of A and the Jordan canonical form of A in F"*", where F is the algebraic closure
of F. Let h(x)" be an elementary divisor of A, and factor h(x) into monic linear factors over F,
h(x) = (x — A1) - -+ (x — A¢). If the roots of h(x) are distinct (e.g., if the characteristic of F is 0
or F is a finite field), then the ED-RCF diagonal block C(h™) is associated with the Jordan blocks
Jm(Xi),i = 1,...,t. If the characteristic of F is p and h(x) has repeated roots, then all roots have
the same multiplicity p* (for some positive integer k) and the ED-RCF diagonal block C(h™) is
associated with the Jordan blocks J pr,, (1)1 = 1,.. ., ¢.

8. [HK71, Chapter 4.5] Every monic polynomial g(x) over F has a primary decomposition. The
primary decomposition is unique up to the order of the monic irreducible polynomials, i.e., the
set of primary factors of g (x) is unique.

9. [HK71, Chapter 6.8] Let q(x) € F[x],let h;(x)"™,i = 1,...,r be the primary factors, and define
filx) = hf’(i"))l . Then there exist polynomials g; (x) such that f1(x)g,(x) +-- -+ fr(x)g,(x) = 1.

Let A € F™" and let ga(x) = (hy(x))™ ---(h,(x))™ be a primary decomposition of its minimal
polynomial.

10. Every primary factor h;(x)"™ of ga(x) is an elementary divisor of A.

11. Every elementary divisor of A is of the form (h;(x))" with m < m; for somei € {1,...,r}.
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12.

13.
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[HK71, Chapter 6.8] Primary Decomposition Theorem

(a) F" =ker(h (A)™)® --- @ ker(h,(A)™).

(b) Let f; and g; be as defined in Fact 9. Then fori = 1,...,r, E; = f;(A)gi(A) is the projection
onto ker(h;(A)™) along ker(h;(A)™) @ - - - @ ker(h;_; (A)") @ ker(h; 1, (A)"+") D --- b
ker(h,(A)™).

(c) The E; = f;(A)gi(A) are mutually orthogonal idempotents (i.e., E? = E; and E;E; =0if
i#j)andl = E;+-- -+ E,.

[HK71, Chapter 6.7] If A € F™*" is diagonalizable, then A = pu,E; + - -+ 4+ u, Eg where the

E; are the projections defined in Fact 12 with primary factors h; (x)™ = (x — u;) of ga(x).

Let V be an n-dimensional vector space over F, and let T be a linear operator on V.

14.

15.

Facts 3, 5to 7,and 10 to 13 remain true when matrix A is replaced by linear operator T'; in particular,
RCFgp(T) exists and is independent (up to permutation of the companion matrix diagonal blocks)
of the ordered basis of V used to compute it, and the elementary divisors of T are independent of
basis.

If T denotes T restricted to ker(h; (T)™), then the minimal polynomial of T is by (T)™.

Examples:

1.

0 -1
0 =3/ &
1 -3

0 2

Let A=[-1]®[-1]® 1 0

@

S = O

nE Over Q, A is an ED-RCF

S O = O
oS = O O
_ o O O

0
matrix and its elementary divisors are x + 1, x + 1, (x + 1)%, x> — 2, (x> — 2)2. A is not an ED-RCF
matrix over C because x> — 2 is not irreducible over C.

-1 1 0

V21 —J2 1
JCFA)=[-11®[-1]1d| 0 -1 1| ®V2]e[—v2]a ]@[ }
o o0 -1 0 V2 0 -2

where the order of the Jordan blocks has been chosen to emphasize the connection to
RCFgp(A) = A.
-2 2 =2 1

Let A = 0 0 0 0

—12 7 -8 5

0 0 —1 0

rational canonical form of A. The following computations can be performed easily over Q in a

computer algebra system such as Mathematica, Maple, or MATLAB® (see Chapters 71, 72, 73), or

on a matrix-capable calculator. p,(x) = x°> — 3x* + x° + 5x% — 6x +2 = (x — 1)? (x? —2).
Table 6.2 gives the of ranks h; (A)* where h;(x) is shown in the left column.

€ Q5. We use Fact 5 to determine the elementary divisors

N s = O

h(x) = x —1 The number of times x — 1 appears as an elementary divisoris5+2 —2-3 = 1.

The number of (x — 1) appears as an elementary divisoris 3 +2 —2-2 = 1.

h(x) = x* — 2 The number of times x> — 2 appears as an elementary divisor is (5+3—2-3)/2 = 1.

Thus, RCFzp(A) = C(x — 1)@ C((x — 1)) ® C(x* —2) = [1] @ ﬁ ‘ﬂ ® [(1) f)}

TABLE6.2 rank(h(A)X)

k= 1 2 3
hix)=x-—1 3 2 2
hy(x)=x*-2 3 3 3
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3. We find the projections E;,i = 1,2 in Fact 12 for A in the previous example. From the ele-
mentary divisors of A, g4(x) = (x — 1)3(x? — 2). Let hy(x) = (x — 1)%, hy(x) = x> — 2. Then
fi(x) = x* =2, f,(x) = (x—1)%. Note: normally the f;(x)will not be primary factors; this happens

here because there are only two primary factors. If we choose g;(x) = —(2x — 1), g2(x) = 2x + 3,
then1 = f1(x)g1(x) + f2(x)g2(x) (g1, g2 can be found by the Euclidean algorithm). Then

-2 1 -1 1 0 3 -1 1 -1 0

0 0 0 0 0 0 1 0 0 0

-6 3 -2 3 0 6 -3 2 =2 0

0 0 0 0 1 0 0 0 0 0

and it is easy to verify that E? = Ey, E3 = E;, E;E; = E;E; =0,and E; + E, = I.

6.5 Smith Normal Form on F[x]"*"

For a matrix A € F™*", the Smith normal form of xI,, — A is an important tool for the computation of
the invariant factors rational canonical form of A discussed in Section 6.6. In this section, Smith normal
form is discussed only for matrices in F [x]"*", and the empbhasis is on finding the Smith normal form of
xI, — A, where A € F™". Smith normal form is used more generally for matrices over principal ideal
domains (see Section 23.2); it is not used extensively as a canonical form within F”*", since the Smith
normal form of a matrix A € F"*" of rank k is I @ 0,,_.

Definitions:

Let F be a field. For M € F[x]"*", the following operations are the elementary row and column
operations on M:

(a) Interchange rows i, j, denoted R; <> R; (analogous column operation denoted C; <> C;).

(b) Adda p(x) multiple of row j to row 7, denoted R; + p(x)R; — R; (analogous column operation
denoted C; + p(x)C; — C;).

(c) Multiply row i by a nonzero element b of F, denoted bR; — R; (analogous column operation
denoted bC; — C;).

A Smith normal matrix in F[x]"*" is a diagonal matrix D = diag(1,...,1,a:(x),...,a;(x),0,
...,0), where the a;(x) are monic nonconstant polynomials such that a;(x) divides a;4,(x) for i =
1,...,s — 1.

The Smith normal form of M € F [x]"*" is the Smith normal matrix obtained from M by elementary
row and column operations.

For A € F™*", the monic nonconstant polynomials of the Smith normal form of xI,, — A are the Smith
invariant factors of A.

Facts:

Facts requiring proof for which no specific reference is given can be found in [HK71, Chapter 7] or [DF04,
Chapter 12].

1. Let M € F[x]"*". Then M has a unique Smith normal form.

2. Let A € F"*". There are no zeros on the diagonal of the Smith normal form of xI,, — A.

3. (Division Property) If a(x),b(x) € F[x] and b(x) # 0, then there exist polynomials g (x),r (x)
such that a(x) = q(x)b(x) 4+ r(x) and r(x) = 0 or degr(x) < degb(x).

4. The Smith normal form of M = xI — A and, thus, the Smith invariant factors of A can be computed
as follows:
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e Fork=1,...,n—1

— Use elementary row and column operations and the division property of F [x] to place
the greatest common divisor of the entries of M[{k, ..., n}] in the kth diagonal position.

— Use elementary row and column operations to create zeros in all nondiagonal positions
in row k and column k.

* Make the nth diagonal entry monic by multiplying the last column by a nonzero element of
F.

This process is illustrated in Example 1 below.

Examples:

1. Let A = . We use the method in Fact 4 above to find the Smith normal form of

N S R R
S W =
[V NG I

|

0 6 -3
M = xI — A and invariant factors of A.
* k = 1: Use the row and column operations on M (in the order shown):

R) < R3>_%Rl — R, R3+ (1 —x)R; — R3, R4y +4R; — Ry,
C3+(—2+ %)Cl —> C3, C4+C1 — C4

1 0 0 0

0 -3 -2 2
to obtain M; = x 2 5x

0 -1 2-—¥41 x

0 0 2 —2x x—1

* k = 2: Use the row and column operations on M; (in the order shown):
R3 <> Rz, —IRZ —> Rz, R3 + (3 — .X)Rz — R3,
C3+(1— 2 4+5)C, — C3,Cy +xC, — Cy

10 0 0
0 1 0 0
to obtain M, = ’
0 obtain M, 0 0 "73—4x2+177x—5 x2—3x+4+2
0 0 2—2x x—1

* k = 3 (and final step): Use the row and column operations on M, (in the order shown):
Rs <> Ry, —3Rs — R3, Ry + 5H(x — 2)(x —5)R; — Ry,
C4 + %C3 - C4, 4C4 —> C4

1 0 0 0
. . 0 1 0 0
to obtain the Smith normal form of M, M; =
0 0 x—1 0
00 0 x>—4x*+5x—2

The Smith invariant factors of A are x — 1, x° — 4x* 4+ 5x — 2.

6.6 Rational Canonical Form: Invariant Factors

Like the elementary divisors version, the invariant factors rational canonical form does not require the field
to be algebraically closed. It has two other advantages: This canonical form is unique (not just unique up
to permutation), and (unlike elementary divisors rational canonical form) whether a matrix is in invariant
factors rational canonical form is independent of the field (see Fact 2 below).
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Definitions:

Let F be afield. An invariant factors rational canonical form matrix (IF-RCF matrix) is a block diagonal
matrix of the form C(a;) @ - - - ® C(ay), where a;(x) divides a;1(x) fori = 1,...,s — 1.

The invariant factors of the IF-RCF matrix C(a;) @ - - - @ C(as) are the polynomials a;(x),i = 1,...s.

The invariant factors rational canonical form of matrix A € F"*", denoted RCF;r (A), is the IF-RCF
matrix that is similar to A.

The invariant factors of A are the invariant factors of RCF;r (A).

Let V be a finite dimensional vector space over F and let T be a linear operator on V.

An IF-RCF basis for T is an ordered basis 5 of V, with respect to which the matrix g[T]z of T is
an IF-RCF matrix. In this case, g[ T3 is the invariant factors rational canonical form of T, denoted
RCF;r(T), and the invariant factors of T are the invariant factors of RCF; (T) =5 [T]z.

Facts:

Facts requiring proof for which no specific reference is given can be found in [HK71, Chapter 7] or [DF04,
Chapter 12]. Notation: A € F™".

1. Every square matrix A is similar to a unique IF-RCF matrix, RCFf (A).
2. RCFf(A) is independent of field. That is, if K is an extension field of F and A is considered as an
element of K™*", RCF;f (A) is the same as when A is considered as an element of F"*",

3. Let B € F"™". Then A, B are similar if and only if RCF;r (A) = RCF;r(B).

4. Thecharacteristic polynomialis the product of the invariantfactorsof A,i.e., pa(x) = a;(x) - - - a;(x).

5. The minimal polynomial of A is the invariant factor of highest degree, i.e., g4 (x) = a;(x).

6. The elementary divisors of A € F"*" are the primary factors (over F) of the invariant factors
of A.

7. The Smith invariant factors of A are the invariant factors of A.

8. [DF04, Chapter 12.2] RCFr (A) and a nonsingular matrix S € F™*" such that S™' AS =RCF; (A)
can be computed by Algorithm 2.

Algorithm 2: Rational Canonical Form (invariant factors)

1. Compute the Smith normal form D of M = xI — A as in Fact 4 of section 6.5,
keeping track of the elementary row operations, in the order performed (column
operations need not be recorded).

2. The invariant factors are the nonconstant diagonal elements a;(x), ... ,a(x) of D.
3.Letd,,...,d; denote the degrees of a;(x), .. .,a,(x).

4. LetG = 1.

5.FORk = 1,..., number of row operations performed in step 1

(a) If the kth row operation is R; <> R;, then perform column operation C; <> C; on G.
(b) If the kth row operation is R; + p(x)R; — R;, then perform column operation
Cj — p(A)C; — Cj on G (note index reversal).
(c) If the kth row operation is bR; — R;, then perform column operation
+Ci — CionG.
6. G will have 0s in the first n — s columns; denote the remaining columns of G by g;,. .., g;.
7. Initially S has no columns.
8. FORk=1,...,s
(a) Insert gy as the next column of S (working left to right).
(b)FORi =1,...,dr — 1.
Insert A times the last column inserted as the next column of S.
9.RCFr(A) = ST1AS.
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9. Let V be an n-dimensional vector space over F, and let T be a linear operator on V. Facts 1, 2, 4 to
6 remain true when matrix A is replaced by linear operator T’ in particular, RCF;r (T) exists and
is unique (independent of the ordered basis of V used to compute it).

Examples:

1. We can use the elementary divisors already computed to find the invariant factors and IF-RCF of A
in Example 2 of Section 6.4. The elementary divisors of A are x — 1, (x — 1), x> — 2. We combine
these, working down from the highest power of each irreducible polynomial.

a(x) = (x — 1)*(x? —2) = x* — 2x*> — x> + 4x — 2,a,(x) = x — 1. Then

1 00 0 0
000 0 2
RCFr(A)=Cx—1)@®C(x* —2x> —x*4+4x—-2)=|0 1 0 0 —4
001 0 1
0001 2

2. ByFact 7, for the matrix A in Example 1 in Section 6.5, RCF;r (A) = C(x—1)®C (x> —4x>+5x—2).
3. We can use Algorithm 2 to find a matrix S such that RCF;z(A) = S™'AS for the matrix A in
Example 1.

* k = 1: Starting with G = I, perform the column operations (in the order shown):

Cl <> C3, —2C1 — Cl, Cl - (14 — A)C3 — C], C] — 4C4 — Cl,

0 0 1 0
. 1 0 0

to obtain G| = o0 o0 ol
0 0 0 1

* k = 2: Use column operations on G (in the order shown):

C3 <> Cz, —1C2 — Cz, C2 — (314 — A)C3 — Cz,

0 0 0 O
. 0 0 1 0

to obtain G = 0o 0 0 ol
0 0 0 1

* k = 3 (and final step of Fact 4 in Section 6.5):
Use column operations on G (in the order shown):

Cs < Cy4, —=2C3 — C3,C3 + 3(A — 21;)(A = 51,)C4 — Cs,

00 -3 0
. 00 -1 1
to obtain G = (g1, 82,83, 84] = 0 o Lol
0 0 0 0
_% 01 4 1 00 0
-1 1 3 9 0 0 0 2
Then S = [g3, g4, Agy, A%gy] = Lo o o and RCF;p(A) = S71AS = 01 0 —s
0 0 0 4 0 0 1 4
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Unitary transformations preserve the inner product. Hence, they preserve the metric quantities that stem
from the inner product, such aslength, distance, and angle. While a general similarity preserves the algebraic
features of a linear transformation, such as the characteristic and minimal polynomials, the rank, and the
Jordan canonical form, unitary similarities also preserve metric features such as the norm, singular values,
and the numerical range. Unitary similarities are desirable in computational linear algebra for stability
reasons.

Normal transformations are those which have an orthogonal basis of eigenvectors and, thus, can be
represented by diagonal matrices relative to an orthonormal basis. The class of normal transformations
includes Hermitian, skew-Hermitian, and unitary transformations; studying normal matrices leads to a
more unified understanding of all of these special types of transformations. Often, results that are dis-
covered first for Hermitian matrices can be generalized to the class of normal matrices. Since normal
matrices are unitarily similar to diagonal matrices, things that are obviously true for diagonal matrices
often hold for normal matrices as well; for example, the singular values of a normal matrix are the absolute
values of the eigenvalues. Normal matrices have two important properties — diagonalizability and an
orthonormal basis of eigenvectors — that tend to make life easier in both theoretical and computational
situations.

7.1 Unitary Similarity

In this subsection, all matrices are over the complex numbers and are square. All vector spaces are finite
dimensional complex inner product spaces.

Definitions:

A matrix U is unitary if U*U = I.
A matrix Q is orthogonal if Q7 Q = 1.
Note: This extends the definition of orthogonal matrix given earlier in Section 5.2 for real matrices.

7-1
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Matrices A and B are unitarily similar if B = U* AU for some unitary matrix U. The term unitarily
equivalent is sometimes used in the literature.

The numerical range of A is W(A) = {v*Av|v'v = 1}.

The Frobenius (Eulidean) norm of the matrix A is || Al = (ZZ]-ZI |aij |2)1/2 = (tr(A*A)) 2 (See
Chapter 37 for more information on norms.)

The operator norm of the matrix A induced by the vector 2-norm |||, is || All, = max{|| Av||[|||v] = 1};
this norm is also called the spectral norm.

Facts:

Most of the material in this section can be found in one or more of the following: [HJ85, Chap. 2]
[Hal87, Chap. 3] [Gan59, Chap. IX] [MM64, 1.4, II1.5]. Specific references are also given for some
facts.

1. A real, orthogonal matrix is unitary.
2. The following are equivalent:

* U is unitary.

* Uisinvertibleand U™! = U*.

* The columns of U are orthonormal.

* The rows of U are orthonormal.

* For any vectors x and y, we have (Ux, Uy) = (x,).

* For any vector x, we have || Ux|| = x|

3. If U is unitary, then U*, U7, and U are also unitary.

4. If U is unitary, then every eigenvalue of U has modulus 1 and | det(U)| = 1. Also, |U]|, = 1.

5. The product of two unitary matrices is unitary and the product of two orthogonal matrices is
orthogonal.

6. The set of n x n unitary matrices, denoted U (n), is a subgroup of GL (n,C), called the unitary
group. The subgroup of elements of U(n) with determinant one is the special unitary group,
denoted SU (n). Similarly, the set of n x n real orthogonal matrices, denoted O(n), is a subgroup
of GL(n,R), called the real, orthogonal group, and the subgroup of real, orthogonal matrices of
determinant one is S O(n), the special orthogonal group.

7. Let U be unitary. Then

* IAllr = U*AU|f.

* Al = [U*AU 2.

* Aand U* AU have the same singular values, as well as the same eigenvalues.
* W(A) = W(U*AU).

8. [Sch09] Any square, complex matrix A is unitarily similar to a triangular matrix. If T = U*AU
is triangular, then the diagonal entries of T are the eigenvalues of A. The unitary matrix U
can be chosen to get the eigenvalues in any desired order along the diagonal of T'. Algorithm 1
below gives a method for finding U, assuming that one knows how to find an eigenvalue and
eigenvector, e.g., by exact methods for small matrices (Section 4.3), and how to find an or-
thonormal basis containing the given vector, e.g., by the Gram-Schmidt process (Section 5.5).
This algorithm is designed to illuminate the result, not for computation with large matrices in
finite precision arithmetic; for such problems appropriate numerical methods should be used
(cf. Section 43.2).
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10.

11.

12.

13.

14.

15.

16.

17.

Algorithm 1: Unitary Triangularization
Input: A € C"™".
Output: unitary U such that U* AU = T is triangular.
1. A1 = A.
2.FORk=1,...,n—1
(a) Find an eigenvalue and normalized eigenvector x of the (n +1 — k) x (n +1 — k)
matrix Ag.
(b) Find an orthonormal basis X, ¥, . . ., Yut+1-k for
© Uk = [%Y25- > Ynt1-k]-
(d) Uk = i1 @ Ui (U = Uy).
(e) Bk = U,fAkUk.
(f) Ag+1 = Bi(1), the (n — k) x (n — k) matrix obtained from By by deleting the first row
and column.
3.U = Ulf]z,. N Un—l-

(Cn+1 —k

(A strictly real version of the Schur unitary triangularization theorem) If A is a real matrix, then
there is a real, orthogonal matrix Q such that QT AQ is block triangular, with the blocks of size
1 x 1 or2 x 2. Each real eigenvalue of A appearsasa 1 x 1block of Q7 AQ and each nonreal pair
of complex conjugate eigenvalues corresponds to a 2 x 2 diagonal block of QT AQ.

If F is a commuting family of matrices, then F is simultaneously unitarily triangularizable — i.e.,
there is a unitary matrix U such that U* AU is triangular for every matrix A in F. This fact has the
analogous real form also.

[Lit53] [Mit53] [Sha9l] Let A;,X,,- -+ ,A; be the distinct eigenvalues of A with multiplicities
my, My, - -+ ,m;. Suppose U* AU is block triangular with diagonal blocks Ay, A,, ..., A;, where A;
is size m; X m; and A; is the only eigenvalue of A; for each i. Then the Jordan canonical form of A
is the direct sum of the Jordan canonical forms of the blocks A;, A,, ..., A;. Note: This conclusion
also holds if the unitary similarity U is replaced by an ordinary similarity.

Let A1, Az, - -+ , A, be the eigenvalues of the # x n matrix A andlet T = U* AU be triangular. Then
IAIIZ =30 M1+ Yi<j |5i;|*. Hence, | A3 = -1, |A;|* and equality holds if and only if T
is diagonal, or equivalently, if and only if A is normal (see Section 7.2).

A 2 x 2 matrix A with eigenvalues A, A, is unitarily similar to the triangular matrix [ 01 ; } ,
2

where r = \/IIAII% — (|A11? + |22]?). Note that r is real and nonnegative.

Two 2 x 2 matrices, A and B, are unitarily similar if and only if they have the same eigenvalues and

lAlF = IBllF-

Any square matrix A is unitarily similar to a matrix in which all of the diagonal entries are equal
tr(A)

to

[Spe4r(l)] Two n x n matrices, A and B, are unitarily equivalent if and only if tr w(A, A*) =
tr w(B, B*) for every word (s, f) in two noncommuting variables.

[Pea62] Two n X n matrices, A and B, are unitarily equivalent if and only if tr w(A, A*)
tr w(B, B*) for every word w(s, t) in two noncommuting variables of degree at most 212,

Examples:

1.

2.

11 L
The matrix — [i is unitary but not orthogonal.

2

1 1+

The matrix .
1+ —1

is orthogonal but not unitary.

1
V1420
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4 1
0 1|

are similar, but not unitarily similar.

3. Fact 13 shows that A = ;

1. TR
2] is unitarily similar to A =

. 3 r 30
4. For any nonzero r, the matrices {0 2} and {0 5

—31 21 48
5. LetA=| —4 4 6 |.ApplyAlgorithm 1 to A:
—-20 13 31
Step1. A = A.
Step 2. For

k=1:() pa(x) =x* —4x* +5x — 2 = (x — 2)(x — 1)?, so the eigenvalues are 1, 1,
2. From the reduced row echelon form of A — I, we see that [3,0,2]7 is an
eigenvector for 1 and, thus, x = [%, 0, % 1T is a normalized eigenvector.

(b) One expects to apply the Gram—Schmidt process to a basis that includes x as

the first vector to produce an orthonormal basis. In this example, it is obvious

how to find an orthonormal basis for C>:

30 2
V13 NE
@Q@U=]0 1 o0
2 9 3
V13 V13
(d) unnecessary.
89
1 e 68
() By=UfA U = |0 4 2J13].
3
0 -5 —1
4 24/13
() A= {_i i ]
V13
k =2:(a) 1isstill an eigenvalue of A,. From the reduced row echelon form of A, — I,
we see that [—2+/13, 3] is an eigenvector for 1 and, thus, x = [—2 é—i, % I

is a normalized eigenvector.

(b) Again, the orthonormal basis is obvious:

[, /B
61 NG
c) U, =
() Uy DO
NGl V 6l
(1 0 0
~ 13 3
@ =" /e &
3 13
0 A 2/a
n =2
(e) B, = Vsl
0o 2
(f) unnecessary.
6 4
TUm e L &
3 | . T=U*AU=1|0 1 -2

3
V13
Step 3. U= Ul UZ = 0 -2 1K}
2
V13

B
B

o

o

[\
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6.

7.2

[HJ85, p. 84] Schur’s theorem tells us that every complex, square matrix is unitarily similar to
a triangular matrix. However, it is not true that every complex, square matrix is similar to a
triangular matrix via a complex, orthogonal similarity. For, suppose A = QT Q”, where Q is
complex orthogonal and T is triangular. Let q be the first column of Q. Then q is an eigenvector of
i

. 1 . L
A and qTq = 1. However, the matrix A = ; 1} has no such eigenvector; A is nilpotent and

. . . 1
any eigenvector of A is a scalar multiple of [z] .

Normal Matrices and Spectral Theory

In this subsection, all matrices are over the complex numbers and are square. All vector spaces are finite

dimensional complex inner product spaces.

Definitions:

The matrix A is normal if AA* = A*A.
The matrix A is Hermitian if A* = A.
The matrix A is skew-Hermitian if A* = — A.

The linear operator, T, on the complex inner product space V is normal if TT* = T*T.

Two orthogonal projections, P and Q, are pairwise orthogonal if PQ = QP = 0. (See Section 5.4 for

information about orthogonal projection.)
The matrices A and B are said to have Property L if their eigenvalues oy, Bi, (k = 1,--- ,n) may be
ordered in such a way that the eigenvalues of x A + y B are given by xay + yBx for all complex numbers x

and y.

Facts:

Most of the material in this section can be found in one or more of the following: [HJ85, Chap. 2] [Hal87,
Chap. 3] [Gan59, Chap. IX] [MM64, 1.4, I11.3.5, 1I1.5] [GJSW87]. Specific references are also given for
some facts.

1.

Diagonal, Hermitian, skew-Hermitian, and unitary matrices are all normal. Note that real symmet-
ric matrices are Hermitian, real skew-symmetric matrices are skew-Hermitian, and real, orthogonal
matrices are unitary, so all of these matrices are normal.

. If U is unitary, then A is normal if and only if U* AU is normal.
. Let T be alinear operator on the complex inner product space V. Let B be an ordered orthonormal

basis of V and let A = [T]3. Then T is normal if and only if A is a normal matrix.

. (Spectral Theorem) The following three versions are equivalent.

* Amatrixisnormalifand only ifitis unitarily similar to a diagonal matrix. (Note: This is sometimes
taken as the definition of normal. See Fact 6 below for a strictly real version.)

* The matrix A is normal if and only if there is an orthonormal basis of eigenvectors of A.

* Let A1, Az, ..., A; be the distinct eigenvalues of A with algebraic multiplicities my, m,, . .. , m;.
Then A is normal if and only if there exist ¢ pairwise orthogonal, orthogonal projections
Py, P,,..., P, such that Zf=l P; = I, rank(P;) = m;,and A = > i_, A; P;. (Note that the two
orthogonal projections P and Q are pairwise orthogonal if and only if range(P) and range(Q)
are orthogonal subspaces.)

. (Principal Axes Theorem) A real matrix A is symmetric if and only if A = QD QT, where Q is a

real, orthogonal matrix and D is a real, diagonal matrix. Equivalently, a real matrix A is symmetric
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10.
11.

12.

13.

14.

. Let H =

Handbook of Linear Algebra

if and only if there is a real, orthonormal basis of eigenvectors of A. Note that the eigenvalues of
A appear on the diagonal of D, and the columns of Q are eigenvectors of A. The Principal Axes
Theorem follows from the Spectral Theorem, and the fact that all of the eigenvalues of a Hermitian
matrix are real.

. (A strictly real version of the Spectral Theorem) If A is a real, normal matrix, then there is a real,

orthogonal matrix Q such that QT AQ is block diagonal, with the blocks of size 1 x 1 or 2 x 2.
Each real eigenvalue of A appears asa 1 x 1 block of Q7 AQ and each nonreal pair of complex
conjugate eigenvalues corresponds to a 2 x 2 diagonal block of QT AQ.

. The following are equivalent. See also Facts 4 and 8. See [GJSW87] and [EI98] for more equivalent

conditions.

* Aisnormal.

* A* can be expressed as a polynomial in A.

* Forany B, AB = BA implies A*B = BA*.

* Any eigenvector of A is also an eigenvector of A*.

* Each invariant subspace of A is also an invariant subspace of A*.

* Foreachinvariantsubspace, V, of A, the orthogonal complement, W+, is also an invariant subspace
of A.

* (Ax, Ay) = (A*x, A*y) for all vectors x and y.

* (Ax, Ax) = (A*x, A*x) for every vector x.

* || Ax|| = || A*x]| for every vector x.

* A* = UA for some unitary matrix U.

o A2 =X, 1A%, where Ay, Az, - - -, A, are the eigenvalues of A.

* The singular values of A are |A|, |A;|,- -, |A,|, where Aj, Az, - -+, A, are the eigenvalues of A.

e If A= UP is apolar decomposition of A, then UP = PU. (See Section 8.4.)

* A commutes with a normal matrix with distinct eigenvalues.

* A commutes with a Hermitian matrix with distinct eigenvalues.

* The Hermitian matrix AA* — A* A is semidefinite (i.e., it does not have both positive and negative

eigenvalues).

A+ A* A— A*

and K = . Then H and K are Hermitian and A = H +i K. The matrix

Aisnormal ifand only if HK = K H.

. If Ais normal, then

* Ais Hermitian if and only if all of the eigenvalues of A are real.
* A is skew-Hermitian if and only if all of the eigenvalues of A are pure imaginary.

* Ais unitary if and only if all of the eigenvalues of A have modulus 1.

The matrix U is unitary if and only if U = exp(i H) where H is Hermitian.

If Q is a real matrix with det(Q) = 1, then Q is orthogonal if and only if Q = exp(K ), where K is
a real, skew-symmetric matrix.

(Cayley’s Formulas/Cayley Transform) If U is unitary and does not have —1 as an eigenvalue, then
U=(I+iH)(I—iH),where H=i(I — U)(I + U)~! is Hermitian.

(Cayley’s Formulas/Cayley Transform, real version) If Q is a real, orthogonal matrix which does
not have —1 as an eigenvalue, then Q = (I — K)(I + K)"!, where K = (I — Q)(I + Q) 'isa
real, skew-symmetric matrix.

A triangular matrix is normal if and only if it is diagonal. More generally, if the block triangular

B B

matrix, { o B ] (where the diagonal blocks, B;;, i = 1, 2, are square), is normal, then B;; = 0.
22
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15.

16.

17.

18.

19.

20.

21.

22.

Let A be a normal matrix. Then the diagonal entries of A are the eigenvalues of A if and only if A
is diagonal.

If A and B are normal and commute, then AB is normal. However, the product of two noncom-
muting normal matrices need not be normal. (See Example 3 below.)

If Aisnormal, then p(A) = || A|l,. Consequently, if A is normal, then p(A) > |a;;| forall7 and j.
The converses of both of these facts are false (see Example 4 below).

[MM64, p. 168] [MM55] [ST80] If A is normal, then W(A) is the convex hull of the eigenvalues
of A. The converse of this statement holds when n < 4, but not for n > 5.

[WW49] [MM64, page 162] Let A be a normal matrix and suppose x is a vector such that (Ax); =0

(Ax); .
whenever x; = 0. For each nonzero component, x;, of x, define pu; = L. Note that u jisa
X

i
complex number, which we regard as a point in the plane. Then any closed disk that contains all of
the points u; must contain an eigenvalue of A.
[HW53] Let A and B be normal matrices with eigenvalues «y, - - - ,&, and B, - - - , B,. Then

n n
. 2 2 2
min Y | — Bo)|* < A= Bz < maxd oy — ol
i=1 "i=1

0ES, 4

where the minimum and maximum are over all permutations ¢ in the symmetric group S,
(i.e., the group of all permutations of 1,... ,n).

[Sun82] [Bha82] Let A and B be nn X n normal matrices with eigenvaluesy, - - - ,a, and Sy, - -, By.
Let A 4, A p be the diagonal matrices with diagonal entries ¢y, - - - , &, and By, - - - , By, respectively.
Let || - || be any unitarily invariant norm. Then, if A — B is normal, we have

min | A, — PT'ARP| < ||A-B]| < max [[Aa — P! AP,

where the maximum and minimum are over all n x n permutation matrices P.

Observe that if A and B are Hermitian, then A — B is also Hermitian and, hence, normal, so
this inequality holds for all pairs of Hermitian matrices. However, Example 6 gives a pair of 2 x 2
normal matrices (with A — B not normal) for which the inequality does not hold. Note that for
the Frobenius norm, we get the Hoffman—Wielandt inequality (20), which does hold for all pairs
of normal matrices.

For the operator norm, || - ||, this gives the inequality

min max |o; — S < A — Bl < maxmax |a; — i
ves, s |] ,Brr(])|_|| ”2_665” ; |] ﬂﬂ(])|

(assuming A — B is normal), which, for the case of Hermitian A and B, is a classical result of Weyl

[Wey12].
[OS90][BEK97][BDM83][BDK89][Hol92][AN86] Let A and B be normal matrices with eigen-
values a1, - - o, and By, - - -, By, respectively. Using || All, < [|Allr < /71| A|l> together with the

Hoffman—Wielandt inequality (20) yields

= minmax loj — fogy| < A~ Bl < v maxmaxla; — .
,,

Jnoes,
On the right-hand side, the factor /7 may be replaced by /2 and it is known that this constant is

the best possible. On the left-hand side, the factor — may be replaced by the constant 2—191, but
pm .

the best possible value for this constant is still unknown. Thus, we have

1
—— minmax |o; — < IlA = Bll, < ~/2maxmax |a: — L
201 minmaxia; = fo(jl < | ||z_«/—aesn ax|a; = fio )|

See also [Bha82], [Bha87], [BH85], [Sun82], [Sund82].
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24,

25.

26.

27.
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If A and B are normal matrices, then AB = B A if and only if A and B have Property L. This was
established for Hermitian matrices by Motzkin and Taussky [MT52] and then generalized to the
normal case by Wiegmann [Wieg53]. For a stronger generalization see [Wiel53].

[Frio2] Let a;;,i = 1,...,n,j = 1,...,n, be any set of w complex numbers. Then there
exists an nn x n normal matrix, N, such that n;; = a;; fori < j. Thus, any upper triangular matrix
A can be completed to a normal matrix.

[Bha87, p. 54] Let A be a normal # x »n matrix and let B be an arbitrary n x n matrix such that
|A — B, < €. Then every eigenvalue of B is within distance € of an eigenvalue of A. Example 7
below shows that this need not hold for an arbitrary pair of matrices.

There are various ways to measure the “nonnormality” of a matrix. For example, if A has eigen-

values A1, y,. .. , Ay, the quantity \/||A||%~ — >°%_, |Ai|? is a natural measure of nonnormality, as
is |A*A — AA*||,. One could also consider ||A*A — AA*| for other choices of norm, or look
at min{||A — N|| : N is normal}. Fact 8 above suggests | HK — K H|| as a possible measure of
nonnormality, while the polar decomposition (see Fact 7 above) A = UP of A suggests || UP — PU||.
See [EP87] for more measures of nonnormality and comparisons between them.

[Lin97] [FR96] For any € > 0 thereisa § > 0 such that, for any n x n complex matrix A with
|AA* — A*All, < &, there is a normal matrix N with | N — A|, < €. Thus, a matrix which is
approximately normal is close to a normal matrix.

Examples:

1.

4

Let A =
¢ 0

2 and A = 4P, + 2P,, where the

301 11 o
] S]andU_ﬁ[l _1].ThenUAU_

P/s are the pairwise orthogonal, orthogonal projection matrices

00 ,, 1|1 -1
U_Z{—l 1}

0 1
1 442 6 1 241i

1 0

Pi=Uly o

1
U*:E[i ﬂ and P, =U

4
.A= |0 8+2i 0|=H+iK,where H=|2—1i 8 i|andK = |14 2i 2 -1
0 .

2 =2 4 4 —i

are Hermitian.

A= 0 1] and B = {(1) ﬂ are both normal matrices, but the product AB = [(1) ﬂ is

1 0

not normal.

2
Let A= |0 . Then p(A) =2 = ||A||,, but A is not normal.
0

o O© O
S = O

616

0

cosf  sin6 1 i
Let Q = [—sin@ cos@}'PutU_ V2 1

.10 0 _ : 0 0
U(expt{o _0>U _expz<U

0 -6
Then H is Hermitian and Q = exp(iH). Also, K = iH = {—06

0
and D = { e‘ie]' Then Q = UDU* =

. _[o —i6
o= )

is a real, skew-symmetric

6 0
0 —0

U*). Put H =

matrix and Q = exp(K).

. Here is an example from [Sund82] showing that the condition that A — B be normal cannot be

dropped from 21.Let A = 1 0

(1)] and B = {0 - 1} . Then A is Hermitian with eigenvalues 1
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and B is skew-Hermitian with eigenvalues +i. So, we have |[Ay — P~'Ap P|l, = +/2, regardless
0 2

0 0 and |A — B, = 2.

7. This example shows that Fact 25 above does not hold for general pairs of matrices. Letor > 8 > 0
0 a—p
0 0

of the permutation P. However, A — B =

o

0
and put A = [,3 0} and B =

] . Then the eigenvalues of A are ++/af and both

B

. 0 .
eigenvalues of B are zero. We have A — B = 5 0 and ||A — B||, = B. But, since ¢ > B, we

have /o > 8 = ||A— B|,.
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8.1 Hermitian Matrices

All matrices in this section are either real or complex, unless explicitly stated otherwise.

Definitions:

Amatrix A € C"*" is Hermitian or self-adjoint if A* = A, or element-wise, a;; = aj;,fori, j = 1,...,n.
The set of Hermitian matrices of order n is denoted by H,,. Note that a matrix A € R"*” is Hermitian if
and only if AT = A.

A matrix A € C"*" is symmetricif AT = A, or element-wise, ajj = ajj, fori, j = 1,...,n. The set of
real symmetric matrices of order # is denoted by S,,. Since S, is a subset of H,, all theorems for matrices
in H,, apply to S,, as well.

Let V be a complex inner product space with inner product (v,w) andlet v}, v,, ..., v, € V. The matrix
G = [gij] € C"" defined by gi; = (vi,V;), i,j € {1,2,...,n} is called the Gram matrix of the vectors
Vi,V o005 Vo

The inner product (x,y) of two vectorsx,y € C" will mean the standard inner product, i.e., (x,y) = y*x,
unless stated otherwise. The term orthogonal will mean orthogonal with respect to this inner product,
unless stated otherwise.

Facts:

For facts without a specific reference, see [HJ85, pp. 38, 101-104, 169-171, 175], [Lax96, pp. 80-83], and
[GRO1, pp. 169-171]. Many are an immediate consequence of the definition.

1. A real symmetric matrix is Hermitian, and a real Hermitian matrix is symmetric.
2. Let A, B be Hermitian.

8-1
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(a) Then A + B is Hermitian.
(b) If AB = BA, then AB is Hermitian.
(c) Ifc € R, then c A is Hermitian.

3. A+ A%, A* + A, AA*, and A* A are Hermitian for all A € C"*".

4. If A € H,, then (Ax,y) = (x, Ay) forall x,y € C".

5. If A € H,, then A¥ € H,, forallk € N.

6. If A € ‘H,, is invertible, then A~ € H,,.

7. The main diagonal entries of a Hermitian matrix are real.

8. All eigenvalues of a Hermitian matrix are real.

9. Eigenvectors corresponding to distinct eigenvalues of a Hermitian matrix are orthogonal.

10. Spectral Theorem — Diagonalization version: If A € 'H,, there is a unitary matrix U € C"*”
such that U*AU = D, where D is a real diagonal matrix whose diagonal entries are the eigen-
values of A. If A € S, the same conclusion holds with an orthogonal matrix Q € R™",
ie,QTAQ = D.

11. Spectral Theorem — Orthonormal basis version: If A € H,, there is an orthonormal basis of
C" consisting of eigenvectors of A. If A € S,, the same conclusion holds with C" replaced
by R”.

12. [Lay97, p.447] Spectral Theorem — Sum of rank one projections version: Let A € H,, with eigenvalues
A1, A2, ... Ay, and corresponding orthonormal eigenvectors uy, uy, . . ., u,. Then

A= wul + A wul + -+ A, u,uj.
IfAeS,,then
A =A1u1u1T+Azu2u2T+-~-+)\nunuz.

13. If A € H,, then rank A equals the number of nonzero eigenvalues of A.

14. Each A € C"™" can be written uniquely as A = H + iK, where H,K € H,,.

15. Given A € C"™", then A € H,, if and only if x* Ax is real for all x € C".

16. Any Gram matrix is Hermitian. Some examples of how Gram matrices arise are given in Chapter 66
and [Lax96, p. 124].

17. The properties given above for H,, and S, are generally not true for symmetric matrices in C"*",
but there is a substantial theory associated with them. (See [H]85, sections 4.4 and 4.6].)

Examples:
3 2—1 6 0 2
1. The matrix . € Hyand |0 —1 5| €Ss.
241 =5
2 5 3
2. Let D be an open set in R” containing the point xy, and let f : D — R be a twice continu-
32
ously differentiable function on D. Define H € R"*" by h;; = %(XOJ' Then H is a real
Xi Xj
symmetric matrix, and is called the Hessian of f.
3. Let G = (V, E) be a simple undirected graph with vertex set V.= {1,2,3,...,n}. The n x n

adjacency matrix A(G) = [a;;] (see Section 28.3) is defined by

1 ifijeE
ai]‘:{ i

0 otherwise.

In particular, all diagonal entries of A(G) are 0. Since ij is an edge of G if and only if ji is, the
adjacency matrix is real symmetric. Observe that for each i € V, Z';Zl a;; = 8(i), i.e., the sum of
the i*" row is the degree of vertex i.
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8.2 Order Properties of Eigenvalues of Hermitian Matrices

Definitions:

* A Ax,
Given A € H,, the Rayleigh quotient R, : C"\{0} - Ris Rs(x) = XX _ (A% %)

X*X (x,x)

Facts:

For facts without a specific reference, see [HJ85, Sections 4.2, 4.3]; however, in that source the eigenvalues
are labeled from smallest to greatest and the definition of majorizes (see Preliminaries) has a similar reversal
of notation.

1. Rayleigh—Ritz Theorem: Let A € H,, with eigenvalues &1 > A, > --- > A,,.

Then
*
x* Ax
Ay < < A;, forall nonzerox e C”,
X*X
x* Ax N
A1 = max = max X AX,
x#A0  X*X Ixll2=1
and
. XYAx s
A, = min = min X Ax.
x#0  X*X [Ix[l2=1

2. Courant—Fischer Theorem:Let A € M, beaHermitian matrix with eigenvaluest; > A, > ... > A,
and let k be a given integer with 1 < k < n. Then

x*Ax

max min =Mk
n n
W1HW2see, Wy k e(C X# O,XGC XX
XL wi,wose, Wy
and
. x* Ax
min max = Ak.
n n
W1,Wo ey Wi EC X#O,xe(c X'X

3. (Also [BhaOl, p. 291]) Weyl Inequalities: Let A, B € H, and assume that the eigenvalues of A, B
and A+ B arearranged in decreasing order. Then for every pair of integers j, k suchthat1 < j,k < n
and j+k<n+1,

Ajsk—1(A+ B) < A;(A) + A(B)
and for every pair of integers j,k suchthat1 < j,k <mand j +k>n+1,
Ajtk—n(A+ B) > X;(A) + Ak(B).

4. Weyl Inequalities: These inequalities are a prominent special case of Fact 3. Let A,B € H,, and
assume that the eigenvalues of A, B and A + B are arranged in decreasing order. Then for each
je{l,2,...,n}

2j(A) +An(B) = Aj(A+ B) = A;(A) + Ai(B).

5. Interlacing Inequalities: Let A € H,, let Ay > A, > --- > X, be the eigenvalues of A, and for any
ie{l,2,...,n},let g > @y > --- > p,—1 be the eigenvalues of A(i), where A(i) is the principal
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submatrix of A obtained by deleting its i row and column. Then

MU= A > Uy 2 A3 > 00> Ay = g = Ay

6. Let A € H, and let B be any principal submatrix of A. If A; is the k" largest eigenvalue of A and
W is the k" largest eigenvalue of B, then Ay > .

7. Let A € H,, with eigenvalues A; > A; > -+ > A,. Let S be a k-dimensional subspace of C" with
k €{1,2,...,n}. Then
(a) If there is a constant ¢ such that x*Ax > cx*x forallx € S, then A, > c.

(b) If there is a constant ¢ such that x* Ax < cx*x forallx € S, then A,_;y; <c.

8. Let A e H,.

(a) Ifx*Ax > 0 for all x in a k-dimensional subspace of C”, then A has at least k nonnegative
eigenvalues.

(b) Ifx*Ax > 0 for all nonzero x in a k-dimensional subspace of C", then A has at least k positive
eigenvalues.

9. Let A € Hy, let A = (A1, X2,...,A,) be the vector of eigenvalues of A arranged in decreasing
order, and let & = (ay,4ay, . . .,a,) be the vector consisting of the diagonal entries of A arranged in
decreasing order. Then A > «. (See Preliminaries for the definition of >.)

10. Let o = (ay,a2,...,a4), B = (b1, by, ..., b,) be decreasing sequences of real numbers such that
a > . Then there exists an A € H, such that the eigenvalues of A are a;,4,,...,a,, and the
diagonal entries of A are by, b,,. .., b,.

11. [Lax96, pp. 133-6] or [BhaOl, p. 291] (See also Chapter 15.) Let A, B € H, with eigenvalues
M(A) = A2(A) = --- = A,(A)and A1 (B) = A2(B) = -+ = A,(B). Then
@ [%(A) = X(B)| < |[A=Blh,i=1,...,n
(b) D _[Ai(A) = 2i(B)]* < ||A — BIf}.

i=1
Examples:

1. Setting x = e; in the Rayleigh-Ritz theorem, we obtain A, < a;; < A;. Thus, for any A € H,,, we
have A; > max{a;;|i € {1,2,...,n}} and A,, < min{a;;|7 € {1,2,...,n}}.

2. Settingx = [1,1,..., 117 in the Rayleigh-Ritz theorem, we find that &, < % Z?,j:l aij < A Ifwe
take A to be the adjacency matrix of a graph, then this inequality implies that the largest eigenvalue
of the graph is greater than or equal to its average degree.

3. The Weyl inequalities in Fact 3 above are a special case of the following general class of inequalities:

> m(A+B) <D KA+ D Ai(B),
kek iel jeJ
where I, ], K are certain subsets of {1,2,...,n}. In 1962, A. Horn conjectured which inequalities
of this form are valid for all Hermitian A, B, and this conjecture was proved correct in papers by
A. Klyachko in 1998 and by A. Knutson and T. Tao in 1999. Two detailed accounts of the problem
and its solution are given in [Bha01] and [Ful00].
1 1 1 0
1 1 1 0 . .
4, Let A = 111 1 have eigenvalues A; > A, > A3 > A4. Since A(4) = |1
0 0 1 1 b

has eigenvalues 3, 0, 0, by the interlacing inequalities, A; > 3 > X, > 0 > A3 > 0 > Ay. In
particular, A; = 0.
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Applications:

1.

8.3

To use the Rayleigh—Ritz theorem effectively to estimate the largest or smallest eigenvalue of a
Hermitian matrix, one needs to take into account the relative magnitudes of the entries of the

1 1 1

matrix. For example,let A= |1 2 2|.In order to estimate A;, we should try to maximize the
1 2 3

Rayleigh quotient. A vector x € R’ is needed for which no component is zero, but such that each

component is weighted more than the last. In a few trials, one is led to x = [1,2, 3], which gives a

1 T
Rayleigh quotient of 5. So A; > 5. This is close to the actual value of A1, which is 1 csc? I ~ 5.049.

This example is only meant to illustrate the method; its primary importance is as a tool for
estimating the largest (smallest) eigenvalue of a large Hermitian matrix when it can neither be
found exactly nor be computed numerically.

The interlacing inequalities can sometimes be used to efficiently find all the eigenvalues of a Her-
mitian matrix. The Laplacian matrix (from spectral graph theory, see Section 28.4) of a star is

m—1 —1 —1 -1 -1
-1 1 0 0 0
-1 0 1 0 0
L =
-1 0 0 1 0
-1 0 0 0 1

Since L(1) is an identity matrix, the interlacing inequalities relative to L(1) are: A > 1 > X, >
1>...> A,_1 > 1> A,. Therefore, n — 2 of the eigenvalues of L are equal to 1. Since the columns
sum to 0, another eigenvalue is 0. Finally, since tr L = 2n — 2, the remaining eigenvalue is 7.

The sixth fact above is applied in spectral graph theory to establish the useful fact that the k*"
largest eigenvalue of a graph is greater than or equal to the k' largest eigenvalue of any induced
subgraph.

Congruence

Definitions:

Two matrices A, B € H,, are *congruent if there is an invertible matrix C € C"*" such that B = C*AC,

denoted A ~ B.If C is real, then A and B are also called congruent.

Let A € H,. The inertia of A is the ordered triple in(A) = (7w (A),v(A),8(A)), where (A) is the
number of positive eigenvalues of A, v(A) is the number of negative eigenvalues of A, and §(A) is the
number of zero eigenvalues of A.

In the event that A € C"*" has all real eigenvalues, we adopt the same definition for in(A).

Facts:

The following can be found in [HJ85, pp. 221-223] and a variation of the last in [Lax96, pp. 77-78].

A S

Unitary similarity is a special case of *congruence.

*Congruence is an equivalence relation.

For Ae H,,7(A) +v(A)+35(A) =n.

For A € H,,rank A = 7w (A) + v(A).

Let A € H, with inertia (r,s,t). Then A is *congruent to I, @ (—I;) @ 0,. A matrix C that
implements this *congruence is found as follows. Let U be a unitary matrix for which U*AU = D
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is a diagonal matrix with dyi,...,d,, the positive eigenvalues, d, 41,41, .., dr4+s,+s the negative
eigenvalues, and d;; =0, k > r +s. Let

1/»,/d,',', i:l,...,f
Si = 1/\/—d,',', i=r—+1,...,s

I, i>r+s

and let S = diag(sy,52,...,5,). Then C = US.
6. Sylvester’s Law of Inertia: Two matrices A, B € H, are *congruent if and only if they have the same

inertia.
Examples:
0 0 3
1. Let A= |0 0 4|.Sincerank A =2,7(A)+ v(A) = 2,508(A) = 1. Since tr A = 0, we have
3 40

w(A) =v(A) =1,and in(A) = (1,1, 1). Letting

we have

Now suppose

r]

I
o = o
- o —
o = o

Clearly in(B) = (1,1, 1) also. By Sylvester’s law of inertia, B must be *congruent to A.

8.4 Positive Definite Matrices

Definitions:

A matrix A € H, is positive definite if x* Ax > 0 for all nonzero x € C". It is positive semidefinite if
x*Ax > 0 for all x € C". It is indefinite if neither A nor — A is positive semidefinite. The set of positive
definite matrices of order # is denoted by PD,;, and the set of positive semidefinite matrices of order n
by PSD,,. If the dependence on 7 is not significant, these can be abbreviated as PD and PSD. Finally, PD
(PSD) are also used to abbreviate “positive definite” (“positive semidefinite”).

Let k be a positive integer. If A, B are PSD and B¥ = A, then B is called a PSD k" root of A and is
denoted A%,

A correlation matrix is a PSD matrix in which every main diagonal entry is 1.
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Facts:

For facts without a specific reference, see [HJ85, Sections 7.1 and 7.2] and [Fie86, pp. 51-57].

1.

© ® N oW

10.

11.
12.

13.
14.
15.
16.

17.
18.

19.

20.

21.

22.

A € S, is PD ifxT Ax > 0 for all nonzero x € R”, and is PSD if x” Ax > 0 for all x € R".

. Let A, B € PSD,,.

(a) Then A+ B € PSD,,.

(b) If, in addition, A € PD,,, then A + B € PD,,.

(c) Ifc > 0,thencA € PSD,,.

(d) If, in addition, A € PD,, and ¢ > 0, then cA € PD,,.

. IfA Ay, ..., AL €PSD,, thensois A; + A, + - - - + Ag. If, in addition, thereisani € {1,2,...,k}

such that A; € PD,,, then A, + A, +--- + A, € PD,,.

. Let A € H,. Then A is PD if and only if every eigenvalue of A is positive, and A is PSD if and only

if every eigenvalue of A is nonnegative.

. If AisPD, thentr A > Oand det A > 0.If Ais PSD, thentr A > 0 and det A > 0.

A PSD matrix is PD if and only if it is invertible.

. Inheritance Principle: Any principal submatrix of a PD (PSD) matrix is PD (PSD).
. All principal minors of a PD (PSD) matrix are positive (nonnegative).
. Each diagonal entry of a PD (PSD) matrix is positive (nonnegative). If a diagonal entry of a PSD

matrix is 0, then every entry in the row and column containing it is also 0.
Let A € H,. Then A is PD if and only if every leading principal minor of A is positive. A is PSD

if and only if every principal minor of A is nonnegative. (The matrix [g 1} shows that it is not

sufficient that every leading principal minor be nonnegative in order for A to be PSD.)

Let A be PD (PSD). Then A* is PD (PSD) for all k € N.

Let A € PSD,, and express A as A = UDU*, where U is unitary and D is the diagonal matrix
of eigenvalues. Given any positive integer k, there exists a unique PSD k™ root of A given by
AVk = UDVkU*, If Aisreal sois AV, (See also Chapter 11.2.)

If Ais PD, then A~! is PD.

Let A € PSD,, and let C € C"*™. Then C*AC is PSD.

Let A € PD, and let C € C"", n > m. Then C*AC is PD if and only if rank C = m; i.e., if and
only if C has linearly independent columns.

Let A € PD,, and C € C"*". Then C*AC is PD if and only if C is invertible.

Let A € H,. Then A is PD if and only if there is an invertible B € C"*" such that A = B*B.
Cholesky Factorization: Let A € H,,. Then A is PD ifand only if there is an invertible lower triangular
matrix L with positive diagonal entries such that A = L L*. (See Chapter 38 for information on
the computation of the Cholesky factorization.)

Let A € PSD,, with rank A = r < n. Then A can be factored as A = B*B with B ¢ C"*". If
A is a real matrix, then B can be taken to be real and A = BT B. Equivalently, there exist vectors
Vi,V2,...,V, € C" (or R") such that a;j = v;v; (or viij). Note that A is the Gram matrix (see
section 8.1) of the vectors vy, V,, . .., v,. In particular, any rank 1 PSD matrix has the form xx* for
some nonzero vector x € C".

[Lax96, p. 123]; see also [H]85, p. 407] The Gram matrix G of a set of vectors v;,V,, . . ., v, is PSD.
If vi, vy, ..., Vv, are linearly independent, then G is PD.

[H]85, p. 412] Polar Form: Let A € C™",m > n. Then A can be factored A = U P, where
P € PSD,;, rank P = rank A, and U € C"™" has orthonormal columns. Moreover, P is uniquely
determined by A and equals (A* A)'/2, If A is real, then P and U are real. (See also Section 17.1.)
[HJ85, p. 400] Any matrix A € PD,, is diagonally congruent to a correlation matrix via the diagonal

matrix D = (1//ai1,...,1//aum)-
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23. [BJT93] Parameterization of Correlation Matrices in Sz: Let 0 < o, 8, < 7. Then the matrix
1 cosa  cosy
C = |cosa 1 cos 8
cosy cosf 1
isPSDifandonlyife < B+y, B<a+y, y<a+p «o+p+y <2n. Furthermore, C
is PD if and only if all of these inequalities are strict.
. B .. .
24. [H]85, p. 472] and [Fie86, p. 55] Let A = C* g € H,,, and assume that B is invertible. Then
A is PD if and only if the matrices B and its Schur complement S = D — C*B~!C are PD.
25. [Joh92] and [LB96, pp. 93-94] Let A = Cl?* IC) be PSD. Then any column of C lies in the span
of the columns of B.
26. [HJ85, p. 465] Let A € PD, and B € H,,. Then
(a) AB is diagonalizable.
(b) All eigenvalues of AB are real.
(¢) in(AB) = in(B).
27. Any diagonalizable matrix A with real eigenvalues can be factored as A = BC, where B is PSD and
C is Hermitian.
28. If A, B € PD,,, then every eigenvalue of AB is positive.
29. [Lax96, p. 120] Let A, B € H,,. If Ais PD and AB + B A is PD, then B is PD. It is not true that if
A, B are both PD, then AB + B A is PD as can be seen by the example A = ; i} , B = [Z ﬂ .
30. [HJ85, pp. 466—467] and [Lax96, pp. 125-126] The real valued function f(X) = log(det X) is
concave on the set PD,; i.e., f((1 — )X +1tY) > (1 —¢t) f(X)+¢tf(Y) forallt € [0,1] and all
X,Y € PD,.
[ ] 1f 1 g = T
31. [Lax96, p. 129] I AePDnisrea,/ e X Mdx = .
P R" v det A
32. [Fie60] Let A = [a,-j], B = [b,]] € PD,,, with Al = [0{,']'], Bl = [ﬂij].Then
n
Z(aij = bij)aij — Bij) <0,
ij=1
with equality if and only if A = B.
2 2
33. [Ber73,p.55] Consider PD, tobeasubset of C" (or for real matrices of R" ). Then the (topological)
boundary of PD,, is PSD,,.
Examples:
1. f A= [a]is1 x 1, then A is PD if and only if a4 > 0, and is PSD if and only ifa > 0; so PD and
PSD matrices are a generalization of positive numbers and nonnegative numbers.
2. If one attempts to define PD (or PSD) for nonsymmetric real matrices according to the the usual

definition, many of the facts above for (Hermitian) PD matrices no longer hold. For example,

suppose A =

_01 (1)] . Then xT Ax = 0 for all x € R%. But o (A) = {i, —i}, which does not agree

with Fact 4 above.



Hermitian and Positive Definite Matrices 8-9

1 1
3. The matrix A = {17 187] factors as — {1 1] [25 0} {1 11}, so A =

1 —=1{]|0 9 1

8 V2 V2

11 1|{50 1 |1 1| |41
V2|1 =10 3| 2|t -1 |1 o4

A self-adjoint linear operator on a complex inner product space V (see Section 5.3) is called positive
if {Ax,x) > 0 for all nonzero x € V. For the usual inner product in C" we have (Ax, x) = x* Ax,
in which case the definition of positive operator and positive definite matrix coincide.

. Let Xj, X5, ..., X, be real-valued random variables on a probability space, each with mean zero

and finite second moment. Define the matrix
aij:E(Xin), i,jE{l,Z,...,Vl}.

The real symmetric matrix A is called the covariance matrix of X;, X, ..., X,;, and is necessarily
PSD. If welet X = (X, Xa,..., X,)T, then we may abbreviate the definitionto A = E (XXT.

Applications:

1.

8.5

[HFKLMO®95, p. 181] or [MT88, p. 253] Test for Maxima and Minima in Several Variables: Let D
be an open set in R” containing the point x, let f: D — R be a twice continuously differentiable
function on D, and assume that all first derivatives of f vanish at x;. Let H be the Hessian matrix
of f (Example 2 of Section 8.1). Then

(a) f has arelative minimum at x, if H(xo) is PD.
(b) f has a relative maximum at xo if —H (x) is PD.
(c) f hasasaddle point at x if H(xp) is indefinite.

Otherwise, the test is inconclusive.

Section 1.3 of the textbook [Str86] is an elementary introduction to real PD matrices empha-
sizing the significance of the Cholesky-like factorization L DLT of a PD matrix. This represen-
tation is then used as a framework for many applications throughout the first three chapters of
this text.

. Let Abeareal matrix in PD,,. A multivariate normal distribution is one whose probability density

function in R” is given by

fR) = A
V(Q2m)rdet A
It follows from Fact 31 above that fR" f(x)dx = 1. A Gaussian family X, X,,... X,, where
each X; has mean zero, is a set of random variables that have a multivariate normal distribution.
The entries of the matrix A satisfy the identity a;; = E(X;X;), so the distribution is completely
determined by its covariance matrix.

Further Topics in Positive Definite Matrices

Definitions:
Let A,B € F"*", where F is a field. The Hadamard product or Schur product of A and B, denoted

A o B, is the matrix in F"*" whose (i, j

)th entry is a,‘jb,‘j.

A function f:R — C is called positive semidefinite if for each n € N and all xy,x,,...,x, € R, the
n x nmatrix [ f(x; — x;)] is PSD.
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Let A, B € H,. Wewrite A > Bif A— BisPD,and A > B if A — B is PSD. The partial ordering on
‘H, induced by > is called the partial semidefinite ordering or the Loewner ordering.
Let V be an n-dimensional inner product space over C or R. A set K C V is called a cone if

(a) Foreachx,ye K, x+vye K.
(b) Ifx e Kandc > 0,thencx € K.

A cone is frequently referred to as a convex cone. A cone K is closed if K is a closed subset of V, is
pointed if K N —K = {0}, and is full if it has a nonempty interior. The set

K*'={yeVl]ixy >0 VxeK}

is called the dual space.

Facts:

1. [HJ91, pp. 308-309]; also see [HJ85, p. 458] or [Lax96, pp. 124,234] Schur Product Theorem: If
A,B € PSD,,, thensois Ao B.If A € PSD,, a;; >0,i=1,...,n,and B € PD,,then Ao B €
PD,,. In particular, if A and B are both PD, then so is A o B.

2. [HJ85, p. 459] Fejer’s Theorem: Let A = [a;;] € H,. Then A is PSD if and only if

Z aij b,‘j >0
ij=1
for all matrices B € PSD,,.

3. [H]J91, pp. 245-246] If A € PD,, and B € PD,, then the Kronecker (tensor) product (see
Section 10.4) A® B € PD,,,,. If A € PSD,, and B € PSD,,, then A ® B € PSD,,,,,.

4. [HJ85, p.477] or [Lax96, pp. 126-127, 131-132] Hadamard’s Determinantal Inequality: If A € PD,,,
then det A < []"_, a;;. Equality holds if and only if A is a diagonal matrix.

5. [FJOO, pp. 199-200] or [H]85, p. 478] Fischer’s Determinantal Inequality: If A € PD, and « is any
subset of {1,2,...,n}, then det A < det A[«] det A[®] (where det A[@] = 1). Equality occurs if
and only if Ao, a¢] is a zero matrix. (See Chapter 1.2 for the definition of A[«] and Al«, B].)

6. [FJOO, pp. 199-200] or [H]85, p. 485] Koteljanskii’s Determinantal Inequality: Let A € PD,, and let
a, B be any subsets of {1,2,...,n}. Then det A U 8] det Al N B] < det Ala] det A[B]. Note
that if « N B = @, Koteljanskii’s inequality reduces to Fischer’s inequality. Koteljanskii’s inequality
is also called the Hadamard—Fischer inequality.

For other determinantal inequalities for PD matrices, see [FJ00] and [H]85, §7.8].

7. [Fel71, pp. 620-623] and [Rud62, pp. 19-21] Bochner’s Theorem: A continuous function from R
into C is positive semidefinite if and only if it is the Fourier transform of a finite positive measure.

8. [Lax96, p. 118] and [H]85, p. 475, 470] Let A, B,C, D € H,,.

(a) fA<BandC < D,then A+ C < B + D.
(b) If A< Band B < C,then A < C.
(c) If A < Band S € C"™" is invertible, then S*AS < S*BS.

The three statements obtained by replacing each occurrence of < by < are also valid.
9. [Lax96, pp. 118-119, 121-122] and [H]85, pp. 471-472] Let A, B € PD,, with A < B. Then

(a) A7'> B~
(b) AY2 < B2,
(c) det A < det B.
(d) tr A < tr B.

If A < B, then statement (a) holds with > replaced by >, statement (b) holds with < replaced by
<, and statements (c) and (d) hold with < replaced by <.



Hermitian and Positive Definite Matrices 8-11

10. [HJ85, pp. 182, 471-472] Let A, B € H,, with eigenvalues 11(A) > A,(A) > .-+ > A,(A) and
M(B) > A(B) = --- > Ay(B). If A < B, then Ax(A) < A(B), k =1,...,n. If A < B, then
M(A) < M(B), k=1,...,n.

11. [HJ85, p. 474] Let Abe PD and leta < {1,2,...,n}. Then A~'[a] > (Ala])~'.

12. [HJ85,p.475] If AisPD,then A1 o A>T > (A" o A)~L.

13. [Hal83, p. 89] If K is a cone in an inner product space V, its dual space is a closed cone and is called
the dual cone of K. If K is a closed cone, then (K*)* = K.

14. [Ber73, pp. 49-50, 55] and [HW87, p. 82] For each pair A, B € H,,, define (A, B) = tr (AB).

(a) H, is an inner product space over the real numbers with respect to (-, -).
(b) PSD, is a closed, pointed, full cone in H,,.
(c) (PSD,)* = PSD,,.

Examples:

1. The matrix C = [cos|i — j|] € S, is PSD, as can be verified with Fact 19 of section 8.4 and
the addition formula for the cosine. But a quick way to see it is to consider the measure u(x) =
%[S(x +1)+8(x—1)];ie,u(E) =0if —1,1 ¢ E, u(E) = 1if —1,1 € E,and u(E) = 1/2
if exactly one of —1,1 € E. Since the Fourier transform of u is cost, if we let x1,x,,...,x, be
1,2,... ,ninthe definition of positive definite function, we see immediately by Bochner’s Theorem
that the matrix [cos(i — j)] = [cos|i — j|] = C is PSD. By Hadamard’s determinantal inequality
detC < H?:l cii = 1.

11 2 2| . 7 =2 2 -1
2. Since [1 5 < {2 7],takmgmverseswehave 2 5 < {_1 1}
111 2 -1.0
3. The matrix A = |1 2 2| is PD withinverse A™' = -1 2 —1|.Then (A[{1,3}])7! =
2 3 0 -1 1
2 -1 0 1 00
1.5 — 2
{—55 55} - {0 (1)] = AT{1,3)]. Also, Ao A = =1 4 2| = |0 1 0| >
. 0 -2 3 0 0 1
8§ 3 2
L1013 6 4| =(A"oA)™L
2 4 7

4. If A = B > 0, it does not follow that A> > B?2. For example, if A = [i i and B = [(1) 8:| )

then B and A — B are PSD, but A> — B2 is not.

Applications:

1. Hadamard’s determinantal inequality can be used to obtain a sharp bound on the determinant of
a matrix in C"*" if only the magnitudes of the entries are known. [H]85, pp. 477-478] or [Lax96,
p- 127].

Hadamard’s Determinantal Inequality for Matrices in C"*": Let B € C"*". Then |det B| <
[Tio, (2, 1bij1%)"/* with equality holding if and only if the rows of B are orthogonal.

In the case that B is invertible, the inequality follows from Hadamard’s determinantal inequality
for positive definite matrices by using A = B B*; if B is singular, the inequality is obvious.

The inequality can be alternatively expressed as | det B| < []/_, |Ib;|l2, where b; are the rows of
B.If B is a real matrix, it has the geometric meaning that among all parallelepipeds with given side
lengths ||b; ||, i = 1,...,n, the one with the largest volume is rectangular.

There is a corresponding inequality in which the right-hand side is the product of the lengths of
the columns of B.
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2. [Fel71, pp. 620-623] A special case of Bochner’s theorem, important in probability theory, is: A
continuous function ¢ is the characteristic function of a probability distribution if and only if it is
positive semidefinite and ¢(0) = 1.

3. Understanding the cone PSD,, is important in semidefinite programming. (See Chapter 51.)
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Nonnegativity is a natural property of many measured quantities (physical and virtual). Consequently, non-
negative matrices arise in modelling transformations in numerous branches of science and
engineering — these include probability theory (Markov chains), population models, iterative methods in
numerical analysis, economics (input-output models), epidemiology, statistical mechanics, stability anal-
ysis, and physics. This section is concerned with properties of such matrices. The theory of the subject was
originated in the pioneering work of Perron and Frobenius in [Per07a,Per07b,Fro08,Fro09, and Fro12].
There have been books, chapters in books, and hundreds of papers on the subject (e.g., [BNS89], [BP94],
[Gan59, Chap. XIII], [Har02] [HJ85, Chap. 8], [LT85, Chap. 15], [Min88], [Sen81], [Var62, Chap. 1]). A
brief outline of proofs of the classic result of Perron and a description of several applications of the theory
can be found in the survey paper [Mac00]. Generalizations of many facts reported herein to cone-invariant
matrices can be found in Chapter 26.

9.1 Notation, Terminology, and Preliminaries

Definitions:

For a positive integer n, (n) = {1,...,n}.

For a matrix A € C"™":
A is nonnegative (positive), written A > 0 (A > 0), if all of A’s elements are nonnegative (positive).

9-1
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A is semipositive, written A > 0if A > 0and A # 0.
|A| will denote the nonnegative matrix obtained by taking element-wise absolute values of A’s
coordinates.

For a square matrix A = [a;;] € C"":

The k-eigenspace of A at a complex number A, denoted NX(A), is ker(A — AI); a generalized eigen-
vector of P at J is a vector in U NF(A).

The index of A at A, denoted v4 (1), is the smallest integer k with Nf(A) = N)]f“ (A).

The ergodicity coefficient of A, denoted t(A), is max{|A|:A € o(A) and |A| # p(A)} (with the
maximum over the empty set defined to be 0 and p(A) being the spectral radius of A).

A group inverse of a square matrix A, denoted A*, is a matrix X satisfying AXA = A, XAX = X, and
AX = XA (whenever there exists such an X, it is unique).

The digraph of A, denoted I'(A), is the graph with vertex-set V(A) = (n) and arc-set E(A) = {(i, j) :
i,j € (n) and a;; # 0}; in particular,i = 1,...,n are called vertices.

Vertex i € (n) has access to vertex j € (n), written i > j, if either i = j or I'(A) contains a simple
walk (path) from i to j; we say that i and j communicate, written i ~ j, if each has access to the other.

A subset C of {n) is final if no vertex in C has access to a vertex not in C.

Vertex-communication is an equivalence relation. It partitions (n) into equivalence classes, called the
access equivalence classes of A.

['(A) is strongly connected if there is only one access equivalence class.

An access equivalence class C has access to an access equivalence class C’, written C +— C’ if some, or
equivalently every, vertex in C has access to some, or equivalently every, vertex in C’; in this case we also
writei > C'and C + i’ wheni € Candi’ € C'.

An access equivalence class C of A is final if its final as a subset of (n), that is, it does not have access to
any access equivalence class but itself.

The reduced digraph of I'(A), denoted R[I"(A)], is the digraph whose vertex-set is the set of access
equivalence classes of A and whose arcs are the pairs (C,C’) with C and C’ as distinct classes satisfying
Cr— C'.

For a sequence {a,,}m—o,1,.. of complex numbers and a complex number a:

aisa (C,0)-limit of {a,,},=¢,1,..., written lim,,_, oc a,, = a (C,0), if lim,,—, »c a,, = a (in the sense of a
regular limit).

a is the (C, 1)-limit of {a,,}m=0.1, ., written lim,, o0 a,, = a (C, 1), if lim,;,_, oo m ™! Z:”:_ol a; =a.

Inductively for k = 2,3,..., a is a (C, k)-limit of {a,,},y—0,1,.., written lim,,_,oc a,, = a (C,k), if
lim,, oom™ ' 3" a, =a (Ck—1).

For0 < B < 1,{am}m=0,,.. converges geometrically to a with (geometric) rate S ifforeachf < y < 1,

am—a

the set of real numbers {#*2% : m = 0,1,...} is bounded. (For simplicity, we avoid the reference of
geometric convergence for (C, k)-limits.)

For a square nonnegative matrix P:

o(P) (the spectral radius of P) is called the Perron value of P (see Facts 9.2-1(b) and 9.2-5(a) and
9.3-2(a)).

A distinguished eigenvalue of P is a (necessarily nonnegative) eigenvalue of P that is associated with
a semipositive (right) eigenvector.

For more information about generalized eigenvectors, see Chapter 6.1. An example illustrating
the digraph definitions is given in Figure 9.1; additional information about digraphs can be found in
Chapter 29.

9.2 Irreducible Matrices

(See Chapter 27.3, Chapter 29.5, and Chapter 29.6 for additional information.)
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Definitions:
A nonnegative square matrix P is irreducible if it is not permutation similar to any matrix having the

(nontrivial) block-partition

A B
0 C

with A and C square.

The period of an irreducible nonnegative square matrix P (also known as the index of imprimitivity
of P) is the greatest common divisor of lengths of the cycles of I'(P), the digraph of P.

An irreducible nonnegative square matrix P is aperiodic if its period is 1.
Note: We exclude from further consideration the (irreducible) trivial 0 matrix of dimension 1 x 1.

Facts:
Facts requiring proofs for which no specific reference is given can be found in [BP94, Chap. 2].
1. (Positive Matrices — Perron’s Theorem) [Per07a, Per07b] Let P be a positive square matrix with
spectral radius p and ergodicity coefficient 7.
(a) Pisirreducible and aperiodic.
(b) p is positive and is a simple eigenvalue of P; in particular, the index of P at p is 1.
(c) There exist positive right and left eigenvectors of P corresponding to p, in particular, p is a
distinguished eigenvalue of both P and P7.
(d) p is the only distinguished eigenvalue of P.
(e) p is the only eigenvalue A of P with |A| = p.
(f) Ifx € R” satisfies x > 0 and either (pI — P)x > 0 or (pI — P)x < 0, then (pI — P)x = 0.
(g) If vand ware positive right and left eigenvectors of P corresponding to p (note that w is a row
vector), then limm%m(%)m = % and the convergence is geometric with rate %.
(h) Q = pI — P hasagroup inverse; further, if vand w are positive right and left eigenvectors of P
correspondingto p, then Q-+ isnonsingular, Q* = (Q+¥)~'(I— ), and ™ = I - QQ".
(1) lim,- e Z:":_Ol(%)t —m = (pl — P)* and the convergence is geometric with rate %.
2. (Characterizing Irreducibility) Let P be a nonnegative n x n matrix with spectral radius p. The

following are equivalent:

(a) P isirreducible.

(b) ' PS> 0.

(c) I+P)~!>o.

(d) The digraph of P is strongly connected, i.e., P has a single access equivalence class.
(e) Every eigenvector of P corresponding to p is a scalar multiple of a positive vector.
(f) Forsome pu > p, uI — P is nonsingular and (uI — P)~! > 0.

(g) Forevery u > p, I — P isnonsingular and (uI — P)™! > 0.

3. (Characterizing Aperiodicity) Let P be an irreducible nonnegative #n x n matrix. The following are
equivalent:
(a) P isaperiodic.
(b) P™ > 0 for some m. (See Section 29.6.)
(¢c) P™ > Oforallm > n.
4. (The Period) Let P be an irreducible nonnegative n x n matrix with period q.

(a) q is the greatest common divisor of {m: m is a positive integer and (P");; > 0} for any one, or
equivalently all, i € {1,...,n}.
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(b) There exists a partition Cy,...,Cq of {1,...,n} such that:

i. Fors,t =1,...,q9, P[C,,C;] # Oifand only ift = s + 1 (with g + 1 identified with 1); in
particular, P is permutation similar to a block rectangular matrix having a representation

0 P[Cy,C,] 0 0

0 0 P[Cy,C5] ... 0

0 0 0 ... P[C4_1,C4]
P[Cq)cl] 0 0 0

ii. P9[C,]isirreduciblefors =1,...,qand P1[C;,C,] = Ofors,t =1,...,nwiths # t;in
particular, P? is permutation similar to a block diagonal matrix having irreducible blocks
on the diagonal.

. (Spectral Properties— The Perron—Frobenius Theorem) [Fro12] Let P be an irreducible nonnegative

square matrix with spectral radius p and period q.

(a) p is positive and is a simple eigenvalue of P; in particular, the index of P at p is 1.

(b) There exist positive right and left eigenvectors of P corresponding to p; in particular, p is a
distinguished eigenvalue of both P and P7.

(c) p is the only distinguished eigenvalue of P and of P,

(d) Ifx € R" satisfies x > 0 and either (oI — P)x > 0 or (oI — P)x < 0, then (oI — P)x = 0.

(e) The eigenvalues of P with modulus p are {pe®**/1:k = 0,...,q — 1} (here, i is the complex
root of —1) and each of these eigenvalues is simple. In particular, if P is aperiodic (g = 1),
then every eigenvalue A # p of P satisfies |A| < p.

(f) Q = pI — P hasagroup inverse; further, if vand w are positive right and left eigenvectors of P
correspondingto p, then Q+ ¥ is nonsingular, Q* = (Q+ )~ (I —¥),and ¥ = I - QQ".

. (Convergence Properties of Powers) Let P be an irreducible nonnegative square matrix with spectral

radius p, index v, period ¢q, and ergodicity coefficient 7. Also, let v and w be positive right and

left eigenvectors of P corresponding to o and let P* = T7

(a) limmaoo(%)m = P* (C1).

(b) lim,;— o % Z:”:tg_l(%)t = P*and the convergence is geometric with rate % < 1.Inparticular,
if P is aperiodic (g = 1), then lim,;,—, oo ( % )™ = P* and the convergence is geometric with rate
L <1

mq-+k

P
(c) Foreachk =0,...,9 — 1, limm_wo(%) exists and the convergence of these sequences to

their limit is geometric with rate (%)q < 1.
(d) limy,— e z:";()l(%)’ — mP* = (I — p~'P)* (C,1); further, if P is aperiodic, this limit holds
as a regular limit and the convergence is geometric with rate % < 1.

. (Bounds on the Perron Value) Let P be an irreducible nonnegative n x n matrix with spectral radius

0> let u be a nonnegative scalar, and let ¢ € {<, <, <,=,>, >, >}. The following are equivalent:
(@) popu.

(b) There exists a vector u > 0 in R" with Pu o pu.

(c) There exists a vector u > 0 in R” with Pu ¢ pu.

In particular,

. (Px); . (Px);
£ = max min = min max ——
x>0 {i;>0} X x>0 {izx; >0} X;
. (Px); . (Px);
= maxmin = minmax ——.

x>0 i X; x>0 i X;
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Since p(PT) = p(P), the above properties (and characterizations) of p can be expressed by
applying the above conditions to PT.

Consider the sets Q(P) = {u > 0:3x > 0,Px > ux}, Q(P) ={x > 0:3x > 0, Px >
uxh, X(P)={u >0:3x > 0, Px < ux}, X1(P) = {u > 0:3Ix > 0, Px < ux}; these sets were
named the Collatz—Wielandt sets in [BS75], giving credit to ideas used in [Col42], [Wie50]. The
above properties (and characterizations) of p can be expressed through maximal/minimal elements
of the Collatz—Wielandt sets of P and P T. (For further details see Chapter 26.)

8. (Bounds on the Spectral Radius) Let A be a complex n x n matrix and let P be an irreducible
nonnegative n X n matrix such that |[A| < P.

(a) p(A) = p(P).

(b) [Wie50], [Sch96] p(A) = p(P) if and only if there exist a complex number p with || = 1
and a complex diagonal matrix D with | D| = I such that A = ;& D~! P D; in particular, in this
case |A| = P.

(c) If Aisreal and p and ¢ € {<, <} satisfy the condition stated in 7b or 7¢, then p(A) < u.
(d) If Aisreal and u and ¢ € {<, =} satisfy the condition stated in 7b or 7c, then p(A) < u.

9. (Functional Inequalities) Consider the function p(.) mapping irreducible, nonnegative n x n ma-
trices to their spectral radius.

(a) p(.) is strictly increasing in each element (of the domain matrices), i.e., if A and B are irre-
ducible, nonnegative n x n matrices with A > B > 0, then p(A) > p(B).

(b) [Coh78] p(.) is (jointly) convex in the diagonal elements, i.e., if A and D are n x n matrices,
with D diagonal, A and A 4+ D nonnegative and irreducible and if 0 < o < 1, then p[a A +
(1 —a)(A+ D)] <ap(A)+ (1 —a)p(A+ D).

For further functional inequalities that concern the spectral radius see Fact 8 of Section 9.3.

10. (Taylor Expansion of the Perron Value) [HRR92] The function p(.) mapping irreducible nonnegative
n x n matrices X = [x;;] to their spectral radius is differentiable of all orders and has a converging
Taylor expansion. In particular, if P is an irreducible nonnegative n X n matrix with spectral radius
p and corresponding positive right and left eigenvectors v = [v;] and w = [w], normalized so
that wv = 1, and if F is an #n X n matrix with P 4+ € F > 0 for all sufficiently small positive ¢,
then p(P 4+ €F) = > 72, pee® with pg = p, p1 = WFv, p, = wE(pI — P)*Fv, p; = wF (pI —
P)*(wEFvI — F)(pI — P)*Fv; in particular, agi{X) |x=p = w;v;.

An algorithm that iteratively generates all coefficients of the above Taylor expansion is available;
see [HRR92].

11. (Bounds on the Ergodicity Coefficient) [RT85] Let P be an irreducible nonnegative n x n matrix
with spectral radius p, corresponding positive right eigenvector v, and ergodicity coefficient t;
let D be a diagonal n x n matrix with positive diagonal elements; and let ||.|| be a norm on R".
Then

T < max Ix'D~'PD].

u
xeR" x| <1xT D-1v=0

Examples:
1. We illustrate Fact 1 using the matrix

CaU AR Dl e
R == =
OI= NI—= W=

The eigenvaluesof P are 1, 4—18 (—3 — 33) , é (—3 + «/33),50 p(A) = 1.Also,v = [1,1,1]Tand
w = [57,18,32] are positive right and left eigenvectors, respectively, corresponding to eigenvalue
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1 and

57 18 32
107 107 107
57 18 32
107 107 107
57 18 32
107 107 107

. We illustrate parts of Facts 5 and 6 using the matrix

The spectral radius of P is 1 with corresponding right and left eigenvectors v = (1,1)T and
w = (1, 1), respectively, the period of P is 2,and (I — P)* = %. Evidently,

I ifmiseven
P" =

P ifmisodd.

In particular,

lim P =1 and lim P*'=p
m—00 m—00

and

1
—[pm Pm+1 = — =
2[ + ] s

I+P S5 05
2

] =v(wv) 'w foreachm=0,1,...,

assuring that, trivially,

m— 00 2 5

1 5 5 .
lim — ZPt: s = v(wv) 'w.

In this example, T(P) is 0 (as the maximum over the empty set) and the convergence of the above
sequences is geometric with rate 0. Finally,

s IPz m(HP) if m is even
pare ’”(”m + 52 ifmis odd,
implying that
1+ P
lim P" = (I+P) = v(wv)"'w (C,1)
m— 00 2
and

[+P\ I-P
1 P’ — =" (©1).
ng&zj ( 2 ) O

0 O] Then p(P+¢€F) =

_1)k+1 _
VIte=1+1e+ 32, fC- (7).

. [RT85, Theorem 4.1] and [Hof67] With |.|| as the 1-norm on R” and d;, . . ., d, as the (positive)

diagonal elements of D, the bound in Fact 11 on the coefficient of ergodicity t(P) of P becomes

d T r
- Il’l nr;ésd‘l/,-i-dvs (Z k|V5 kK—V skl)
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With D = I, a relaxation of this bound on 7 (P) yields the expression
n n
: : Piﬂj) (P,,-vj)
< min - min { —/— ), ) max| —— | —

5. [RT85, Theorem 4.3] For a positive vector u € R", consider the function M*: R" — R defined
fora e R" by

M%(a) = max{x’a:x € R", ||x|| < 1,xTu=0}.

This function has a simple explicit representation obtained by sorting the ratios <, i.e., identifying
]
a permutation j(1),...,j(n)of 1,...,n such that

we have that
k-1

n
M"(a) = Aj(p) + Uajk) — Z aj(p)-
p=1 p=k*+1

With ||| as the oo-norm on R" and (D"'PD),,...,(D~'PD), as the columns of D' P D, the
bound in Fact 11 on the coefficient of ergodicity (P ) of P becomes

max M2 Y[(D"'PD),].
r=1,...,n

9.3 Reducible Matrices

Definitions:

For a nonnegative n x n matrix P with spectral radius p:

A basic class of P is an access equivalence class B of P with p(P[B]) = p.

The period of an access equivalence class C of P (also known as the index of imprimitivity of C) is
the period of the (irreducible) matrix P[C].

The period of P (also known as the index of imprimitivity of P) is the least common multiple of the
periods of its basic classes.

P is aperiodic if its period is 1.

The index of P, denoted vp, is vp(p).

The co-index of P, denoted vp, is max{vp(A): A € o(P),|A]| = pand A # p} (with the maximum
over the empty set defined as 0).

The basic reduced digraph of P, denoted R*(P), is the digraph whose vertex-set is the set of basic
classes of P and whose arcs are the pairs (B, B’) of distinct basic classes of P for which there exists a simple
walk in R[I"(P)] from B to B’.

The height of a basic class is the largest number of vertices on a simple walk in R*(P) which ends at B.

The principal submatrix of P at a distinguished eigenvalue A, denoted P [A], is the principal submatrix
of P corresponding to a set of vertices of I'(P) having no access to a vertex of an access equivalence class
C that satisfies p(P[C]) > A.
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P is convergent or transient if lim,,_, ., P™ = 0.

P is semiconvergent if lim,, .o, P™ exists.

P is weakly expanding if Pu > u for some u > 0.

P is expanding if for some Pu > u for some u > 0.

An n x n matrix polynomial of degree d in the (integer) variable m is a polynomial in m with coefficients
that are n x n matrices (expressible as S(m) = Z’LO m' B; with By, ..., By as n x n matricesand By # 0).

Facts:

Facts requiring proofs for which no specific reference is given can be found in [BP94, Chap. 2].

1. The set of basic classes of a nonnegative matrix is always nonempty.
2. (Spectral Properties of the Perron Value) Let P be a nonnegative n X n matrix with spectral radius
p and index v.

(a)
(b)

)
d

(e)

(2)

[Fro12] p is an eigenvalue of P.

[Fro12] There exist semipositive right and left eigenvectors of P corresponding to p, i.e., p is
a distinguished eigenvalue of both P and P7.

[Rot75] v is the largest number of vertices on a simple walk in R*(P).

[Rot75] For each basic class B having height h, there exists a generalized eigenvector v? in

N;'(P), with (v8); > 0ifi — B and (v®); = 0 otherwise.

[Rot75] The dimension of N;,’(P) is the number of basic classes of P. Further, if By, ..., B,
are the basic classes of P and v?1, ..., v5 are generalized eigenvectors of P at p that satisfy the
conclusions of Fact 2(d) with respect to By, .. ., B,, respectively, then v5, . .., vB» form a basis
of N (P).

[RiSc78, Sch86] If By, ..., B, is an enumeration of the basic classes of P with nondecreasing
heights (in particular, s < t assures that we do not have B, — B;), then there exist generalized
eigenvectors vP, ..., v of P at p that satisfy the assumptions and conclusions of Fact 2(e)
and a nonnegative p x p upper triangular matrix M with all diagonal elements equal to p,

such that

(in particular, vB', ..., vBr is a basis of N;(P)). Relationships between the matrix M and the
Jordan Canonical Form of P are beyond the scope of the current review; see [Sch56], [Sch86],
[HS89], [HS91a], [HS91b], [HRS89], and [NS94].

[Vic85], [Sch86], [Tam04] If By, . . ., B, arethe basic classes of P havingheight 1 andv?, ..., v5
are generalized eigenvectors of P at p that satisfy the conclusions of Fact 2(d) with respect to
Bi,..., B, respectively, then vP', ..., v? are linearly independent, nonnegative eigenvectors
of P at p that span the cone (R)" N N},(P ); that is, each vector in the cone (R{)" N N}(P)isa
linear combination with nonnegative coefficients of v51,. .., vP (in fact, the sets {av? :a > 0}

fors = 1,...,r are the the extreme rays of the cone (]RO“L)" N N;)(P)).

3. (Spectral Properties of Eigenvalues . # p(P) with |A| = p(P)) Let P be a nonnegative n X n matrix
with spectral radius p, index v, co-index ¥, period ¢, and coefficient of ergodicity 7.

(a)

[Rot81a] The following are equivalent:
L {rea(P)\{p}:[2] = p}=0.
ii. v=0.

iii. P isaperiodic (@ = 1).
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(b) [Rot8la] If . € o(P) \ {p} and |A| = p, then (%)h = 1 for some h € {2,...,n}; further,
q = minfh = 2,...,n:(%)h = 1foreachA € o(P) \ {p} with |A| = p} < n (here the
minimum over the empty set is taken to be 1).

(c) [Rot80]IfA € o(P)\{p}and|r| = p,thenvp(A)isbounded by the largest number of vertices
on a simple walk in R*( P) with each vertex corresponding to a (basic) access equivalence class
C that has A € o(P[C]); in particular, b < v.

4. (Distinguished Eigenvalues) Let P be a nonnegative n X n matrix.

(a) [Vic85] Aisadistinguished eigenvalue of P ifand only if thereisa final set C with p(P [C]) = A.

It is noted that the set of distinguished eigenvalues of P and P T need not coincide (and the
above characterization of distinguished eigenvalues is not invariant of the application of the
transpose operator). (See Example 1 below.)

(b) [HS88b] If X is a distinguished eigenvalue, vp (1) is the largest number of vertices on a simple
walk in R*(P[A]).

(c) [HS88b] If & > 0, then ; < min{A: A is a distinguished eigenvalue of P} if and only if there
exists a vector u > 0 with Pu > uu.

(For additional characterizations of the minimal distinguished eigenvalue, see the concluding
remarks of Facts 12(h) and 12(i).)

Additional properties of distinguished eigenvalues A of P that depend on P[A] can be found in
[HS88b] and [TamO04].

5. (Convergence Properties of Powers) Let P be a nonnegative n x n matrix with positive spectral radius
p, index v, co-index ¥, period g, and coefficient of ergodicity t (for the case where p = 0, see Fact
12(j) below).

(a) [Rot81a] There exists an # X n matrix polynomial S(m) of degree v — 1 in the (integer) variable
m such that lim,,,_, o [(%)m — S(m)] = 0 (C, p) for every p > v; further, if P is aperiodic, this
limit holds as a regular limit and the convergence is geometric with rate % <1

(b) [Rot81a] There exist matrix polynomials S°(m), ..., S771(m) of degree v — 1 in the (integer)
variable m, such that for each k = 0,...,9 — 1, limm%m[(%)mq”‘ — S'(m)] = 0 and the
convergence of these sequences to their limit is geometric with rate ()7 < 1.

(c) [Rot81a] There exists a matrix polynomial T(m) of degree v in the (integer) variable m with
limmﬁoo[Z;":_ol(%)s — T(m)] =0(C, p) for every p > v; further, if P is aperiodic, this limit
holds as a regular limit and the convergence is geometric with rate % < 1.

(d) [FrSc80] The limit of =22 [I + % 4+ + (%)‘1‘1] exists and is semipositive.

pmmllfl
(e) [Rot81b] Let x = [x;] be a nonnegative vector in R"” and let i € (n). With K(i,x) = {j €
(ny:j—>i}N{j € (n):ur> jforsomeu € (n) with x, > 0},

r(i|x, P) = inf{la > 0: li_{r;oafm(me),- =0} = p(P[K(i,x)])
andifr =r(i|x, P) > 0,

k(ilx, P) = inftk = 0,1,... ¢ lim_ mkrTM(PMx); = 0} = vp(k(ix) (7)-
Explicit expressions for the polynomials mentioned in Facts 5(a) to 5(d) in terms of characteristics
of the underlying matrix P are available in Fact 12(a)ii for the case where v = 1 and in [Rot81a]
for the general case. In fact, [Rot81a] provides (explicit) polynomial approximations of additional
high-order partial sums of normalized powers of nonnegative matrices.
6. (Bounds on the Perron Value) Let P be a nonnegative n X n matrix with spectral radius p and let
be a nonnegative scalar.
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(a) For¢ € {<) <= Z)>})
[Pu ¢ pu for some vectoru > 0] = [p o ul;

further, the inverse implication holds for ¢ as <, implying that

(b) For¢ € {ﬁ, <=2, Z})
[0 ¢ u] = [Puo pu for some vector u > 0] ;

further, the inverse implication holds for ¢ as > .
(¢) p < pifandonlyif Pu < pu for some vectoru > 0.

Since p(PT) = p(P), the above properties (and characterizations) of p can be expressed by
applying the above conditions to PT. (See Example 3 below.)

Some of the above results can be expressed in terms of the Collatz—Wielandt sets. (See Fact 7 of
Section 9.2 and Chapter 26.)

(Bounds on the Spectral Radius) Let P be a nonnegative n X n matrix and let A be a complexn x n
matrix such that |A| < P. Then p(A) < p(P).

(Functional Inequalities) Consider the function p(.) mapping nonnegative n X n matrices to their
spectral radius.

(a) p(.) is nondecreasing in each element (of the domain matrices); that is, if A and B are non-
negative n X n matrices with A > B > 0, then p(A) > p(B).

(b) [Coh78] p(.)is (jointly) convex in the diagonal elements; that is, if A and D are n x n matrices,
with D diagonal, A and A+ D nonnegative, andif0 < o < 1,then p[¢a A+ (1—a)(A+D)] <
ap(A)+ (1 —a)p(A+ D).

(c) [EJD88]If A = [a;;] and B = [b;;] are nonnegative # X n matrices,0 < a < land C = [cj;]

with ¢;; = af’;b};"‘ foreachi, j = 1,...,n,then p(C) < p(A)*p(B)!™*.

Further functional inequalities about p(.) can be found in [EJD88] and [EHP90].
(Resolvent Expansions) Let P be a nonnegative square matrix with spectral radius p and let & > p.
Then I — P is invertible and

Pt

e

2 iz
P el

t=0’u

(theinvertibility of I — P and the power series expansion of its inverse do not require nonnegativity
of P).

For explicit expansions of the resolvent about the spectral radius, that is, for explicit power
series representations of [(z + p)I — P]~! with |z| positive and sufficiently small, see [Rot81c],
and [HNR90] (the latter uses such expansions to prove Perron—Frobenius-type spectral results for

(ul—P)~!

>0

P
+EZ

|~
|~

nonnegative matrices).

(Puiseux Expansions of the Perron Value) [ERS95] The function p(.) mapping irreducible non-
negative #n X n matrices X = [x;;] to their spectral radius has a converging Puiseux (fractional
power series) expansion at each point; i.e., if P is a nonnegative # x n matrix and if F isan#n X n
matrix with P 4+ € F > 0 for all sufficiently small positive €, then p(P + € F) has a representation
doreo i€’ with py = p(P) and q as a positive integer.

(Bounds on the Ergodicity Coefficient) [RT85, extension of Theorem 3.1] Let P be a nonnegative
n x n matrix with spectral radius p, corresponding semipositive right eigenvector v, and ergodicity
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12.

coefficient 7, let D be a diagonal n x n matrix with positive diagonal elements, and let ||.|| be a
norm on R”. Then

T < max IxID~'PD].

xelR",[Ix[|<1,xT D-1v=0

(Special Cases) Let P be a nonnegative n X n matrix with spectral radius p, index v, and period q.

(a)

(b)

(d)

(e)

(g)
(h)

(Index 1) Suppose v = 1.
i. pI — P hasa group inverse.

ii. [Rot81la] With P* =1 — (pI — P)(pI — P)*, all of the convergence properties stated in
Fact 6 of Section 9.2 apply.

iii. If p > 0, then i—: is bounded in m (element-wise).
iv. p =0ifand onlyif P = 0.
(Positive eigenvector) The following are equivalent:

i. P has a positive right eigenvector corresponding to p.
ii. The final classes of P are precisely its basic classes.
iii. There is no vector w satisfyingw’ P < pw'.
Further, when the above conditions hold:

i. v = 1 and the conclusions of Fact 12(a) hold.

ii. If P satisfies the above conditions and P # 0, then p > 0 and there exists a diagonal
matrix D having positive diagonal elements such that S = %D’l P D is stochastic (that is,
S > 0and S1 = 1; see Chapter 4).

[Sch53] There exists a vector x > 0 with Px < px if and only if every basic class of P is final.
(Positive generalized eigenvector) [Rot75], [Sch86], [HS88a] The following are equivalent:

i. P has a positive right generalized eigenvector at p.

ii. Each final class of P is basic.

iii. Pu > pufor someu > 0.

iv. Every vector w > 0 with w!P < pw! must satisfy wiP = pw’.
v. p is the only distinguished eigenvalue of P.

(Convergent/Transient) The following are equivalent:
i. P is convergent.
ii. p<1.
iii. I — P isinvertibleand (I — P)~! > 0.
iv. There exists a positive vector u € R” with Pu < u.
Further, when the above conditions hold, (I — P)~™' =32 P! > I.
(Semiconvergent) The following are equivalent:
i. P is semiconvergent.
ii. Either p < 1or p =v = 1and 1 is the only eigenvalue A of P with [A| = 1.
(Bounded) P™ is bounded in m (element-wise) if and only if either p < 1 or p = 1 and v=1.
(Weakly Expanding) [HS88a], [TW89] [DRO05] The following are equivalent:
i. P is weakly expanding.
ii. There is no vectorw € R” withw > 0and w™P < wT.

iii. Every distinguished eigenvalue X of P satisfies A > 1.
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iv. Every final class C of P has p(P[C]) > 1.
v. If C is a final set of P, then p(P[C]) > 1.

Given i > 0, the application of the above equivalence to % yields characterizations of instances
where each distinguished eigenvalue of P is bigger than or equal to .

(i) (Expanding) [HS88a], [TW89] [DRO05] The following are equivalent:
i. P is expanding.
ii. There exists a vector u € R” withu > 0 and Pu > u.
iii. There is no vectorw € R” withw > 0and w'P < wT.
iv. Every distinguished eigenvalue A of P satisfies A > 1.
v. Every final class C of P has p(P[C]) > 1.
vi. If C is a final set of P, then p(P[C]) > 1.

Given i > 0, the application of the above equivalence to 5 yields characterizations of instances
where each distinguished eigenvalue of P is bigger than .

(j) (Nilpotent) The following are equivalent conditions:

i. P is nilpotent; that is, P™ = 0 for some positive integer 1.

ii. P ispermutation similar to an upper triangular matrix all of whose diagonal elements are 0.

iii. p=0.
iv. P"=0
v. PV =0

(k) (Symmetric) Suppose P is symmetric.

r
: u' Pu
L 0 =maXy>0 4y -

ii. p= % for u > 0 if and only if u is an eigenvector of P corresponding to p.

iii. [CHR97, Theorem 1] For u,w > 0 with w; = /u;(Pu); fori = 1,...,n, “l:fu“ < V:VTTPV:V
and equality holds if and only if u[S] is an eigenvector of P [S] corresponding to p, where
S={i:u >0}
Examples:

1. We illustrate parts of Fact 2 using the matrix

O OO O O
(= eiolol S S
O OO = O N
S~ ~ N O O
S = = O O O
—__- 0 O O O

The eigenvalues of P are 2,1, and 0; so, p(P) = 2 € o(P) as is implied by Fact 2(a). The
vectors v = [1,0,0,0,0,0]7 and w = [0,0,0,1,1,1] are semipositive right and left eigenvectors
corresponding to the eigenvalue 2; their existence is implied by Fact 2(b).

The basic classes are By = {1}, B; = {2} and B; = {4, 5}. The digraph corresponding to P, its
reduced digraph, and the basic reduced digraph of P are illustrated in Figure 9.1. From Figure 9.1(c),
the largest number of vertices in a simple walk in the basic reduced digraph of P is 2 (going from B,
to either B; or B3); hence, Fact 2(c) implies that vp (2) = 2. The height of basic class B; is 1 and the
height of basic classes B, and Bj is 2. Semipositive generalized eigenvectors of P at (the eigenvalue)
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{1}

{2}

(b) (c)

FIGURE9.1 (a) The digraph I'(P), (b) reduced digraph R[I'(P)], and (c) basic reduced digraph R*(P).

2 that satisfy the assumptions of Fact 2(f) are u?' = [1,0,0,0,0,0]7, u® = [1,1,0,0,0,0]7, and
u? =[1,0,2,1,1,0]”. The implied equality

PP, . uP]=[u”, . M
of Fact 2(f) holds as
2 2 2 0 0 O 1 1 1 2 4 6 1 1 1
0 2 0 0 0 O 01 0 0 2 0 0 1 0 ) 2 4
0O 0 1 2 0 O 0 0 2 _ 0 0 4 _ 0 0 2 0 2 0
000110001_002_001002
0O 0 0 1 1 1 0 0 1 0 0 2 0 0 1
0O 0 0 0 0 1 0 0 O 0 0 O 0 0 O
In particular, Fact 2(e) implies that u®,u?,u? form a basis of N;éf,’)) = N?. We note that

while there is only a single basic class of height 1, dim[N;(P)] = 2 and uf',2uf> — ub

[—1,2,—2,—1,—1,0]7 form a basis of N}(P). still, Fact 2(g) assures that R N N}(P) is the
cone {au® : o > 0} (consisting of its single ray).

Fact 4(a) and Figure 9.1 imply that the distinguished eigenvalues of P are 1 and 2, while 2 is the
only distinguished eigenvalue of P”.

0 1 . . . .
2. LetH = E properties of H were demonstrated in Example 2 of section 9.2. We will demon-

strate Facts 2(c), 5(b), and 5(a) on the matrix

_ H 1
=10 HI
The spectral radius of P is 1 and its basic classes of P are B; = {1,2} and B, = {3,4} with B,

having access to B,. Thus, the index of 1 with respect to P, as the largest number of vertices on a
walk of the marked reduced graph of P, is 2 (Fact 2(c)). Also, as the period of each of the two basic
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classes of P is 2, the period of P is 2. To verify the convergence properties of P, note that

{I MH] if m is even
o 0 1

H I

{0 n;_l] if m is odd,

immediately providing matrix—polynomials S°(m) and S () of degree 1 such that lim,,,_, o, P?™ —

S%m) = 0 and lim,, .o, P> — Sl(m) = 0. In this example, T(P) is 0 (as the maximum over
the empty set) and the convergence of the above sequences is geometric with rate 0.
The above representation of P shows that

Hm mHm+1
P" =

and Example 2 of section 9.2 shows that

lim H" = =|5 (GC1).

m— 00 2

I+H_[.5 5

We next consider the upper-right blocks of P™. We observe that

1 ™l ’”TI + W if m is even
_Zpt[Bl)BZ]: ( 121 (m*—1)H . .
miz —mZm + = yom if m is odd,
M -4 if m is even
| D Ly I i odd,
implying that
1= I+H\ I+H
lim — P'[By, B,] — =0 (GC1).
mg%om;[IZ] m(4)+4 (C1)
Asm—1=1L St for each m = 1,2, . . ., the above shows that
1= I+H
lim — " {Pt[Bl,Bz] —t (—)} =0 (C1),
m—00 m = 4

and, therefore (recalling that (C,1)-convergence implies (C,2)-convergence),

S5 5 —=25m —.25m
S5 5 —25m —.25m
li p"— = ,2).
s 00 5 5 0(C2)
0 0 .5 5

. Fact 6 implies many equivalencies, in particular, as the spectral radius of a matrix equals that of its

transpose. For example, for a nonnegative n x n matrix P with spectral radius p and nonnegative
scalar u, the following are equivalent:

(@) p < u.
(b) Pu < pu for some vector u > 0.

(c) wI'P < uwT for some vector w > 0.
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(d) Pu < pu for some vector u > 0.
(e) wI'P < pw! for some vector w > 0.
(f) There is no vector u > 0 satisfying Pu > pu.

(g) There is no vector w > 0 satisfyingw’ P > uw?.

9.4 Stochastic and Substochastic Matrices

(For more information about stochastic matrices see Chapter 54 (including examples).)

Definitions:

Assquare n x n matrix P = [ p;;] is stochasticif it is nonnegativeand P1 = 1 wherel = [1,..., 117 € R".
(Stochastic matrices are sometimes referred to as row-stochastic, while column-stochastic matrices are
matrices whose transpose is (row-)stochastic.)

A square n x n matrix P is doubly stochastic if both P and its transpose are stochastic. The set of
doubly stochastic matrices of order # is denoted €2,,.

A square n x n matrix P is substochastic if it is nonnegative and P1 < 1.

A transient substochastic matrix is also called stopping.

An ergodic class of a stochastic matrix P is a basic class of P.

A transient class of a stochastic matrix P is an access equivalence class of P which is not ergodic.

A state of an n x n stochastic matrix P is an indexi € {1,...,n}. Such a state is ergodic or transient
depending on whether it belongs to an ergodic class or to a transient class.

A stationary distribution of a stochastic matrix P is a nonnegative vector 7 that satisfies w71 = 1 and

7wTp =xT.

Facts:

Facts requiring proofs for which no specific reference is given follow directly from facts in Sections 9.2 and
9.3 and/or can be found in [BP94, Chap. 8].

1. Let P = [p;;] be an n x n stochastic matrix.

(a) p(P)=1,1€ R"isarighteigenvector of P correspondingto 1 and the stationary distributions
of P are nonnegative eigenvectors of P corresponding to 1.

(b) vp(1) =1.
(c) I — P hasa group inverse.
(d) The height of every ergodic class is 1.

(e) The final classes of P are precisely its ergodic classes.
(f)

i. For every ergodic class C, P has a unique stationary distribution 7w of P with (w%); > 0
ifi € C and (7€); = 0 otherwise.

ii. IfC!,...,CP? arethe ergodic classes of P, then the corresponding stationary distributions
F A 1o (according to Fact 1(f)i above) form a basis of the set of left eigenvectors
of P corresponding to the eigenvalue 1; further, every stationary distribution of P is a

convex combination of these vectors.
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i. Let T and R be the sets of transient and ergodic states of P, respectively. The matrix
I — P[T] is nonsingular and for each ergodic class C of P, the vector u¢ given by

e ifK=C
w9 [K]=<0 ifK=R\C
(I — P[T))"'P[T,Cle ifK=T

is a right eigenvector of P corresponding to the eigenvalue 1; in particular, (u®); > 0ifi
has access to C and (u€); = 0ifi does not have access to C.

ii. If C',...,CP are the ergodic classes of P, then the corresponding vectors u® , ..., u¢”
(referred to in Fact 1(g)i above) form a basis of the set of right eigenvectors of P corre-
sponding to the eigenvalue 1; further, >.7_, u® =e.

Let C',...,C? be the ergodic classes of P, wC',...,7C" the corresponding stationary dis-

tributions (referred to in Fact 1(f)i above), and uC',...,u the corresponding eigenvectors

referred to in Fact 1(g)i above. Then the matrix

1 P
P*=[uc,...,uc} :
P
7

is stochastic and satisfies P*[(n), C] = 0 if C is a transient class of P, P*[i,C] # 0if C is an
ergodic class and 7 has access to C, and P*[i,C] = 0 if C is an ergodic class and i does not
have access to C.

The matrix P* from Fact 1(h) above has the representation I — (I — P)*(I — P); further,
I — P + P*isnonsingular and (I — P)* = (I — P + P*)~}(I — P*).

With P* as the matrix from Fact 1(h) above, lim,,_.oo P™ = P* (C,1); further, when P
is aperiodic, this limit holds as a regular limit and the convergence is geometric with rate
T(P) < 1.

With P* as the matrix from Fact 1(h) above, lim,,_, o Z:":_Ol P! —mP* = (I — P)* (C,1);
further, when P is aperiodic, this limit holds as a regular limit and the convergence is geometric
with rate T(P) < 1.

With D a diagonal #n x n matrix with positive diagonal elements and |.|| a norm on R”,

T(P) < max Ix'D~'PD].

xeR" x| <1xT D-11=0

In particular, with |.|| as the 1-norm on R” and D = I, the above bound specializes to

~ | prk — Pkl . .
r S . .
7(P) < max — §m1n{1— E min pr, E mraxp,k—l}

S=1,ety
rs=heotr s ] k=1 =1

(cf. Fact 11 of section 9.3 and Example 4 of section 9.2).

Forevery 0 < o < 1, P, = (1 — a)I + P is an aperiodic stochastic matrix whose ergodic
classes, transient classes, stationary distributions, and the vectors of Fact 1(g)i coincide with
those of P. In particular, with P* and P} as the matrices from Fact 1(h) corresponding to P
and Py, respectively, lim,,_, o (P,)" = P} = P*.
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2. Let P be an irreducible stochastic matrix with coefficient of ergodicity 7.
(a) P has a unique stationary distribution, say 7r. Also, up to scalar multiple, 1 is a unique right
eigenvector or P corresponding to the eigenvalue 1.
(b) With 7r as the unique stationary distribution of P, the matrix P* from Fact 1(h) above equals

17.

3. A doubly stochastic matrix is a convex combination of permutation matrices (in fact, the n x n
permutation matrices are the extreme points of the set €2, of n x n doubly stochastic matrices).
4. Let P be an n x n substochastic matrix.

(a) p(P) = 1.

(b) vp(1) < 1.

(c) I — P hasa group inverse.

(d) The matrix P* = I — (I — P)*(I — P) is substochastic; further, I — P + P* is nonsingular
and (I — P)*=(I — P+ P*)"}(I — P*).

(e) With P* asin Fact4(d), lim,,—, o P™ = P* (C,1); further, when every access equivalence class

C with p(P[C]) = 1 is aperiodic, this limit holds as a regular limit and the convergence is
geometric with rate max{|A|: X € o(P) and |A| # 1} < 1.

(f) With P* as the matrix from Fact 4(d) above, lim,,,_, o Z;”:_Ol Pt —mP* = (I — P)* (C,1);
further, when every access equivalence class C with p(P [C]) = lisaperiodic, thislimitholds as
aregular limit and the convergence is geometric with rate max{|A| : A € o(P)and [A| # 1} < 1.

(g) The following are equivalent:
i. P is stopping.
ii. p(P) < 1.
iii. I — P isinvertible.
iv. There exists a positive vector u € R” with Pu < u.

Further, when the above conditions hold, (I — P)~' = > P' > 0.

9.5 M-Matrices

Definitions:

An n x n real matrix A = [a;;] is a Z-matrix if its off-diagonal elements are nonpositive, i.e., if a;; < 0
foralli,j =1,...,nwithi # j.

An M,-matrix is a Z-matrix A that can be written as A = sI — P with P as a nonnegative matrix and
with s as a scalar satisfying s > p(P).

An M-matrix A is a Z-matrix A that can be written as A = sI — P with P as a nonnegative matrix
and with s as a scalar satisfying s > p(P).

A square real matrix A is an inverse M-matrix if it is nonsingular and its inverse is an M-matrix.

A square real matrix A is inverse-nonnegative if it is nonsingular and A™' > 0 (the property is
sometimes referred to as inverse-positivity).

A square real matrix A has a convergent regular splitting if A has a representation A = M — N such
that N > 0, M invertible with M~! > 0 and M~! N is convergent.

A square complex matrix A is positive stable if the real part of each eigenvalue of A is positive; A is
nonnegative stable if the real part of each eigenvalue of A is nonnegative.

An n x n complex matrix A = [a;;] is strictly diagonally dominant (diagonally dominant) if
laiil > 2010 i laijl (laiil = 325 ;4 laij]) fori = 1,...,n.

An n x n M-matrix A satisfies property C if there exists a representation of A of the form A =sI — P
withs > 0, P > 0 and ? semiconvergent.
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Facts:

Facts requiring proofs for which no specific reference is given follow directly from results about nonnegative
matrices stated in Sections 9.2 and 9.3 and/or can be found in [BP94, Chap. 6].

1. Let Abeann x n real matrix with n > 2. The following are equivalent:

(a) Aisan M-matrix; that is, A is a Z-matrix that can be written as sI — P with P nonnegative
ands > p(P).

(b) Aisanonsingular My-matrix.

(c) For each nonnegative diagonal matrix D, A 4+ D is inverse-nonnegative.

(d) Foreach u > 0, A + pl is inverse-nonnegative.

(e) Each principal submatrix of A is inverse-nonnegative.

(f) Each principal submatrix of A of orders 1,. .., n is inverse-nonnegative.
2. Let A = [a;;] be an n x n Z-matrix. The following are equivalent:*

(a) Aisan M-matrix.

(b) Every real eigenvalue of A is positive.

(c) A+ D is nonsingular for each nonnegative diagonal matrix D.

(d) All of the principal minors of A are positive.

(e) Foreachk =1,...,n, the sum of all the k x k principal minors of A is positive.

(f) There exist lower and upper triangular matrices L and U, respectively, with positive diagonal
elements such that A= LU.

(g) Ais permutation similar to a matrix satisfying condition 2(f).
(h) A is positive stable.

(i) There exists a diagonal matrix D with positive diagonal elements such that AD 4+ DAT is
positive definite.

(j) There exists a vector x > 0 with Ax > 0.
(k) There exists a vector x > 0 with Ax > 0 and Zi’:l ajjx; > 0fori =1,...,n.
(I) A is permutation similar to a matrix satisfying condition 2(k).
(m) There exists a vector x > 0 such that Ax > 0 and the matrix A =4 7] defined by

4ij = .
Y 0 otherwise

{1 if either a;; # 0 or (Ax); # 0

is irreducible.

(n) All the diagonal elements of A are positive and there exists a diagonal matrix D such that AD
is strictly diagonally dominant.

(o) Aisinverse-nonnegative.

(p) Every representation of A of the form A = M — N with N > 0 and M inverse-positive must
have M~!'N convergent (i.e., o(M~!N) < 1).

(q) For each vectory > 0, the set {x > 0 : ATx <y} is bounded and A is nonsingular.

*Each of the 17 conditions that are listed in Fact 2 is a representative of a set of conditions that are known to
be equivalent for all matrices (not just Z-matrices); see [BP94, Theorem 6.2.3]. For additional characterizations of
M-matrices, see [FiSc83].
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3.

10.

Let A be an irreducible n x n Z-matrix with n > 2. The following are equivalent:
(a) Aisan M-matrix.
(b) Aisanonsingular and A™! > 0.

(¢) Ax > 0for somex > 0.

. Let A = [a;;] bean n x n M-matrix and let B = [b;;] be an n x n Z-matrix with B > A. Then:

(a) B isan M-matrix.
(b) detB > detA.

(c) A7t > B~L

(d) detA <aj;...adu.

. If P is an inverse M-matrix, then P > 0 and I'(P) is transitive; that is, if (v, #) and (u, w) are arcs

of I'(P), then so is (v, w).

. Let Abean n x n real matrix with n > 2. The following are equivalent:

(a) Aisanonsingular My-matrix.
(b) For each diagonal matrix D with positive diagonal elements, A + D is inverse-nonnegative.

(c) Foreach p > 0, A+ ul is inverse-nonnegative.

. Let Abean n x n Z-matrix. The following are equivalent:*

(a) Aisan My-matrix.

(b) Every real eigenvalue of A is nonnegative.

(¢) A+ D is nonsingular for each diagonal matrix D having positive diagonal elements.
(d) Foreachk =1,...,n, the sum of all the k x k principal minors of A is nonnegative.

(e) A is permutation similar to a matrix having a representation LU with L and U as lower and
upper triangular matrices having positive diagonal elements.

(f) A is nonnegative stable.
(g) There exists a nonnegative matrix Y satisfying Y AK*! = A¥ for some k > 1.

(h) A has a representation of the form A = M — N with M inverse-nonnegative, N > 0 and
B = M~ N satisfying ﬂ,fiorange(Bk) = ﬂ}:‘;orange(Ak) and p(B) < 1.

(i) A has arepresentation of the form A = M — N with M inverse-nonnegative, M~! N > 0 and
B = M~ N satisfying ﬂiozorange(Bk) = ﬂ,f‘;orange(Ak) and p(B) < 1.

. Let A be an M,-matrix.

(a) A satisfies property C if and only if v4(0) < 1.

(b) A is permutation similar to a matrix having a representation L U with L as a lower triangular
M-matrix and U as an upper triangular M, matrix.

. [BP94, Theorem 8.4.2] If P is substochastic (see Section 9.4), then I — P is an M-matrix satisfying

property C.
Let A be an irreducible n x n singular Mo-matrix.

(a) Ahasrankn — 1.

(b) There exists a vector x > 0 such that Ax = 0.

*Each of the 9 conditions that are listed in Fact 7 is a representative of a set of conditions that are known to
be equivalent for all matrices (not just Z-matrices); see [BP94, Theorem 6.4.6]. For additional characterizations of
M-matrices, see [FiSc83].
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(c) A has property C.
(d) Each principal submatrix of A other than A itself is an M-matrix.
(e) [Ax > 0] = [Ax=0].

9.6 Scaling of Nonnegative Matrices

A scaling of a (usually nonnegative) matrix is the outcome of its pre- and post-multiplication by diagonal
matrices having positive diagonal elements. Scaling problems concern the search for scalings of given
matrices such that specified properties are satisfied. Such problems are characterized by:

(a) The class of matrices to be scaled.
(b) Restrictions on the pre- and post-multiplying diagonal matrices to be used.
(c) The target property.

Classes of matrices under (a) may refer to arbitrary rectangular matrices, square matrices, symmetric
matrices, positive semidefinite matrices, etc. For possible properties of pre- and post-multiplying diagonal
matrices under (b) see the following Definition subsection. Finally, examples for target properties under
(c) include:

i. The specification of the row- and/or column-sums; for example, being stochastic or being doubly
stochastic. See the following Facts subsection.

ii. The specification of the row- and/or column-maxima.

iii. (Forasquare matrix) beingline-symmetric, that is, having each row-sum equal to the corresponding
column-sum.

iv. Being optimal within a prescribed class of scalings under some objective function. One example
of such optimality is to minimize the maximal element of a scalings of the form X AX~!. Also, in
numerical analysis, preconditioning a matrix may involve its replacement with a scaling that has a
low ratio of largest to smallest element; so, a potential target property is to be a minimizer of this
ratio among all scalings of the underlying matrix.

Typical questions that are considered when addressing scaling problems include:

(a) Characterizing existence of a scaling that satisfies the target property (precisely of approximately).

(b) Computing a scaling of a given matrix that satisfies the target property (precisely or approximately)
or verifying that none exists.

(c) Determining complexity bounds for corresponding computation.

Early references that address scaling problems include [Kru37], which describes a heuristic for finding
a doubly stochastic scaling of a positive square matrix, and Sinkhorn’s [Sin64] pioneering paper, which
provides a formal analysis of that problem. The subject has been intensively studied and an aspiration
to provide a comprehensive survey of the rich literature is beyond the scope of the current review; con-
sequently, we address only scaling problems where the target is to achieve, precisely or approximately,
prescribed row- and column-sums.

Definitions:

Let A = [a;;] be an m x n matrix.

A scaling (sometimes referred to as an equivalence-scaling or a D AE -scaling) of A is any matrix of
the form DAE where D and E are square diagonal matrices having positive diagonal elements; such a
scaling is a row-scaling of A if E = I and it is a normalized-scaling if det(D) = det(E) = 1.

If m = n, ascaling DAE of A is a similarity-scaling (sometimes referred to asa D AD~! scaling) of A
if E = D7!, and D AE is a symmetric-scaling (sometimes referred to asa D AD scaling) of Aif E = D.
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The support (or sparsity pattern) of A, denoted Struct(A), is the set of indices i j with a;; # 0; naturally,
this definition applies to vectors.

Facts:

1. (Prescribed-Line-Sum Scalings) [RoSc89] Let A = [a;;] € R™ " be a nonnegative matrix, and let
r=[r;] € R"and ¢ = [c;] € R" be positive vectors.
(a) The following are equivalent:
i. There exists a scaling B of A with Bl =rand17B = c’.
ii. There exists nonnegative m x n matrix B having the same support as A with B1 =rand
17B =c".
iii. ForeveryI C {1,...,m}and ] C {1,...,m} for which A[I¢,]] =0,
PEDB
iel jeJ
and equality holds if and only if A[I, J¢] = 0.

iv. 17r = 1Tr and the following (geometric) optimization problem has an optimal solution:
minx’ Ay

subjectto : x = [x;] e R",y = [y;] e R”

[[e =T]op =1

i=1 j=1

A standard algorithm for approximating a scaling of a matrix to one that has prescribed row-
and column-sums (when one exists) is to iteratively scale rows and columns separately so as to
achieve corresponding line-sums.

(b) Suppose 17r = 1"rand x = [%;] and ¥ = [¥;] form an optimal solution of the optimization
problem of Fact 1(d). Let A = X:{? and let X € R™" and ¥ € R"*" be the diagonal matrices
having diagonal elements X;; = % and Y;; = 7;. Then B = X AY is a scaling of A satisfying
Bl=rand17B = c’.

(c) Suppose X € R™ and Y € R"*" are diagonal matrices such that B = X AY is a scaling of A
satisfying B1 = rand 17 B = ¢’. Then 17r = 17r and with

L=T&a

—

Il
~

and
o=l
i=1

the vectors X = [%;] € R" andy = [y;] € R" with %; = AXjifori=1,...,mand yi = nYj;
for j = 1,...,n are optimal for the optimization problem of Fact 1(d).

2. (Approximate Prescribed-Line-Sum Scalings) [RoSc89] Let A = [a;;] € R™ " be a nonnegative
matrix, and letr = [r;] € R” and ¢ = [c;] € R" be positive vectors.

(a) The following are equivalent:

i. For every € > 0 there exists a scaling B of A with |[B1 —r|; <eand |[1"B — 7|, <e.
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ii. Thereexists nonnegative m x nmatrix A’ = [a’ j] with Struct(A”) CStruct(A)anda; ;= aij
for each ij € Struct(A’) such that A’ has a scaling B satisfying B1 =rand 17 B = ¢’.

iii. For every € > 0 there exists a matrix B having the same support as A and satisfying
IB1 —r|l; <eand [1"B — 7|, <e.

iv. There exists a matrix B satisfying Struct(B) C Struct(A), Bl =rand 17 B = ¢’.

v. Forevery I C {1,...,m}and J C{1,...,m} for which A[I°,]] =0,

Zri chj.

iel j€j

vi. 17r = 17r and the objective of the optimization problem of Fact 2(a)iii is bounded away
from zero.

See [NR99] for a reduction of the problem of finding a scaling of A that satisfies | B1 —r||; < €
and ||17B — c’||, < € for a given € > 0 to the approximate solution of geometric program that
is similar to the one in Fact 1(a)iv and for the description of an (ellipsoid) algorithm that solves
the latter with complexity bound of O(1)(m + n)*In[2 + w
between the largest and smallest positive entries of A.

], where B is the ratio

9.7 Miscellaneous Topics

In this subsection, we mention several important topics about nonnegative matrices that are not covered
in detail in the current section due to size constraint; some relevant material appears in other sections.

9.7.1 Nonnegative Factorization and Completely Positive Matrices

A nonnegative factorization of a nonnegative matrix A € R™*" is a representation A = LR of A with L
and R as nonnegative matrices. The nonnegative rank of A is the smallest number of columns of L (rows
of R) in such a factorization.

A square matrix A is doubly nonnegative if it is nonnegative and positive semidefinite. Such a matrix A
is completely positive if it has a nonnegative factorization A = BBT; the CP-rank of A is then the smallest
number of columns of a matrix B in such a factorization.

Facts about nonnegative factorizations and completely positive matrices can be found in [CR93],
[BSMO03], and [CPO05].

9.7.2 The Inverse Eigenvalue Problem

The inverse eigenvalue problem concerns the identification of necessary conditions and sufficient conditions
for a finite set of complex numbers to be the spectrum of a nonnegative matrix.
Facts about the inverse eigenvalue problem can be found in [BP94, Sections 4.2 and 11.2] and Chapter 20.

9.7.3 Nonhomogenous Products of Matrices

A nonhomogenous product of nonnegative matrices is the finite matrix product of nonnegative matrices
P, P, ... P,,generalizing powers of matrices where the multiplicandsareequal (i.e., Py = P, = --- = P,,);
the study of such products focuses on the case where the multiplicands are taken from a prescribed set.

Facts about Perron—Frobenius type properties of nonhomogenous products of matrices can be found
in [Sen81], and [Har02].
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9.7.4 Operators Determined by Sets of Nonnegative
Matrices in Product Form

A finite set of nonnegative n X n matrices {Ps : § € A} is said to be in product form if there exists finite
sets of row vectors Ay, ..., A, suchthat A = []/_; A, and foreach § = (8;,...,8,) € A, Ps is the matrix
whose rows are, respectively, 81, .. ., 8,. Such a family determines the operators P and P" on R" with
Py = maxsen Psx and PM"x = mingca Psx for each x € R,

Facts about Perron—Frobenius-type properties of the operators corresponding to families of matrices
in product form can be found in [Zij82], [Zij84], and [RW82].

9.7.5 Max Algebra over Nonnegative Matrices

Matrix operations under the max algebra are executed with the max operator replacing (real) addition
and (real) addition replacing (real) multiplication.

Perron—Frobenius-type results and scaling results are available for nonnegative matrices when consid-
ered as operators under the max algebra; see [RSS94], [Bap98], [But03], [BS05], and Chapter 25.
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10.1 Submatrices and Block Matrices

Definitions:

Let A € F™ ", Then the row indices of A are {1,...,m}, and the column indices of A are {I,...,n}. Let
o, B be nonempty sets of indices with o« € {1,...,m}and B € {1,...,n}.

A submatrix A[a, 8] is a matrix whose rows have indices & among the row indices of A, and whose
columns have indices § among the column indices of A. A(w, 8) = Al
of .

A principal submatrix is a submatrix A[a, o], denoted more compactly as Al«].

Let the set {1,...m} be partitioned into the subsets ¢, . .., , in the usual sense of partitioning a set
(sothato; Naj =@, foralli # j,1 <i,j <r,ando; U---Ua, = {1,...,m}),and let {1,...,n} be
partitioned into the subsets 8, . . ., B;.

The matrix A € F™*" is said to be partitioned into the submatrices Ala;, 8;],1 <i <r,1 < j <s.

Ablock matrix is a matrix that is partitioned into submatrices Alca;, 8;] with the row indices {1, . . ., m}
and column indices {1,...,n} partitioned into subsets sequentially, i.e., ¢y = {1,...,i1}, 00 = {i; +
1,...,13}, etc.

Each entry of a block matrix, which is a submatrix Ale;, B;], is called a block, and we will sometimes
write A = [A;;] to label the blocks, where A;; = Ala;, B;].

If the block matrix A € F™*? is partitioned with ;s and ;5,1 <i <r,1 < j < s, and the block
matrix B € FP*" is partitioned with Bjs and ys, 1 < j <5, 1 < k < t, then the partitions of A and B
are said to be conformal (or sometimes conformable).

, B¢], where o€ is the complement

Facts:
The following facts can be found in [HJ85]. This information is also available in many other standard
references such as [LT85] or [Mey00].

1. Two block matrices A = [Aj;] and B = [B;;] in F"™*", which are both partitioned with the same
a;sand Bjs,1 <i <r,1 < j <s, may be added block-wise, as with the usual matrix addition, so
that the (7, j) block entry of A + B is (A + B);j = Aj; + Bj;.

10-1
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2. If the block matrix A € F™*? and the block matrix B € F?*" have conformal partitions, then we
can think of A and B as having entries, which are blocks, so that we can then multiply A and B
block-wise to form the m x n block matrix C = AB. Then C;; = Zsjzl AijBjx, and the matrix C
will be partitioned with the o;s and ys,1 <i <r,1 < k < t, where A is partitioned with ¢;s and
Bjs;1 <i<r,1 <j<s,and B is partitioned with 8;sand 45,1 < j <s,1 <k < t.

3. With addition and multiplication of block matrices described as in Facts 1 and 2 the usual properties
of associativity of addition and multiplication of block matrices hold, as does distributivity, and
commutativity of addition. The additive identity 0 and multiplicative identity I are the same
under block addition and multiplication, as with the usual matrix addition and multiplication.
The additive identity 0 has zero matrices as blocks; the multiplicative identity I has multiplicative
identity submatrices as diagonal blocks and zero matrices as off-diagonal blocks.

4. If the partitions of A and B are conformal, the partitions of B and A are not necessarily conformal,
even if B A is defined.

An A

(n —k) x (n— k). Then det(A) = (—1)"+tVkdet(A,)det( Ay ).

5. Let A € F"*" be a block matrix of the form A = , where A, is k x k, and A, is

Examples:

A Anp

1. Let the block matrix A € C"*" given by A =
An An

be Hermitian. Then A;; and A,, are

Hermitian, and A, = A},.
2. If A = [a;], then A[{i},{j}] is the 1 x 1 matrix whose entry is a;;. The submatrix A({i}, {j}) is the
submatrix of A obtained by deleting row i and column j of A.
1 -2 5 3 -1
LetA=]-3 0 1 6 1
2 7 4 5 =7

s ThenA[{z})B}]Z[ﬂza]Z[l]andA({z},{3})=E P :;}

4. Leta = {1,3} and B = {1,2,4}. Then the submatrix Ala, 8] = E _72 z] , and the principal

submatrix Ala] = [; ﬂ

5. Leta; = {1}, ap = {2,3} and let 8; = {1,2}, B, = {3}, B3 = {4, 5}. Then the block matrix, with
(i, j) block entry Ajj = Ala;, 8;],1 <i <2,1 < j <3,is

1 -2 | 5 | 3 -1
A [An An Ap| |- | —— | —= ===
Ay Apn Az =3 0 | 1 | 6 1

2 |4 | —7

2 -1 | o | 6 -2
By By Byp| _ |[————-— | —— | —= === .
6. Let B = = . Then the matrices A
{321 By, By —4 0 | 5 | 3

1 | =2 | 6

(of this example) and B are partitioned with the same o;s and B;s, so they can be added block-wise
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A21 A22 A23

s An A A
Byi By By

B Bn BIS:|

A+ By Ap+ Bz A+ Bis
_A21 + By Ax+ By A+ B

3 -3 | 5 | 9 -3
_|----- R
-7 0 | 6 | 9 8
|3 8§ | 2 | 7 -1
Ay Ap A By
7. The block matrices A = n 12 B3| and B = | B,;| have conformal partitions if the g;
Ay Apn Aps Bs,

index sets, which form the submatrices A; = Ala;, B;] of A, are the same as the §; index sets,
which form the submatrices Bjx = B[}, yx] of B. For instance, the matrix

1 -2 | 5 | 3 —1
Ao |An A Ap| |- - - | —— | —= ===
Ay Apn A =3 0 | 1 | 6 1

2 7 | 4 | 5 -7

f 4 1]
3 9
By - ——
and the matrix B = |[By | = 5 2 | have conformal partitions, so A and B can be

B3 -— -
2 —8
L7 —1]

multiplied block-wise to form the 3 x 2 matrix

AB = Ay By + A By + A3 B3y
| Az By + A By + A3 B3
[ 4 —1 2 -8
1 -2 [3 o | 566 2+B -1 {7 _1}
=3 o] [4 -1 1 6 1][2 -
(e e O et
[ [—2 —19]+ (25 10]+[—1 —23] 22 —32
= —-12 3 5 2 19 —49 = (12 —44
+ +
L 29 61 20 8 -39 -33 10 36
7 | 8
1 2 | 9 | ..
8. Let A= 45| 6 and B= | = |- Then A and B have conformal partitions. BA
1 2

is defined, but B and A do not have conformal partitions.
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10.2 Block Diagonal and Block Triangular Matrices

Definitions:
A matrix A = [a;] € F"™*" is diagonal if a;; = 0, forall i # j,1 <i,j <n.
A diagonal matrix A = [a;] € F"" is said to be scalar if a;; = a, forall i, 1 <i < n, and some scalar

ae€F,ie,A=al,.
A matrix A € F"*" is block diagonal if A as a block matrix is partitioned into submatrices A;; €
Frixti  so that A = [Aj], Zf;l ni = n,and A = 0, foralli # j, 1 <i,j < k. Thus, A =
An 0 - 0

0 Ay -+ 0
. This block diagonal matrix A is denoted A = diag(A1,. .., Akk), where A;; is

0 0 - Aw
n; X n;, (or sometimes denoted A = A;; @ - - - @ Ay, and called the direct sum of A;y,.. ., Ak).

A matrix A = [a;] € F"™" is upper triangular if a;; = 0, foralli > j1 <i,j < n.

An upper triangular matrix A = [a;] € F"*" is strictly upper triangular if a;; = 0 for alli > j,
1<i,j<n

A matrix A € F™" is lower triangular if a; = 0 foralli < j,1 < i,j < n,ie, if AT is upper
triangular.

A matrix A € F™" is strictly lower triangular if A” is strictly upper triangular.

A matrix is triangular it is upper or lower triangular.

A matrix A € F"™" is block upper triangular, if A as a block matrix is partitioned into the submatrices
Ajj € F"*"i, so that A = [Aj], Zle ni =n,and A;j = 0,foralli > j,1 <i,j <k, ie, considering

An A - Ax
. . . 0 Ap - Ay

the A;j blocks as the entries of A, A is upper triangular. Thus, A = | | ) . | » where each
0 0 - Ap

Ajjisn; x nj,and Zle n; = n. The matrix A is strictly block upper triangular if A;; = 0, forall i > j,
1<i,j<k.

A matrix A € F™" is block lower triangular if AT is block upper triangular.

A matrix A € F™" is strictly block lower triangular if A7 is strictly block upper triangular.

A matrix A = [a;;] € F™" is upper Hessenberg if a;; = 0, foralli —2 > j, 1 <i,j < n,i.e, Ahas

_5111 apz 43 te Aln—1 Aln ]
az; dx Az ce an—1 Ao
0 asy asjs te asp—1 asn
the form A =
0 0 e Ap—1n-2 Ap—1n—1 Ap—1n
L 0 0 e 0 Ann—1 Ann |

A matrix A = [a;j] € F"*" is lower Hessenberg if A is upper Hessenberg.

Facts:

The following facts can be found in [HJ85]. This information is also available in many other standard
references such as [LT85] or [Mey00].
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10.

11.

12.
13.

14.

. Let D, D’ € F™*" be any diagonal matrices. Then D+ D’ and D D’ are diagonal,and DD’ = D’'D.

If D = diag(d,, . ..,d,) is nonsingular, then D~! = diag(1/d,,...,1/d,).

Let D € F"*" be a matrix such that DA = AD forall A € F"*". Then D is a scalar matrix.

If A € F"*"isablock diagonal matrix, so that A = diag( Ay, ..., Ak), thentr(A) = Zle tr(A;;),
det(A) = Hledet(A,-,-), rank(A) = Zf«‘:l rank(A;;),and o (A) =0 (A;1) U ---Uo(A).

Let A € F"*" be ablock diagonal matrix, so that A = diag(A;;, Az ..., Akk). Then A is nonsingu-
larifand onlyif A;; isnonsingular foreachi, 1 <i < k.Moreover, A~! = diag(Aj;', Ay, ..., A
See Chapter 4.3 for information on diagonalizability of matrices.

Let A € F"*" be ablock diagonal matrix, so that A = diag(A;,. .., Ax). Then A is diagonalizable
if and only if A;; is diagonalizable for each i, 1 <i < k.

If A,B € F"™" are upper (lower) triangular matrices, then A + B and AB are upper (lower)
triangular. If the upper (lower) triangular matrix A = [a;] is nonsingular, then A™' is upper
(lower) triangular with diagonal entries 1/ayy,. .., 1/ay,.

Ay Ap - Ag
) 0 Ap - Ay

Let A € F™*" be block upper triangular, so that A = . . . |. Then tr(A) =
0 0 - A

S tr(Aip), det(A) = TIE det(A;), rank(A) > ¥ rank(A;), and 6(A) = o(Ay)
U---Uo(Ak).

Let A = (A;;) € F™" be a block triangular matrix (either upper or lower triangular). Then A is
nonsingular if and only if A;; is nonsingular for each i, 1 < i < k. Moreover, the n; x n; diagonal
block entries of A~! are Ai_il, foreachi, 1 <i <k.

Schur’s Triangularization Theorem: Let A € C"*". Then there is a unitary matrix U € C"*" so that
U* AU is upper triangular. The diagonal entries of U* AU are the eigenvalues of A.

Let A € R"™", Then there is an orthogonal matrix V € R"*" so that VT AV is of upper Hessenberg

Ay Ap oo A
0 Ap -+ Ay ) ) .
form | . ) . |,whereeach A;;,1 <1i <k,is1 x 1or2 x 2. Moreover, when A;; is
0 0 - Ap

1 x 1, the entry of A;; is an eigenvalue of A, whereas when A;; is 2 x 2, then A;; has two eigenvalues
which are nonreal complex conjugates of each other, and are eigenvalues of A.

(For more information on unitary triangularization, see Chapter 7.2.)

Let A = [A;] € F"™" with |0 (A)| = n, where A,...,Ax € o(A) are the distinct eigenvalues of
A. Then there is a nonsingular matrix T € F"*" sothat T"'AT = diag(A,. .., A), where each
A;; € F">" is upper triangular with all diagonal entries of A;; equal to A;, for 1 < i < k (and

Zf;l n; = n).

. . A A .

Let A € F" " be a block upper triangular matrix, of the form A = 01 ! A12 , where Aj is
2

ni xnj,1 <i,j <2 and 21'2:1 n; = n. (Note that any block upper triangular matrix can be

said to have this form.) Let x be an eigenvector of A;;, with corresponding eigenvalue A, so that

A11x = Ax, where x is a (column) vector with n; components. Then the (column) vector with »n
x| . . R . .

components { 0] is an eigenvector of A with eigenvalue A. Let y be a left eigenvector of Aj,, with

corresponding eigenvalue j, so that yA;, = yu, where y is a row vector with 7, components. Then
the (row) vector with n components [0 y] is a left eigenvector of A with eigenvalue u.
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Examples:

1 3 0 0 0
2 4 0 0 O
1. Thematrix A= |0 0 5 0 0] isa block diagonal matrix, and the trace, determinant, and
0 0 0 6 8
00 7 9
. 3 6 8
rank can be calculated block-wise, where A;; = [ i Ay = 5,and Az; = [7 9} ,astr(A) =
25 =37 tr(A;), det(A) = (—2)(5)(—2) = IT}_,det(A;;),and rank(A) = 5 = >_7_ rank(A;;).
a b c
2.Let A= |0 d e| € F3* an upper triangular matrix. If a,d, f are nonzero, then A™! =
00 f

Q| =

(=)

be —cd
ad adf
0
3
4
0
0
0

1 0 0 0
2 5 00
3. The matrix B = |0 0 6 0] is not block diagonal. However, B is block upper triangular,
0 0 0 7
0 0 0 8

. 1 0o 7 0 0 0
with By, = [2 4} By, =0, By = [O 8} B, = [5], B3 = [0 O}and By =[6 0]

Notice that 4 = rank(B) > Z, (rank(B;;) =2+0+1=3.

1 2 0 O
. 3 4 5 0]. . .
4. The 4 x 4 matrix 6 7 8§ ol not lower triangular, but is lower Hessenberg.

10 11 12 13

10.3 Schur Complements

. . . A Al . o . .
In this subsection, the square matrix A = AH A12 is partitioned as a block matrix, where Aj; is
. a Axp
nonsingular.
Definitions:

The Schur complement of A;; in A is the matrix Ay, — Ay Afll A1y, sometimes denoted A/ Aq;.

Facts:
I 0 Ay Apn||I —AjAnL An 0
1. [Zha99 _ = .
[ ] — Ay A 1] Ay Axnl| |0 I 0 A/A,
Ay Ap

2. [Zha99] Let A = , where A;; is nonsingular. Then det(A) = det(A;;)det(A/Ay).

Ay Axp
Also, rank(A) = rank(A;;) + rank(A/A1).
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3. [Zha99] Let A = ﬁ; ﬁ;j Then A is nonsingular if and only if both A;; and the Schur
complement of A;; in A are nonsingular.

4. [HJ85] Let A = 2; Izz , where Ay, Ay, A/A11, A/Ay, and A are nonsingular. Then
A1 = (A/Ap)™! — AL Ap(A/AD) ™!

—Ay An(A/Ap)™! (A/A)™!

5. [Zha99] Let A = f‘; QZ ,where Ay, Ay, A/ Aq1,and A/ Ay, are nonsingular. An equation re-
lating the Schur complementsof A;; in Aand Ay in Ais(A/Ap) ™' = A+ A AL (A/A) Ay
Al

6. [LT85] Let A = 3; 3; , where the k x k matrix A}, is nonsingular. Then rank(A) = k if and
onlyif A/A;; = 0.

7. [Hay68] Let A = ﬁ,}: ﬁ; be Hermitian, where A;; is nonsingular. Then the inertia of A is
in(A) = in(Ay;) +in(A/An).

8. [Hay68] Let A = 3% ﬁz be Hermitian, where A;; is nonsingular. Then A is positive

(semi)definite if and only if both A;; and A/ A, are positive (semi)definite.

Examples:

—
\]
w

1. Let A= |4 5 6 |.Thenwith A;; = 1, we have

—_— N
co
S~
[}
—_
[\S}
W
—

7 8 10 8 10 7
(1 0
= -3 —6
0 [—6 —11
bz 3 5 6 -3 —6
2. Let A= 1[4 5 6 .WithAH:l,andAzz: |:8 10],thenA/A11= |:—6 11 ,A/A22=
7 8 10
21
5 6 4 R
1—1[2 3] [8 10} [7}:—5,and
[ 3 6]
_3! _ -~
e e a3 3
AT = —1 -1
Y I -3 -6
8 10 7 2 —6 —11
-2 1
-3 g[—4 3] —% —% 1
_ 2 _ 2 1
=11=5 . [-u e]|=|75 5 2
|1 e 3 1 -2 1
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1 2 3
3. LetA=1(4 5 6.
7 8 10

Then, from Fact 5,

—1 -1
(A/A22)4=(_§) =1""4+17"12 3] {:Z __161} H 17,

= A1711 + AfllAlz(A/An)ilAzlAﬁl.

10.4 Kronecker Products

Definitions:
Let A € F™" and B € F?*1. Then the Kronecker product (sometimes called the tensor product) of A

anB apB - a,B

a21B azzB s aan
and B, denoted A ® B, is the mp x nq partitioned matrix A ® B =

ElnlB ClnzB s a,mB

Let A € F™*" and let the jth column of A, namely, A[{1,...,m},{j}] be denoted a;,for1 < j < n.

a
a
The column vector with mn components, denoted vec(A), defined by vec(A) = | . | € F™", is the

an
vec-function of A, i.e., vec(A) is formed by stacking the columns of A on top of each other in their natural
order.

Facts:

All of the following facts except those for which a specific reference is given can be found in [LT85].

Let A€ F"™"and B € FP*1.Ifa € F,thena(A® B) = (aA) ® B= A® (aB).

Let A,Be€ F"™"andC € F*1, Then(A+ B) @ C=AQC+ B®C.

Let A€ F""and B,C € FP*1., Then AQ(B+C)=AQ B+ AQC.

Let Aec F"™" Be FP*1,andC € F"**. Then AQ (BRC)=(A® B)® C.

Let A€ F™"and B € F?*1. Then (A® B)" = AT ® BT.

[MM64] Let A € C™" and B € C?*1. Then (A® B) = A® B.

[MM64] Let A € C"*" and B € C?*1. Then (A ® B)* = A* ® B*.

Let A€ F"™" Be FP*1,C € F"™",and D € F17*°, Then (A® B)(C ® D) = AC ® BD.
Let Ac F™"and B € F/*1. Then A® B=(A® I,)(I, ® B) = (I, ® B)(A® I,).

IfA € F™™and B € F""arenonsingular, then A® B isnonsingularand (AQB)™! = A~!®B ™.
Let Ay, Ay, - -+, Ay € F™ ™ and By, By,- -+, By € F"*". Then (A, ®B;)(A;®B;) - - (Ar®By) =
(A1Az--- Ap) ® (B By - - - By).

. Let A€ F™™and B € F"™". Then (A ® B)* = A* @ Bt.

—_— =
PO 0 RN R RN

—
\S]



Partitioned Matrices 10-9

13. IfA € F™™and B € F™*", thenthereisan mn x mn permutation matrix P sothat PT(AQ B)P =
B ® A.

14. Let A, B € F"*". Thenvec(aA + bB) = a vec(A) + b vec(B), forany a,b € F.

15. If Ae F™" B e FP*1,and X € F"*?, then vec(AXB) = (BT ® A)vec(X).

16. If A€ F™™and B € F"*",thendet(A® B) = (det(A))"(det(B))",tr(A® B) = (tr(A))(tr(B)),
and rank(A ® B) = (rank(A))(rank(B)).

17. Let A € F™ and B € F"™", with 6(A) = {A,...,An} and o(B) = {u1,...,Us}. Then
A® B € F™" ™" haseigenvalues {A; 1|1 <s < m,1 <t < n}. Moreover, if the right eigenvectors
of A are denoted x;, and the right eigenvectors of B are denoted y;, so that Ax; = A;x; and
By; = ujyj,then (A® B)(xi ®y;) = Ainj(xi ®y;).

18. Let A € F™™ and B € F"™", with 0(A) = {A1,...,An} and o(B) = {u1,...,Us}. Then
(I, ® A) + (B ® 1)) has eigenvalues {A; + ;|1 <s <m,1 <t < n}.

19. Let p(x,y) € F|[x, y] so that p(x,y) = Ef’j:l ajx'yl, wherea;j € F,1 <i <k, 1 < j <k.Let
A € F™" and B € F"™". Define p(A; B) to be the mn x mn matrix p(A; B) = Zij:l aij(Ai ®
BJ) IfG(A) = {)\1’- . )A'm} and G(B) = {/’Ll)- . -’/'Ln}! then U(P(A’ B)) = {P()“S’MI)H <s =
m,1 <t <mnj.

20. Let A, A, € F™™ B,B, € F™" If A; and A, are similar, and B; and B, are similar, then
A; ® B is similar to A, ® B,.

21. If A € F™", B € FP*1, and X € F"*P, then vec(AX) = (I, ® A)vec(X), vec(XB) =
(BT ® I,,)vec(X), and vec(AX + XB) = [(I, ® A) + (BT ® I,)]vec(X).

22. IfAe F™", B € FP*1,C € F™,and X € F"*?, then the equation AXB = C can be written
in the form (BT @ A)vec(X) = vec(C).

23. Let Ae F™" B e F"™",C € F™" and X € F™". Then the equation AX + XB = C can be
written in the form [(I, ® A) + (BT ® I,,)]vec(X) = vec(C).

24. Let A € C"™" and B € C"*" be Hermitian. Then A ® B is Hermitian.

25. Let A € C™ ™ and B € C"*" be positive definite. Then A ® B is positive definite.

Examples:

1 2 3 -1 -2 -3

1 2 3 4 5 6 —4 -5 -6

1. Let A= _l}andB: 4 5 6/.ThenA® B = 789 -7 =8 =9

2 7 8 9 0o 0 0 2 4 6

0 0 0 8 10 12

0 0 0 14 16 18

2. Let A= (1) _21] . Then vec(A) = _01 .
2
3. Let A€ F"™™ and B € F"*".If A is upper (lower) triangular, then A ® B is block upper (lower)
triangular. If A is diagonal then A ® B is block diagonal. If both A and B are upper (lower)
triangular, then A ® B is (upper) triangular. If both A and B are diagonal, then A ® B is diagonal.
4. Let Ae F™"and B € FP*1. IfA® B=0,then A=00r B =0.
anl, apl, - apl,
anly anl, - aul, )

5. Let Ae F"™". Then A® I, = . . . . € F">" TLet B € FP*P, Then
amlln anZIn e amnIn

I, ® B =diag(B,B,...,B) € F""*" and I, ® I,, = L.
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Matrix functions are used in many areas of linear algebra and arise in numerous applications in science
and engineering. The most common matrix function is the matrix inverse; it is not treated specifically in
this chapter, but is covered in Section 1.1 and Section 38.2. This chapter is concerned with general matrix
functions as well as specific cases such as matrix square roots, trigonometric functions, and the exponential
and logarithmic functions.

The specific functions just mentioned can all be defined via power series or as the solution of nonlinear
systems. For example, cos(A) = I — A%/2! + A*/4! — . ... However, a general theory exists from which a
number of properties possessed by all matrix functions can be deduced and which suggests computational
methods. This chapter treats general theory, then specific functions, and finally outlines computational
methods.

11.1 General Theory

Definitions:
A function of a matrix can be defined in several ways, of which the following three are the most generally

useful.

* Jordan canonical form definition. Let A € C™*" have the Jordan canonical form Z7'AZ = J, =
diag(]l()nl), Jo(A2)y. s ]p(kp)), where Z is nonsingular,

A 1

Ak

Je(he) = € CmXm, (11.1)
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and my + my + - - - + m, = n. Then

fA) :=ZfJ)Z" = Zdiag(fUx(M))Z 7, (11.2)
where
, FmD ()
fOw) f () —
(my — 1)!
fUr()) == fw) ) (11.3)
I/ ()
)
* Polynomial interpolation definition. Denote by A1, . . ., A; the distinct eigenvalues of A and let n; be

theindex of 1;, thatis, the order of the largest Jordan block in which A; appears. Then f(A) := r(A),
where r is the unique Hermite interpolating polynomial of degree less than >_;_, n; that satisfies
the interpolation conditions

rP) = f9%),  j=0m—1, i=ls. (11.4)

Note that in both these definitions the derivatives in (11.4) must exist in order for f(A) to be defined.
The function f is said to be defined on the spectrum of A if all the derivatives in (11.4) exist.

* Cauchy integral definition.

1 _
f(A) = E/rf(z)(zl — A)7ldz, (11.5)

where f is analytic inside a closed contour I" that encloses o (A).

When the function f is multivalued and A has a repeated eigenvalue occurring in more than one Jordan
block (i.e., A is derogatory), the Jordan canonical form definition has more than one interpretation. Usually,
for each occurrence of an eigenvalue in different Jordan blocks the same branch is taken for f and its
derivatives. This gives a primary matrix function. If different branches are taken for the same eigenvalue
in two different Jordan blocks, then a nonprimary matrix function is obtained. A nonprimary matrix
function is not expressible as a polynomial in the matrix, and if such a function is obtained from the
Jordan canonical form definition (11.2) then it depends on the matrix Z. In most applications it is
primary matrix functions that are of interest. For the rest of this section f(A) is assumed to be a primary
matrix function, unless otherwise stated.

Facts:

Proofs of the facts in this section can be found in one or more of [Hig], [HJ91], or [LT85], unless otherwise
stated.

1. The Jordan canonical form and polynomial interpolation definitions are equivalent. Both defini-
tions are equivalent to the Cauchy integral definition when f is analytic.

f(A) is a polynomial in A and the coefficients of the polynomial depend on A.

f(A) commutes with A.

f(AT) = F(A).

For any nonsingular X, f(XAX™') = Xf(A)X L.

If A is diagonalizable, with Z7'AZ = D = diag(d,ds,...,d,), then f(A) = Zf(D)Z™! =
Z diag(f(dy), f(da),..., f(d,))Z7".

7. f(diag(Ar, Aa,..., Ap)) = diag(f(A1), F(A2),..., F(An)).

SV kv
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8. Let f and g be functions defined on the spectrum of A.

(a) Ifh(t) = f(t) + g(t), then h(A) = f(A) + g(A).
(b) IEh(t) = f(1)g(t), then h(A) = f(A)g(A).

9. Let G(uy,...,u,) be a polynomial in u;,...,u, and let fi,..., f; be functions defined on the
spectrum of A. If g(A) = G(fi(}),..., fi(A)) takes zero values on the spectrum of A, then
g(A) = G(fi(A),..., fi(A)) = 0. For example, sin>(A) + cos>(A) = I, (A/P)? = A, and
e'* = cos A + i sin A.

10. Suppose f has a Taylor series expansion

o0 (k)
f(z)=§ak(z—a)k (ak= f k!(a))

with radius of convergence r. If A € C"*”, then f(A) is defined and is given by

f(A) =) a(A—aDf

k=0
if and only if each of the distinct eigenvalues A1, . . ., A; of A satisfies one of the conditions:
(a) A —a]l <.

(b) | —a| = r and the series for f"~!(1), where n; is the index of A;, is convergent at the point
A= )»,‘, i=1:s.

11. [Dav73], [Des63], [GVLI6, Theorem 11.1.3]. Let T € C™"*" be upper triangular and suppose that
f is defined on the spectrum of T. Then F = f(T') is upper triangular with f;; = f(#;) and

fij = Z Lsg,sy Es s, "~t5k,|,skf[)‘-50)~~))‘sk])

(505K ESij

where A; = t;;, S;; is the set of all strictly increasing sequences of integers that start at i and end at
jrand f[As,,...,As ] is the kth order divided difference of f at A,,...,A,.

Examples:
1. For Ay # Ay,

f2) = f(n)
AR

(s 2D =1% 5

(-7 —4 -3
A=|10 6 4.

We have A = XJ 4 X!, where J4 = [0] ® {

For )»1 = )»2 = )\.,

2. Compute e” for the matrix

—
—_

0 1

1 -1 -1
X=1-1 2 0f.
-1 0 3
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1 -1 -1
=|-1 2 0

| —1 0 3

=|—-6+10e —3+6e —2+4e
| —6+6e —3+4+3e —2+43e

6
2
2
6—7e 3 —4de 2—36]

3. Compute +/A for the matrix in Example 2. To obtain the square root, we use the polynomial
interpolation definition. The eigenvalues of A are 0 and 1, with indices 1 and 2, respectively. The
unique polynomial r of degree at most 2 satisfying the interpolation conditions r(0) = f(0),

r(1) = f(1),r'(1) = f'(1)is
r(t) = fO)(t— 1> +t2— 1) f(1) +t(t — 1) f/(1).

With f(t) = /2, taking the positive square root, we have r(t) = t(2 — t) + t(t — 1)/2 and,
therefore,

-6 =35 —2.5]
6 3 3

AI/Z:A(ZI—AH—A(A—I)/Z:[ 8 5 3

4. Consider the my x my Jordan block Ji(Ag) in (11.1). The polynomial satisfying the interpolation
conditions (11.4) is

— 2 _ mg—1
F() = FOu) + (F = A f/() + % FOw) 4+ EZMT e,
! (my — 1)!

which, of course, is the first 1, terms of the Taylor series of f about A;. Hence, from the polynomial
interpolation definition,

FUe) =rTe(A))
= f)I + () — Md) /() +

(Je(hg) = A D)™t
(my —1)!

(Je(hi) — A D)?

)

).

The matrix (Jx(Ax) — AxI)/ is zero except for 1s on the jth superdiagonal. This expression for
f(Jx(Ag)) is, therefore, equal to that in (11.3), confirming the consistency of the first two definitions

of f(A).

11.2 Matrix Square Root

Definitions:
Let A € C™". Any X such that X* = A is a square root of A.
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Facts:

Proofs of the facts in this section can be found in one or more of [Hig], [HJ91], or [LT85], unless otherwise
stated.

1. If A € C"*" has no eigenvalues on R, (the closed negative real axis) then there is a unique square
root X of A each of whose eigenvalues is 0 or lies in the open right half-plane, and it is a primary
matrix function of A. This is the principal square root of A and is written X = A2, If A is real
then A'/? is real. An integral representation is

2 o0
A2 = —A/ (1 + A)~ ' dt.
T 0

2. A positive (semi)definite matrix A € C**" has a unique positive (semi)definite square root. (See
also Section 8.3.)

3. [CL74] A singular matrix A € C"*" may or may not have a square root. A necessary and sufficient
condition for A to have a square root is that in the “ascent sequence” of integers d;, d,, . . . defined
by

d; = dim(ker(A")) — dim(ker(A' 1)),

no two terms are the same odd integer.

4. A € R™" has a real square root if and only if A satisfies the condition in the previous fact and A
has an even number of Jordan blocks of each size for every negative eigenvalue.

5. The n x n identity matrix I, has 2" diagonal square roots diag(41). Only two of these are primary
matrix functions, namely I and —I. Nondiagonal but symmetric nonprimary square roots of I,
include any Householder matrix I — 2vv' /(vT'v) (v # 0) and the identity matrix with its columns
in reverse order. Nonsymmetric square roots of I, are easily constructed in the form XDX™!,
where X is nonsingular but nonorthogonal and D = diag(£1) # =+I.

Examples:

1. The Jordan block [g é] has no square root. The matrix
01 0
0 0 0
0 0 O
has ascent sequence 2, 1,0, . .. and so does have a square root — for example, the matrix

0 0 1
0 0 0
01 0

11.3 Matrix Exponential

Definitions:
The exponential of A € C"*", written e” or exp(A), is defined by
A? A*

A— —_— ... _— ..
=T+ A+



11-6 Handbook of Linear Algebra

Facts:

Proofs of the facts in this section can be found in one or more of [Hig], [HJ91], or [LT85], unless otherwise
stated.

1. eMAFBI = eAteBt holds for all t if and only if AB = BA.
2. The differential equation in 7 X n matrices
dy
E = AY, Y(O) = C, A, Y € (Cnxn’

has solution Y (¢) = e4!C.
3. The differential equation in # x n matrices

ay
P AY 4+ YB, Y(0)=C, A,B,Y e C™",

has solution Y (¢) = e4*Ce®*.

4. A € C™" is unitary if and only if it can be written A = e'¥, where H is Hermitian. In this
representation H can be taken to be Hermitian positive definite.

5. A € R"™" is orthogonal with det(A) = 1 if and only if A = e’ with S € R"*" skew-symmetric.

Examples:

1. Fact 5 is illustrated by the matrix

for which

A cosa  sina
e’ = . .
—sina  cosa

11.4 Matrix Logarithm

Definitions:
Let A € C"™". Any X such that ¥ = A is a logarithm of A.

Facts:

Proofs of the facts in this section can be found in one or more of [Hig], [HJ91], or [LT85], unless otherwise
stated.

1. If A has no eigenvalues on R, then there is a unique logarithm X of A all of whose eigenvalues lie
inthestrip{z: —7 < Im(z) < x }. Thisis the principal logarithm of A and is written X = log A.
If A is real, then log A is real.

2. If p(A) < 1,

A
logI4+A)=A— —4+ " ——4...

3. A € R"" has a real logarithm if and only if A is nonsingular and A has an even number of Jordan
blocks of each size for every negative eigenvalue.

4. exp(log A) = A holds when log is defined on the spectrum of A € C"*". But log(exp(A)) = A
does not generally hold unless the spectrum of A is restricted.

5. If A € C"" is nonsingular then det(A) = exp(tr(log A)), where log A is any logarithm of A.
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Examples:

For the matrix

1 1 1 1
01 2 3
A= 001 3|’
0 0 0 1
we have
01 0 O
0 0 2 O
logld) =105 9 o 3
0 0 0 O
11.5 Matrix Sine and Cosine
Definitions:
The sine and cosine of A € C"*" are defined by
A? (=D* 5
AS (—l)k
(A= A — — ...~ "7 A%kl
sin(4) I G T s T

Facts:

Proofs of the facts in this subsection can be found in one or more of [Hig], [HJ91], or [LT85], unless
otherwise stated.

cos(2A) = 2cos?(A) — I.
sin(2A) = 2sin(A) cos(A).
cos2(A) + sin’(A) = I.
The differential equation

L e

dz)/ ’ ’
ﬁ+Ay=0’ y(0) = yo, y'(0) =y,

has solution
y(t) = cos(«/Zt)yo + (\/Z)_l sin(\/zt)y(’),
where +/A denotes any square root of A.
Examples:

1. For
0 i1a
A= . )
La 0}

oA cosa isino
ising cosa

we have
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2. For
1 1 1 1
A= 0o -1 -2 -3 )
0 0 1 3
0 0 0 -1
we have

sin(1)  sin(1) sin(1) sin(1)

S I e
0 0 0 —sin(1)

and sin?(A) = sin(1)?I, so cos(A)? + sin(A)? = I.

11.6 Matrix Sign Function

Definitions:

IfA=ZJ,Z ' € C*™"isa Jordan canonical form arranged so that

_[1 o
]A—[ 0 ]/(az) ,

where the eigenvalues of J ,&1) € CP*? lie in the open left half-plane and those of | 15‘2) € C1*1 lie in the
open right half-plane, with p + q = #, then
sign(A) = Z [_IP 0 ] z L
Alternative formulas are
sign(A) = A(A%)71/2, (11.6)
2 oo
sign(A) = —A/ (1 + AY)dr.
s 0

If A has any pure imaginary eigenvalues, then sign(A) is not defined.

Facts:

Proofs of the facts in this section can be found in [Hig].
Let S = sign(A) be defined. Then

$? = I (S is involutory).

S is diagonalizable with eigenvalues £1.

SA=AS.

If Ais real, then S is real.

If A is symmetric positive definite, then sign(A) = I.

R

Examples:

1. For the matrix A in Example 2 of the previous subsection we have sign(A) = A, which follows
from (11.6) and the fact that A is involutory.
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11.7 Computational Methods for General Functions

Many methods have been proposed for evaluating matrix functions. Three general approaches of
wide applicability are outlined here. They have in common that they do not require knowledge of
Jordan structure and are suitable for computer implementation. References for this subsection are
[GVL96], [Hig].

1. Polynomial and Rational Approximations:

Polynomial approximations
m
pu(X) =D X, b eC, XeC™,
k=0

to matrix functions can be obtained by truncating or economizing a power series representation, or by
constructing a best approximation (in some norm) of a given degree. How to most efficiently evaluate a
polynomial at a matrix argument is a nontrivial question. Possibilities include Horner’s method, explicit
computation of the powers of the matrix, and a method of Paterson and Stockmeyer [GVL96, Sec. 11.2.4],
[PS73], which is a combination of these two methods that requires fewer matrix multiplications.

Rational approximations r,,x(X) = p.(X)qx(X)™! are also widely used, particularly those arising
from Padé approximation, which produces rationals matching as many terms of the Taylor series of
the function at the origin as possible. The evaluation of rationals at matrix arguments needs careful
consideration in order to find the best compromise between speed and accuracy. The main possibilities
are

* Evaluating the numerator and denominator polynomials and then solving a multiple right-hand
side linear system.

* Evaluating a continued fraction representation (in either top-down or bottom-up order).

* Evaluating a partial fraction representation.

Since polynomials and rationals are typically accurate over a limited range of matrices, practical methods
involve a reduction stage prior to evaluating the polynomial or rational.

2. Factorization Methods:

Many methods are based on the property f(XAX™!) = Xf(A)X~ ' If X can be found such that
B = XAX™! has the property that f(B) is easily evaluated, then an obvious method results. When A
is diagonalizable, B can be taken to be diagonal, and evaluation of f(B) is trivial. In finite precision
arithmetic, though, this approach is reliable only if X is well conditioned, that is, if the condition number
k(X) = | X|I|IX~! is not too large. Ideally, X will be unitary, so that in the 2-norm «,(X) = 1. For
Hermitian A, or more generally normal A, the spectral decomposition A = QD Q* with Q unitary and
D diagonal is always possible, and if this decomposition can be computed then the formula f(A) =
Qf(D)Q* provides an excellent way of computing f(A).

For general A, if X is restricted to be unitary, then the furthest that A can be reduced is to Schur form:
A = QT Q*, where Q is unitary and T upper triangular. This decomposition is computed by the QR
algorithm. Computing a function of a triangular matrix is an interesting problem. While Fact 11 of section
11.1 gives an explicit formula for F = f(T'), the formula is not practically viable due to its exponential cost
in n. Much more efficient is a recurrence of Parlett [Par76]. This is derived by starting with the observation
that since F is representable as a polynomial in T, F is upper triangular, with diagonal elements f(#;).
The elements in the strict upper triangle are determined by solving the equation FT = TF. Parlett’s
recurrence is:
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Algorithm 1. Parlett’s recurrence.

fii = f(ti),i =1in
for j =2:n
fori=j—1:-1:1

f,] = t,]]: — {]] + < Z flktk] 1kfkj>/(t11 - ]])

k=i+1
end
end
This recurrence can be evaluated in 2n°/3 operations. The recurrence breaks down when #; = f;;

for some i # j. In this case, T can be regarded as a block matrix T = (Tj;), with square diagonal
blocks, possibly of different sizes. T can be reordered so that no two diagonal blocks have an eigenvalue in
common,; reordering means applying a unitary similarity transformation to permute the diagonal elements
whilst preserving triangularity. Then a block form of the recurrence can be employed. This requires the
evaluation of the diagonal blocks F;; = f(T;;), where T;; will typically be of small dimension. A general
way to obtain Fj; is via a Taylor series. The use of the block Parlett recurrence in combination with a Schur
decomposition represents the state of the art in evaluation of f(A) for general functions [DHO03].

3. Iteration Methods:

Several matrix functions f can be computed by iteration:
Xiy1 = g(Xk)s Xo = A, (11.7)

where, for reasons of computational cost, g is usually a polynomial or a rational function. Such an iteration
might converge for all A for which f is defined, or just for a subset of such A. A standard means of deriving
matrix iterations is to apply Newton’s method to an algebraic equation satisfied by f(A). The iterations
most used in practice are quadratically convergent, but iterations with higher orders of convergence are
known.

4. Contour Integration:

The Cauchy integral definition (11.5) provides a way to compute or approximate f(A) via contour
integration. While not suitable as a practical method for all functions or all matrices, this approach can
be effective when numerical integration is done over a suitable contour using the repeated trapezium
rule, whose high accuracy properties for periodic functions integrated over a whole period are beneficial
[DHO5], [TWO05].

11.8 Computational Methods for Specific Functions

Some methods specialized to particular functions are now outlined. References for this section are
[GVL96], [Hig].

1. Matrix Exponential:

A large number of methods have been proposed for the matrix exponential, many of them of pedagogic
interest only or of dubious numerical stability. Some of the more computationally useful methods are
surveyed in [MVLO03]. Probably the best general-purpose method is the scaling and squaring method. In
this method an integral power of 2, ¢ = 2° say, is chosen so that A/ has norm not too far from 1. The
exponential of the scaled matrix is approximated by an [m/m] Padé approximant, e4/% & r,,,,(A/2°),
and then s repeated squarings recover an approximation to e*: e# & r,,,,,(A/2°)% . Symmetries in the Padé
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approximant permit an efficient evaluation of r,,,,(A). The scaling and squaring method was originally
developed in [MVL78] and [War77], and it is the method employed by MATLAB’s expm function. How
best to choose o and m is described in [Hig05].

2. Matrix Logarithm:

The (principal) matrix logarithm can be computed using an inverse scaling and squaring method based
on the identity log A = 2¥log A/ 2, where A is assumed to have no eigenvalues on R™. Square roots
are taken to make [|AY2" — I| small enough that an [#/m] Padé approximant approximates log A'/ 2
sufficiently accurately, for some suitable 72. Then log A is recovered by multiplying by 2. To reduce the
cost of computing the square roots and evaluating the Padé approximant, a Schur decomposition can be
computed initially so that the method works with a triangular matrix. For details, see [CHKLO01], [Hig01],
or [KL89, App. A].

3. Matrix Cosine and Sine:

A method analogous to the scaling and squaring method for the exponential is the standard method
for computing the matrix cosine. The idea is again to scale A to have norm not too far from 1 and then
compute a Padé approximant. The difference is that the scaling is undone by repeated use of the double-
angle formula cos(2A) = 2 cos?> A — I, rather than by repeated squaring. The sine function can be obtained
as sin(A) = cos(A — 71I). (See [SB80], [HS03], [HHO5].)

4. Matrix Square Root:

The most numerically reliable way to compute matrix square roots is via the Schur decomposition,
A = QT Q* [BH83]. Rather than use the Parlett recurrence, a square root U of the upper triangular factor
T can be computed by directly solving the equation U? = T. The choices of sign in the diagonal of U,
u;; = «/ti, determine which square root is obtained. When A is real, the real Schur decomposition can
be used to compute real square roots entirely in real arithmetic [Hig87].

Various iterations exist for computing the principal square root when A has no eigenvalues on R™. The
basic Newton iteration,

1
X = 5 (Xe+ X 'A),  Xo= A, (11.8)

is quadratically convergent, but is numerically unstable unless A is extremely well conditioned and its use
is not recommended [Hig86]. Stable alternatives include the Denman—Beavers iteration [DB76]

1 -1
Ximi== (X +Y ), Xo=A4,

Vi == (Y + X7, Yo =1,

N = N

for which limy_, oo Xx = AY? and limy_, o Yx = A~'/2, and the Meini iteration [Mei04]

Vi =-YiZ'M,  Yo=1-A,
Zkr1 = Z + 2Yky1, Zy=2(I1+ A),

for which Y, — 0 and Z; — 4A'/2. Both of these iterations are mathematically equivalent to (11.8) and,
hence, are quadratically convergent.
An iteration not involving matrix inverses is the Schulz iteration

Yip = 5 Y31 — ZiYa), Yo = A,
Ziy = 3531 — Z4Yi) Z, Zy=1,

for which Y; — AY2 and Z; — A~Y? quadratically provided that || diag(A — I, A — I)|| < 1, where the
norm is any consistent matrix norm [Hig97].
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5. Matrix Sign Function:

The standard method for computing the matrix sign function is the Newton iteration
1 -1
X1 = E(Xk +X), Xo=A,

which converges quadratically to sign(A), provided A has no pure imaginary eigenvalues. In practice, a
scaled iteration

1 1o
Xyt = X+ u X, Xo= A

is used, where the scale parameters iy are chosen to reduce the number of iterations needed to enter the
regime where asymptotic quadratic convergence sets in. (See [Bye87], [KL92].)
The Newton—Schulz iteration

1
Xip1 = EXk(sl - X)), Xo=A,

involves no matrix inverses, but convergence is guaranteed only for || I — A?|| < 1.
A Padé family of iterations

X1 = Xipu (1= X2 g, 1= XD) ™', Xo=4

is obtained in [KL91], where p,(€)/qem(€) is the [£/m] Padé approximant to (1 — £)~'/2, The iteration
is globally convergent to sign(A) for £ = m — 1 and £ = m, and for £ > m — 1 is convergent when
I — A%| < 1, with order of convergence £ + m + 1 in all cases.
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Bilinear forms are maps defined on V' x V, where V is a vector space, and are linear with respect to each of
their variables. There are some similarities between bilinear forms and inner products that are discussed
in Chapter 5. Basic properties of bilinear forms, symmetric bilinear forms, and alternating bilinear forms
are discussed. The latter two types of forms satisfy additional symmetry conditions.

Quadratic forms are obtained from symmetric bilinear forms by equating the two variables. They are
widely used in many areas. A canonical representation of a quadratic form is given when the underlying
field is R or C.

When the field is the complex numbers, it is standard to expect the form to be conjugate linear rather
than linear in the second variable; such a form is called sesquilinear. The role of a symmetric bilinear
form is played by a Hermitian sesquilinear form. The idea of a sesquilinear form can be generalized to
an arbitrary automorphism, encompassing both bilinear and sesquilinear forms as ¢-sesquilinear forms,
where ¢ is an automorphism of the field.

Quadratic, bilinear, and ¢-sesquilinear forms have applications to classical matrix groups. (See Chapter
67 for more information.)

12.1 Bilinear Forms

It is assumed throughout this section that V is a finite dimensional vector space over a field F.
Definitions:
A bilinear form on V isamap f from V x V into F which satisfies
flauy +buy,v) = af(u,v) + bf(uy,v), u,uuveV, a,bekF,
and

flu,avi +bvy) =af(u,vi) +bf(u,v2), w,vy,v, €V, a,beF.
12-1
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The space of all bilinear forms on V is denoted B(V, V, F).

Let B = (w1, Wy,... ,Wy) be an ordered basis of V and let f € B(V,V, F). The matrix representing
f relative to 3 is the matrix A = [a;;] € F"*" such that a;; = f(w;, w;).

The rank of f € B(V,V, F), rank( f), is rank(A), where A is a matrix representing f relative to an
arbitrary ordered basis of V.

f € B(V,V, F)isnondegenerate if its rank is equal to dim V, and degenerate if it is not nondegenerate.

Let A, B € F™". B is congruent to A if there exists an invertible P € F"*" such that B = PTAP.

Let f,g € B(V,V, F). g isequivalent to f if there exists an ordered basis B of V such that the matrix
of g relative to 3 is congruent to the matrix of f relative to 5.

Let T be a linear operator on V andlet f € B(V,V, F). T preserves f if f(Tu, Tv) = f(u,v) forall
uveV.

Facts:
Let f € B(V,V, F). The following facts can be found in [HK71, Chap. 10].

1. f isalinear functional in each of its variables when the other variable is held fixed.
2. Let B = (w1, wWa,...,wWp) be an ordered basis of V and let

n n
u= E a;wi, V= E b;w;.
i=1 i=1

Then,

n n

fv)=>""aib; f(wi,w)).

i=1 j=1

3. Let A denote the matrix representing f relative to B, and let [u] and [v] 3 be the vectors in F" that
are the coordinate vectors of u and v, respectively, with respect to B. Then f(u,v) = [u]gA[v] B

4. Let B and B’ be ordered bases of V, and P be the matrix whose columns are the 3-coordinates of
vectors in 3. Let f € B(V,V, F). Let A and B denote the matrices representing f relative to B
and B'. Then

B=PTAP.

5. The concept of rank of f, as given, is well defined.

6. ThesetL ={ve V: f(u,v) =0 for all u € V}isasubspaceof Vandrank(f) = dim V—dim L.
In particular, f is nondegenerate if and only if L = {0}.

7. Suppose that dim V = n. The space B(V, V, F) is a vector space over F under the obvious addition
of two bilinear forms and multiplication of a bilinear form by a scalar. Moreover, B(V, V, F) is
isomorphic to F"*".

8. Congruence is an equivalence relation on F"*".

9. Let f € B(V,V, F) be nondegenerate. Then the set of all linear operators on V, which preserve
f1s a group under the operation of composition.

Examples:

1. Let A€ F"™" . Themap f : F" x F" — F defined by

n

n
flu,v) = ul Av = Zzaif”ivf’ wveF"

i=1 j=1

is a bilinear form. Since f(e;, ¢j) = a;j, 1,j =1,2,...,n, f isrepresented in the standard basis
of F" by A. It follows that rank( f) = rank(A), and f is nondegenerate if and only if A is invertible.
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2. Let C € F™ and rank(C) = k. The map f : F™" x F™" — F defined by f(A,B) =
tr(ATCB) is a bilinear form. This follows immediately from the basic properties of the trace
function. To compute rank( f ), let L be defined as in Fact 6, thatis, L = {B € F"*" : tr(ATCB) =
0 for all A € F"™*"}. It follows that L = {B € F"™*" : CB = 0}, which implies that dim L =
n(m — k). Hence, rank( f) = mn — n(m — k) = kn. In particular, f is nondegenerate if and only
if C is invertible.

3. Let R[x;n] denote the space of all real polynomials of the form )}, a;x*. Then f(p(x),q(x)) =
p(0)q(0) + p(1)q(1) + p(2)q(2) is a bilinear form on R[x; n]. It is nondegenerate if » = 2 and
degenerate if n > 3.

12.2 Symmetric Bilinear Forms

It is assumed throughout this section that V is a finite dimensional vector space over a field F.

Definitions:
Let f € B(V,V, F). Then f is symmetricif f(u,v) = f(v,u) forallu,ve V.

Let f be a symmetric bilinear form on V, and let u,v € V; u and v are orthogonal with respect to f if
f(u,v) =0.

Let f beasymmetricbilinear form on V. The quadratic form correspondingto f isthemapg : V. — F
defined by g(v) = f(v,v), ve V.

A symmetric bilinear form f on a real vector space V is positive semidefinite (positive definite) if
f(v,v) = 0forallve V(f(v,v) > 0forall0 #ve V).

f is negative semidefinite (negative definite) if — f is positive semidefinite (positive definite).

The signature of a real symmetric matrix A is the integer 7 — v, where (7, v, §) is the inertia of A. (See
Section 8.3.)

The signature of a real symmetric bilinear form is the signature of a matrix representing the form
relative to some basis.

Facts:

Additional facts about real symmetric matrices can be found in Chapter 8. Except where another reference
is provided, the following facts can be found in [Coh89, Chap. 8], [H]85, Chap. 4], or [HK71, Chap. 10].

1. A positive definite bilinear form is nondegenerate.

2. An inner product on a real vector space is a positive definite symmetric bilinear form. Conversely,
a positive definite symmetric bilinear form on a real vector space is an inner product.

3. Let Bbe an ordered basis of V and let f € B(V, V, F). Let A be the matrix representing f relative
to BB. Then f is symmetric if and only if A is a symmetric matrix, thatis, A = AT.

4. Let f be a symmetric bilinear form on V and let g be the quadratic form corresponding to f.
Suppose that the characteristic of F is not 2. Then f can be recovered from g:

f(u,v) = %[g(u—i—v) —g(u)—g(v)] foralluveV.

5. Let f be a symmetric bilinear form on V and suppose that the characteristic of F is not 2. Then
there exists an ordered basis B of V' such that the matrix representing f relative to it is diagonal;
i.e,if A € F™" isa symmetric matrix, then A is congruent to a diagonal matrix.

6. Suppose that V isa complex vector space and f is a symmetric bilinear form on V. Letr = rank( f).
Then there is an ordered basis B of V such that the matrix representing f relative to Bis I, & 0.
In matrix language, this fact states that if A € C"*" is symmetric with rank(A) = r, then it is
congruent to I, & 0.

7. The only invariant of n x n complex symmetric matrices under congruence is the rank.

8. Two complex n X n symmetric matrices are congruent if and only if they have the same rank.
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(Sylvester’s law of inertia for symmetric bilinear forms) Suppose that V is a real vector space and
f is a symmetric bilinear form on V. Then there is an ordered basis B of V such that the matrix
representing f relative to it has the form I, @ —I, @ 05. Moreover, 7, v, and § do not depend on
the choice of 3, but only on f.

10. (Sylvester’slaw of inertia for matrices) If A € R"*" is symmetric, then A is congruent to the diagonal
matrix D = I, ® —I, @ 05, where (7, v,8) = in(A).

11. There are exactly two invariants of n x n real symmetric matrices under congruence, namely the
rank and the signature.

12. Two real n x n symmetric matrices are congruent if and only if they have the same rank and the
same signature.

13. The signature of a real symmetric bilinear form is well defined.

14. Two real symmetric bilinear forms are equivalent if and only if they have the same rank and the
same signature.

15. [Hes68] Let n > 3 and let A, B € R"*" be symmetric. Suppose that x € R", xTAx = x'Bx =
0 = x=0.Then3a,b € Rsuchthat aA + bB is positive definite.

16. The group of linear operators preserving the form f(u,v) = Y7 u;v; on R" is the real
n-dimensional orthogonal group, while the group preserving the same form on C” is the com-
plex n-dimensional orthogonal group.

Examples:

1. Consider Example 1 in section 12.1. The map f is a symmetric bilinear form ifand onlyif A = AT.

The quadratic form g corresponding to f is given by

n n
g(u):ZZaijuiuj, ueF".
i=1 j=1
2. Consider Example 2 in section 12.1. The map f is a symmetric bilinear form ifand onlyif C = C7.
3. The symmetric bilinear form f, on R* given by
fa(w,v)=u1vy — 2u1vy — 2upvy +auyvy, W,V E R)>, acRisa parameter,

is an inner product on R? if and only if a > 4.

4. Since we consider in this article only finite dimensional vector spaces, let V be any finite dimensional
subspace of C[0, 1], the space of all real valued, continuous functions on [0, 1]. Then the map
f:V x V— Rdefined by

1
flu,v) = / Put)v(t)dt, wveV,
0
is a symmetric bilinear form on V.
Applications:
1. Conic sections: Consider the set of points (x;, x,) in R?, which satisfy the equation

axi + bxyx; +cx; +dx; +ex;+ f =0,

wherea, b,c,d, e, f € R. The solution set is a conic section, namely an ellipse, hyperbola, parabola,

or a degenerate form of those. The analysis of this equation depends heavily on the quadratic form
a b/2

b2 c } . If the

solution of the quadratic equation above represents a nondegenerate conic section, then its type is

determined by the sign of 4ac — b2. More precisely, the conic is an ellipse, hyperbola, or parabola

if 4ac — b? is positive, negative, or zero, respectively.

ax? + bx;x; + cx3, which is represented in the standard basis of R? by A =
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2. Theory of small oscillations: Suppose a mechanical system undergoes small oscillations about

an equilibrium position. Let x;,x,,...,x, denote the coordinates of the system, and let x =
(x1,%2, ... ,%,) 7. Then the kinetic energy of the system is given by a quadratic form (in the velocities
X1y X2y nv 5 Xp) %XT Ax, where A is a positive definite matrix. If x = 0 is the equilibrium position,

then the potential energy of the system is given by another quadratic form %XTBX, where B = BT,
The equations of motion are A%X + Bx = 0. It is known that A and B can be simultaneously
diagonalized, that is, there exists an invertible P € R"*" such that P* AP and PT B P are diagonal
matrices. This can be used to obtain the solution of the system.

12.3 Alternating Bilinear Forms

It is assumed throughout this section that V is a finite dimensional vector space over a field F.

Definitions:

Let f € B(V,V,F). Then f is alternating if f(v,v) = 0forallv e V. f is antisymmetric if f(u,v) =
—f(v,u) forallu,ve V.
Let A € F"™". Then Ais alternatingifa;; =0, i = 1,2,... ,nandaj; = —a;;, 1 <i < j<n

Facts:
The following facts can be found in [Coh89, Chap. 8], [HK71, Chap. 10], or [Lan99, Chap. 15].

1. Let f € B(V,V, F) be alternating. Then f is antisymmetric because for allu,v € V,
fwv)+ f(vyu) = f(a+v,u+v)— f(u,u) — f(v,v) = 0.

The converse is true if the characteristic of F is not 2.

2. Let A € F™" be an alternating matrix. Then AT = — A. The converse is true if the characteristic
of F is not 2.

3. Let Bbean ordered basis of V and let f € B(V,V, F). Let A be the matrix representing f relative
to B. Then f is alternating if and only if A is an alternating matrix.

4. Let f be an alternating bilinear form on V and let r = rank( f). Then r is even and there exists an
ordered basis B of V such that the matrix representing f relative to it has the form

{_f ;}@{_f é}@...@[_j’ ﬂ@o

r/2 — times

Ir/2

There is an ordered basis 3; where f is represented by the matrix @ 0.

~L; 0
5. Let f € B(V,V, F) and suppose that the characteristic of F is not 2. Define:
fi:VxV—>F by fi(uv)= % [flw,v)+ f(v,u)], u,veV,
f:VxV—>F by fHuv)=31[f(w,v)— f(v,u)], uveV.
Then f; ( f,) is a symmetric (alternating) bilinear form on V, and f = f; + f,. Moreover, this
representation of f as a sum of a symmetric and an alternating bilinear form is unique.

6. Let A € F™" be an alternating matrix and suppose that A is invertible. Then # is even and A

In/2
—In /2 0
in n(n — 1)/2 variables, called the Pfaffian, such that det(A) = a?, where a € F is obtained by
substituting into the Pfaffian the entries of A above the main diagonal for the indeterminates.

is congruent to the matrix , so det(A) is a square in F. There exists a polynomial
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7. Let f be an alternating nondegenerate bilinear form on V. Then dim V = 2m for some positive
integer m. The group of all linear operators on V that preserve f is the symplectic group.

Examples:

1. Consider Example 1 in section 12.1. The map f is alternating if and only if the matrix A is an
alternating matrix.

2. Consider Example 2 in section 12.1. The map f is alternating if and only if C is an alternating
matrix.

3. LetC € F"". Define f : F"™" — F"™" by f(A, B) = tr(ACB — BCA). Then f is alternating.

12.4 p-Sesquilinear Forms

This section generalizes Section 12.1, and is consequently very similar. This generalization is required by
applications to matrix groups (see Chapter 67), but for most purposes such generality is not required, and
the simpler discussion of bilinear forms in Section 12.1 is preferred. It is assumed throughout this section
that V is a finite dimensional vector space over a field F and ¢ is an automorphism of F.

Definitions:

A ¢-sesquilinear form on Visamap f:V x V — F, which is linear as a function in the first variable
and ¢-semilinear in the second, i.e.,

flauy +buy,v) = af(uy,v) +bf(uy,v), u,u,veV, a,berF,
and
fu,avy +bvy) = @(a) f(u,vi) + @(b) f(u,v2), w,v;,v, €V, a,beF.

In the case F = C and ¢ is complex conjugation, a ¢-sesquilinear form is called a sesquilinear form.
The space of all p-sesquilinear forms on V is denoted B(V, V, F, ¢).

Let B = (w1, Wy, ... ,Wy) bean ordered basis of V andlet f € B(V, V, F, ¢). The matrix representing
f relative to 3 is the matrix A = [a;;] € F"*" such that a;; = f(w;, w;).

The rank of f € B(V,V, F,¢), rank( f), is rank(A), where A is a matrix representing f relative to an
arbitrary ordered basis of V.

f € B(V,V,F,p) is nondegenerate if its rank is equal to dim V, and degenerate if it is not
nondegenerate.

Let A = [a;;] € F™*". ¢(A) is the n x n matrix whose 7, j-entry is ¢(a;; ).

Let A, B € F™", Bisg-congruentto A ifthere existsan invertible P € F"*"suchthat B = PT Ap(P).

Let f,g € B(V,V,F,p). g is p-equivalent to f if there exists an ordered basis 5 of V such that the
matrix of g relative to 3 is ¢-congruent to the matrix of f relative to B.

Let T be a linear operator on V andlet f € B(V,V, F,¢). T preserves f if f(Tu, Tv) = f(u,v) for
alu,ve V.

Facts:

Let f € B(V,V, F,¢). The following facts can be obtained by obvious generalizations of the proofs of the
corresponding facts in section 12.1; see that section for references.

1. A bilinear form is a ¢-sesquilinear form with the automorphism being the identity map.
2. Let B = (w1, Wa,... ,Wp) be an ordered basis of V and let

n n
u= E a;Wij, V= E biwi.
i=1 i=1
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Then,

n n
fa,v) =" aipb;) f(wi, w)).
i=1 j=1
3. Let A denote the matrix representing the ¢-sesquilinear f relative to B, and let [u]3 and [v]3 be
the vectors in F", which are the coordinate vectors of u and v, respectively, with respect to 3. Then
f(u,v) = [u] 5 Ap([v]p).
4. Let B and B’ be ordered bases of V, and P be the matrix whose columns are the 3-coordinates of
vectorsin B'. Let f € B(V,V, F, ). Let A and B denote the matrices representing f relative to 3
and BB'. Then

B =PTAp(P).

5. The concept of rank of f, as given, is well defined.

6. ThesetL ={ve V: f(u,v) =0 for all u € V}isasubspaceof Vandrank(f) = dimV —dim L.
In particular, f is nondegenerate if and only if L = {0}.

7. Suppose that dim V' = n. The space B(V,V, F,¢) is a vector space over F under the obvious
addition of two ¢-sesquilinear forms and multiplication of a ¢-sesquilinear form by a scalar.
Moreover, B(V, V, F, ¢) is isomorphic to F"*".

8. @-Congruence is an equivalence relation on F"*".

9. Let f € B(V,V, F, ) be nondegenerate. Then the set of all linear operators on V which preserve
f is a group under the operation of composition.

Examples:

1. Let F = Q(v/5) = {a + b+/5:a,b € Q) and ¢(a + b+/5) = a — b+/5. Define the @-sesquilinear
form f on F2by f(u,v) = ule(v). f([1+ /53], [~2v5,—1+v/5]7) = (1 + V/5)(2v/5) +
3(—1—+5)=7-4/5.

The matrix of f with respect to the standard basis is the identity matrix, rank f =2, and f is
nondegenerate.

2. Let A€ F"™". Themap f:F" x F" — F defined by

f(u,v) = ul Ap(v) = ZZaijuiqo(vj), uveF"

i=1 j=1

isa @-sesquilinear form. Since f(ej,¢j) = a;j, i,j =1,2,...,n, fisrepresentedin thestandard
basis of F" by A. It follows that rank( f) = rank(A), and f is nondegenerate if and only if A is
invertible.

12.5 Hermitian Forms

This section closely resembles the results related to symmetric bilinear forms on real vector spaces. We
assume here that V is a finite dimensional complex vector space.

Definitions:

A Hermitian form on Visamap f:V x V — C, which satisfies
flauy +buy,v) = af(u,v) +bf(uy,v), wveV, abeC,
and

f(v,u) = f(u,v), uwveV.
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A Hermitian form f on V is positive semidefinite (positive definite) if f(v,v) > O forallv € V
(f(v,v) >0forall0 £Ave V).

f is negative semidefinite (negative definite) if — f is positive semidefinite (positive definite).

The signature of a Hermitian matrix A is the integer # — v, where (7, v, §) is the inertia of A. (See
Section 8.3.)

The signature of a Hermitian form is the signature of a matrix representing the form.

Let A, B € C"". B is *congruent to A if there exists an invertible S € C"*" such that B = S*AS
(where S* denotes the Hermitian adjoint of S).

Let f,¢ be Hermitian forms on a finite dimensional complex vector space V. g is *equivalent to f if
there exists an ordered basis B of V such that the matrix of g relative to 3 is *congruent to the matrix of
f relative to B.

Facts:

Except where another reference is provided, the following facts can be found in [Coh89, Chap. 8], [H]85,
Chap. 4], or [Lan99, Chap. 15]. Let f be a Hermitian form on V.

1. A Hermitian form is sesquilinear.
2. A positive definite Hermitian form is nondegenerate.
3. f isalinear functional in the first variable and conjugate linear in the second variable, that is,

f(u,avy +bvy) =af(u,vy) +bf(u,vy).

4. f(v,v) e Rforallve V.

5. An inner product on a complex vector space is a positive definite Hermitian form. Conversely, a
positive definite Hermitian form on a complex vector space is an inner product.

6. (Polarization formula)

4f(u,v) = flu+v,u+v)— flu—v,u—v)+
+if(u+iv,u+iv) —if(u—iv,u—iv).

7. Let B = (W1, Wa,... ,Wq) be an ordered basis of V and let

u= Z a;wj, V= Z biwi.
i=1 i=1
Then
fuv) =" aib; f(wi, wy).
i=1 j=1

8. Let A denote the matrix representing f relative to the basis 3. Then

f(u,v) = [ulfA[V]5.

9. The matrix representing a Hermitian form f relative to any basis of V is a Hermitian matrix.
10. Let A, B be matrices that represent f relative to bases B and B’ of V, respectively. Then B is
*congruent to A.
11. (Sylvester’s law of inertia for Hermitian forms, cf. 12.2) There exists an ordered basis B of V such
that the matrix representing f relative to it has the form

L, ®—1I, & 0s.

Moreover, 7, v, and § depend only on f and not on the choice of B.
12. (Sylvester’s law of inertia for Hermitian matrices, cf. 12.2) If A € C"*" is a Hermitian matrix, then
A is *congruent to the diagonal matrix D = I, & —1I, @ 05, where (7, v,8) = in(A).
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13. There are exactly two invariants of n x n Hermitian matrices under *congruence, namely the rank
and the signature.

14. Two Hermitian n X n matrices are *congruent if and only if they have the same rank and the same
signature.

15. The signature of a Hermitian form is well-defined.

16. Two Hermitian forms are *equivalent if and only if they have the same rank and the same signature.

17. [HJ91, Theorem 1.3.5] Let A, B € C"*" be Hermitian matrices. Suppose that x € C", x*Ax =
x*Bx =0 = x = 0.Then 3 a,b € R such that aA 4 bB is positive definite. This fact can be
obtained from [HJ91], where it is stated in a slightly different form, using the decomposition of
every square, complex matrix as a sum of a Hermitian matrix and a skew-Hermitian matrix.

18. The group of linear operators preserving the Hermitian form f(u,v) = Y/, u;#; on C" is the
n-dimensional unitary group.

Examples:

1. Let A € C"" be a Hermitian matrix. The map f:C" x C" — C defined by f(u,v) =
> i—1 2_i—y aiju;v; is a Hermitian form on C".

2. Letyry, ¥, ... , Yi belinear functionalson V,andleta;, a,, . .. ,ax € R. Thenthemap f: V x V— C
defined by f(u,v) = Z;‘:] a;¥; (u)y;(v) is a Hermitian form on V.

3. Let H € C"™" be a Hermitian matrix.
The map f:C"™" x C"™" — C defined by f(A, B) = tr(AH B*) is a Hermitian form.
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13.1 Multilinear Maps

Unless otherwise stated, within this section V, U, and W as well as these letters with subscripts, superscripts,
or accents, are finite dimensional vector spaces over a field F of characteristic zero.

Definitions:

Amap ¢ from V; X - - - X V,,, into U is a multilinear map (m-linear map) if it is linear on each coordinate,
ie,foreveryv;,v. € V;, i = 1,... ,mand for everya € F the following conditions hold:

(@) @Vl (s Vi + Vi V) = (Vi oo Vi Vi) (VY V)s
1 1
(b)) @(Vi,...ravi,..., V) = a@(Vi, .. .3 Viyeo s Vi),

The 2-linear maps and 3-linear maps are also called bilinear and trilinear maps, respectively.

If U = F then a multilinear map into U is called a multilinear form.

The set of multilinear maps from V; x - - - x V,,, into U, together with the operations defined as follows,
is denoted L(Vy,..., V,;; U). For m-linear maps ¢, ¥, anda € F,

(w + ¢)(Vl)- .- )Vm) = W(Vlw .. )Vm) + QD(Vl)- .- )Vm))
(a(p)(V1’~ . ~yVm) = a(/)(vl)- . ->Vm)~

Let (b;y,...,bj,) be an ordered basis of V;,i = 1,...,m. The set of sequences (ji,..., jm), 1 < ji <
n;,i = 1,...,m, will be identified with the set I'(n,. .., n,,) of maps « from {1, ..., m} into N satisfying
1<a(i)<n,i=1,...,m

Fora € I'(ny, ..., n,), the m-tuple of basis vectors (bi(1) - - - » Pma(m)) is denoted by by,.

13-1
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Unless otherwise stated I'(n3, . . ., 1) is considered ordered by the lexicographic order. When there is
no risk of confusion, I is used instead of ' (11, . . ., 11,,).

Let p, q be positive integers. If ¢ is an (p + g)-linear map from W) x --- x W, x V| x --- x V; into
U, then for each choice of w; in W;,i = 1,..., p, the map

(V1)~-~)Vq) > §0(W1)---)Wp;V1)-~-)Vq)>
from V; x --- x Vj into U, is denoted gy, _w,, i.€.
Oy (Vis o5 V) = QW1 ., Wy, VL, V).

Let n be alinear map from U into U’ and 6; alinear map from V/ into V;,i = 1,...,m.If (vy,...,v,)
©(V1,...,Vy) isa multilinear map from V; x --- x V,, into U, L(0y, . . .,0,,; 1)(¢) denotes the map from
from V| x --- x V into U’, defined by

(Vi Vi) = (e(61(v)), .., 0, (v) ).

Facts:
The following facts can be found in [Mar73, Chap. 1] and in [Mer97, Chap. 5].

1. If ¢ is a multilinear map, then ¢(vy,...,0,...,v,) = 0.
2. Theset L(V;,...,V,;U) is a vector space over F.
3. If ¢ is an m—linear map from V; x --- x V,, into U, then for every integer p, 1 < p < m, and

vi € V;,1 <i < p,themap ¢y,, v, isan (m — p)-linear map.

4. Under the same assumptions than in (3.) the map (vi,...,v,) Py, from V| x --- x V} into
L(Vyi1,..., Vi3 U), is p-linear. A linear isomorphism from L(Vi,..., V,, Vyy1,..., Vi3 U) into
L(Vi,..., Vs L(Vpyi1s- .. Vis U)) arises through this construction.

5. Let 1 be a linear map from U into U’ and 6; a linear map from V/ into Vj,i = 1,...,m. The map
L(61,...,0m51n) from L(V;,..., Vs U)into L(V],..., V) ;U’) is alinear map. When m = 1, and
U = U’ = F, then L(6,, I) is the dual or adjoint linear map ;" from V}* into V{*.

6. |C(ny,...,ny,)| = [/~ n; where| | denotes cardinality.

7. Let (y4)aer be a family of vectors of U. Then, there exists a unique m-linear map ¢ from
Vi X -+ x V, into U satisfying ¢(b,) = yy, for every o € I'.

8. If (uy,...,u,) is a basis of U, then (¢;, : @ € I';i = 1,...,m) is a basis of L(V;,...,V,,;U),
where ¢, is characterized by the conditions ¢;(bg) = 8q,pu;. Moreover, if ¢ is an m-linear map
from V; x --- x V,, into U such that foreacha € T,

n
‘P(ba) = Z aiqUj,
i=1

then
@ = Z AiaPia-
a,i

Examples:

The map from F™ into F, (ay,...,a,) — [/~ ai, is an m-linear map.

Let V be a vector space over F. The map (a,v) > avfrom F x V into V is a bilinear map.

The map from F” x F™into F, ((ay,...,a), (b1,...,by)) —> > a;b;, is bilinear.

Let U, V, and W be vector spaces over F. The map (6,7n) — 05 from L(V, W) x L(U, V) into

L (U, W), given by composition, is bilinear.

5. The multiplication of matrices, (A, B) — AB, from F"™*" x F"*P into F"™*?, is bilinear. Observe
that this example is the matrix counterpart of the previous one.

L .
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6. Let V and W be vector spaces over F. The evaluation map, from L(V, W) x V into W,
0,v) —> 0(v),

is bilinear.
7. The map

((alb azis. .. aaml))~ . .,(ﬂlm,ﬂzm,. . )amm)) i det([a,]])

from the Cartesian product of m copies of F™ into F is m-linear.

13.2 Tensor Products

Definitions:
Let Vi,..., Viy, P be vector spaces over F.Letv : Vj X --- x V,, —> P be a multilinear map. The pair
(v, P) is called a tensor product of Vi,...,V,,, or P is said to be a tensor product of Vi,..., V,, with

tensor multiplication v, if the following condition is satisfied:

Universal factorization property
If ¢ is a multilinear map from V; x --- x V,, into the vector space U, then there exists a unique
linear map, 4, from P into U, that makes the following diagram commutative:

ViXeoox Vg —Y—3 P
h

ie, hv = ¢.

If P is a tensor product of V;, . . ., V,, with tensor multiplication v, then P is denotedby VI ® - - - ® V},,
and v(vy,...,Vy,) is denoted by v ® - - - ® v,, and is called the tensor product of the vectors vy, . .., v,,.

The elements of V] ® - - - ® V,,, are called tensors. The tensors that are the tensor product of m vectors
are called decomposable tensors.

When Vi = .- =V, = V, the vector space V] ® - - - ® V,, is called the mth tensor power of V and
is denoted by ®™ V. It is convenient to define ®° V = F and assume that 1 is the unique decomposable
tensor of ®° V. When we consider simultaneously different models of tensor product, sometimes we use
alternative forms to denote the tensor multiplication like ®', ®, or ® to emphasize these different choices.

Within this section, Vi, ..., V,, are finite dimensional vector spaces over F and (b;j, ..., b;,,) denotes
abasisof V;,i = 1,...,m. When V is a vector space and x;,...,X; € V, Span({xy,...,Xx}) denotes the
subspace of V spanned by these vectors.

Facts:
The following facts can be found in [Mar73, Chap. 1] and in [Mer97, Chap. 5].

L IIVi® - ®Vyand V| Q' --- Q' V,, are two tensor products of V), . . ., V,,, then the unique linear
map hfrom Vi ® --- ® V,,into V] ® - - - Q' V,,, satisfying

hvi® - ®Vy) =i ® - @ vy

is an isomorphism.
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If (v(by))ger(n,...,n,) is @ basis of P, then the pair (v, P) is a tensor product of V;,..., V,,. This

is often the most effective way to identify a model for the tensor product of vector spaces. It also

implies the existence of a tensor product.

If P is the tensor product of V3, ..., V,, with tensor multiplication v, and h : P —— Q is a linear

isomorphism, then (hv, Q) is a tensor product of Vi,..., V,,.

When m = 1, it makes sense to speak of a tensor product of one vector space V and V itself is used

as a model for that tensor product with the identity as tensor multiplication, i.e., @' V = V.

Bilinear version of the universal property — Given a multilinear map from V; x - - - x V4 x U} x
- x U, into W,

(Vl) e ViU, ... )um) = (P(Vl) e ViU, .. )um))
there exists a unique bilinear map x from (V; ® --- @ ;) x (U; ® - -- ® U,,) into W satisfying

X(Vl®"'®Vk)ul®"'®um):(/)(Vl)“-)vkaul:“-)um))
Vi EV,‘u]' EU]', i=1,...,k,j=1,...,m.

Leta € F andv;,v, € Vi, i = 1,...,m. As the consequence of the multilinearity of @, the
following equalities hold:

@Vi® - @W+V)® - ®Vy

=VI®  ®Vi®  @VutVI® - ®V/® @ Vs
b)) avi® - ®Vyp)=@V)® - QVpy ==V ® - ® (avy,),
OOV - ®0 - -Qv, =0.

If one of the vector spaces V; is zero, then Vi ® - - - ® V,, = {0}.
Write b® to mean

b? = bla(l) R Q bma(m)-
Then
(b )aer

isabasis of Vi @ - - - ® V,,,. This basis is said to be induced by the bases (bi1, ..., biy,), i = 1,...,m.
The decomposable tensors span the tensor product V; ® - - - ® V,,,. Furthermore, if the set C; spans
Vi,i=1,...,m,thentheset{vi ® ---®v,, : v eC;, i =1,...,m}spans Vi ® - - - ® V,,,.
dim(V; ® --- ® V,,,) = [[2, dim(V}).

The tensor product is commutative,

VieV,=WQV,
meaning that if V; ® V; is a tensor product of V; and V;, then V; ® V; is also a tensor product of
V, and V; with tensor multiplication (v,,vy) = v; ® v;.
In general, with a similar meaning, for any o € S,
Viwg---®V,= 0(1)®"'®Va(m)-
The tensor product is associative,

VieV)@V:=Vi@(WheV)=VneVhes,

meaning that:
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(a) Atensor product V; ® V5 ® V; is also a tensor product of V; ® V; and V; (respectively of V; and
V2 ® V3) with tensor multiplication defined (uniquely by Fact 5 above) forv; € V;,i = 1,2, 3,
by (v ® v2) ® v3 = v| @ v, ® v3 (respectively by vi @ (v; ® v3) = vi @ v, ® v3).

(b) And, V; ® V,) ® V5 (respectively V; ® (V, ® V3) is a tensor product of V;, V5, V3 with tensor
multiplication defined by vi ® v, ® v3 = (vi ® v2) ® v3,v; € Vj, i = 1,2,3 (respectively
VIOV, ®Vs =V ® (V2 ®Vv3),v; € Vi, i = 1,2,3).

In general, with an analogous meaning,
M@ ®Vi)® (Vit1® @ Vi) =V1® - @V,
foranyk, 1 < k < m.

Let W; be a subspace of V;, i = 1,...,m. Then W} ® --- ® W, is a subspace of V] ® --- ® V,,,
meaning that the subspace of V} ® -+ ® V,, spanned by the set of decomposable tensors of the

form

W1®"'®Wm, wiEM)izl)'~~)m
is a tensor product of Wj,..., W, with tensor multiplication equal to the restriction of ® to
Wi x oo x Wy,

From now on, the model for the tensor product described above is assumed when dealing with
the tensor product of subspaces of V;.
Let Wy, W] be subspaces of V; and W, and W} be subspaces of V5. Then

(@ W@ W) N(W, @ W) = (W, N W) ® (W, N W).
(b) Wi @ (Wr + W) = (W) ® Wh) + (W) @ W)),
WM+ W)@ W, =(W, @ W) + (W, ® W).

(c) Assuming W, N W] = {0},
(W@ W)@ W, = (W, @ W) @ (W, @ W,).
Assuming W, N W, = {0},
WM® (W, @ W) = (W @ Wa) @ (W, @ Wy).
In a more general setting, if W;;, j = 1,..., p; are subspaces of V;, i € {1,...,m}, then

P 2
j=1 j=1

v €L (pr-pm)

If the sums of subspaces in the left-hand side are direct, then

il Pm
(@Wl]) ® - ® (@WU> = EB Wiy ® - ® Wiy (m)-
j=1 j=1

YEL(Pryespm)
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Examples:

1. The vector space F"™*" of the m x n matrices over F is a tensor product of F” and F" with
tensor multiplication (the usual tensor multiplication for F"*") defined, for (ay,...,a,) € F"
and (by,...,b,) € F", by

@1 s ) ® (b, by) = | [bl bn].

Am

With this definition, e; ® e; = E;; wheree;, e/]-, and E;; are standard basis vectors of F™, F", and
F mxn .

2. Thefield F, viewed as a vector space over F, is an mth tensor power of F with tensor multiplication
defined by

m
a1®--'®am=H‘1i, a,eF, i=1,...,m.
i=1
3. The vector space V is a tensor product of F and V with tensor multiplication defined by
a®v=av, a€F, velV.

4. Let U and V be vector spaces over F. Then L(V;U) is a tensor product U ® V* with tensor
multiplication (the usual tensor multiplication for L(V; U)) defined by the equality (u® f)(v) =
f(Mu, ueU,ve V.

5. Let Vi,...,V,, be vector spaces over F. The vector space L(V,...,V,;U) is a tensor product
L(Vy,...,V,; F) ® U with tensor multiplication

(p@u)(Vi,..., Vi) = @(Vi, ..., Vy)u.

6. Denoteby F "™ *"n the set of all families with elementsindexedin{1,...,m}x---x{1,...,n,} =
I'(ny,...,ny). The set F™"> > equipped with the sum and scalar product defined, for every
(ji>--+> jm) € T'(n1,...,ny), by the equalities

@jr,ein) + Bjojn) = (@i + Ojijn)s

alaj,. i) =(aaj, i) o€kF,

is a vector space over F. This vector space is a tensor product of F™, ..., F" with tensor multi-
plication defined by

m
(@105 01 ) @ - @ (A o> A, ) = <Haiji> |
i=1 (jioeens jm)ET

7. Thevector space L(V),. .., V,;; F)isatensor productof Vi = L(Vy; F),..., Vi = L(V,,; F) with
tensor multiplication defined by

g1® - ®gm(Vi,...,Vy) = Hgt(Vz)-
=1

Very often, for example in the context of geometry, the factors of the tensor product are vector
space duals. In those situations, this is the model of tensor product implicitly assumed.
8. The vector space

L(Vl)~-~’Vm;F)*
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9.

is a tensor product of Vi, ..., V,, with tensor multiplication defined by

Vi ® et ®Vm(W) = l/f(Vl,- . "Vm)'

The vector space L(Vy,. .., V5 F)isatensor product L(Vi, ..., Vis F)® L (Vit1, ..., Vius F) with
tensor multiplication defined, for everyv; € V;, i = 1,...,m, by the equalities

(‘P ® Iﬁ)(Vl»- . avm) = (P(Vl, v )Vk)w(vk+l)~ . >Vm)~

13.3 Rank of a Tensor: Decomposable Tensors

Definitions:

Letz € Vi ® --- ® V,,. The tensor z has rank k if z is the sum of k decomposable tensors but it cannot be
written as sum of | decomposable tensors, for any [ less than k.

Facts:

The following facts can be found in [Bou89, Chap. I, §7.8]and [Mar73, Chap. 1].

1. Thetensorz = vi @ w; + -+ + v, ® w; € V ® W has rank ¢ if and only if (v,...,v;) and
(W1, ...,w;) are linearly independent.

2. If the model for the tensor product of F” and F" is the vector space of m x n matrices over F with
the usual tensor multiplication, then the rank of a tensor is equal to the rank of the corresponding
matrix.

3. If the model for the tensor product U ® V* is the vector space L(V;U) with the usual tensor
multiplication, then the rank of a tensor is equal to the rank of the corresponding linear map.

4 xQ® - Q@xy, =0ifand only ifx; = 0 for some i € {1,...,m}.

5. Ifx;,y; are nonzero vectors of V;,i = 1,...,m, then

Span({x; ® - - ® X,n}) = Span({y1 @ - - - ® ym})
if and only if Span({x;}) = Span({y;}),i = 1,...,m.
Examples:
1. Consider as a model of F™ ® F", the vector space of the m x n matrices over F with the usual

tensor multiplication. Let A be a tensor of F" ® F". If rank A = k (using the matrix definition of
rank), then

A:M{I" 0} N,

0 0
where M = [x; - - - X,,,] is an invertible matrix with columns x, ..., X,, and
Y1
Y2
N=|.
Yn
is an invertible matrix with rows yy, . . ., y,. (See Chapter 2.) Then

A=xQ0y+  +X QVyx

has rank k as a tensor .



13-8 Handbook of Linear Algebra

13.4 Tensor Product of Linear Maps

Definitions:

Let 6; be a linear map from V; into U;, i = 1,...,m. The unique linear map h from V; ® - - - ® V,, into
Uy ® - ® U, satisfying, forallv; € V;,i =1,...,m,

hvi® - ®v,) =61(v]) @ ® 6,,(v)

is called the tensor product of 0y,...,0,, and is denoted by 0, ® - - - ® 6,,,.

Let A, = (af;)) be an r; X s; matrix over F, t = 1,...,m. The Kronecker product of A;,..., A,
denoted A; ® - - ® Ay, is the ([TI2, 1) x (TT/Z, s¢) matrix whose («, 8)-entry (¢ € I'(ry,...,r,) and
BeT(st,...,sm)is 11, a&)t)ﬁm. (See also Section 10.4.)

Facts:

The following facts can be found in [Mar73, Chap. 2] and in [Mer97, Chap. 5].
Let 6; be a linear map from V; into U;,i = 1,...,m.

1. If n; is a linear map from W into V;,i = 1,...,m,
61 ® - ®0)M - ®Nw) = (O1m) @ -+ ® (Olm)-

2. I\/1®~-®\/',,, = IV1 KR IV,,,-

3. Ker(0) ® - ®0,) =Ker(0)) @V, @ @V, + Vi®@Ker(0)) ® - @ Vi +---+ Vi ®--- ®
Vi1 ® Ker(0,,).
In particular, ) ® - - - ® 6, is one to one if ; is one to one, i = 1,...,m, [Bou89, Chap. II, §3.5].

4.0 - ®0,(Vi®---Q®V,) =0(V})®---®0,,(V,,). In particular 6; ® - - - ® 6,, is onto if §; is
onto,i =1,...,m.
In the next three facts, assume that 6; is a linear operator on the n;-dimensional vector space V;,
i=1,...,m.

5. tr(6) ® - @ 0,,) = [, tr(6;).

6. If o (6;) = {ai1,...,4ain;}, i = 1,...,m, then

01 ® - ®0,) = {Hai,a(i)}
i=1

7. det(91 ROLR - ® Gm) _ det(@l)nz"'"”’ det(@z)"l'"3”'”m . -det(@m)nl‘"z'""""‘.

8. Themapv : (0y,...,0,) > 0, Q- - - Q0,, is a multilinear map from L(Vi;Uy) X - - - X L(V,,3 Uy,)
noL(Vi®: - @ Vs Ui ® -+~ ® Upy).

9. The vector space L(V} ® --- ® V,,;U; ® --- ® U,,)) is a tensor product of the vector spaces
L(Vi;Un),. .., L(V,; Uy), with tensor multiplication (6;,...,0,) > 61 @ «-- @ O, :

LU ® @ L(VisUp) =L(V1 @ @ Vis U1 ® - ® Upy).

10. As a consequence of (9.), choosing F as the model for @™ F with the product in F as tensor
multiplication,

\/1*®~-~®Vm*=(Vl®---®Vm)*-
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11. Let (vij)j=1,.,» be an ordered basis of V; and (u;;) ;1,4 an ordered basis of U;, i = 1,...,m.
Let A; be the matrix of 6; on the bases fixed in V; and U;. Then the matrix of 0, ® - - - ® 0,, on
the bases (V9)ucrn, ny and (U2)acr(g,, g, (induced by the bases (vij)j—1, _, and (w;)j—1, _q»
respectively) is the Kronecker product of Al, A

i

A ®-® Ay

12. Let#y,...sfus T15e o>y b« - - » Iy De positive integers. Let A; be an n; X r; matrix, and B; be an
r; X t; matrix, i = 1,...,m. Then the following holds:
@ (A® - ®A,)BI® - ®By) =A1B® - ®A,By,
b)) (AR @A)R(A11® - QA=A Q- Ay

Examples:
1. Consider as a model of U ® V*, the vector space L(V;U) with tensor multiplication defined by

(u® f)(v) = f(v)u. Use a similar model for the tensor product of U’ and V*. Let n € L(U;U")
and 0 € L(V'; V). Then, forallé e U ® V* = L(V;U),

n®6*(&) =nko.

2. Consider as a model of F™ ® F", the vector space of the m x n matrices over F with the usual
tensor multiplication. Use a similar model for the tensor product of F” and F°*. Identify the set of
column matrices, F™*!, with F™ and the set of row matrices, F %", with F". Let Abeanr x m
matrix over F. Let 64 be the linear map from F™ into F" defined by

a)
a
QA(al)- .. )am) =A

Am

Let B beans x n matrix. Then, forall C € F™" = F" @ F",0, ® 05(C) = ACBT.

3. For every i = 1,...,m consider the ordered basis (b;j,...,bi,) fixed in V;, and the basis
(b, ... »b§s,») fixed in Uj. Let 6; be a linear map from V; into U; and let A; = (a;ik)) be the s; x n;
matrix of §; with respect to the bases (b;y, . .., biy,), (b}, ... ,b;si). Foreveryze Vi ® - - ® V,,

! 1y Nm

z= Z Z ... Z Cirninb1jy ® - @by

J1=1jo=1 Jm=1

= Z cabf’.

a€l (ny,...,1m)

Then, for 8 = (iy,...,im) € ['(s1,...,5y), the component c§1
basis elementb); ® - @b, of U1 ® - ® Uy is

: of ) ® - ® 0,,(2) on the

— _E : § : ) )
T Ml 11)]1 7m Jm Cltrsjm

=1 Jm=1

= Z )(H“ﬁ(:)y(:))
Mm

yel(n,...,
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4. If A = [a;;] isan p x g matrix over F and B isanr X s matrix over F, then the Kronecker product
of A and B is the matrix whose partition in r x s blocks is

ElllB alzB aqu

ale azzB e anB
A®B =

aplB asz Clqu

13.5 Symmetric and Antisymmetric Maps

Recall that we are assuming F to be of characteristic zero and that all vector spaces are finite dimensional
over F. In particular, V and U denote finite dimensional vector spaces over F.

Definitions:

Let m be a positive integer. When V; = V, = --- = V,,, = V L™(V;U) denotes the vector space of the
multilinear maps L(V},. .., V,,; U). By convention L%(V;U) = U.
An m-linear map ¢ € L™(V; U) is called antisymmetric or alternating if it satisfies

Y (Vo(1)s - o> Vo(m) = sgNO)Y (Vi,.. ., V), 0 €Sy,

where sgn(o) denotes the sign of the permutation o.
Similarly, an m-linear map ¢ € L™ (V; U) satistying

(p(vo(l)) e ava(m)) = QD(VI) ce )Vm)

for all permutations o € S, and for all vy, ..., v, in V is called symmetric. Let S”(V;U) and A" (V;U)

denote the subsets of L™ (V; U) whose elements are respectively the symmetric and the antisymmetric
m-linear maps. The elements of A™(V; F) are called antisymmetric forms. The elements of S”(V; F)
are called symmetric forms.

Let '), , be the set of all maps from {1, ..., m} into {1,...,n}, i.e,

Cpn=T(n,...,n).
N——

m times

The subset of ', ,, of the strictly increasing maps o ((1) < --- < a(m)) is denoted by Q,, ,. The subset
of the increasing maps o« € I'y,,, ((1) < --+ < «(m)) is denoted by G, ,,.

Let A = [a;;] beanm x n matrixover F.Leta € 'y ,,and 8 € I'y .. Then A[«|B] be the p x g-matrix
over F whose (i, j)-entry is aq(;) g(j)» i-€.,

AlalB] = [aai)p)]-

The mth-tuple (1,2, ...,m) is denoted by ¢,,. If there is no risk of confusion ¢ is used instead of ¢,,.
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Facts:

1.

If m > n, we have Q,,,, = #. The cardinality of I';,, is n™, the cardinality of Q,,, is (;), and the
cardinality of G, , is (W’n:‘ 1)

. A"™(V;U) and S™(V; U) are vector subspaces of L™ (V; U).
. Lety € L™(V;U). The following conditions are equivalent:

(a) v is an antisymmetric multilinear map.

(b) Forl <i < j<mandforallvy,...,v, €V,

w(vlw . ')Vifl’vj)VH»l)» . ')Vj—lavi)vj+l)~ .. )Vm)

==Y (Vs s Vie L Vi Vig - o > Vim LV Vigls oo o5 Vi)

(c) Forl <i <mandforallvy,...,v,, €V,

W(Vlw o Vig Vi ->vm) = _W(Vl)- Vi Vigg, . -)Vm)-

. Lety € L™(V;U). The following conditions are equivalent:

(a) v is a symmetric multilinear map.

(b) Forl1 <i < j <mandforallvy,...,v, €V,

W(Vl)- Vi L Vi Vit 5 Vi b Vis Vi g .. ~)Vm)

= 1/f(V1,- cH Vi L Vi Vig s e )ijl)vj)vj«l»l)- . )Vm)'

(c) Forl1 <i <mandforallvy,...,v,, €V,

W(vl)' c Vi Vis e ~>Vm) = W(VD- c s VisVig s ~)Vm)~

. When we consider L™(V; U) as the tensor product, L™ (V; F) ® U, with the tensor multiplication

described in Example 5 in Section 13.2, we have

A"(V;U)=A"(V;F)QU and S™(V;U)=S"(V;F)QU.

. Polarization identity [Dol04] If ¢ is a symmetric multilinear map, then for every m-tuple

(V1,...,Vn) of vectors of V, and for any vector w € V, the following identity holds:

(P(Vl,. . ~)vm) =

D e em@WAEVIF eV W IV £ V),

€1 Em

2’"m'

whereg; € {—1,+1},i=1,...,m

Examples:

1.

The map

((alb azis. .. aaml)’~ . .,(alm,ﬂzm,. .. )amm)) g det([a,]])

from the Cartesian product of m copies of F” into F is m-linear and antisymmetric.
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2. The map

((all)a2la e )aml)) ceed (alm)abna Y )amm)) - Per([aij])
from the Cartesian product of m copies of F into F is m-linear and symmetric.
3. The map ((ai,...,a,),(b1,...,b,)) = (a;jb; — bja;) from F" x F" into F"*" is bilinear anti-
symmetric.

4. Themap ((ai,...,a4), (b1,...,b,)) > (a;bj+b;a;)from F" x F"into F"*" isbilinear symmetric.
5. The map x from V" into A”(V; F)* defined by

XV s Vi) (W) = U (Viy oo Vi), Vi, s Vi €V,

is an antisymmetric multilinear map.
6. The map x from V" into S"(V; F)* defined by

XV oo V) (W) = (v, o V), V.,V €V,

is a symmetric multilinear map.

13.6 Symmetric and Grassmann Tensors

Definitions:
Leto € S,, be a permutation of {1, . .., m}. The unique linear map, from ®"V into ®"V satisfying
ViR - QVyb> Voi) ® -+ - @ Vo-i(m), Vi,...,Viy € v,
is denoted P (o).
Let ¢ be a multilinear form of L™ (V; F) and o an element of S,,, . The multilinear form (v, ..., v,,) —
Y (Vo(1)s - - - > Vo (m)) 1s denoted v,.

The linear operator Alt from ®"V into ®"V defined by

1
Alt := — Z sgn(o)P (o)

‘oeS,

is called the alternator. In order to emphasize the degree of the domain of Alt, Alt, is often used for the
operator having ®" V, as domain.
Similarly, the linear operator Sym is defined as the following linear combination of the maps P (o):

1
Sym = o Z P(o).

‘T oeSy

As before, Sym ,, is often written to mean the Sym operator having ®" V, as domain.

The range of Alt is denoted by A™ V, i.e., A" V = Alt (Q™ V), and is called the Grassmann space of
degree m associated with V or the mth-exterior power of V.

The range of Sym is denoted by \/" V, i.e., V" V = Sym (®Q™ V), and is called the symmetric space
of degree m associated with V or the mth symmetric power of V.

By convention

®OV:/\OV:\/0V:F.
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Assume m > 1. The elements of A” V that are the image under Alt of decomposable tensors of ®"” V
are called decomposable elements of A\ V. Ifx;,...,x, € V, x| A -+ A X;,; denotes the decomposable
element of A" V,

Xl/\.../\Xm:m!Alt(X1®"'®Xm)y

and x| A -+ - A X, is called the exterior product of xi, . . ., X,,. Similarly, the elements of \/” V that are
the image under Sym of decomposable tensors of ®” V are called decomposable elements of \/" V. If
Xi,...,Xm € V, X1 V - -+ V X, denotes the decomposable element of \/" V,

xl\/...\/xm=m!Sym(X1®"'®Xm)>

and x; V -+ V Xy, is called the symmetric product of x,, . . ., X,.
Let (by,...,b,) beabasis of V. If ¢ € I',,,, b2, b2, and b denote respectively the tensors

bZ =be1) ® - - - @ by(m),
by =Dbe() A Abagm,
b‘\; = ba(l) VeV ba(m).

Let n and m be positive integers. An n-composition of m is a sequence

/’L=(M1)~-~!Mn)

of nonnegative integers that sum to m. Let C,, , be the set of n-compositions of m.

Let A = (A,...,X,) be an n-composition of m. The integer A;! - - - A,,! will be denoted by A!.

Let o € I'y,,. The multiplicity composition of « is the n-tuple of the cardinalities of the fibers of «,
(lo= (1)}, ...,]a"t(n)]), and is denoted by A4.

Facts:
The following facts can be found in [Mar73, Chap. 2], [Mer97, Chap. 5], and [Spi79, Chap. 7].

1. A"V and \/™ Vare vector subspaces of ®" V.

2. The map ¢ +— P(o) from the symmetric group of degree m into L(®"V;®™V) is an
F -representation of S, i.e., P(07) = P(0)P(t) foranyo,t € S, and P(I) = Igny

3. Choosing L™(V; F), with the usual tensor multiplication, as the model for the tensor power,
@™ V*, the linear operator P (o) acts on L™(V; F) by the following transformation

(P(o)¥) = Vs

4. The linear operators Alt and Sym are projections, i.e., Alt?> = Alt and Sym? = Sym.
5. If m = 1, we have

Sym = Alt = I®1V = Iy.
6. N"V={ze @®"V : P(o)(z) =sgn(o)z, Yo € Syu}.

V"V ={ze®"V : P(o)(z) =z Yo € Sy}
8. Choosing L™ (V; F) as the model for the tensor power " V* with the usual tensor multiplication,

N

NV =a"(V;F) and \/" V*=S8"(V;F).
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1 1
RQv=Av=\Vv=w
10. ®*V =A*V & /> V. Moreover forz € ®* V,
z = Alt(z) 4+ Sym (z).
The corresponding equality is no more true in @™ V if m # 2.

11. A"V ={0}if m > dim(V).

12. If m > 1, any element of A" V is a sum of decomposable elements of A" V.
13. If m > 1, any element of \/™ V is a sum of decomposable elements of \/™ V.

14. Alt(P(0)z) = sgn(o)Alt (z) and Sym (P (0)(z)) = Sym (z),z € Q™ V.
15. The map A from V" into A" V defined for vy,...,v,, € V by

AViseo Vi) = VI A= AV,

is an antisymmetric m-linear map.
16. The map V from V" into \/" V defined for vy,...,v,, € V by

V(Viseo s Vi) =V Voo Vv,

is a symmetric m-linear map.
17. (Universal property for A\ V) Given an antisymmetric m-linear map ¢ from V™ into U, there
exists a unique linear map h from A" V into U such that
Y(Viseo s Vi) = h(Vi A== AVp), Vi,...,Vu €V,
i.e., there exists a unique linear map h that makes the following diagram commutative:
A
Vi ————= My

h
v

U

18. (Universal property for \/” V) Given a symmetric m-linear map ¢ from V" into U, there exists a
unique linear map h from \/" V into U such that

(0(V1,~~,Vm)=h(V1\/"'VVm), Vis.o s Vg €V,

i.e., there exists a unique linear map h that makes the following diagram commutative:

h
¢
U

Let p and q be positive integers.
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19.

20.

21.

22.

23.

24,
25.

26.

27.

(Universal property for ®" V-bilinear version) If v is a (p + q)-linear map from V?*1 into
U, then there exists a unique bilinear map x from ®” V x ®? V into U satisfying (recall Fact 5
in Section 13.2)

X(VI & - ®Vp,Vp+1 - ®Vp+q) = l/f(V1,. . -’Vp+q)-

(Universal property for A" V-bilinear version) If ¢ is a (p + q)-linear map from V?*1 into U
antisymmetric in the first p variables and antisymmetric in the last q variables, then there exists a
unique bilinear map x from A? V x A? V into U satisfying

XOVIA - AV Vot A AVpig) = U (Vi Vpag).

(Universal property for \/™ V-bilinear version) If ¢ is a (p + q)-linear map from V?*7 into U
symmetric in the first p variables and symmetric in the last q variables, then there exists a unique
bilinear map x from \/? V x \/? V into U satisfying

X(V1 VAR VVP’VPJFI VAR \/Vp+q) = (p(Vl,. . .,Vp+q).

If (by,...,b,) is a basis of V, then (bf?)aerw is a basis of ®"”'V, (b )acq,,, is a basis of A" V, and
(by)aca,,, is a basis of \/™ V. These bases are said to be induced by the basis (by,...,b,).
Assume L"(V; F) as the model for the tensor power of @™ V*, with the usual tensor multiplication.
Let (f1,. .., fu) be the dual basis of the basis (by, . ..,b,). Then:

(a) Foreverygp € L™(V;F),

o= ob)f.

aely,,
(b) Foreveryp € A™(V,F),

o= ob)f].

A€ Qumn
(c) Foreveryp € S™(V, F),
1 v
Y= ZG: E(p(ba)fa .
@EG

dim @™ V = n",dim A" V = ("), and dim \/" V = ("),
The family

((1by + -+ wpby) VooV (uiby + - - - + wpbi))pee,,.,
is a basis of \/"" V [Mar73, Chap. 3].
Letxy,...,X, bevectorsof Vandgi,..., g, forms of V*. Leta;; = g;(x;), i,j = 1,...,m. Then,

choosing (®™ V)* as the model for ®™ V* with tensor multiplication as described in Fact 10 in
Section 13.4,

§1® - ®gu(x A AXy) = det[aj;].

Under the same conditions of the former fact,

§1® - ®gux1 V- VXy,) =Dper[a;;].
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28. Let (f1,..., fu) be the dual basis of the basis (by, .. .,b,). Then, choosing (Q™ V)* as the model

for Q" V*:
(a)
(&) aer,,
is the dual basis of the basis (bf’)aepw of V.
(b)

(U212 .

is the dual basis of the basis (b} )acq,,, of A" V.
(c)

1
_ (f®
(}‘a! (fu )I\/ V)aeG,,,,,,

is the dual basis of the basis (b} )ycq,,, of V" V.

mn

Letvy,...,Vv,, bevectors of V and (by,...,b,) be a basis of V.

29. Let A = [a;j] be the n x m matrix over F such thatv; = >°" , a;jb;, j =1,...,m. Then:

(a)
m
Vi® - Qvy = Z (Haa(t),t> b?Q
ael’y,, \t=1
(b)
VIA - AV = Z det Aler|¢]b);
a€Qup
(c)
1
ViV Vv, = Z FperA[alt]bov[.
A€Gyy ¥
30. vi A-+- AV, =0ifand only if (vy,...,v,) is linearly dependent.

31. v; V.- VvV, = 0if and only if one of the v;s is equal to 0.
32. Letuy,...,u,, be vectors of V.

(a) If (vq,...,Vy) and (uy,...,u,) are linearly independent families, then
Span({u; A - -+ Auy,}) = Span({vy A -+ AV}
if and only if
Span({uy, ..., u,}) = Span({vy, ..., vi}).
(b) If (vi,...,v,,) and (uy,...,u,,) are families of nonzero vectors of V, then

Span({v; Vv --- vV v,}) = Span({u; V - -+ V u,})
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if and only if there exists a permutation o of S,, satisfying
Span({v;}) = Span({u,¢;)}), i=1,...,m.
Examples:
1. If m = 1, we have

Sym = Alt = Igiy, = Iv.

2. Consider as a model of ®? F”, the vector space of the n x n matrices with the usual tensor multi-
plication. Then A* F" is the subspace of the n1 x 1 antisymmetric matrices over F and \/* F" is the
subspace of the n x n symmetric matrices over F. Moreover, for (aj,...,a,),(b1,...,b,) € F™:
(@) (ars....a,) A (b1,...,b,) = [a;bj — biajli j=1,. -

(b) (ar,...;a,) VvV (by,...,b,) = [a;bj + biajlij=1,. n-
With these definitions, e; A e; = E;; — E;j; and e; V e; = E;; + E;, where ¢;, e;, and E;; are

standard basis vectors of F™, F", and F™*",
3. Forxe V,xV.---Vvx=mlx®--- ®x.

13.7 The Tensor Multiplication, the Alt Multiplication,
and the Sym Multiplication

Next we will introduce “external multiplications” for tensor powers, Grassmann spaces, and symmetric
spaces, Let p, g be positive integers.

Definitions:
The (p, q)-tensor multiplication is the unique bilinear map, (z,z') = z ® z’ from (R? V) x (QR? V)
into @711 V, satisfying

V® @V ®(Vps1 @ ®Vpig) =VI @+ @ Vpug.

The (p, q)-alt multiplication (briefly alt multiplication ) is the unique bilinear map (recall Fact 20 in
section 13.6), (z,2') — z A Z' from (AP V) x (A? V) into AP V, satisfying

(VIA AV AVl A AVpg) =VIA - AVpyg.

The (p, q)-sym multiplication (briefly sym multiplication ) is the unique bilinear map (recall Fact 21
in section 13.6), (z,2') > z Vv Z from (\/? V) x (\/1 V) into \/?*? V, satisfying

(V] \/"'\/VP)\/(VP+1\/"'\/Vp+q):V] \/"'\/Vp+q.

These definitions can be extended to include the cases where either p or g is zero, taking as multiplication
the scalar product.

Let m,n be positive integers satisfying 1 < m < n. Let @ € Q,,,. We denote by o¢ the element of
Q—m,n» whose range is the complement in {1, ..., n} of the range of & and by & the permutation of S,:

1 m m+1 - n

“=(a(1) o alm) at(1) .- aC(n)>'
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Facts:
The following facts can be found in [Mar73, Chap. 2], [Mer97, Chap. 5], and in [Spi79, Chap. 7].

1. The value of the alt multiplication for arbitrary elements z € A? V and z/ € A? V is given by

!
zAZ = %Alt (2 ®2).

2. The product of z € \/? V and z’ € \/? V by the sym multiplication is given by

!
zvZ = %Sym p+q(z® 2).
3. The alt-multiplication z A z’ and the sym-multiplication z Vv z are not, in general, decomposable
elements of any Grassmann or symmetric space of degree 2.
4. Let0 # z € A" V. Then z is decomposable if and only if there exists a linearly independent family
of vectors vy, ..., v, satisfyingz Av; = 0,i = 1,...,m.
5. If dim(V) = n, all elements of /\”_l V are decomposable.
6. The multiplications defined in this subection are associative. Therefore,

z®z/®z”,ze®pV, z’e®q v, z”e®r V;

P q r
w/\w'/\w”,we/\ v, w/e/\ v, w”e/\ V;

y\/y/\/y”,ye\/PV, y’e\/qv, y”e\/rV

are meaningful as well as similar expressions with more than three factors.
7. fw e AP V,w € AV, then

wAw= (=D w Aw'.
8. Ifye\/PV,y € V!V, then
yvy=yvy.

Examples:

1. When the vector space is the dual V* = L(V; F) of a vector space and we choose as the models of
tensor powers of V* the spaces of multilinear forms (with the usual tensor multiplication), then
the image of the tensor multiplication g ® ¥ (¢ € L?(V; F)andy € L1(V;F))on (Vi,...,Vpiq)
is given by the equality

(§0 ® l[,)(vla» . »)Vp+q) = (ﬂ(Vb. .. ,Vp)l/f(Vp+1,. .. ’VP+L])'

2. When the vector space is the dual V* = L(V; F) of a vector space and we choose as the models for
the tensor powers of V* the spaces of multilinear forms (with the usual tensor multiplication), the
alt multiplication of ¢ € A?(V; F) and ¢ € A1(V; F) takes the form

((p A I:”)(Vl)- .- )Vp+q)
1

= ol $gn(a)P(Vo(1)s - - +> Vo (p) )W (Vo (pt1)s - - > Vo(prq))-

0ES)iq

3. The equality in Example 2 has an alternative expression that can be seen as a “Laplace expansion”
for antisymmetric forms
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(‘/’/\w)(vlw--)va)
= D sgn(@@(Va)s- - > Vaip) V¥ Vac(1)s - - -5 Var(q))-

®€Qppiq

4. In the case p = 1, the equality in Example 3 has the form

(QD A I/I)(Vl) e )Vq+1)
q+1

= Z(—l)j+1(/)(Vj)¢(V1, e Vi L Vit ,Vq+1).
j=1

5. When the vector space is the dual V* = L(V; F) of a vector space and we choose as the models
of tensor powers of V* the spaces of multilinear forms (with the usual tensor multiplication), the
value of sym multiplication of ¢ € SP(V;F)and ¢ € S1(V; F) on (vy,...,Vpyq) is

(@ V)15 5 Vpig)

1
=—— > 0o > Vo)V (Va(pi1)s- - s Volpta)-
plq! 5
OE€Sp+q

6. The equality in Example 5 has an alternative expression that can be seen as a “Laplace expansion”
for symmetric forms

(‘/’V'/f)(vl’~-~avp+q)
= Z W(Va(l))--w‘ﬁx(p))lb(vaf(l),-~-7Vaf(q))-

2€Qppiq

7. In the case p = 1, the equality in Example 6 has the form

((0 \% W)(Vl’- . .,Vq+1)
q+1
= ODUVI - VLY V)
=1

13.8 Associated Maps

Definitions:

Let® € L(V;U). Thelinearmap 6 ® - - - ® 6 from ®™ V into @™ U (the tensor product of m copies of
0) will be denoted by @™ 6. The subspaces A™ V and \/" V are mapped by ®" 6 into A" U and \/" U,
respectively. The restriction of @™ 6 to A™ V and to \/™ V will be respectively denoted, A" 8 e \/™ 6.

Facts:
The following facts can be found in [Mar73, Chap. 2].



13-20 Handbook of Linear Algebra

1. Letvy,...,v, € V. The following properties hold:

@ A"OVIA- - AVE) =0V A AO (V).

(b) V"0V V- Vvy,) =0(v) V-V O(Vy).
2. Let6 € L(V;U) and n € L(W, V). The following equalities hold:

@ A"©On) = A\"©O)\" ().

(b) V™(Omn) = V"(O) V" ().
3. N"(Iy) = Inmys V"™ (Iy) = Iymy.
4. Let0,n € L(V;U) and assume that rank (6) > m. Then

N o=N"n

ifand only if 0 = ananda™ = 1.
5. Letd,n € L(V;U). Then V"0 = \/" pifand only if @ = anp and a™ = 1.
6. If 6 is one-to-one (respectively onto), then A" 6 and \/™ 6 are one-to-one (respectively onto).

From now on 6 is a linear operator on the n-dimensional vector space V.
7. Considering /" 6 as an operator in the one-dimensional space \" V,

(A\'0)(z) = det(®)z, forall ze \"v.
8. If the characteristic polynomial of 6 is
po(x) =x"+ > (=1 ax"",
i=1

then

a; =tr(/\i9>, i=1,...,n.

9. If 0 has spectrum o (6) = {A;,...,A,}, then

(N )= (M0} (V70 = [T

€ Quu 2 €G

10.
det (/\"6) =det®)(),  det (\/"6) = der(e)(").
Examples:

1. Let A be the matrix of the linear operator 6 € L(V; V) inthebasis (b, ...,b,). Thelinear operator
on A" V whose matrix in the basis (b} )4eq,,, is the mth compound of A is \™ 6.

13.9 Tensor Algebras

Definitions:

Let A be an F -algebra and (A )ken a family of vector subspaces of A. The algebra A is graded by (A )ken
if the following conditions are satisfied:

(a) A= @kEN Ak
(b) AjA; C A;yjforeveryi,j e N.
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The elements of Ay are known as homogeneous of degree k, and the elements of | J, . Ak are called
homogeneous.

By condition (a), every element of A can be written uniquely as a sum of (a finite number of nonzero)
homogeneous elements, i.e., given u € A there exist uniquely determined u; € Ay, k € N satisfying

u:Zuk.

keN

These elements are called homogeneous components of u. The summand of degree k in the former
equation is denoted by [u]y.

From now on V is a finite dimensional vector space over F of dimension 7. As before ®* V denotes
the kth-tensor power of V.

Denote by (9 V the external direct sum of the vector spaces @* V, k € N.Ifz; € ®' V, z; is identified
with the sequence z € ) V whose ith coordinate is z; and the remaining coordinates are 0. Therefore,
after this identification,

RV=-BR'v.

keN

Consider in ) V the multiplication (x, y) - x ® y defined for x,y € @ V by

[x®y]k: Z[x]r®[y]s> kEN)

rseN
r+s=k

where [x], ® [y]; is the (r, s)-tensor multiplication of [x], and [ y]; introduced in the definitions of Section
13.7. The vector space Q) V equipped with this multiplication is called the tensor algebra on V.

Denote by A V the external direct sum of the vector spaces ANV, ke N.Ifz; € 'V, z is identified
with the sequence z € A\ V whose ith coordinate is z; and the remaining coordinates are 0. Therefore,
after this identification,

Av=@A'v.

keN

Recall that /\k V = {0} ifk > n. Then
Ak
AV=DAV
k=0
and the elements of /A V can be uniquely written in the form

z0+z1+ -+ zy oz e/\l V, i=0,...,n.
Consider in A V the multiplication (x, y) = x A y defined, for x,y € A V, by

xAyle= Y. IxlAlyls kefo,...,n},
r,s€{0,...,n}
r+s=k

where [x], A [y]; is the (r,s)-alt multiplication of [x], and [y]; referred in definitions of Section 13.7.
The vector space A V equipped with this multiplication is called the Grassmann algebra on V.

Denote by \/ V the external direct sum of the vector spaces VAV, keN.

If z; € \/' V, we identify z; with the sequence z € \/ V whose ith coordinate is z; and the remaining
coordinates are 0. Therefore, after this identification

Vv=@V'r

keN
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Consider in \/ V' the multiplication (x, y) + x V y defined for x,y € \/ V by

xvylk= > I[xlVIyl, keN,
rseN
r+s=k
where [x], V [y]; is the (r, s)-sym multiplication of [x], and [y]; referred in definitions of Section 13.7.
The vector space \/ V equipped with this multiplication is called the symmetric algebra on V.

Facts:
The following facts can be found in [Mar73, Chap. 3] and [Gre67, Chaps. II and III].

1. The vector space Q) V with the multiplication (x,y) > x ® y is an algebra over F graded by
(®k V)ken, whose identity is the identity of F = ®0 V.

2. The vector space A V with the multiplication (x,y) + x A y is an algebra over F graded by
(/\k V)ken Whose identity is the identity of F = /\O V.

3. The vector space \/ V with the multiplication (x,y) + x V y is an algebra over F graded by
(Vk V)ken whose identity is the identity of F = V0 V.

4. The F-algebra (¥ V does not have zero divisors.

5. Let Bbean F -algebraand alinear map from V into B satisfying0 (x)0(y) = —6(y)0(x) for all x,y €
V. Then there exists a unique algebra homomorphism % from /A V into B satisfying h|V = 6.

6. Let Bbean F -algebraand 6 alinear map from V into B satisfying 0 (x)0 (y) = 0(y)0(x), forall x,y €
V. Then there exists a unique algebra homomorphism # from \/ V into B satisfying h|V = 6.

7. Let (by,...,b,) be a basis of V. The symmetric algebra \/™ V is isomorphic to the algebra of
polynomials in n indeterminates, F [x;, ..., x,], by the algebra isomorphism whose restriction to
V is the linear map that maps b; into x;,i = 1,...,n.

Examples:

1. Let xy,...,x, be n distinct indeterminates. Let V be the vector space of the formal linear com-
binations with coefficients in F in the indeterminates x;, . .., x,. The tensor algebra on V is the
algebra of the polynomials in the noncommuting indeterminates x;, . .., x, ([Coh03], [Jac64]).
This algebra is denoted by

F(x1,...,%x,).

The elements of this algebra are of the form

f(xl)- .. )xn) = Z Z CaXa(1) R & Xa(m)>

meN ael,,,

with all but a finite number of the coefficients ¢, equal to zero.

13.10 Tensor Product of Inner Product Spaces

Unless otherwise stated, within this section V, U, and W, as well as these letters subscripts, superscripts,
or accents, are finite dimensional vector spaces over R or over C, equipped with an inner product.

The inner product of V is denoted by ( , ). When there is no risk of confusion ( , ) is used instead. In
this section F means either the field R or the field C.

Definitions:

Let 6 be alinear map from V into W. The notation 6* will be used for the adjoint of 6 (i.e., the linear map
from W into V satisfying (6(x),y) = (x,0*(y)) forallx € Vandy € W).
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The unique inner product (, Y on V; ® - - - ® V,, satisfying, for everyv;,u; € V;, i = 1,...,m,
m
(Vl R RV, ® -+ ®um> = H(vhui)\/,')
i=1

is called induced inner product associated with the inner products (, )y, i =1,...,m.
For each v € V, let f, € V* be defined by f,(u) = (u,v). The inverse of the map v — f, is denoted
by ov (briefly ¢). The inner product on V*, defined by

(fig) ={e(g)o(fMNv

is called the dual of {, )v.
Let U, V be inner product spaces over F. We consider defined in L(V; U) the Hilbert-Schmidt inner
product, i.e., the inner product defined, for 6,n € L(V;U), by (0, n) = tr(n*6).

Fromnowon V; ® --- ® V,, is assumed to be equipped with the inner product induced by the inner
products (, )y, i = 1,...,m.

Facts:
The following facts can be found in [Mar73, Chap. 2].

1. The map v — f, is bijective-linear if F = R and conjugate-linear (i.e., cv > ¢ fy) if F = C.

2. If (b1, ..., bjy,,) isan orthonormal basis of V;,i = 1,...,m, then {b® : o € I'(n,...,n,)}isan
orthonormal basisof Vi ® - - - ® V..

3. Let6; € L(Vi; W), i = 1,...,m, with adjoint map 6 € L(W;, V;). Then,

01® - ®60,)"=6®---®06,.

4. If6; € L(V;;V;) is Hermitian (normal, unitary),i = 1,...,m, then8; ® - - - ® 6,,, is also Hermitian
(normal, unitary).

5. Let® € L(V; V). If@®™ 6 (\/™ 0) is normal, then 6 is normal.

6. Let & € L(V; V). Assume that 6 is a linear operator on V with rank greater than m. If A" 0 is
normal, then 6 is normal.

7. fuy, .. W Vi, ..,V €V

(WA Ay, Vi A - AVy) = mldet(u;, v;),

(U V-V, v V.- Vv,) =mlper(u;,v;).

8. Let(by,...,b,) bean orthonormal basis of V. Then the basis (b?)aerw is an orthonormal basis of

RV, (4/ ﬁbQ)QEQW is an orthonormal basis of A" V,and (,/ mb;)aegmm is an orthonormal
basis of \/" V.

Examples:

The field F (recall that F = R or F = C) has an inner product, (a,b) — (a,b) = ab. This inner product
is called the standard inner product in F and it is the one assumed to equip F from now on.

1. When we choose F as the mth tensor power of F with the field multiplication as the tensor
multiplication, then the canonical inner product is the inner product induced in ®"” F by the
canonical inner product.

2. When we assume V as the tensor product of F and V with the tensor multiplication a ® v = av,
the inner product induced by the canonical inner product of F and the inner product of V is the
inner product of V.
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3. Consider L(V;U) as the tensor product of U and V* by the tensor multiplication (u ® f)(v) =
f(v)u. Assume in V* the inner product dual of the inner product of V. Then, if (v;,...,v,) isan
orthonormal basis of V and 6,n € L(V;U), we have

Z 0(vi)sn = tr(n*0),
]=1

i.e., the associated inner product of L (V; U) is the Hilbert-Schmidt one.

4. Consider F™*" as the tensor product of F™ and F" by the tensor multiplication described in
Example 1 in section 13.2. Then if we consider in F” and F" the usual inner product we get in
F™*" as the induced inner product, the inner product

(A,B) > (B A) = > a;jby ;.

5. Assume that in V;* is defined the inner product dual of ( , )y, i = 1,...,m. Then choosing
L(Vi,...,V,; F) as the tensor product of V..., V7, with the usual tensor multiplication, the
inner product of L(V4, ..., V,,;; F) induced by the duals of inner productson V*, i = 1,...,mis
given by the equalities

= Z (p(bl,oz(l)) “ee )bm,a(m))‘(/f(bl,a(l): ‘e rbm,oz(m))~

ael’

13.11 Orientation and Hodge Star Operator

In this section, we assume that all vector spaces are real finite dimensional inner product spaces.

Definitions:

Let V be a one-dimensional vector space. The equivalence classes of the equivalence relation ~, defined
by the condition v ~ v’ if there exists a positive real number a > 0 such that v/ = av, partitions the set
of nonzero vectors of V into two subsets.

Each one of these subsets is known as an open half-line.

An orientation of V is a choice of one of these subsets. The fixed open half-line is called the positive
half-line and its vectors are known as positive. The other open half-line of V is called negative half-line,
and its vectors are also called negative.

The field R, regarded as one-dimensional vector space, has a “natural” orientation that corresponds to
choose as positive half-line the set of positive numbers.

If V is an n-dimensional vector space, /\" V is a one-dimensional vector space (recall Fact 22 in section
13.6). An orientation of V is an orientation of \" V.

A basis (by,...,b,) of V is said to be positively oriented if b; A --- A b, is positive and negatively
oriented if b; A - - - A b, is negative.

Throughout this section A" V will be equipped with the inner product { , )., a positive multiple of
the induced the inner product, defined by

where the inner product on the right-hand side of the former equality is the inner product of ®" V
induced by the inner product of V. This is also the inner product that is considered whenever the norm
of antisymmetric tensors is referred.
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The positive tensor of norm 1 of A” V, uy, is called fundamental tensor of V or element of volume of V.

Let V be a real oriented inner product space . Let 0 < m < n.

The Hodge star operator is the linear operator %, (denoted also by %) from A" V into A"V
defined by the following condition:

(FemW),w ) uy =w AW, forall w e /\n_m V.

Let n > 1 and let V be an n-dimensional oriented inner product space over R. The external product
on V is the map

(Voo 5 V1) B VX e XV = Y1 (VEA - A V),

from V" linto V.

Facts:

The following facts can be found in [Mar75, Chap. 1] and [Sch75, Chap. 1].

[9)]

If (by, . ..,b,) is a positively oriented orthonormal basis of V, thenuy =b; A--- A b,,.

. If (by,...,b,) is a positively oriented orthonormal basis of V, then

*mb;\ = sgn(&)bgt, a € Qm,n)

where & and «¢ are defined in Section 13.7.

. Let(vy,...,v,)and (uy,...,u,) betwobasesof Vandv; = > a;ju;, j =1,...,n Let A = [a;;].

Since (recall Fact 29 in Section 13.6)
ViAo AV, =det(A)u; A--- Au,

two bases have the same orientation if and only if their transition matrix has a positive determinant.

. % is an isometric isomorphism.
. % is the linear isomorphism that maps 1 € R onto the fundamental tensor.
KK = (_l)m(n_m)l/\nfm Ve

Let V be an n-dimensional oriented inner product space over R.

. If m # 0 and m # n, the Hodge star operator maps the set of decomposable elements of A" V

onto the set of decomposable elements of A"~ V.
Let (xi,...,X;,) be a linearly independent family of vectors of V. Then

VIA S AYnem = Km(Xi A AXpy)

if and only if the following three conditions hold:

(@) Y1+ >Vn-m € Span({xl,...,xm})L;
®) yr A AVuemll = X1 Ao A Xl

() (Xis-+->»Xpm»Y1>--->Yn—m) s a positively oriented basis of V.
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9. If (vq,...,V,—1) islinearly independent, v; x - - - X v,,_; is completely characterized by the following
three conditions:

(@) vi X -+ X V1 € Span({vy,..., v, )T
®) vi x - x vyl =llvi A AVl
() (V1,-.-,Vy—1,V1 X « -+ X V,_1) is a positively oriented basis of V.

10. Assume V* = L(V;F), with dim(V) > 1, is equipped with the dual inner product. Consider
L™(V; F) as a model for the mth tensor power of V* with the usual tensor multiplication. Then
A" V¥ = A™(V; F). If A is an antisymmetric form in A™(V; F), then %,,(1) is the form whose
valuein (vy,...,V,_,,)isthe componentin the fundamental tensor of ALA@ L (Vi) A- - - A0~ (Vi pm),
where g is defined in the definition of section 13.10.

*m()\)(vlw .. anfm)uV* =AA Qil(vl) JAREERAN Qil(vnfm)-

11. Assuming the above setting for the Hodge star operator, the external product of vy, ..., v, is the
image by o of the form (uy+)y,, v, , (recall that (uy«)y, v, ,(vy) = uy=(vi,...,v_1, V), Le,
Vi X X Vo = 0((uve )y, )-
The preceeding formula can be unfolded by stating that for each v € V, (v,v; X -+ X v,_1) =
Uy (VI) e )Vn—lrv)‘
Examples:

1. If V has dimension 0, the isomorphism % from A’ V = R into A’ V = R is either the identity
(in the case we choose the natural orientation of V) or —I (in the case we fix the nonnatural
orientation of V).

2. When V has dimension 2, the isomorphism % is usually denoted by J. It has the property J 2 = —1I
and corresponds to the positively oriented rotation of 7 /2.

3. Assume that V has dimension 2. Then the external product is the isomorphism J.

4. If dim(V) = 3, the external product is the well-known cross product.
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In this chapter, we have collected classical equalities and inequalities regarding the eigenvalues, the singular
values, the determinant, and the dimensions of the fundamental subspaces of a matrix. Also included is a
section on identities for matrix inverses. The majority of these results can be found in comprehensive books
on linear algebra and matrix theory, although some are of specialized nature. The reader is encouraged to
consult, e.g., [HJ85], [HJ91], [MM92], or [Mey00] for details, proofs, and further bibliography.

14.1 Eigenvalue Equalities and Inequalities

The majority of the facts in this section concern general matrices; however, some classical and frequently
used results on eigenvalues of Hermitian and positive definite matrices are also included. For the latter,
see also Chapter 8 and [HJ85, Chap. 4]. Many of the definitions and some of the facts in this section are
also given in Section 4.3.

Facts:

1. [HJ85, Chap. 1] Let A € F"*", where F = C or any algebraically closed field. Let ps(x) =
det(xI — A) be the characteristic polynomial of A,and A}, A, . . ., A, be the eigenvalues of A. Denote
by Sk(A1,. .., Ax)(k = 1,2,...,n) the kth elementary symmetric function of the eigenvalues (here
abbreviated Si(1)), and by Si(A) the sum of all k x k principal minors of A. Then

* The characteristic polynomial satisfies

pax)=(x = A)(x = 2y) - (x = Xy)
=x" = S (A)x" T 4+ ST+ (=D, (W)x + (—1)"S, (1)
=x" — S (A)x" N+ S (A)x" 2 4 4 (=)', ix + (=1)"S,(A).

14-1
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° Sk()") = Sk()“l)~ . ~))\n) = Sk(A)(k =12,.. .,1’1).
ctrA=S1(A)=>"a;=>" % and detA=S,(A) =[], A.

. [HJ85, (1.2.13)] Let A(i) be obtained from A € C"*" by deleting row and column i. Then

Ix PA(X) ZPA:)(X)

Facts 3 to 9 are collected, together with historical commentary, proofs, and further references, in
[MM92, Chap. III].

. (Hirsch and Bendixson) Let A = [a;;] € C"*" and A be an eigenvalue of A. Denote B = [b;;] =

(A+ A*)/2and C = [cjj] = (A — A*)/(2i). Then the following inequalities hold:

[A] < nmax|ajl,
i,j

|ReA| < nmax |bjl,
i,j

|ImA| < n max|c;.
ij

Moreover, if A + AT € R™*", then

nin—1)

ImA| < max|cj
1| < max|ely | =

. (PicK’s inequality) Let A = [a;] € R"*" and A be an eigenvalue of A. Denote C = [¢;] =

(A — AT)/2. Then

b4
[ImA| < max |cjj| cot | — ] .
i,] 2n

. Let A = [a;] € C™" and A be an eigenvalue of A. Denote B = [b;] = (A 4+ A*)/2 and

C = [cjj] = (A — A*)/(2i). Then the following inequalities hold:

min{u : u € 0(B)} <ReAr < max{u : u € o(B)},

min{v:v € 0(C)} <ImA <max{v:v € o(C)}.

(Schur’s inequality) Let A = [a;] € C"*" have eigenvalues A; (j = 1,2,...,n). Then
n n
ST =D eyl
= ij=1

with equality holding if and only if A is a normal matrix (i.e., A*A = AA*). (See Section 7.2 for
more information on normal matrices.)

(Browne’s Theorem) Let A = [a;] € C"*"and A;(j = 1,2,...,n) be the eigenvalues of A ordered
so that |A;| > |X;| > -+ > |A,]. Letalso oy > 0, > -+ > 0, be the singular values of A, which
are real and nonnegative. (See Section 5.6 for the definition.) Then

op Z|Ajl <01 (j=1,2,...,n).

In fact, the following more general statement holds:
k k k
HgnfiJrl = H A ] < Hgi,
i=1 i=1 i=1

for every k € {1,2,...,n} and every k-tuple (t;,t,. .., #) of strictly increasing elements chosen
from {1,2,...,n}.
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10.

11.

12.

Let Ae C"™"and R;, C; (i = 1,2,...,n) denote the sums of the absolute values of the entries of
A in row 7 and column i, respectively. Also denote

R = max{R;} and C = max{C;}.
1 1
Let X be an eigenvalue of A. Then the following inequalities hold:

|)\'| <maxiw < R+C)
- 2 - 2
|A] < max; o/R;C; < +/RC,
[A] < min{R, C}.

(Schneider’s Theorem) Let A = [a;] € C"" and A;(j = 1,2,...,n) be the eigenvalues of A
ordered so that [A;| > |A;| > - -+ > |A,]. Let x = [x;] be any vector in R” with positive entries and
define the quantities

n
asla
ri=zw (i=12,...,n).

=1 i

Then

k

ri, (k=1,2,...,n)
1

k
I11x1 =<
j=1 j

for all n-tuples (i, 1y, . . ., 1,) of elements from {1, 2, ...,n} such that

ri, =T = 21,

1

[HJ85, Theorem 8.1.18] For A = [a;;] € C"*", let its entrywise absolute value be denoted by
|A] = [laj|]. Let B € C"*" and assume that |A| < B (entrywise). Then

p(A) =< p(lA]) < p(B).
[H)85, Chap. 5, Sec. 6] Let A € C"™" and || - || denote any matrix norm on C"™". (See
Chapter 37). Then
p(A) < ||A]
and

Jim [LASYE = p(A).

[HJ91, Corollary 1.5.5] Let A = [a;] € C"*". The numerical range of A € C"*" is W(A) =
{v*Av € C: v € C" with v*v = 1} and the numerical radius of A € C"*"isr(A) = max{|z| : z €
W(A)}. (See Chapter 18 for more information about the numerical range and numerical radius.)
Then the following inequalities hold:

r(A™) < [r(A]" (m=12,...),

A < v < ||A||14;||A||oo)
A
142 _ ) a) < jas,
A AT
r(4) < r(1A) = AHIAL - Ghere 1AL = (a1

2
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Moreover, the following statements are equivalent:
(a) r(A) = [ All2.

(b) p(A) = [IAll.

(©) A"l = I All3.

@ 1A L = 1Al (k=1,2,...).

Facts 13 to 15 below, along with proofs, can be found in [HJ85, Chap. 4].
13. (Rayleigh-Ritz) Let A € C"*" be Hermitian (i.e., A = A*) with eigenvalues A; > A > -+ > A,,.

Then
(a) Apx*x < x*Ax < Mx*x forall x € C".
*
x*Ax
(b) A = max = max x*Ax.
x#0  x*x x*x=1
. x*Ax L.
(¢) Ay = min = min x* Ax.
x#£0  x*x x*x=1
14. (Courant-Fischer) Let A € C"" be Hermitian with eigenvalues .; > A, > --- > A,. Let
k €{1,2,...,n}. Then
. x*Ax
Ak = min max
W1, W2y Wk €C" x£0,xeCM xX*x
xLlwi,Wos s Wi_1
. x*Ax
= max min .
W1, W2 oWy €C" x7£0,xCH xX*x

XLwi,wosWyok

15. (Weyl) Let A,B € C"™" be Hermitian. Consider the eigenvalues of A, B, and A + B, de-
noted by A;(A), X;(B), A; (A + B), respectively, arranged in decreasing order. Then the following
hold:

(a) Foreachk € {1,2,...,n},
Ae(A) + 2 (A) < A(A+ B) < M(A) + A1 (B).
(b) For every pair j,k € {1,2,...,n}suchthat j + k >n+1,
Ajrk—n(A+ B) > X;(A) + Ak(B).
(c) For every pair j,k € {1,2,...,n}suchthat j + k <n+1,

Ai(A) 4+ A (B) = Ajye1(A+ B).

Examples:

1. To illustrate several of the facts in this section, consider

1 -1 0 2
301 =2 1

A=l 1 0 0 —a)
-1 2 1 0

whose spectrum, o (A), consists of
A = —0.7112 + 2.6718i, A, = —0.7112 — 2.6718i, A3 = 2.5506, 14, = 0.8719.

Note that the eigenvalues are ordered decreasingly with respect to their moduli (absolute values):

M| = [Aa] = 2.7649 > [As] = 2.5506 > |A4| = 0.8719.
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The maximum and minimum eigenvalues of (A + A*)/2 are 2.8484 and —1.495. Note that, as
required by Fact 5, for every A € 6 (A),

—1.495 < |A] < 2.8484.

To illustrate Fact 7, let (#;, ;) = (1, 3) and compute the singular values of A:

o) = 4.2418,0, = 2.5334,03 = 1.9890,04 = 0.7954.

Then, indeed,

0403 = 1.5821 < I)L]||}»3| = 7.0522 <010, = 10.7462.

Referring to the notation in Fact 8, we have C = 6 and R = 7. The spectral radius of A is
p(A) = 2.7649 and, thus, the modulus of every eigenvalue of A is indeed bounded above by the
quantities

R+C 13
er = =65 VRC = 6.4807, min{R,C} = 6.

Letting B denote the entrywise absolute value of A, Facts 10 and 11 state that

p(A) =2.7649 < p(B) = 4.4005 and p(A) = 2.7649 < || A||, = 4.2418.

Examples related to Fact 12 and the numerical range are found in Chapter 18. See also Example 2
that associates the numerical range with the location of the eigenvalues.
2. Consider the matrix

bS

I
oS O =
S O O
oS = O

and note that for every integer m > 2, A™ consists of zero entries, except for its (1, 1) entry that is
equal to 1. One may easily verify that

p(A) =1, |Allw = Al = [[All2 = 1.

By Fact 12, it follows that r (A) = 1 and all of the equivalent conditions (a) to (d) in that fact hold,
despite A not being a normal matrix.

14.2 Spectrum Localization

This section presents results on classical inclusion regions for the eigenvalues of a matrix. The following
facts, proofs, and details, as well as additional references, can be found in [MM92, Chap. I, Sec. 2], [H]85,
Chap. 6], and [Bru82].

Facts:
1. (Gersgorin) Let A = [a;;] € C"" and define the quantities

n
Ri=> lajl (i=12,...,n).
j=1
j#i
Consider the Gersgorin discs (centered at a;; with radii R;),

Di:{ZE(C:|Z—a,',‘|§R,'} (i=12,...,n).
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Then all the eigenvalues of A lie in the union of the Ger$gorin discs; that is,
n
o(A) C U D;.

i=1

Moreover, if the union of k Gersgorin discs, G, forms a connected region disjoint from the remaining
n — k discs, then G contains exactly k eigenvalues of A (counting algebraic multiplicities).
(Lévy—Desplanques) Let A = [a;] € C"*" be a strictly diagonally dominant matrix, namely,

n

lai;i| > Z|aij| (i=12,...,n).
j=1
j#

Then A is an invertible matrix.
(Brauer) Let A = [a;;] € C"*" and define the quantities

Ri=> lagl (i=12...,n).
j=1
j#i
Consider the ovals of Cassini, which are defined by
Vii={zeC:lz—ajillz—ajj| < RiR;} (i,j=12,...,n,i % j).
Then all the eigenvalues of A lie in the union of the ovals of Cassini; that is,
o(A) c | Vi
ij=1
i#]

[VK99, Eq. 3.1] Denoting the union of the Ger§gorin discs of A € C"" by I'(A) (see Fact 1) and
the union of the ovals of Cassini of A by K(A) (see Fact 2), we have that

o(A) C K(A) CT(A).

That is, the ovals of Cassini provided at least as good a localization for the eigenvalues of A as do
the Gersgorin discs.
Let A = [a;;] € C"*" such that

n n

laiillael > Y lagl Y lagj| Gk =1,2,...,mi #k).
j=1 j=1
J#i J#k

Then A is an invertible matrix.
Facts 1 to 5 can also be stated in terms of column sums instead of row sums.
(Ostrowski) Let A = [a;;] € C"*" and & € [0, 1]. Define the quantities

n n
Ri = lajl, Ci=> lajl (i=12,...,n).
j=1 i=l
i i
Then all the eigenvalues of A lie in the union of the discs

Di(@)={zeC:|z—a;| < R'C/™} (i=12,...,n)
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that is,

8. Let A € C"™" and consider the spectrum of A, o (A), as well as its numerical range, W(A). Then
o(A) C W(A).

In particular, if A is a normal matrix (i.e., A*A = AA*), then W(A) is exactly equal to the convex
hull of the eigenvalues of A.

Examples:

1. To illustrate Fact 1 (see also Facts 3 and 4) let

3i 1 05 -1
-1 21 15
A= 1 2 =7 0

0 -1 0 10
1 0 1 -1

—_—m, = OO

and consider the Ger$gorin discs of A displayed in Figure 14.1. Note that there are three connected
regions of discs that are disjoint of each other. Each region contains as many eigenvalues (marked
with +’s) as the number of discs it comprises. The ovals of Cassini are contained in the union of the
Gersgorin discs. In general, although it is easy to verify whether a complex number belongs to an oval
of Cassini or not, these ovals are generally difficult to draw. An interactive supplement to [VK99]

(accessible at: www.emis.math.ca/EMIS/journals/ETNA/vol.8.1999/ppl5-20.

dir/gershini.html)allowsone to draw and compare the Gersgorin discs and ovals of Cassini
of 3 x 3 matrices.

2. To illustrate Fact 8, consider the matrices

1 -1 2 242 —2—1 —1-2i
A= 2 -1 0 and B=|142i —-1—i —1-2i
-1 0 1 241 —2—i —1-—i

FIGURE 14.1 The Gersgorin disks of A.
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25
2t h
15 081
a 06 |
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05 1 02t
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05 | 1 027
04 |
-1t
_06 L
15t 08l
-2t 4 qt
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15 -1 05 0 05 1 15 2 -1-08-06-04-020 0.2 04 0.6 08 1

FIGURE 14.2 The numerical range of A and of the normal matrix B.
Note that B is a normal matrix with spectrum {1,7, —1 — i}. As indicated in Figure 14.2, the

numerical ranges of A and B contain the eigenvalues of A and B, respectively, marked with +’s.
The numerical range of B is indeed the convex hull of the eigenvalues.

14.3 Inequalities for the Singular Values and the Eigenvalues

The material in this section is a selection of classical inequalities about the singular values. Extensive details
and proofs, as well as a host of additional results on singular values, can be found in [H]91, Chap. 3].
Definitions of many of the terms in this section are given in Section 5.6, Chapter 17, and Chapter 45;
additional facts and examples are also given there.

Facts:

1. Let A € C"™" and o be its largest singular value. Then

o1 = || All2.
2. Let A € C™", g = min{m, n}. Denote the singular values of Abyo; > 0, > --- > g, and let
ke{l1,2,...,g9}. Then
o = min max | Ax|l»
WiW2,e o Wi—1 €C" lxllz=1,xeC"

= max min | Ax||2
Wi W2y oWy €C" lxll;=1,xeC"
xLlwi,wooWh_k

= min max ||Ax||;
wecn xeW
dim W=n—k+1  llx[2=1
= max min | Ax|,,
xeW

wecen

dimw=k [x[.=1

where the optimizations take place over all subspaces W € C” of the indicated dimensions.
3. (Weyl) Let A € C"*" have singular values oy > 0, > --- > 0, and eigenvalues A; (j = 1,2,...,1)
be ordered so that [A;| > |A;] > -+ > |A,|. Then

[AjAz - Ak < 0107 - - - Ok (k=1,2,...,n).

Equality holds in (3) when k = n.
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4. (A. Horn) Let A € C™*? and B € CP*", Let also r = min{m, p},s = min{p,n}, and q =
minfr,s}. Denote the singular values of A, B, and AB, respectively, by 0y > 0, > -+ > o,
127> >T,and x1 = X2 = -+ = xq. Then

k k
HXi =< HO{‘L’{ (k=12,...,9).
i=1 i=1

Equality holds if k = n = p = m. Also for any t > 0,

5. Let A € C"" have singular values 0y > 0, > --- > 0, and eigenvalues A; (j = 1,2,...,n)
ordered so that |A;| > |A;| > -+ > |A,|. Then for any t > 0,

k k
Snl'=> 0l (k=1,2...,n).
i=1 i=1

In particular, for t = 1 and k = n we obtain from the inequality above that

n
[trA| < Z o;.
i=1

6. Let A, B € C™" and q = min{m, n}. Denote the singular values of A, B, and A + B, respectively,
byo, >0, > - >0, 11 =21 > = 1,and Yy > Yy > -+ > Yy, Then the following
inequalities hold:

(@) Yiyjo1 <o+t (1<i,j<q, i+j=<q+1).
®) lpi—oil<u (=12,...,9).

k k k
(o) Zlffl < Zm—i—Zti (k=1,2,...,9).
i=1 i=1 i=1

7. Let A € C"" have eigenvalues A; (j = 1,2,...,n) ordered so that [A;| > [Ay] > -+ > |A,].
Denote the singular values of Ak by 01(AY) > 0, (A%) > -+ > 5,(A¥). Then

Jim [o; (A VE = o] (G=12...,n).

Examples:

1. To illustrate Facts 1, 3, and 5, as well as gauge the bounds they provide, let

i 2 -1 0

2 14 1 0
A= 2i 1 1 of’

0 1—i 1 0

whose eigenvalues and singular values ordered as required in Fact 3 are, respectively,
Ay = 2.6775 + 1.0227i, A, = —2.0773 + 1.46851, A3 = 1.3998 — 0.49121, Ay =0,
and

o1 = 3.5278,0, = 2.5360, 03 = 1.7673,04 = 0.



14-10

Handbook of Linear Algebra

According to Fact 1, || All, = o1 = 3.5278. The following inequalities hold according to Fact 3:

7.2914 = |)\.1}\.2| <010, = 8.9465.
10.8167 = |)\1)\2)\3| < 010,03 = 15.8114.

Finally, applying Fact 5 with t = 3/2 and k = 2, we obtain the inequality

2

8.9099 = 2% + |0, < 0] + 0,7 = 10.6646.

For t =1 and k = n, we get

4
2.8284 = 2+ 2i| = |tr(A)| <> _oj = 7.8311.
j=1

14.4 Basic Determinantal Relations

The purpose of this section is to review some basic equalities and inequalities regarding the determinant
of a matrix. For most of the facts mentioned here, see [Mey00, Chap. 6] and [HJ85, Chap. 0]. Definitions
of many of the terms in this section are given in Sections 4.1 and 4.2; additional facts and examples are
given there as well. Note that this section concludes with a couple of classical determinantal inequalities
for positive semidefinite matrices; see Section 8.4 or [HJ85, Chap. 7] for more on this subject.

Following are some of the properties of determinants of # x n matrices, as well as classical formulas for

the determinant of A and its submatrices.

Facts:

1.

Let A € F"*". The following are basic facts about the determinant. (See also Chapter 4.1.)

o det A =det AT; if F = C, then det A* = det A.

* If B is obtained from A by multiplying one row (or column) by a scalar ¢, then det B = ¢ det A.

* det(cA) = ¢" det A for any scalar c.

e det(AB) = det A det B. If A is invertible, then det A~! = (det A)~.

* If B is obtained from A by adding nonzero multiples of one row (respectively, column) to other
rows (respectively, columns), then det B = det A.

e detA = Z ves, S8N(0)A16(1)A20(2) * * * Ano (n)> Where the summation is taken over all permutations
o of n letters, and where sgn(o ) denotes the sign of the permutation o.

* Let Aj; denote the (n—1) x (1 — 1) matrix obtained from A € F"*" (n > 2) by deleting row i and
column j. The following formula is known as the Laplace expansion of det A along column j:

n
det A= (=1)azdetA; (j=1,2,...,n).

i=1

. (Cauchy-Binet) Let A € F™k B e F*" and consider the matrix C = AB € F"*". Let also

a €{1,2,...,m}and B € {1,2,...,n} have cardinality r, where 1 < r < min{m, k, n}. Then the
submatrix of C whose rows are indexed by « and columns indexed by g satisfies

detCla,B] = > det Ala, y]det Bly,B].

yC{1,2,...k}
lyl=r

. [Mey00, Sec. 6.1, p. 471] Let A = [a;i(x)] beann x n matrix whose entries are complex differen-

tiable functions of x. Let D; (i = 1,2,...,n) denote the n X n matrix obtained from A when the
entries in its ith row are replaced by their derivatives with respect to x. Then

d
det A) Z det D;.
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4. Let A = [a;;] be an n x n matrix and consider its entries as independent variables. Then

d(det A)
3(11']'

= det AL () Ghj=1,2....m),

where A({i}, {j}) denotes the submatrix of A obtained from A by deleting row i and column j.
5. [Mey00, Sec. 6.2] Let A € F" and ¢ C {1,2,...,n}. If the submatrix of A whose rows and
columns are indexed by «, A[«], is invertible, then

det A = det Ala] det(A/Ala]).
In particular, if A is partitioned in blocks as

Ay Ap

A=
Ay Ap

>

where A;; and A,; are square matrices, then

det A = det AH det(A22 — A21(A11)71A12) if A]l is invertible
- det A22 det(AH — A]z(Azz)ilAZI) if A22 is invertible.

The following two facts for F = C can be found in [Mey00, Sec. 6.2, pp. 475, 483] and [Mey00,
Exer. 6.2.15, p. 485], respectively. The proofs are valid for arbitrary fields.
6. Let A € F"*" be invertible and ¢,d € F". Then

det(A+ cd”) = det(A) (1 +dT A7 '0).

7. Let A € F™" be invertible, x, y € F". Then

det

A X _ T
JT _1] = —det(A+xy").

8. [HJ85, Theorem 7.8.1 and Corollary 7.8.2] (Hadamard’s inequalities) Let A = [a;] € C"*" be a
positive semidefinite matrix. Then

det A < ﬁa,‘,‘.

i=1

If A is positive definite, equality holds if and only if A is a diagonal matrix.
For a general matrix B = [b;;] € C"*",applying the above inequality to B* B and B B*, respectively,
one obtains

1/2

1/2
ldet Bl < ] (Z |bl—,~|2) and |detB| <[] <Z |bi,~|2>
j=1 \i=1

i=1 \ j=1

If B is nonsingular, equalities hold, respectively, if and only if the rows or the columns of B are
orthogonal.
9. [HJ85, Theorem 7.8.3] (Fischer’s inequality) Consider a positive definite matrix

X Y

A=ly 4

>

partitioned so that X, Z are square and nonvacuous. Then

det A < det X det Z.
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Examples:

For examples relating to Facts 1, 2, and 5, see Chapter 4.

1. Let

1 3 -1 2

A= 0 1 1| and x= |1,y = 1

-1 2 2 1 -1

Then, as noted by Fact 7,
Ao 1o 4
det | = =—det(A+xyT)=12 2 0| =10
y' =1 -1 2 2 13 1
1 -1 -1

Next, letting c = [121]7 and d = [0 — 1 — 1], by Fact 6, we have
det(A+cd”) = det(A)(1 +dTA7'¢) = (=4) - (=1) = 4.

2. To illustrate Facts 8 and 9, let

X Y

3 1}1
Y* Z

1 1/3

Note that A is positive definite and so Hadamard’s inequality says that
det A <3.5-3 =45
in fact, det A = 36. Fischer’s inequality gives a smaller upper bound for the determinant:
det A < detXdetZ =133 = 39.

3. Consider the matrix

1 2 =2
B=|4 -1 1
0 1 1

The first inequality about general matrices in Fact 8 applied to B gives
|det Bl <+/9-18 -2 = 18.

As the rows of B are mutually orthogonal, we have that | det B| = 18; in fact, det B = —18.

14.5 Rank and Nullity Equalities and Inequalities

Let A be a matrix over a field F . Here we present relations among the fundamental subspaces of A and their
dimensions. As general references consult, e.g., [HJ85] and [Mey00, Sec. 4.2, 4.4, 4.5] (even though the
matrices discussed there are complex, most of the proofs remain valid for any field). Additional material
on rank and nullity can also be found in Section 2.4.

Facts:

1. Let A € F™" Then rank(A) = dimrangeA = dimrangeA”.
If F = C, then rank(A) = dim range A* = dim rangeA.
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w

10.

11.

12.

13.

. If A e C™", then rangeA = (kerA*)! and range A* = (kerA)*.
. If A € F™" and rank(A) = k, then there exist X € F"™** and Y € F¥*" such that A = XY.
. Let A, B € F"™*".Thenrank(A) = rank(B) ifand only if there exist invertible matrices X € F"*™

and Y € F™" such that B = XAY.

. (Dimension Theorem) Let A € F™*". Then

rank(A) + null(A) = n and rank(A) 4+ null(AT) = m.

If F = C, then rank(A) + null(A*) = m.

. Let A, B € F™*" Then

rank(A) — rank(B) < rank(A + B) < rank(A) + rank(B).

. Let Ae F™" B e F™k and C = [A|B] € F™ X Then

* rank(C) = rank(A) + rank(B) — dim(rangeA N rangeB).
e null(C) = null(A) 4+ null(B) + dim(rangeA N rangeB).

. Let A€ F™" and B € F™*_ Then

* rank(AB) = rank(B) — dim(ker A N rangeB).

* If F = C, then rank(AB) = rank(A) — dim(ker B* N range A™*).

Multiplication of a matrix from the left or right by an invertible matrix leaves the rank unchanged.
* null(AB) = null(B) + dim(ker A N rangeB).

* rank(AB) < min{rank(A), rank(B)}.

¢ rank(AB) > rank(A) + rank(B) — n.

. (Sylvester’s law of nullity) Let A, B € C"". Then

max{null(A), null(B)} < null(AB)
< null(A) + null(B).

The above fact is valid only for square matrices.
(Frobenius inequality) Let A € F™*", B € F"<k and C € F¥*?. Then
rank(AB) + rank(BC) < rank(B) + rank(ABC).
Let A € C™". Then
rank(A*A) = rank(A) = rank(AA™).
In fact,
range(A*A) = rangeA* and rangeA = range(AA"),

as well as

ker(A*A) =kerA and ker(AA*) = kerA*.

Let A € F™" and B € F¥*P_ The rank of their direct sum is

A 0} = rank(A) + rank(B).

rank(A @ B) = rank {O B

Let A = [a;] € F™"and B € F**P_The rank of the Kronecker product AQ B = la;B] € Fmkxnp
is

rank(A ® B) = rank(A)rank(B).
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14. Let A = [a;] € F™" and B = [b;] € F™". The rank of the Hadamard product Ao B =
lajbi] € F™" satisfies

rank(A o B) < rank(A)rank(B).

Examples:

1. Consider the matrices

1 -1 1 2 3 4 1 2 -1 1
A=1]2 -1 0|, B=|0 0 —1|, and C=|1 2 -1 1
3 =21 2 1 2 2 4 =2 2

We have that

rank(A) =2, rank(B) =3, rank(C)=1, rank(A+ B) =23,
rank(AB) =2, rank(BC) =1, rank(ABC)=1.

* Asa consequence of Fact 5, we have

null(A)=3—-2=1, null(B)=3-3=0, null(C)=4—-1=3,
null(A+ B)=3—-3=0, nul(AB)=3-2=1,
null(BC) =3—1=2, null(ABC)=4—-1=3.
* Fact 6 states that
—1 =2 —3 =rank(A) — rank(B) < rank(A + B) = 0 < rank(A) + rank(B) = 5.
* Since range A N rangeB = rangeA, Fact 7 states that
rank([A|B]) = rank(A) + rank(B) — dim(rangeA NrangeB) =2+ 3 — 2 =3,
null([A|B]) = null(A) 4+ null(B) + dim(rangeA NrangeB) =1+ 0+ 2 = 3.
* Since ker A NrangeB = ker A, Fact 8 states that
2 = rank(AB) = rank(B) — dim(kerA NrangeB) =3 — 1 = 2.

2 = rank(AB) < min{rank(A), rank(B)} = 2.
2 = rank(AB) > rank(A) + rank(B) —n =243 -3 =2.

* Fact 9 states that

1 = max{null(A), null(B)} < null(AB) =1
<Null(A) + null(B) = 1.

Fact 9 can fail for nonsquare matrices. For example, if
D=1 1],
then

1 = max{null(D), null(D")} £ null(DDT) = 0.
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14.6

* Fact 10 states that

3 = rank(AB) + rank(BC) < rank(B) + rank(ABC) = 4.

Useful Identities for the Inverse

This section presents facts and formulas related to inversion of matrices.

Facts:
1.

[Oue81, (1.9)], [HJ85, p. 18] Recall that A/ A[w] denotes the Schur complement of the principal
submatrix Afw] in A. (See Section 4.2 and Section 10.3.) If A € F"*" is partitioned in blocks as

All A12

A=
Ay Ap

>

where A;; and A, are square matrices, then, provided that A, A, and A,; are invertible, we have
that the Schur complements A/A;; and A/ A,; are invertible and

Al = (A/Apn)™! — A Ap(A/ A
—(A/An) Ay AT (A/A)™!
More generally, given an invertible A € F"*" and @ C {1,2,...,n} such that A[«] and A(x) are

invertible, A™! is obtained from A by replacing
* Ala] by (A/A(@)™,
* Alo,ac] by —Ala] ™' Ale,a](A/Ala]) 7,
e Ala‘,a] by —(A/Ala]) 'Alaf, a] Ala] ™!
« Ala) by (A/Ala]).

, and

. [HJ85, pp. 18-19] Let A € F"™", X € F"™',R € F"™*,andY € F"™*".Let B = A + XRY.

Suppose that A, B, and R are invertible. Then

B l=(A+XRY)'= A" AT'X(R'+YA'X)lyA™l.

. (Sherman—Morrison) Let A € F"*", x,y € F".Let B = A + xyT. Suppose that A and B are

invertible. Then, if yT A~!x # —1,

1
B71 = (A T\—1 — A71 _ A71 TAfl'
(A+xy") T ,7A xy
In particular, if yTx # —1, then
(I—l—xyT)*l S 1 .X'yT
1+ yTx™"

. Let A € F™". Then the adjugate of A (see Section 4.2) satisfies

(adjA)A = A(adjA) = (det A)I.

If A is invertible, then

_ 1 .
ATl = detAadJA'
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5. Let A € F™" be invertible and let its characteristic polynomial be p5(x) = x" + a,_1x"

Ay_x""2 4+ .-+ ax + ao. Then,

. (_1)n+1

det A

— (A"+1+a1A”+a2A"_l+---

Handbook of Linear Algebra

_1+

+ an_lA).

6. [Mey00, Sec. 7.10, p. 618] Let A € C"*". The following statements are equivalent.

* The Neumann series, ] + A + A2 + ..

ZAk

e (I — A)'existsand (I — A)~!
* p(A) < 1.
+ lim A* =o0.
k— 00
Examples:

1. Consider the partitioned matrix

All
A2l

Since

-1
(A/An) " = [? i} = {_

by Fact 1, we have

(A/Ap)™!

AT = ;
—(A/An) Ay AL

.», converges.

1 3|-1
ﬁ” =0 2| 1
2 -1 —1] 1
1.5 1 o o
0.5 o} and (A/An)" =17 =-1,

— AL An(A/AD)
(A/A)™!

2. To illustrate Fact 3, consider the invertible matrix

1 1 -1
A= 1 0 1
—2i 1 =2
and the vectors x = y = [111]7. We have that
0.51 1+05 0.5
Al = |—1—i —1+i i
—0.51 —0.51 —0.5

Adding xy™ to A amounts to adding 1 to each entry of A; since

1+yTA71x=i #0,
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the resulting matrix is invertible and its inverse is given by

1
(A +xyT)—l — A—l _ —.A_lxyTA_l
1

2.5 —05—-05 —-1—1
=|-242 1 2
—-15—i 0.540.5i i
3. Consider the matrix
—1 1 -1
A= 1 -1 3
1 -1 2

Since A®> = 0, A is a nilpotent matrix and, thus, all its eigenvalues equal 0. That is, p(A) = 0 < 1.
As a consequence of Fact 6, I — A is invertible and

1 0 1
(I-—A)'=I4+A+A%=1{2 -1 5
1 -1 3
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There is a vast amount of material in matrix (operator) perturbation theory. Related books that are worth
mentioning are [SS90], [Par98], [Bha96], [Bau85], and [Kat70]. In this chapter, we attempt to include the
most fundamental results up to date, except those for linear systems and least squares problems for which
the reader is referred to Section 38.1 and Section 39.6.

Throughout this chapter, || - ||y denotes a general unitarily invariant norm. Two commonly used ones
are the spectral norm || - ||, and the Frobenius norm || - [|.

15.1 Eigenvalue Problems

The reader is referred to Sections 4.3, 14.1, and 14.2 for more information on eigenvalues and their
locations.

Definitions:

Let A € C™". A scalar—vector pair (A,x) € C x C" is an eigenpair of A if x # 0 and Ax = Ax. A
vector—scalar—vector triplet (y,1,x) € C" x C x C" is an eigentriplet if x # 0,y # 0, and Ax = Ax,
y*A = Ay*. The quantity

cond() = Ixl2lyll2

ly*x|

is the individual condition number for A, where (y, 1,x) € C" x C x C" is an eigentriplet.
Leto(A) = {A1, X2, ... , Ay}, the multiset of A’s eigenvalues, and set

A= diag()"h)\b e 9)\71), A‘r = diag()‘f(l)) )\11(2)’ ‘e 7)\1'(?1)))

15-1
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where T is a permutation of {1,2, ... ,n}. For real A, i.e., all A;’s are real,
A" =diag(A], AL, .. a0,

A'isin facta A, for which the permutation T makes A.(j) = )»]T forall j.

Given two square matrices A; and A, the separation sep(A;, A,) between A; and A, is defined as [SS90,
p. 231]

sep(Ay, Ay) = ||xiﬁ1f—1 XA — A X]l>.
=

Ais perturbed to A = A 4+ AA. The same notation is adopted for A, except all symbols with tildes.

Let X, Y € C" with rank(X) = rank(Y) = k. The canonical angles between their column spaces are
0; = arc coso;, where {m}fv‘:1 are the singular values of (Y*Y)~"/2Y*X(X*X)~"/2. Define the canonical
angle matrix between X and Y as

@(X, Y) = diag(91,92, e ,9]().

For k = 1,1i.e.,x, y € C" (both nonzero), we use Z(x,y), instead, to denote the canonical angle between
the two vectors.

Facts:

1. [SS90, p. 168] (Elsner) maxmin |A; — A;| < (| Al + [ All)' " A Al
4 ]

2. [SS90, p. 170] (Elsner) There exists a permutation t of {1,2,... ,n} such that

~ n ~ -~
[A = Acll2 <2 bJ (LAl + 1A " A AL,

3. [SS90, p. 183] Let (y, i, x) be an eigentriplet of A. A A changes u to u + Ap with

A
A= YA oqaan,

y'x
and |Apu| < cond(w)[|AA> + O(AA|D).
4. [SS90, p. 205] If A and A + A A are Hermitian, then

IAY — ATy < 1A A

5. [Bha96, p. 165] (Hoffman—Wielanth) If Aand A+ A A are normal, then there exists a permutation
tof{1,2,...,n}suchthat |A — A;|: < [|[AA];.

6. [Sun96] If A is normal, then there exists a permutation 7 of {1,2,... ,n} such that [|[A — A, Ir <

VrlAAl|.

7. [SS90, p. 192] (Bauer—Fike) If A is diagonalizable and A = XA X! is its eigendecomposition,
then

mlaxmjin A = il < IXTHAAXI, < kp(X)IAA] .

8. [BKL97] Suppose both A and A are diagonalizable and have eigendecompositions A = XA X ™!

and A = XAXL

(a) There exists a permutation 7 of {1,2,... ,n} such that

IA = Aclle < VK2 (X)ia(X) | AA]

(b) AT = ANy < \/Kk2(X)ka(X)|[A Al for real A and A.
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9. [KPJ82] Let residuals r = AX — px and s* = y*A — uy*, where ||X[l; = |lyll. = 1, and let
¢ = max {||r||2, |s|l2}. The smallest error matrix A A in the 2-norm, for which (y, &z, X) is an exact
eigentriplet of A= A+ AA, satisfies [AA|, = &, and |t — p| < cond(t) & + O(&?) for some
un e o(A).

10. [KPJ82], [DK70],[Par98, pp. 73, 244] Suppose A is Hermitian, and let residual r = Ax — X and
%M. = 1.
(a) The smallest Hermitian error matrix A A (in the 2-norm), for which (1, X) is an exact eigenpair
of A= A+ AA, satisfies | A A, = |||

(b) [t — | < |x|l; for some eigenvalue p of A.

(c) Let u be the closest eigenvalue in o (A) to ;2 and x be its associated eigenvector with || x|, = 1,
andletn = min | — Al.Ifn > 0, then
pu#r o (A)

2
~ r . - r
I —pl < Iirlz sin Z(%,x) < Iiell2
n n

11. Let A be Hermitian, X € C"™* have full column rank, and M € C**¥ be Hermitian having
eigenvalues 41 < pp < --- < pg. Set

R=AX—-XM.

There exist k eigenvalues A;, < A;, < --- < A;, of A such that the following inequalities hold. Note
that subset {%;; }’;:1 may be different at different occurrences.

(a) [Par98, pp. 253-260], [SS90, Remark 4.16, p. 207] (Kahan—Cao—Xie—Li)

IRIl2
Umin(X) ’

lrg]agkluj il <

k

[EIE
(mj—2i))* < .
; ! Umin(X)

(b) [SS90, pp. 254-257], [Sun91] If X*X = I and M = X*AX, and if all but k of A’s eigenvalues
differ from every one of M’s by atleast n > 0 and &; = ||R||;/n < 1, then

IRI?

k
- ) S —.
;wk =

(c) [SS90, pp. 254-257], [Sun91] If X*X = [ and M = X* AX, and there is a number n > 0 such
that either all but k of A’s eigenvalues lie outside the open interval (i1 — 1, ux + 1) or all but
k of A’s eigenvalues lie inside the closed interval [py + 1, the41 — 1] forsome 1 < £ <k — 1,
and ¢ = |R|l2/n < 1, then

IR|2

nv1—e2

Ay
Al

max | — A | <
1§j5k|'u] 1J|_

12. [DK70] Let A be Hermitian and have decomposition

AlX) Xp] =

X3
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where [X; X,]isunitaryand X; € C*. Let Q € C"*k have orthonormal columns and for a k x k
Hermitian matrix M set

R=AQ— QM.

R
Letn = min|u — v|overall u € o0(M) and v € 0(A,).If n > 0, then || sin ®(X;, Q)| < m

ME*KMO
E H|'" |o H

be Hermitian, and set n = min |u — v| overall u € 0 (M) and v € o (H). Then

13. [LLO5] Let

A=

2||E 13

n+\/n*+4lIE3

14. [SS90, p. 230] Let [X; Y;] be unitaryand X; € C™*, and let

max 21— A1 <
I<j<n / ]

A G
E A

AlX) Y] =

*
1
*
YZ

Assume that 0 (A;) 0 (A;) = @, and set n = sep(Ay, Ay). If |G|12|Ell; < n*/4, then there is a
unique W e C" 0%k satisfying || W||, < 2||E |2/, such that [X, Y] is unitary and

X3
Y;

Xi= (X1 + LW)(I + W*w)~1/2,

Yy = (Y, — Xy, W*)(I + WW*)~1/2,

Ay =1+ WW)2(A + GW)(I + W w)~/2,
Ay=(I + WW*)"12(A, — WG)(I + WW*)1/2,

G

AlX, V)] = ~
0 A

>

where

~ 2||E
Thus, || tan (X, X))||» < IET:
n

Examples:
1. Boundson ||A — KT llu: are, in fact, bounds on A; — A;(j) in disguise, only more convenient and
concise. For example, for || - [lo: = || - |2 (spectral norm), [[A — A¢|l2 = max; |A; — A.(j)|, and for
. ~ 12
I+ llor = I+ 1l (Frobenius norm), A — Aclle = [S; Iy = Aei 2] -
2. Let A, A e CMnas follows, where ¢ > 0.
w1 n o1
5 ~ n
A = 5 A =
1 R |
n & 3

It can be seen that 0 (A) = {u,...,u} (repegted n times) and the characteristic polynomial
det(tI — A) = (t — )" — &, which gives 6 (A) = {u + &'/"e?i™/" 0 < j < n — 1}. Thus,
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h—p|=el/m = AA||;/". This shows that the fractional power ||AA||;/" in Facts 1 and 2 cannot
be removed in general.

3. Consider
1 2 3 0 0 0
A=10 4 5 is perturbedby AA=| 0 0 O
0 0 4.001 0.001 0 O

A’s eigenvalues are easily read off, and

A =1,x = [1,0,0]7, y; = [0.8285, —0.5523,0.0920] 7,
Ay =4, x; = [0.5547,0.8321,0]7, y, = [0,0.0002, —1.0000] 7,

A3 = 4.001, x; = [0.5547,0.8321,0.0002]7, y; = [0,0,1]".

On the other hand, A’s eigenvalues computed by MATLAB’s eig are Xl = 1.0001, Xz = 3.9427,
A3 = 4.0582. The following table gives [A; — A ;| with upper bounds up to the 1st order by Fact 3.

j cond(A;) cond(Aj)[|AAl2 [rj —Ajl
1 1.2070 0.0012 0.0001
2 6.0-10° 6.0 0.057
3 6.0-10° 6.0 0.057

We see that cond(A ;)|| A Al|, gives a fairly good error bound for j = 1, but dramatically worse for
j = 2, 3. There are two reasons for this: One is in the choice of AA and the other is that AA’s
order of magnitude is too big for the first order bound cond(2 ;)|| A A||; to be effective for j = 2, 3.
Note that A A has the same order of magnitude as the difference between A, and X3 and that is too
big usually. For better understanding of this first order error bound, the reader may play with this

YiX;
DAREAD
4. Let £ = diag(cy,¢,... ,ck) and I’ = diag(sy, s, . .. ,sk), where ¢j,s; > 0and c? +s]2» = 1forall

j. The canonical angles between

example with AA = ¢ for various tiny parameters €.

I z
X=Q|0|V* Y=Q|I|U*
0 0
are §; = arccoscj, j = 1,2,...,k, where Q, U, V are unitary. On the other hand, every pair

of X, Y € C™k with 2k < nand X*X = Y*Y = I, having canonical angles arccosc, can be
represented this way [SS90, p. 40].

5. Fact 13 is most useful when || E ||, is tiny and the computation of A’s eigenvalues is then decoupled
into two smaller ones. In eigenvalue computations, we often seek unitary [X; X,] such that

*

M E*
E H

0
H

> >

AlX) X5 = [

~ M
AlXy Xp] = [0

*
1 1
* *
2 XZ

and || E ||, is tiny. Since a unitarily similarity transformation does not alter eigenvalues, Fact 13 still

applies.
6. [LLO5] Consider the 2 x 2 Hermitian matrix

A=

a &
s B’
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where @ > B and ¢ > 0. It has two eigenvalues

a+ B L a—pB)?+4s?
2 >

Ay =

and

0 < Ay —a| 22
B=2f " (a—B)+la—pP+4e7

The inequalities in Fact 13 become equalities for the example.

15.2 Singular Value Problems

The reader is referred to Section 5.6, Chapters 17 and 45 for more information on singular value decom-
positions.

Definitions:

B € C"™*" has a (first standard form) SVD B = UX V™, where U € C™*" and V € C"*" are unitary,
and ¥ = diag(0y,03,...) € R™" is leading diagonal (o; starts in the top-left corner) with all o; > 0.

Let SV(B) = {01,02,... , Omin{mn }> the set of B’s singular values, and 07 > o, > --- > 0, and let
SVext(B) = SV(B) unless m > n for which SVey(B) = sv(B) J{0, ... ,0} (additional m — n zeros).

A vector—scalar—vector triplet (u,0,v) € C" x R x C" is a singular-triplet if u # 0, v # 0,0 > 0, and
Bv=ou, B'u=ov.

B is perturbed to B = B + AB. The same notation is adopted for B, except all symbols with tildes.

Facts:
1. [SS90, p. 204] (Mirsky) | — o < | AB|lu.
2. Letresidualsr = Bv — ppuand s = B*u — jiv, and ||v||, = ||ulj, = 1.
(a) [Sun98] T}}e smallest error matrix AB (in the 2-norm), for which (u, /2, v) is an exact singular-
triplet of B = B + AB, satisfies || AB||, = ¢, where ¢ = max {||r|,, ||s]|.}-
(b) | — | < e for some singular value p of B.
(c) Let u be the closest singular value in SVey( B) to it and (u, o, v) be the associated singular-triplet
with |lull; = ||v]; = 1, and let » = min |t — o] overall 0 € SVex(B) and o # u. If n > 0,
then |t — u| < €2/n, and [SS90, p. 260]
x5 + lisli3
Vsin? Z(@,0) + sin? Z(Bv) < S
n
3. [LLO5] Let
B, F ~ B, 0
B = eC™" B= R
E Bz 0 BZ

where B; € C*, and set n = min|u — v| over all & € sV(B;) and v € SVex(B,), and & =
max{||E [l2, [ Fl2}. Then

262

N+ + 4t

mjax oj—0j| <
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4. [SS90, p. 260] (Wedin) Let B, B € Cmxn (m > n) have decompositions
B, 0
0 By’

where [U; U,], [VI V5], [(NJI ffz],and [\71 Vz] are unitary, and Uy, (NJI e Cmxk v, \71 € ¢k, Set

Uy

vy

*

B, 0 o
L BIvi vl = 01 5| B[\ V3] =
2 2

R=BV,—-UB,, S=B*U,—VB,.

If SV(B) () SVext(B2) = @, then

; = ; = IR+ ST
VIsin®(Uy, DI + [[sin ©(Vi, W12 < T,

where n = min |;t — v| overall 1 € SV(EI) and v € SVex(B,).

Examples:
1. Let

3.1073 1 ~ 1 2 el
R S A T

Then o, = 2.000012, 0, = 0.999988, and 6, = 2, 0, = 1. Fact 1 gives

max |o; — 0| < 4- 1073,
1<j<2

2. Let B beas in the previous example, and let vV = e}, = e, it = 2. Thenr = Bv— i1 = 3-10 ¢,
and s = B*u — v = 4 - 10~ e,. Fact 2 applies. Note that, without calculating sv(B), one may
bound 5 needed for Fact 2(c) from below as follows. Since B has two singular values that are near 1
and i = 2, respectively, with errors no bigger than4-1073, thenn > 2—(14+4-107%) = 1—4.107°.

3. Let B and B be as in Example 1. Fact 3 gives 1{1};12(2 loj —ojl < 1.6- 1072, a much better bound

than by Fact 1. N
4. Let B and B be as in Example 1. Note B’s SVD there. Apply Fact 4 with k = 1 to give a similar

bound as by Fact 2(c). N
5. Since unitary transformations do not change singular values, Fact 3 applies to B, B € C"*" having
decompositions
Uy B, F I % B, 0
B = 5 B[V, = 5
[Uz* (Vi V2] E B, Uz (Vi V1] 0 B,

where [U; U] and [V; V3] are unitary and U; € Cmxk v e ¢k,

15.3 Polar Decomposition

The reader is referred to Chapter 17.1 for definition and for more information on polar decompositions.

Definitions:

B € F™" is perturbed to B = B + AB, and their polar decompositions are
B=QH, B=QH=(Q+AQ)H+ AH),

where F = R or C. AB is restricted to F for B € F.
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Denote the singular values of B and B as 01 >0, >---and o) > 0, > - -, respectively.
The condition numbers for the polar factors in the Frobenius norm are defined as

AX||¢
condp(X) = lim sup I Il
820 aBp<s 8

, forX=HorQ.

B is multiplicatively perturbed to Bif B = D} B Dy for some D, € F"*" and Dy € F"*".

B is said to be graded if it can be scaled as B = GS such that G is “well-behaved” (i.e., x2(G) is of
modest magnitude), where S is a scaling matrix, often diagonal but not required so for the facts below.
Interesting cases are when «,(G) < «(B).

Facts:

1. [CGO00] The condition numbers condr(Q) and condr(H) are tabulated as follows, where k,(B) =
oy /oy.

R C
FactorQ m=mn 2/(oy—1+0,) 1oy

m>n 1/0, /o,

2(1+x2(B)?)

Factor H m>n
1+ Kz(B)

2. [Kit86] | AH ||y < v/2[|AB|l;.
3. [Li95] If m = n and rank(B) = n, then

1AQlu = IAB|u:-

n on

4. [Li95], [LS02] If rank(B) = n, then

1AQ]I < ( ) | AB

— + —
on +0, max{o,,0,}

1AQIlr <

[ AB[:.

n n

5. [Mat93] If B € R"*", rank(B) = n, and | AB||, < o, then

2||AB AB
1AQY < — N8By <1_M),
IABII, op + 0,
where || - ||, is the Ky Fan 2-norm, i.e., the sum of the first two largest singular values. (See

Chapter 17.3.)
6. [LS02] If B € R™*", rank(B) = n, and ||AB||, < o, + 7, then

4
1AQ[lr < = — [|AB[;.
" 0pl 04+ Gar + 0y !

7. [Li97] Let B and B= D} B Dy having full column rank. Then

1AQI: < /Il = D71 + 1D, — T2 + /I = D12 + 1Dy — 112,

8. [Li97], [Li05] Let B = GS and B = GS and assume that G and B have full column rank. If
IAGIIGl> < 1, then
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1AQI: < ¥ IGTLIAG s,
I(AH)S™ I < (7 IGT 121G +1) 1AG L,

where y = \/1 + (1 - ||GT||2||AG||2)_2

Examples:
1. Take both B and B to have orthonormal columns to see that some of the inequalities above on AQ

are attainable.
2. Let

p_ L | 200 502) 11 1107t 2
T V2 |19 —498| T 2|1 -1 2 510

~ | 14213 3.5497-10°
T |—1.4071 —3.5214-10°

and

obtained by rounding each entry of B to have five significant decimal digits. B = QH can be read

off above and B = QH can be computed by Q = UV* and H = VEV*, where B’s SVD is
UZX V*. One has

sv(B) = {5.00 - 10%,2.00 - 10~%}, sv(B) = {5.00 - 10%,2.04 - 1073}

and

IABl2  [IABlls  [AQl2  l1AQlr  IAH|2  [AH]r

3.107% 3.107% 2.100° 3.10¢ 2.1073 2.107°

Fact 2 gives | AH||; < 3 - 107 and Fact 6 gives | AQ||; < 107>,
3. [Li97] and [Li05] have examples on the use of inequalities in Facts 7 and 8.

15.4 Generalized Eigenvalue Problems

The reader is referred to Section 43.1 for more information on generalized eigenvalue problems.

Definitions:

Let A, B € C"*". A matrix pencil is a family of matrices A — A B, parameterized by a (complex) number
A. The associated generalized eigenvalue problem is to find the nontrivial solutions of the equations

Ax = ABx and/or y*A=1y*B,

wherex € C",y € C",and 1 € C.

A — LB isregular if m = n and det(A — AB) # 0 for some A € C.

In what follows, all pencils in question are assumed regular.

An eigenvalue A is conveniently represented by anonzero number pair, so-called a generalized eigenvalue
(o, B), interpreted as A = «/B. B = 0 corresponds to eigenvalue infinity.
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A generalized eigenpair of A — A B refers to ((«, B8),x) such that BAx = «aBx, where x # 0 and
loe|? 4+ |B|* > 0. A generalized eigentriplet of A — A B refers to (y, (o, 8),x) such that 8 Ax = o Bx and
BY*A = ay* B, where x # 0,y # 0, and |«|? + | 8]* > 0. The quantity

112 llyll2

VIy* Ax|? + |y* Bx|?

istheindividual condition number for the generalized eigenvalue (o, B), where (y, («, 8),x) isa generalized
eigentriplet of A — AB.

A — AB is perturbed to A— B = (A+ AA) — A(B + AB).

Leto (A, B) = {{a1, B1)> (@2, B2)> - - - » {@u> Bu) } be the set of the generalized eigenvalues of A — A B, and
set Z = [A, B] € C¥*",

A — A B is diagonalizable if it is equivalent to a diagonal pencil, i.e., there are nonsingular X, Y € C"*"
such that Y*AX = A, Y*BX = Q, where A = diag(a;, 3, .. ,a,) and Q = diag(B1, B2, .. » Bn)-

A — AB is a definite pencil if both A and B are Hermitian and

cond({a, B)) =

y(A,B)= min |x*Ax+ ix*Bx| > 0.

xeC, |1x[2=1

The same notation is adopted for A — AB, except all symbols with tildes.
The chordal distance between two nonzero pairs (o, 8) and (&, 8) is

|Ba — ap|
VI + B2 \/1a? + 182

x (o B), (@, B)) =

Facts:

1. [SS90, p.293] Let (y, (o, B),x) be a generalized eigentriplet of A—AB.[A A, AB] changes («, 8) =
(y* Ax,y* Bx) to

@, B) = (&, B) + (y* (AA)X,y* (AB)x) + O(e?),

where & = |[[AA, AB]|l, and x ((a, B), (@, B)) < cond((, B)) & + O(e?).
2. [SS90, p. 301], [Li88] If A — A B is diagonalizable, then

ml?lxnljinX«Oli)ﬂi)) (@j,B)) < Kka(X)]sin®(Z*, Z*)||1.

3. [Li94, Lemma 3.3] (Sun)

1Z — Zlw

max{omin(Z); Omin(Z)}’

|| sin ©(Z*, Z*) Iy <

where oin(Z) is Z’s smallest singular value.

4. The quantity y (A, B) is the minimum distance of the numerical range W(A + i B) to the origin
for definite pencil A — A B.

5. [SS90, p. 316] Suppose A — A B is a definite pencil. If A and B are Hermitian and || [A A, AB]|, <
y (A, B), then A — AB is also a definite pencil and there exists a permutation 7 of {1,2, ... ,n} such
that

L I[AA, AB]|
ey ) @) = LS

6. [SS90, p. 318] Definite pencil A — A B is always diagonalizable: X*AX = A and X*BX = Q, and
with real spectra. Facts 7 and 10 apply.
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7.

10.

[Li03] Suppose A — AB and A — A B are diagonalizable with real spectra, i.c.,
Y*AX=A,Y*BX=Q and Y*AX=A,Y'BX=Q,
and all (@, 8;) and all (&, E j) are real. Then the follow statements hold, where

8 = diag(x ({@1, B1)» (@e(1), Be))s - -+ » X (s B (@ nys Beim))))

for some permutation t of {1,2, ... ,n} (possibly depending on the norm being used). In all cases,
the constant factor /2 can be replaced by 1 for the 2-norm and the Frobenius norm.

T ' . * ok
@ lEllu = 7V 12 (X (X) || sin ©(Z%, Z%) [l

(b) Ifall joj|* + |Bj1* = l&j|* + |,§j|2 = 1 in their eigendecompositions, then
18l < 2\ IX LY L K10V 12 {A A, AB] I

. Let residuals r = BAX — @BX and s* = ,B~§f*A — ay”B, where [x]l> = |lyll. = 1. The smallest

error matrix [A A, AB] in the 2-norm, for which (y, (&, 8),X) is an exact generalized eigentriplet
of A — AB, satisfies |[[AA, AB]|l, = &, where ¢ = max{|r|l5, |Isll2}, and x ({o, B), (@, B)) <

cond({a, B)) & + O(&?) for some (a, B) € o (A, B).

. [BDDOO, p. 128] Suppose A and B are Hermitian and B is positive definite, and let residual

r= AX — puBxand |[x]|; = 1.
(a) For some eigenvalue u of A — AB,

r —
< Il JB !
X1 5

-1
< 1B~ ll2llxl2,

where ||z|| 3 = v/z2*Mz.

(b) Let u be the closest eigenvalue to ;& among all eigenvalues of A — AB and x its associated
eigenvector with ||x||; = 1, and let » = min|u — v| over all other eigenvalues v # u of
A — AB.If n > 0, then

_ Lol Nl
m—ms—-( <yl
n n

Il 5

~ Tr
sin Z(&,x) < | B~ ,v/Ze2(B) 1112
n

[Li94] Suppose A — AB and A — A B are diagonalizable and have eigendecompositions

Ay
A,

9

AlXy, X,] = Q

> B[Xl) XZ] = >

* *
1 1
* *
2 2

X' =[w, w5,

and the same for A— A B exceptall smeols with tildes, where X3, Y;, Wy € C"™k Ay, Q; € Ck*k,
Suppose |ocj|2 + |,Bj|2 = |6Zj|2 + |ﬂj|2 =1forl < j < nin the eiggndecomgosijions, and set
n = min x ((a, B), (@, B)) taken over all (&, B) € o (A1, Q1) and (&, B) € (A, 2,).Ifn > 0,
then

XTI W

HSin®(X13§1)H = | X
F n

Y} (Z - Z) X,

F



15-12 Handbook of Linear Algebra

15.5 Generalized Singular Value Problems

Definitions:

Let A € C™" and B € CY*". A matrix pair {A, B} is an (m,{, n)-Grassmann matrix pair if

A
rank B =n.

In what follows, all matrix pairs are (m, £, n)-Grassmann matrix pairs.
A pair {(a, B) is a generalized singular value of { A, B} if

det(B2A*A — o*B*B) =0, (a, B) # (0,0), o, B > 0,

ie, (a, B) = (/I 4/v) for some generalized eigenvalue (i, v) of matrix pencil A*A — AB*B.
Generalized Singular Value Decomposition (GSVD) of {A, B}:

U*AX =%,, V*BX =X,

where U € C™™ V e C*¢ are unitary, X € C"™" is nonsingular, ¥, = diag(a;,a,,- - ) is leading
diagonal («; starts in the top left corner), and X3 = diag(- - - , B,_1, B,) is trailing diagonal (53; ends in
the bottom-right corner), j, 8; > 0 and a? + /3]2 =1for1l < j < n. (Set some a; = 0 and/or some
Bj = 0, if necessary.)

{A, B} is perturbed to {X, E} ={A+ AA,B + AB}.

Let SV(A, B) = {{a1, B1), (@2, B2)s - - - » {0ty Bu)} be the set of the generalized singular values of {A, B},

A
and set Z = Bl € Clmt0xn

The same notation is adopted for (A, B}, except all symbols with tildes.

Facts:

1. If{A, B} is an (m, £, n)-Grassmann matrix pair, then A*A — AB* B is a definite matrix pencil.
2. [Van76] The GSVD of an (m, £, n)-Grassmann matrix pair {A, B} exists.
3. [Li93] There exist permutations 7 and w of {1, 2, ... , n} such that

max x (@i, Bi)s (@i Be(i))) < I sin O(Z, Z) |12,

1<j<n

j=1

J S [t s Gt Bui)) | < I15in ©(Z, Dl

4. [Li94, Lemma 3.3] (Sun)

1Z = Zllu
max{Omin(Z), Omin(2)}

|| sin O(Z, Z) ||y <

where opin(Z) is Z’s smallest singular value.
5. [Pai84] If «? + B2 = a? + B? = 1fori = 1,2,...,n, then there exists a permutation @ of
{1,2,...,n} such that

\j Z [(Otj — U () + (B — Ewu))z} < mi.nryllzo — ZoQlls,

- Q unita;
j=1

where Zy = Z(Z*Z)"V? and Z, = Z(Z*Z)~V/2.
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6. [Li93], [Sun83] Perturbation bounds on generalized singular subspaces (those spanned by one or
a few columns of U, V, and X in GSVD) are also available, but it is quite complicated.

15.6 Relative Perturbation Theory for Eigenvalue Problems

Definitions:

Let scalar @ be an approximation to @, and 1 < p < oo. Define relative distances between o and « as
follows. For |a|> + |a|*> # 0,

dlo,a) = ’g - 1’ = & —af , (classical measure)
o loe]
- lo — o .
o) = ——, Li98
0plen®) = s ([Li98])
lo — o
(,a) = —, ([BD90], [DV92])
¢ Vaal

s(a,a)=|In(a/a)|, foraa >0, ([LM99a], [Li99b])

and d(0,0) = 0,(0,0) = £(0,0) = ¢(0,0) = 0.

A e C™"is multlpllcatlvely perturbed to Aif A = Dy ADR for some D,, Dy € C"*",

Denote 6 (A) = {A1,A2,... ,A,} and O'(A) {Al,kz, Y n}

A e C"™" is said to be graded if it can be scaled as A = S*HS such that H is “well-behaved”
(i.e., ko(H) is of modest magnitude), where S is a scaling matrix, often diagonal but not required so for
the facts below. Interesting cases are when k;(H) < k2(A).

Facts:

1. [Bar00]~gp( -, +)isametricon Cfor 1 < p < oo.
2. Let A, A= D*AD e C"*" be Hermitian, where D is nonsingular.

(a) [HJ85, p. 224] (Ostrowski) There exists ¢;, satisfying
Amin(D*D) =< tj = )Vmax(D*D))
such that X} = tj)»} for j = 1,2,...,n and, thus,

max d( ALl <l = DDl
=J=

(b) [LM99], [Li98]

Idiag (1,21, 60 AD) = 118(D* D) s

Idiag (¢ 12D, 6GLAD) llu < I1D* = D7

3. [Li98], [LM99] Let A = S*HS be a positive semidefinite Hermitian matrix, perturbed to
A = S*(H + AH)S. Suppose H is positive definite and || H~'/2(AH)H~/?||, < 1, and set
M= H'?S$*H'?, M = DMD,
where D = [I + H™Y2(AH)H=/2]"* = D*. Then o (A) = o(M) and 0(A) = o(M), and the
inequalities in Fact 2 above hold with D here. Note that
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o < |H-2(AH)H'2|y,
YT V1 [H2(AH)H- 7|,
IH,
T V11— [HLIAH];

D — D~

IAH]|u:

4. [BD90], [VS93] Suppose A and A are Hermitian, and let | A| = (A%)"/2 be the positive semidefinite
square root of A2, If there exists 0 < § < 1 such that

Ix"(AA)x| < 8x*|Alx forallx € C",

theneitherX]T = )»JT =0orl—48< X}/)\]T- <1+436.
5. [Li99a] Let Hermitian A, A = D*AD have decompositions

X3 _

Al A%, %) =

Axi Xl =%

>

A
A’

where [X; X,] and [)21 )22] are unitary and X;, )?1 e Ck If y, = min _ (u, 1) >0,
pneo(Ay),jiea(A,)

*
1
*
2 2

then

VI = D)X, |12+ ||(I — D*) X, |12
2

Il sin © (X1, X1)[ls <

6. [Li99a] Let A = §* H S beapositive semidefinite Hermitian matrix, perturbed to A=S *(H + AH)S,
having decompositions, in notation, the same as in Fact 5. Let D = [I + H™/*(AH)H'/?] 2

Assume H is positive definite and | H"V2(AH)H 2|, < 1.1fn, = min _ {(u,p) >0,
neo(Ay),eo(Ay)

then

ID— D'
N¢

|| sin ©(X1, X)) |; <

Examples:

1. [DK90], [EI95] Let A be a real symmetric tridiagonal matrix with zero diagonal and off-diagonal
entries by, by, ... , by_1. Suppose A is identical to A except for its off-diagonal entries which change
to B1by, Babas ..., Bu—1bu—1, where all B; are real and supposedly close to 1. Then A = DAD,
where D = diag(d;,d,, . .. ,d,) with

_ BB B d _ BaBa - P
= 2 5 W= -
BabBs- - Pak— B1Bs - - - Pk

2k

Let 8 = H;‘;i max{f;,1/B;}. Then B~'I < D? < BI, and Fact 2 and Fact 5 apply. Now if all
l—e<pj<ltethen(l—e) ' <pl<p<(+e)

2. Let A = SHS with § = diag(1, 10, 102, 10%), and

1 1 1 107!
A 1 102 107 - 107! 1 107!
N 102 10* 10*|° N 10! 1 107!

104 10° 107! 1
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Suppose that each entry A;; of Ais perturbed to A;; (1+6;;) with |§;;| < &. Then |(AH);;| < ¢|Hj;|
and thus [|AH||; < 1.2¢. Since || H™ ||, < 10/8, Fact 3 implies

{(AT—,X}) < 1.5¢/4/1 — 1.5 = 1.5¢.

15.7 Relative Perturbation Theory for Singular Value Problems

Definitions:
B e C"™*" is multiplicatively perturbed to Bif B = D} B Dy, for some D, € C"™*™ and D, € C"*".

Denote the singular values of B and B as
SV(B) = {01)02) ce 1Gmin{m,n}}1 SV(B) = {6:1)52) ce )a:min(m,n]}-

B is said to be (highly) graded if it can be scaled as B = G S such that G is “well-behaved” (i.e., k2(G) is
of modest magnitude), where S is a scaling matrix, often diagonal but not required so for the facts below.
Interesting cases are when «,(G) < «2(B).

Facts:
1. LetB, B = D} BD, € C"™*", where D, and Dy are nonsingular.
o;
(a) [EI95] Forl < j <n,———2—— <G; <0 D2l Dall2-
D7D, T T ¢

(b) [Li98], [LM99]

||d13g (;(01,6:1), .. );‘(Un)a:n)) ”UI
1 _ 1 _
= EIIDLk =DMl + E”D: — Dy Mo

2. [Li99a] Let B, B = D} BDy € C™" (m > n) have decompositions

* *

B, 0 -
BViVal = | B[V V2] =

>

B, 0

0 B,|’

where [U,; UzL[W 1, [[71 INJZ]N,and[Vl \72] areunitagy, and Uy, l~]1 e Cmxk v, \71 € ¢k, Set
Oy = 0(U,,U), Oy = O(V, V). If sV(B)) [ SVext(B2) = ¥, then

Uz U;

V/Isin®y2 + || sin Oy |2
1 _

< - [ = DU+ 1 = DU
2

* 12
+I(I = DHVAIZ + 1T = DY)

where 7, = min g,(u, 1) over all u € SV(B Yand & € SVext(g ).

3. [Li98], [Li99a], [LM99] Let B = GS and B = GS be two m x n matrices, where rank(G) = n,
andlet AG = G — G. Then B = DB, where D = I + (AG)G". Fact 1 and Fact 2 apply with
D, = D and Dy = I. Note that

_ 1 I(AG)G |l
D—D Yyu<(1+ ) )
| o = ( 1—[(AG)G |, 2
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Examples:

1. [BD90], [DK90], [EI95] B is a real bidiagonal matrix with diagonal entries a;,4,, . .. ,a, and off-
diagonal (the one above the diagonal) entries are by, by, ... , by—1. B is the same as B, except for its
diagonal entries, which change to a1, aza,, . . . , @,a,, and its off-diagonal entries, which change
to ﬁ]b],ﬁzbz, e ,ﬁnflbnfl. Then g = D:BDR with

D, = diag (al, otlaz) M’”.)
B B1B2
D, = diag (l,é, /31,32,.”) .
o] 010

Leta = []j_, max{a;,1/e;} and g = H;’;% max{B;,1/B;}. Then

_ _ -1
(@B < (ID7 1D ) < D2 Dellz < @B,
and Fact 1 and Fact 2 apply. Now ifall 1 —¢ < a;, Bj < 1 +¢,then (1 — &) ! < (af)”' <

(@B) < (14 &)
2. Consider block partitioned matrices

B _ Bll BIZ
0 Bn

- [B 0 I —B3'B

B=|" =B PR Bp,.
0 Bp

By Fact 2, ¢(0,0}) < %||B1_11312||2. Interesting cases are when ||B1_11312||2 is tiny enough to be
treated as zero and so SV(B) approximates SV(B) well. This situation occurs in computing the SVD
of a bidiagonal matrix.

Author Note: Supported in part by the National Science Foundation under Grant No. DMS-0510664.
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Eigenvalues often provide great insight into the behavior of matrices, precisely explaining, for example, the
asymptotic character of functions of matrices like A¥ and e'4. Yet many important applications produce
matrices whose behavior cannot be explained by eigenvalues alone. In such circumstances further informa-
tion can be gleaned from broader sets in the complex plane, such as the numerical range (see Chapter 18),
the polynomial numerical hull [Nev93], [Gre02], and the subject of this section, pseudospectra.

The e-pseudospectrum is a subset of the complex plane that always includes the spectrum, but can
potentially contain points far from any eigenvalue. Unlike the spectrum, pseudospectra vary with choice
of norm and, thus, for a given application one must take care to work in a physically appropriate norm.
Unless otherwise noted, throughout this chapter we assume that A € C"*" is a square matrix with complex
entries, and that || - || denotes a vector space norm and the matrix norm it induces. When speaking of a
norm associated with an inner product, we presume that adjoints and normal and unitary matrices are
defined with respect to that inner product. All computational examples given here use the 2-norm.

For further details about theoretical aspects of this subject and the application of pseudospectra to a
variety of problems see [TE05]; for applications in control theory, see [HP05]; and for applications in
perturbation theory see [CCF96].

16.1 Fundamentals of Pseudospectra

Definitions:

The e-pseudospectrum of a matrix A € C**", ¢ > 0, is the set
0:(A)={z€eC:z€0(A+ E) forsome E € C"" with || E| < &}.

(This definition is sometimes written with a weak inequality, ||E| < ¢&; for matrices the difference has
little significance, but the strict inequality proves to be convenient for infinite-dimensional operators.)

If |Av — zv|| < ¢|v| for some v # 0, then z is an e-pseudoeigenvalue of A with corresponding
e-pseudoeigenvector v.

The resolvent of the matrix A € C"™*" at a point z ¢ o (A) is the matrix (zI — A)~".

16-1
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Facts: [TEO05]
1. Equivalent definitions. The set 0, (A) can be equivalently defined as:
(a) The subset of the complex plane bounded within the 1/¢ level set of the norm of the resolvent:
0.(A)={zeC:|(z — A7 > &7}, (16.1)
with the convention that || (zI — A)~!|| = cowhen zI — A is notinvertible,i.e., whenz € o (A).
(b) The set of all e-pseudoeigenvalues of A:
0:(A) ={z € C: |Av — zv|| < ¢ for some unit vector v € C"}.
2. For finite ¢ > 0, 0,(A) is a bounded open set in C containing no more than n connected compo-
nents, and 0 (A) C o.(A). Each connected component must contain at least one eigenvalue of A.
3. Pseudospectral mapping theorems.

(a) Foranya,y € Cwithy #0, o.(al +yA)=0a+ 0, (A).

(b) [Lui03] Suppose f is a function analytic on o.(A) for some ¢ > 0, and define
y(e) = SUP| £ <e lf(A+E)— f(A)|l. Then f(0:(A)) € 0))(f(A)).See [Lui03] for several
more inclusions of this type.

4. Stability of pseudospectra. For any ¢ > 0 and E such that |[E| < &,
o5 (A) © 0e(A+ E) C 0wy (A).
5. Properties of pseudospectra as ¢ — 0.

(a) If & is a eigenvalue of A with index k, then there exist constants d and C such that
l(zI — A)7Y| < C|z — A|7* for all z such that |z — A| < d.

(b) Any two matrices with the same e-pseudospectra for all ¢ > 0 have the same minimal poly-
nomial.

6. Suppose || - || is the natural norm in an inner product space.

(a) The matrix A is normal (see Section 7.2) if and only if 0, (A) equals the union of open ¢-balls
about each eigenvalue for all ¢ > 0.

(b) Forany A € C"™", 0.(A*) = 0.(A).

7. [BLOO03] Suppose || - || is the natural norm in an inner product space. The point z = x + iy,

X,y € R, is on the boundary of o, (A) provided iy is an eigenvalue of the Hamiltonian matrix

xI — A* el
—el  A—xI|’

This fact implies that the boundary of o.(A) cannot contain a segment of any vertical line or,

substituting e'? A for A, a segment of any straight line.

8. The following results provide lower and upper bounds on the e-pseudospectrum; A; denotes the

open unit ball of radius § in C, and « (X) = || X|||| X"
(a) Foralle > 0,0(A) + A, C o.(A).

(b) For any nonsingular S € C"*" and alle > 0,
0ese(s)(SAS™Y) € 0.(A) C 0u(5)(SASTH).

(c) (Bauer—Fike Theorems [BF60], [Dem97]) Let || - || denote a monotone norm. If A is diagonal-
izable, A= VAV~! thenforalle > 0,

GS(A) - G(A) + Aalc(V)-
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(2)

If A € C"*" has n distinct eigenvalues Ay, . .. , A, then forall ¢ > 0,
OS(A) - Uﬁ‘\;l()‘j + A&‘nk‘()\,‘))!

where k (A ;) here denotes the eigenvalue condition number of A ; (i.e.,x(X;) = 1/|?;Vj |, where
v; and v; are unit-length left and right eigenvectors of A corresponding to the eigenvalue A ;).

If || - || is the natural norm in an inner product space, then forany ¢ > 0,0,(A) € W(A)+ A,,
where W(-) denotes the numerical range (Chapter 18).

If || - || is the natural norm in an inner product space and U is a unitary matrix, then
0. (U*AU) = 0,(A) foralle > 0.
If || - || is unitarily invariant, then o, (A) € 0(A) 4+ A,ydep(a)> Where dep(-) denotes Henrici’s

departure from normality (i.e., the norm of the off-diagonal part of the triangular factor in a
Schur decomposition, minimized over all such decompositions).

(Gersgorin Theorem for pseudospectra [ET01]) Using the induced matrix 2-norm, for any
e >0,

Us(A) - U;!zl(ajj + Arﬁ—sﬁ)x

where r; = ZZ:M# .

9. The following results bound o, (A) by pseudospectra of smaller matrices. Here || - || is the natural
norm in an inner product space.

(a)

(b)

(0)

(d)

[GL02] If A has the block-triangular form

B C

A=1p g

>

then
0.(A) C o05(B)Uos(E),

where § = (¢ + || D|)\/1 + |Cll/(¢ + || D). Provided ¢ > || D||,
0y(B)Uoy(E) S 0.(A),

where y = ¢ — || D]J.

If the columns of V € C"*™ form a basis for an invariant subspace of A, and Ve crmis
such that V*V = I, then 0.(V*AV) C 0.(A). In particular, if the columns of U form an
orthonormal basis for an invariant subspace of A, then o, (U*AU) C 0,(A).

[ETO01] If U € C"*™ has orthonormal columns and AU = UH + R, theno(H) C o,(A) for
e =|R|.

(Arnoldi factorization) If AU = [U u] H, where H € C"+D*" jsan upper Hessenberg matrix
(hjx =0if j > k4 1) and the columns of [U u] € Cm+1) gre orthonormal, then o, (H) C
0:(A). (The e-pseudospectrum of a rectangular matrix is defined in section 16.5 below.)

Examples:

The plots of pseudospectra that follow show the boundary of o,(A) for various values of &, with the
smallest values of & corresponding to those boundaries closest to the eigenvalues. In all cases, || - || is the
2-norm.

1. Thefollowing three matrices all have the same eigenvalues, o (A) = {1, £i}, yet their pseudospectra,
shown in Figure 16.1, differ considerably:

0 -1 10 0 -1 10 2 =5 10
1 0 5], 1 0 5if, 1 —2 5i
0 0 1 0 0 1 0 0 1
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FIGURE 16.1  Spectra (solid dots) and e-pseudospectra of the three matrices of Example 1, each with
o(A) = {1,i,—i}; e = 1071, 1071, 1072

2. [RT92] For any matrix that is zero everywhere except the first superdiagonal, o, (A) consists of an
open disk centered at zero whose radius depends on € forall ¢ > 0. Figure 16.2 shows pseudospectra
for two such examples of dimension n = 50:

0 1 0 3
0 1 0 3/2

0. 1 . 0. 3/(n—1)
0

Though these matrices have the same minimal polynomial, the pseudospectra differ considerably.
3. It is evident from Figure 16.1 that the components of o.(A) need not be convex. In fact, they
need not be simply connected; that is, 0,(A) can have “holes.” This is illustrated in Figure 16.3
for the following examples, a circulant (hence, normal) matrix and a defective matrix constructed

—_
—_

o
o

-1 0 1 -1 0 1

FIGURE 16.2  Spectra (solid dots) and e-pseudospectra of the matrices in Example 2 fore = 107!, 1072,...,107%,
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1 0 1 ~4 2 0 2
FIGURE 16.3  Spectra (solid dots) and e-pseudospectra (gray regions) of the matrices in Example 3 for ¢ = .5 (left)

and & = 107 (right). Both plotted pseudospectra are doubly connected.
by Demmel [Dem87]:

-1 —100 —10000
0 —1 —100
0 0 -1

—_— o O O o o O
S O O O o o
(= eleNe el =
(= elNe e ==
(=i e el e = =]
SO O = O O O O
O = O O O O O

16.2 Toeplitz Matrices

Given the rich variety of important applications in which Toeplitz matrices arise, we are fortunate that
so much is now understood about their spectral properties. Nonnormal Toeplitz matrices are prominent
examples of matrices whose eigenvalues provide only limited insight into system behavior. The spectra of
infinite-dimensional Toeplitz matrices are easily characterized, and one would hope to use these results
to approximate the spectra of more recalcitrant large, finite-dimensional examples. For generic problems,
the spectra of finite-dimensional Toeplitz matrices do not converge to the spectrum of the corresponding
infinite-dimensional Toeplitz operator. However, the -pseudospectra do converge in the n — oo limit for
alle > 0,and, moreover, for banded Toeplitz matrices this convergence is especially striking as the resolvent
grows exponentially with 7 in certain regions. Comprehensive references addressing the pseudospectra of
Toeplitz matrices include the books [BS99] and [BGO5]. For a generalization of these results to “twisted
Toeplitz matrices,” where the entries on each diagonal are samples of a smoothly varying function,
see [TCO04].

Definitions:

A Toeplitz operator is a singly infinite matrix with constant entries on each diagonal:

ap ad—1 ad—p 4a_3
ap agp a1 ad_p
T=l|a, a ag  a_

as  ay ay ao

for ag,a+1,a45,... € C.
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Provided it is well defined for all z on the unit circle T in the complex plane, the function
a(z) = 3200 axz" is called the symbol of T.

The set a(T) C Cis called the symbol curve.

Given a symbol a, the corresponding #n-dimensional Toeplitz matrix takes the form

ao a1 a— -+ Odi—p

ay agp a_y

J— . nxn
T, = a a a oa, e C"",
a—i
Lan—1 - a a ap J

For asymbol a(z) = > 72 apz*, the set {T;,},=1 is called a family of Toeplitz matrices.
A family of Toeplitz matrices with symbol a is banded if there exists some m > 0 such that ay; = 0 for
all k > m.

Facts:

1. [B6t94] (Convergence of pseudospectra) Let || - || denote any p norm. If the symbol a is a continuous

function on T, then

lim 0.(T,) = 0.(T)

n—oo
asn — 00, where T is the infinite-dimensional Toeplitz operator with symbol a acting on the space
£, and its e-pseudospectrum is a natural generalization of the first definition in section 16.1. The
convergence of sets is understood in the Hausdorff sense [Hau91, p. 167], i.e., the distance between
bounded sets X;, X, € Cis given by

d(Xy, X,) =max{sup inf [s; — s3], sup inzf |52—51|}.

sex, 26 s,€X, S1€21

2. [BS99] Provided the symbol a is a continuous function on T, the spectrum o (T') of the infinite
dimensional Toeplitz operator T on £, comprises a(T) together with all points z € C \ a(T) that
a(T) encloses with winding number

1 " 1
2ni Jamy & — 2

dg

nonzero. From the previous fact, we deduce that ||(zI — T;,)7!|| — coasn — oo ifz € o(T) and
that, for any fixed & > 0, there exists some N > 1 such that o (T) C 0,(T;) foralln > N.

3. [RT92] (Exponential growth of the resolvent) If the family of Toeplitz matrices T, is banded, then
for any fixed z € C such that the winding number of a(T) with respect to z is nonzero, there exists
some y > 1and N > 1 such that ||(zI — T,,)"!|| > y" foralln > N.

Examples:

1. Consider the family of Toeplitz matrices with symbol

a(t) =t—3 — 5t
For any dimension #, the spectrum o (T},(a)) is contained in the line segment [—% - % i, —% + % i] in
the complex plane. This symbol was selected so that o (A) falls in both the left half-plane and the unit
disk, while even for relatively small values of ¢, o, (A) contains both points in the right half-plane
and points outside the unit disk for all but the smallest values of n; see Figure 16.4 for n = 50.
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1.5

0.5¢

-1.5
-2

1.5

FIGURE 16.4  Spectrum (solid dots, so close they appear to be a thick line segment with real part —1/2) and
e-pseudospectra of the Toeplitz matrix Tso from Example 1; ¢ = 1071, 1073, ..., 107", The dashed lines show the
unit circle and the imaginary axis.

2. Pseudospectra of matrices with the symbols
a(t) =it* + 2 + 26 45072 +it7°
and
a(t) =31t +r 4+ + 30

are shown in Figure 16.5.

10

JRET, 5 0 5 10 8 4 0 4 8
FIGURE 16.5 Spectra (solid dots) and e-pseudospectra of Toeplitz matrices from Example 2 with the first symbol

on the left (n = 100) and the second symbol on the right (n = 200), both with & = 10°, 1072, ..., 1078, In each plot,
the gray region is the spectrum of the underlying infinite dimensional Toeplitz operator.
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50

n=40 . 50 n=80 -50

-50
-100 -50 0 -100 -50 0 -100 -50 0

FIGURE 16.6  Spectra (solid dots) and e-pseudospectra of Toeplitz matrices for the discretization of a convection—
diffusion operator described in Application 1 with v = 1/50 and three values of n; ¢ = 10711072, ..., 107%. The
gray dots and lines in each plot show eigenvalues and pseudospectra of the differential operator to which the matrix
spectra and pseudospectra converge.

Applications:

1. [RT94] Discretization of the one-dimensional convection-diffusion equation
v (x) + o' (x) = f(x), u(0)=u(l)=0

for x € [0,1] with second-order centered finite differences on a uniform grid with spacing
h = 1/(n + 1) between grid points results in an n x n Toeplitz matrix with symbol

0= (e D) () (n L)
=\ "o 2 o)

On the right-most part of the spectrum, both the eigenvalues and pseudospectra of the discretization
matrix converge to those of the underlying differential operator

Lu=vu +u

whose domain is the space of functions that are square-integrable over [0, 1] and satisfy the boundary
conditions u(0) = u(1) = 0; see Figure 16.6.

16.3 Behavior of Functions of Matrices

In practice, pseudospectra are most often used to investigate the behavior of a function of a matrix. Does
the solution x(¢) = e'4x(0) or x; = A*x, of the linear dynamical system x'(t) = Ax(t) or x¢1; = Axy
grow or decay as t,k — 00? Eigenvalues provide an answer: If 0(A) lies in the open unit disk or left
half-plane, the solution must eventually decay. However, the results described in this section show that if
e-pseudoeigenvalues of A extend well beyond the unit disk or left half-plane for small values of ¢, then the
system must exhibit transient growth for some initial states. While such growth is notable even for purely
linear problems, it should spark special caution when observed for a dynamical system that arises from
the linearization of a nonlinear system about a steady state based on the assumption that disturbances
from that state are small in magnitude. This reasoning has been applied extensively in recent years in fluid
dynamics; see, e.g., [TTRD93].

Definitions:

The e-pseudospectral abscissa of A measures the rightmost extent of 0, (A): a. (A) = sup,,, (4) Rez.
The e-pseudospectral radius of A measures the maximum magnitudein o, (A): p.(A) = sup zeon(A) 12]-
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Facts: [TEO05, §§14-19]

1.
2.
3.

10.

11.

For& > 0, sup,p - lle"] > a:(A)/e.
For & > 0, supy s | AFIl > (pe(A) — 1) /e.
For any function f that is analytic on the spectrum of A,

IfA = Arelgr'«gg)lf(k)l-

Equality holds when || - | is the natural norm in an inner product space in which A is normal.
In the special case of matrix exponentials e"4 and matrix powers AX, this last fact implies that

e > e, Ak > p(A)*

for all + > 0 and integers k > 0, where ¢(A) = max;cy(4) Re) is the spectral abscissa and
Pp(A) = max; () [A] is the spectral radius.

Let I'; be a finite union of Jordan curves containing o, (A) in their collective interior for some
€ > 0, and suppose f is a function analytic on I', and its interior. Then

L,
Al < ,
I = 5 max| f(2)]
where L, denotes the arc-length of T',.
In the special case of matrix exponentials e*4 and matrix powers A, this last fact implies that for
all t > 0 and integers k > 0,

L
le < S e, AN < pe(A)H e,
2mwe
In typical cases, larger values of ¢ give superior bounds for small ¢ and k, while smaller values of ¢
yield more descriptive bounds for larger ¢ and k; see Figure 16.7.
Suppose z € C\ o (A) witha = Rezand & = 1/||(zI — A)™!|. Provided a > &, then for any fixed
T >0,

aefﬂ

A
sup |e| > ————.
o«i a+e(e™—1)

. Supposez € C\ 0 (A) witha = Rezand e = 1/|/(z] — A)~!|, and that ||e*4|| < M forallt > 0

with M > a/e. Then for any t > 0,
e = e™(1 —eM/a) + eM/a.

Suppose z € C\ o(A) withr = |z] and ¢ = 1/||(z] — A)7!||. Provided r > 1 + ¢, then for any
fixed integer k > 1,

r(r—1—¢g)+er<!
sup [|A¥|| = —.
0<k<k (T —1- 8) + er¥

Suppose z € C\ o (A) withr = |z|and ¢ = 1/||(z] — A)™!|, and that || A“|| < M for all integers
k > 0with M > (r — 1)/e. Then for any integer k > 0,

1AM > r5(r — 1 — eM) + eM.
For any A € C"™",

J(A) =1
1AK) < e(k+1) sup 22 L
£

e>0
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12. (Kreiss Matrix Theorem) For any A € C"*",

sup —'OS(A) —1 < sup ||Ak|| < emn sup 7'08(14) — 1.
e>0 & k>0 e>0 &
13. [GT93] There exist matrices A and B such that, in the induced 2-norm, o,(A) = o,(B) for all
e > 0,yet | f(A)|l2 # || f(B)]l2 for some polynomial f; see Example 2. That is, even if the 2-norm
of the resolvents of A and B are identical for all z € C, the norms of other matrix functions in A
and B need not agree. (Curiously, if the Frobenius norm of the resolvents of A and B agree for all
z € C,then || f(A)|lr = || f(B)||r for all polynomials f.)

llA4]
lleA]l

0 50 100 150 200 0 50 100 150 200

FIGURE16.7 The functions [e'4| and ||A¥|| exhibit transient growth before exponential decay for the Toeplitz
matrix of dimension n = 50, whose pseudospectra were illustrated in Figure 16.4. The horizontal dashed lines show
the lower bounds on maximal growth given in Facts 1 and 2, while the lower dashed lines show the lower bounds of
Fact 4. The gray lines show the upper bounds in Fact 6 for e = 1071, 1072, ... , 10728 (ordered by decreasing slope).

Examples:

1. Consider the tridiagonal Toeplitz matrix of dimension n = 50 from Example 1 of the last section,
whose pseudospectra were illustrated in Figure 16.4. Since all the eigenvalues of this matrix are
contained in both the left half-plane and the unit disk, et = 0ast — ocoand AF — 0ask — oo.
However, o, (A) extends far into the right half-plane and beyond the unit disk even for & as small
as 1077, Consequently, the lower bounds in Facts 1 and 2 guarantee that [|e’*|| and || A¥|| exhibit
transient growth before their eventual decay; results such as Fact 6 limit the extent of the transient
growth. These bounds are illustrated in Figure 16.7. (For a similar example involving a different
matrix, see the “Transient” demonstration in [Wri02b].)

2. [GT93] The matrices

0
0
0|, B=
V2
0

S

Il
© o o o o
© o o o =

0
1
0
0
0

oSO O © o o
o O o o ©
S ©oO o o
oS O o = O
oSO O o o ©
S O o o o

have the same 2-norm ¢-pseudospectra for all ¢ > 0. However, | A, = V2 >1=|B|».
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Applications:

1. Fact 5 leads to a convergence result for the GMRES algorithm (Chapter 41), which constructs
estimates x; to the solution x of the linear system Ax = b. The kth residual ry = b — Ax; is
bounded by

Tril2 L .
u < —2 min max | p(z)|,
llroll2 2me peClzk) z€le

p(0)=1

where C[z; k] denotes the set of polynomials of degree k or less, I'; is a finite union of Jordan curves
containing o, (A) in their collective interior for some & > 0, and L, is the arc-length of I';.

2. For further examples of the use of pseudospectra to analyze matrix iterations and the stability of
discretizations of differential equations, see [TE05, §§24—34].

16.4 Computation of Pseudospectra

This section describes techniques for computing and approximating pseudospectra, focusing primarily
on the induced matrix 2-norm, the case most studied in the literature and for which very satisfactory
algorithms exist. For further details, see [Tre99], [TE05, §§39-44], or [Wri02a].

Facts: [TEO05]

1. There are two general approaches to computing pseudospectra, both based on the expression for
0:(A) in Fact 1(a) of Section 16.1. The most widely-used method computes the resolvent norm,
|(zI — A)~!||,, onagrid of points in the complex plane and submits the results to a contour-plotting
program; the second approach uses a curve-tracing algorithm to track the £ ~!-level curve of the
resolvent norm ([Brii96]). Both approaches exploit the fact that the 2-norm of the resolvent is the
reciprocal of the minimum singular value of zI — A. A third approach, based on the characterization
of 0, (A) as the set of all e-pseudoeigenvalues, approximates o, (A) by the union of the eigenvalues
of A + E for randomly generated E € C**" with ||[E|| < .

2. For dense matrices A, the computation of the minimum singular value of zI — A requires O(n°)
floating point operations for each distinct value of z. Hence, the contour-plotting approach to
computing pseudospectra based on a grid of m x m points in the complex plane, implemented via
the most naive method, requires O(m?*n?) operations.

3. [Lui97] Improved efficiency is obtained through the use of iterative methods for computing the
minimum singular value of the resolvent. The most effective methods (inverse iteration or the inverse
Lanczos method) require matrix-vector products of the form (zI — A)'x at each iteration. For
dense A, this approach requires O(n*) operations per grid point. One can decrease this labor to
O(n?) by first reducing A to Schur form, A = UTU?*, and then noting that ||(zI — A)7!|, =
l(zI — T)7!|. Vectors of the form (zI — T)~'x can be computed in O(n?) operations since
T is triangular. As the inverse iteration and inverse Lanczos methods typically converge to the
minimum singular value in a small number of iterations at each grid point, the total complexity of
the contour-plotting approach is O(n® + m?n?).

4. For large-scale problems (say, n > 1000), the cost of preliminary triangularization can be pro-
hibitive. Several alternatives are available: Use sparse direct or iterative methods to compute
(zI — A)~'xateach grid point, or reduce the dimension of the problem by replacing A with a smaller
matrix, such as the (m+ 1) x m upper Hessenberg matrix in an Arnoldi decomposition, or U*AU,
where the columns of U € C"*" form an orthonormal basis for an invariant subspace correspond-
ing to physically relevant eigenvalues, with m < n. As per results stated in Fact 9 of Section 16.1,
the pseudospectra of these smaller matrices provide a lower bounds on the pseudospectra of A.
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5. [Wri02b] EigToolis a freely available MATLAB package based on a highly-efficient, robust implemen-
tation of the grid-based method with preliminary triangularization and inverse Lanczos iteration.
For large-scale problems, EigTool uses ARPACK (Chapter 76), to compute a subspace that includes
an invariant subspace associated with eigenvalues in a given region of the complex plane. The
EigTool software, which was used to compute the pseudospectra shown throughout this section,
canbedownloaded fromhttp: //www.comlab.ox.ac.uk/pseudospectra/eigtool.

6. Curve-tracingalgorithms can also benefit from iterative computation of the resolvent norm, though
the standard implementation requires both left and right singular vectors associated with the min-
imal singular value ([Brii96]). Robust implementations require measures to ensure that all com-
ponents of o, (A) have been located and to handle cusps in the boundary; see, e.g., [BGO1].

7. Software for computing 2-norm pseudospectra can be used to compute pseudospectra in any norm
induced by an inner product. Suppose the inner product of x and y is given by (x,y)w = (Wx,y),
where (-, -) denotes the Euclidean inner product and W = LL*, where L* denotes the conjugate
transpose of L. Then the W-norm pseudospectra of A are equal to the 2-norm pseudospectra of
L*AL™*.

8. Fornorms notassociated with inner products, all known grid-based algorithms require O(n*) oper-
ations per grid point, typically involving the construction of the resolvent (zI — A)~!. Higham and
Tisseur ([HT00]) have proposed an efficient approach for approximating 1-norm pseudospectra
using a norm estimator.

9. [BLOO03],[MOO05] There exist efficient algorithms, based on Fact 7 of section 16.1, for computing
the 2-norm pseudospectral radius and abscissa without first determining the entire pseudo-
spectrum.

16.5 Extensions

The previous sections address the standard formulation of the e-pseudospectrum, the union of all eigen-
values of A + E for a square matrix A and general complex perturbations E, with ||E| < &. Natural
modifications restrict the structure of E or adapt the definition to more general eigenvalue problems. The
former topic has attracted considerable attention in the control theory literature and is presented in detail
in [HPO5].

Definitions:

The spectral value set, or structured e-pseudospectrum, of the matrix triplet (A, B,C), A € C"™",
B € C™™, C € CP*", for ¢ > 0 is the set

0:(A;B,C)={z€C:z€0(A+ BEC) forsome E € C"™*F with | E| < &}.
The real structured e-pseudospectrum of A € R"*" is the set
o}A)={z€o(A+E): E eR™ | E| <¢).
The e-pseudospectrum of a rectangular matrix A € C"*" (n > m) for ¢ > 0 is the set
0:(A)={z€eC:(A+ E)x =zxforsomex # O0and | E|| < &}.

[Ruh95] For A € C"™*" and invertible B € C"*", the e-pseudospectrum of the matrix pencil A — A B
(or generalized eigenvalue problem Ax = A Bx) for ¢ > 0 is the set

o.(A, B) = 0.(B7LA).
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[THO1] The e-pseudospectrum of the matrix polynomial P (1) (or polynomial eigenvalue problem
P(AM)x =0), where P(A) = AP A, + AP 1A, + -+ + Agand & > 0, is the set

0:(P)={z€C:ze€0o(P + E) for some
E()")=)"PEP++EO;||E]||§8O[]) j=0,~-~,P}>

for values vy, . .. , . For most applications, one would either take a; = 1for all j, or or; = || A;|l. (This
definition differs considerably from the one given for the pseudospectrum of a matrix pencil. In particular,
when p = 1 the present definition does not reduce to the above definition for the pencil; see Fact 6 below.)

Facts:

1. [HP92, HK93] The above definition of the spectral value set 0. (A; B, C) is equivalent to
0.(A;B,C)={zeC:|C(zI — A)7'B| > ¢ '}.
2. [Kar03] The above definition of the real structured e-pseudospectrum O‘ER(A) is equivalent to
agR(A) ={zeC:r(Az) <¢g},
where

Re(zI — A)™' —yIm(zl — A)7!
_1

-1 _
(427 = inf o < y~m (2] — A) Re (zI — A)~!

r€(0,1)

)

and o, (-) denotes the second largest singular value. From this formulation, one can derive algorithms
for computing o} (A) akin to those used for computing o, (A).

3. The definition of 0} (A) suggests similar formulations that impose different restrictions upon E,
such as a sparsity pattern, Toeplitz structure, nonnegativity or stochasticity of A + E, etc. Such
structured pseudospectra are often difficult to compute or approximate.

4. [WTO02] The above definition of the e-pseudospectrum o, (A) of a rectangular matrix A € C"*™,
n > m, is equivalent to

0.(A) ={zeC:|(z] — A)f| > &7},

where (-) denotes the Moore—Penrose pseudoinverse and T denotes the n x m matrix that has the
m x m identity in the first s rows and is zero elsewhere.
5. The following facts apply to the e-pseudospectrum of a rectangular matrix A € C"™*", m > n.

(a) [WTO02] It is possible that 0. (A) = 0.

(b) [BLOO04] For A € C™",m > n,andanye& > 0, theset o, (A) contains no more than 2n*> —n+1
connected components.

6. [TE05] Alternative definitions have been proposed for the pseudospectrum of the matrix pencil
A — AB. The definition presented above has the advantage that the pseudospectrum is invariant
to premultiplication of the pencil by a nonsingular matrix, which is consistent with the fact that
premultiplication of the differential equation Bx' = Ax does not affect the solution x. Here are
two alternative definitions, neither of which are equivalent to the previous definition.

(a) [Rie94] If B is Hermitian positive definite with Cholesky factorization B = LL*, then the
pseudospectrum of the pencil can be defined in terms of the standard pseudospectrum of a
transformed problem:

0.(A, B) = 0. (L YAL™*).
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J > :
N

5 ! 2 0 2 2 4 2 0 2
FIGURE 16.8  Spectrum (solid dot) and real structured e-pseudospectra O‘SR(A) (left) and unstructured

e-pseudospectra o, (A) of the second matrix of Example 3 in section 16.1 for & = 1073, 107*,

(b) [FGNT96, THO1] The following definition is more appropriate for the study of eigenvalue
perturbations:

0:(A,B)={z€ C:(A+ Eo)x = z(B + E;)x for some
x # 0and Ey, E; with || E¢|l < eap, [ E1ll < a1},

where generally either o; = 1for j = 0,1, or &g = || Al and o; = || BJ|. This is a special case
of the definition given above for the pseudospectrum of a matrix polynomial.

7. [THO1] The above definition of the -pseudospectrum of a matrix polynomial, o, ( P), is equivalent

to
0.(P)={z e C:||P(2)7"|| > 1/(ep(I2]))},

where ¢(z) = Zf:o ayzk for the same values of g, . . . , &, used in the earlier definition.

2 of 2

1 1 1

0 Or 0
-1 -1t 1
2 e ‘ 2

-1 0 1 2 -1 0 1 2 -1 0 1 2

FIGURE 16.9  ¢-pseudospectra of the rectangular matrix in Example 2 with § = 0.02 (left), § = 0.01 (middle),
8 = 0.005 (right), and ¢ = 107!, 107", and 1072, Note that in the first two plots, 0. (A) = ¢ for e = 1072,



Pseudospectra 16-15

Examples:

1. Figure 16.8 compares real structured e-pseudospectra o} (A) to the (unstructured) pseudospectra
o, (A) for the second matrix in Example 3 of Section 16.1; cf. [TEO05, Fig. 50.3].
2. Figure 16.9 shows pseudospectra of the rectangular matrix

2 =5 10

1 -2 5i
A= ,

0 0 1

8 5 4

which is the third matrix in Example 1 of Section 16.1, but with an extra row appended.
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17.1 Definitions and Characterizations

Singular values and the singular value decomposition are defined in Chapter 5.6. Additional information
on computation of the singular value decomposition can be found in Chapter 45. A brief history of the
singular value decomposition and early references can be found in [HJ91, Chap. 3].

Throughout this chapter, ¢ = min{m, n}, and if A € C"*" has real eigenvalues, then they are ordered
M(A) = - = Au(A).

Definitions:

For A € C"™*", define the singular value vector sv(A) = (0,(4),... ,04(A)).

For A € C™", define r1(A) > --- > r,,(A) and ¢;(A) > --- > ¢,(A) to be the ordered Euclidean
row and column lengths of A, that is, the square roots of the ordered diagonal entries of AA*
and A*A.

For A € C"™" define |Al, = (A*A)'/2, This is called the spectral absolute value of A. (This is also
called the absolute value, but the latter term will not be used in this chapter due to potential confusion
with the entry-wise absolute value of A, denoted | A|.)

A polar decomposition or polar form of the matrix A € C™*" with m > n is a factorization A = UP,
where P € C"" is positive semidefinite and U € C"*" satisfies U*U = I,,.

17-1
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Facts:

The following facts can be found in most books on matrix theory, for example [HJ91, Chap. 3] or
[Bha97].

1. Take A € C™" and set

A 0
B = .

0 0
Then 0;(A) = 0;(B) fori = 1,... ,q and 6;(B) = 0 for i > g. We may choose the zero blocks
in B to ensure that B is square. In this way we can often generalize results on the singular values
of square matrices to rectangular matrices. For simplicity of exposition, in this chapter we will
sometimes state a result for square matrices rather than the more general result for rectangular

matrices.
2. (Unitary invariance) Take A € C™*" . Then for any unitary U € C"*" and V € C"",

O','(A):O’,'(UAV), i:1,2,...,q.

3. Take A, B € C™*". There are unitary matrices U € C™*" and V € C"*" such that A = UBV if
and only if 0;(A) = 0;(B),i = 1,2,... ,4.
4. Let A € C"™". Then 6?(A) = X;(AA*) = A (A*A) fori = 1,2,... ,q.

5. Let A € C"™*". Let S; denote the set of subspaces of C" of dimension i. Then fori = 1,2,... ,q,
0;(A) = min max ||Ax||; = min max | Ax]|,,
XeS,_iz1 xed|x[x=1 YeSioi xLYlxll=1
0;(A) = max min || Ax|; = max min || Ax],.
XeS;  xed,|x],=1 YeS,—i xLY|xl,=1

6. Let A € C™"and define the Hermitian matrix

— m—+n,m-+n
J = 4% eC )

The eigenvalues of ] are +01(A), ..., %0, (A) together with [m — n| zeros. The matrix J is called
the Jordan—Wielandt matrix. Its use allows one to deduce singular value results from results for
eigenvalues of Hermitian matrices.

7. Take m > nand A € C™*". Let A = U P be a polar decomposition of A. Then o;(A) = A;(P),
i=12,...,q.

8. Let Ae C"™"and 1 <k < q.Then

k
> 0i(A) =max{Re tr U"AV : U e ™K,V e C"F U*U = V*V = I},
i=1

k
[ 0i(A) = max{|detU* AV|: U € C™*,V e C™K, U*U = V*V = L),

i=1

If m = n, then

D oi(A) = max{z |(U*AU);i|: U € C™", U*U = In} :
i=1

i=1

We cannot replace the n by a general k € {1,... ,n}.
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9. Let A € C"™". Avyields
(@) 0;(AT) = 0;(A*) = 0;(A) = 0;(A), fori = 1,2,... ,q.
(b) Let k = rank(A). Then o;(Af) = ak__liH(A) fori = 1,...,k, and ;(AT) = 0 fori =
k+1,...,q. Inparticular, if m = n and A is invertible, then

oi(A) =0, (A), i=1...,n

(c) Forany j e N

oi(A*A)) =0 (A), i=1,...,q;

1

0i((A*A) A*) = 0, (A(A*A)) = /7T (A) i=1,...,q.

10. Let UP be a polar decomposition of A € C™" (m > n). The positive semidefinite factor P is
uniquely determined and is equal to | A| 4. The factor U is uniquely determined if A has rank n. If
A has singular value decomposition A = U; ZU; (U; € C™", U, € C"™"), then P = U,XUj,
and U may be taken to be U, U;".

11. Take A,U € C"*" with U unitary. Then A = U|A],q ifand only if A = |A*|,4U.

Examples:
1. Take

1 -3 -5 1

1 -5 =3 11

=5 1 11 -3

-3 11 1 -5

The singular value decomposition of A is A = UX V*, where ¥ = diag(20, 12, 8,4), and

—1 1 -1 1 —1 1 -1 1

1]—-1 -1 1 1 1 1 1 1 1
U=- and V =-

2 1 -1 -1 1 2 1 -1 -1 1

1 1 1 1 -1 -1 1 1

The singular values of A are 20, 12, 8, 4. Let Q denote the permutation matrix that takes (x1, x2, x3, X4)
to (x1, x4, X3, X2). Let P = | A4 = QA. The polar decomposition of Ais A = QP. (To see this,
note that a permutation matrix is unitary and that P is positive definite by GerSchgorin’s theorem.)
Note also that |A] ;4 # |A*|,a = AQ.

17.2 Singular Values of Special Matrices

In this section, we present some matrices where the singular values (or some of the singular values) are
known, and facts about the singular values of certain structured matrices.

Facts:

The following results can be obtained by straightforward computations if no specific reference is given.

1. Let D = diag(a;,... ,a,), where the o; are integers, and let H; and H, be Hadamard matrices.
(See Chapter 32.2.) Then the matrix H; D H, has integer entries and has integer singular values
nlayl,...nlay,l.
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. (2 x 2 matrix) Take A € C**%. Set D = | det(A)|%, N = || A||%. The singular values of A are

N+ +/N?—-4D
2 .

. Let X € C™*" have singular values 0y > --- > 0, (¢ = min{m, n}). Set

I 2X
0 I

A= c (cm+n,m+n

The m + n singular values of A are

01+\/012+1,...,aq+,/oqz+l,1,...,1,,/(rqz+1—(rq,...,\/012+1—01.

. [HJ91, Theorem 4.2.15] Let A € C™*™ and B € C"*"™ have rank m and n. The nonzero singular

valuesof A® Bareo;(A)oj(B),i=1,...,m j=1,...,n.

. Let A € C"" be normal with eigenvalues 11, . .. , A, and let p be a polynomial. Then the singular

values of p(A) are |p(A¢)|, k = 1,... ,n.Inparticular, if A is a circulant with firstroway, . . . ,a,-1,
then A has singular values

. Take A € C"*" and nonzero x € C". If Ax = Ax and x* A = Ax*, then |A| is a singular value of A.

In particular, if A is doubly stochastic, then o7(A) = 1.

. [Kit95] Let A be the companion matrix corresponding to the monic polynomial p(¢) = " +

Ay t" 4 ayt +ag. Set N =14 377 |a;|*. The n singular values of A are

\/N+ N2 —4|a0|2 1 1 \/N— N2 —4|a0|2
2 > PR b 2 .

. [Hig96, p. 167] Take s, ¢ € R such that s? + ¢ = 1. The matrix

1 —c —c —C
1 —c —c
A = diag(1,s,...,s"™")
—c
L 1

is called a Kahan matrix. If c and s are positive, then o,,_1(A) = s"2/1 + c.
[GE95, Lemma 3.1] Take 0 = d; < dy < --- <d,and 0 # z; € C. Let

2]

z d
A =
Zn d,
The singular values of A satisfy the equation

|zi |

4 |
f) =1+ =0
2 v
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and exactly one lies in each of the intervals (dy, d,), . . . , (dy—1,dy), (dy, dy + || 2]]2)- Leto; = 0i(A).
The left and right ith singular vectors of A are u/||u||, and v/||v||, respectively, where

21 Zy :|T d |: 1 d2Z2 dnzn T
u= IR an v=|—1, RN
di — o} d; — o} d; — o} dy — o}
10. (Bidiagonal) Take
ar B

_ @2 E nxn

B = e C"™,
. IBn—l
oy

If all the o; and B; are nonzero, then B is called an unreduced bidiagonal matrix and
(a) The singular values of B are distinct.
(b) The singular values of B depend only on the moduli of 1, ..., &, B15 - - - Bu—1-

(c) The largest singular value of B is a strictly increasing function of the modulus of each of the

«; and B;.

(d) The smallest singular value of B is a strictly increasing function of the modulus of each of the
a; and a strictly decreasing function of the modulus of each of the ;.

(e) (High relative accuracy) Take T > 1 and multiply one of the entries of B by 7 to give B. Then
t710;(B) < 0i(B) < 70:(B).

11. [HJ85, Sec. 4.4, prob. 26] Let A € C"*" be skew-symmetric (and possibly complex). The nonzero
singular values of A occur in pairs.

17.3 Unitarily Invariant Norms

Throughout this section, g = min{m, n}.

Definitions:

A vector norm || - || on C™*" is unitarily invariant (u.i.) if || A|| = [|[UAV|| for any unitary U € C"*"
and V € C"" and any A € C"™".

I - llur is used to denote a general unitarily invariant norm.

A function g : R" — R{ is a permutation invariant absolute norm if it is a norm, and in addition
g(x1,. .., x,) = g(|x1]5. .. 5 |xx]) and g(x) = g(Px) for all x € R" and all permutation matrices P €
R™". (Many authors call a permutation invariant absolute norm a symmetric gauge function.)

The Ky Fan k norms of A € C"™*" are

k
Il = 0i(A), k=12,...,q.
i=1
The Schatten-p norms of A € C"™*" are

q 1/p
IAlls,p = (Zof(m) = (tr]AlL)"" 0<p<oo

i=1
[ Alls,co = 01(A).
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The trace norm of A € C"*" is

q
[Alle = 0i(A) = [|Allkg = | Alls1 = tr |Alpa.

i=1

Other norms discussed in this section, such as the spectral norm || - ||, (||[All, = 01(A) = max, ”@’i”z)

and the Frobenius norm | - || (Al = (L, 02(A)Y2 = 0 125 laijl 2)1/2) " are defined in
Section 7.1. and discussed extensively in Chapter 37.

Warning: There is potential for considerable confusion. For example, || All, = ||Allx,1 = | Alls,00, while
I lloo # |l - lls,00 (unless m = 1), and generally || A||2, || Alls,» and || A||k; are all different, as are || Al|;,
| Alls,1 and || Al k1 - Nevertheless, many authors use || - [|x for || - [xx and || - ||, for || - ||s,p-

Facts:

The following standard facts can be found in many texts, e.g., [HJ91, §3.5] and [Bha97, Chap. IV].

1. Let || - || be anorm on C™*". It is unitarily invariant if and only if there is a permutation invariant
absolute norm g on RY such that || Al| = g(01(A),...,0,(A)) forall A € C™*".

2. Let|-|| bea unitarily invariant norm on C"*", and let g be the corresponding permutation invariant
absolute norm g. Then the dual norms (see Chapter 37) satisfy | A|” = gP(01(A), ... ,04(A)).

3. [HJ91, Prob. 3.5.18] The spectral norm and trace norm are duals, while the Frobenius norm is self
dual. The dual of || - |Is,p is || - I|'s,5> Where 1/p +1/p = 1 and

Al
IIAIIQ,k=maX{||AIIz> kt » k=1,....q.

4. Forany A € C"™", q7"2||Allr < |All> < |Allr.

5. If || - || is a w.i. norm on C™*", then N(A) = || A*A|"/? is a u.i. norm on C"*". A norm that arises
in this way is called a Q-norm.

6. Let A, B € C™*" be given. The following are equivalent

(a) ||Allur < || Bllu; for all unitarily invariant norms || - ||y;-
(®) Il Allkk < IBllsfork=1,2,... ,q.
(©) (01(A),...,04(A)) =y (01(B),...,04(B)). (% is defined in Preliminaries)

The equivalence of the first two conditions is Fan’s Dominance Theorem.
7. The Ky—Fan-k norms can be represented in terms of an extremal problem involving the spectral
norm and the trace norm. Take A € C"™*". Then

[Allkx = min{| X]le +k[Y]2: X+Y =A} k=1,...,q.

8. [HJ91, Theorem 3.3.14] Take A, B € C™*". Then
[trAB*| < Za, )o;(B).

This is an important result in developing the theory of unitarily invariant norms.
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Examples:

1. The matrix A in Example 1 of Section 17.1 has singular values 20, 12,8, and 4. So

Al =20, [|AllF =624, |All; = 44;
lAllk1 =20, [lAllgk2 =32, |lAllgs =40, ||Allxs=44;
|Allsy =44, |lAllsp, =624, |lAllss =~/10304 = 21.7605, | Alls,ec = 20.

17.4 Inequalities

Throughout this section, g = min{m,n} and if A € C™" has real eigenvalues, then they are ordered
M(A) = - = Au(A).

Definitions:

Pinching is defined recursively. If

0
Ap

c meﬂ’

A Ap
Ay Axp

e (men’ B = All
0

then B is a pinching of A. (Note that we do not require the A;; to be square.) Furthermore, any pinching
of B is a pinching of A.
For positive , B, define the measure of relative separation x (o, 8) = | /o /B — /B/«|.

Facts:

The following facts can be found in standard references, for example [HJ91, Chap. 3], unless another
reference is given.

1. (Submatrices) Take A € C™*" and let B denote A with one of its rows or columns deleted. Then
0i41(A) <0i(B) <0i(A), i=1,...,9—-1
2. Take A € C™ " and let B be A with a row and a column deleted. Then

0i12(A) <0i(B) <0i(A), i=1,...,9 -2

The i + 2 cannot be replaced by i + 1. (Example 2)
3. Take A € C™ " and let B be an (m — k) x (n — I) submatrix of A. Then

Oik+1(A) <0i(B) <0i(A), i=1,...,9 —(k+1).

4. Take A € C™" and let B be A with some of its rows and/or columns set to zero. Then o;(B) <
oi(A), i=1,...,q.

5. Let B be a pinching of A. Then sv(B) =<,, sv(A). The inequalities Hf:l 0;(B) < Hle 0;(A) and
0x(B) < ok (A) are not necessarily true for k > 1. (Example 1)

6. (Singular values of A+ B) Let A, B € C"™*".

(a) sv(A+ B) =,, sv(A) + sv(B), or equivalently

k k k
Y oi(A+B) <) oi(A)+Y oi(B), i=1....q.
i=1 i=1

i=1

(b) Ifi+j—1<gqandi,jeN,theno ; 1(A+ B) <0;(A) 4 0;(B).
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(c) We have the weak majorization |[sv(A + B) — sv(A)| =, sv(B) or, equivalently, if 1 < i; <
- < ix < g, then

j=1

k k
> loi,(A+ B) —0i,(A)| <Y _0j(B),
j=1
k k k k k
D 0, (A)=> 0j(B) <Y 0 (A+B) <> 0;(A)+ > o;(B).
i=1 j=1 j=1 i=1 j=1

(d) [Tho75] (Thompson’s Standard Additive Inequalities) If 1 < i) < --- < i, <¢q,1 <ij <
'<ik§qandik+jk<q+k then

Zol +i—s(A+ B) <Za, (A) +Za, (B).

s=1 s=1

7. (Singular values of AB) Take A, B € C"*".
(a) Forallk =1,2,...,nandall p > 0, we have

i=n—k+1 i=n—k+1
II oiWoiB) < ] oi(AB),
i=n 1=n

k

IIe (AB><Ho—, )oi(B),

i=1 i=1

k
Yo P(AB)<ZoP<A )o! (B).

i=1 i=1

(b) Ifi,j e Nandi + j — 1 < n,thenoi;_1(AB) < 0;(A)o;(B).
(c) 04(A)oi(B) < 0;(AB) < 01(A)o;(B),i = 1,2,...,n
(d) [LM99] Take1 < j; < --- < jx < n.If Aisinvertibleand o}, (B) > 0 then oj,(AB) > 0 and
1 0 (AB) o (B)
i(A - - i(A
I )<H {2 o) < H"( )

i=n—k+1

(e) [LM99] Take invertible S, T € (C"X” Set A = SAT. Let the singular values of A and A be
o >--->0,and 6, > --- > G,. Then

1
[diag(x (61,61)s > .. » X (0 Gu))llur = 2 (18" =S Hlur + 1T = T Yur) -

(f) [TT73] (Thompson’s Standard Multiplicative Inequalities) Take 1 < i; < --- < i, < nand
1<ji << jm<nlfiy,+ j, <m+n,then

[Toi+i-s(aB) < o (D ] o (B)
s=1 s=1 s=1

8. [Bha97, §IX.1] Take A, B € C"*".
(a) If AB is normal, then

k k
[[oiaB) <[Joi(BA), k=1,....q,
i= i=1

and, consequently, sv(AB) <,, sv(BA), and | AB|lur < |[BAllyr-
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(b) If AB is Hermitian, then sv(AB) =<, sv(H(BA)) and ||AB|ly; < ||[H(BA)|ys, where
H(X) =(X+ X%)/2.

9. (Term-wise singular value inequalities) [Zha02, p. 28] Take A, B € C"*". Then
20,(AB*) < 0i(A*A+B*B), i=1,...,q

and, more generally, if p, p > 0and 1/p 4+ 1/p = 1, then
(A* A)P/2 N (B*B)ﬁ/2> _ <|A|§d N |B|§d> '

Oj

p p

0;(AB*) < 0;
p p

The inequalities 201 (A*B) < 01(A*A + B*B) and 01(A + B) < 01(|Alpa + |B|pa) are not true
in general (Example 3), but we do have

IA*BIG; < IA*Allur | B*Bllur.

10. [Bha97, Prop. IIL.5.1] Take A € C™". Then A;(A + A*) < 20;(A),i = 1,2,... ,n.
R

11. [LMO02] (Block triangular matrices) Let A = s T

€ C"™" (R € CP*P) have singular values
ap > -+ > a,. Let k = min{p,n — p}. Then
(a) Ifamin(R) = Gmax(T)) then

oi(R)
ai <0;_p(T), i=p+1,...,n

IA

o, iZl,...,p

(b) (UI(S))~ .. )Gk(s)) =w (051 — Oy et 50 — an—k+1)'

(¢) If A isinvertible, then

(O (T7'SR™, ..., oi(TTISRTY) <y, (0 — oy ya ey — oY),
1/« o o o,

(OU(T7'S) . ou(T18)) <y » (—1——”,-~-, ¢ —"—’”1).
2 \ay, a On—k+1 (413

12. [LMO02] (Block positive semidefinite matrices) Let A =

A5 A ] € C™" be positive definite
12 22

with eigenvalues A; > - -+ > A,. Assume A;; € CP*P. Set k = min{p,n — p}. Then

j j
[Io7(An) < [[oi(Amoi(An), j=1,....k
i=1

i=1
(01 (A1_11/2A12)) <50k (A1_11/2A12)) =w (\/)"_1 - \/E) B \/)‘-— Y/ )\n—k-H) >
1
(01(A An), ... 5ok (A A)) <y 3 X525 w5 X s Anmir1)) -
If k = n/2, then

2
AL < 1Aullur Axllur.

13. (Singular values and eigenvalues) Let A € C"*". Assume |A1(A)| > - -+ > |A,(A)|. Then
(@) T, 1M(A)] < TI, 0:(A), k=1,...,n, with equality for k = n.
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(b) Fix p > 0. Then fork =1,2,...,n,

k k
S = ol (A).
i=1 i=1

Equality holds with k = # if and only if equality holds for all k = 1,2, ... ,n, if and only if A
is normal.

(c) [HJ91, p. 180] (Yamamoto’s theorem) limgs oo (o; (ANVE = |0 (A), i=1,...,n.

14. [LMO1] Let »; € Cand o; € R, i = 1,... ,n be ordered in nonincreasing absolute value. There
is a matrix A with eigenvalues Ay, ... , A, and singular values oy, . . . , 0, if and only if

k k
HIAiI < Ho,', k=1,...,n, with equality for k =n.
i=1 i=1

In addition:

(a) The matrix A can be taken to be upper triangular with the eigenvalues on the diagonal in any
order.

(b) Ifthe complex entriesin Ay, ... , A, occur in conjugate pairs, then A may be taken to be in real
Schur form, with the 1 x 1 and 2 x 2 blocks on the diagonal in any order.

(c) There is a finite construction of the upper triangular matrix in cases (a) and (b).
(d) Ifn > 2, then A cannot always be taken to be bidiagonal. (Example 5)

15. [Zha02, Chap. 2] (Singular values of A o B) Take A, B € C"™*".
(a) 0;(Ao B) <minfr;(A),c;(B)}-01(B), i=12,...,n.

(b) We have the following weak majorizations:

k k
> 0i(AoB) < > min{ri(A),ci(A)}oi(B), k=1,...,n,

i=1 i=1

k k
ZGi(AO B) = Zdi(A)Ui(B), k=1,...,n,
i=1 i=1

k k
[[o?AoB) < [[oi((A*A) o (B*B)), k=1,...,n.
i=1 i=1

(c) Take X,Y € C"™".If A = X*Y, then we have the weak majorization

k k
> 0i(AoB) <> ci(X)ci(Y)oi(B), k=1,...,n.
i=1

i=1
(d) If B is positive semidefinite with diagonal entries by; > - -+ > by, then

k k
> 0i(AoB)< > biioi(A), k=1,...,n
i=1 i=1

(e) If both A and B are positive definite, then so is A o B (Schur product theorem). In this case
the singular values of A, B and A o B are their eigenvalues and B A has positive eigenvalues
and we have the weak multiplicative majorizations

[17®B%i(A) < [T biri(A) < [[2(BA) < [[i(AcB), k=12....,n
i=k i=k i=k i=k

The inequalities are still valid if we replace A o B by A o BT. (Note B” is not necessarily the
same as B* = B.)
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16.

17.

18.

19.

20.

21.

22.
23.

Let A € C™". The following are equivalent:
(a) 01(Ao B) <0,(B) forall B e C™",
) ¥ 6;(AoB) <X 0;(B)forall B e C"™"andallk = 1,...,q.

(c) There are positive semidefinite P € C"™*" and Q € C™*™ such that

P A
A* Q

is positive semidefinite, and has diagonal entries at most 1.

(Singular values and matrix entries) Take A € C™". Then

(|a11|27 |a12|2)~'~ )|amn|2) = (Ulz(A)) ,U;(A),O,... )O))
q

> ol(4A) < Zm:zn:laijlp, 0=<p=2
i=1

i=1 j=1
m n q

> lail? <Y of(A), 2<p<oo.
i=1

1j=1

1

If 01(A) = |a;;|, then all the other entries in row i and column j of A are 0.
Takeo; > --- >0, >0anda; > --- > a, > 0. Then

JAe R st. 0i(A)=0; and c¢i(A)=0o; & (af,...,)) = (o},...,07).

This statement is still true if we replace R"*" by C"*" and/or ¢; (- ) by r;( - ).
Take A € C"™". Then

n

ﬁoi(A)g Hci(A), k=12,...,n
i=k

i=k

The case k = 1 is Hadamard’s Inequality: | det(A)| < [T, c;(A).

[Tho77] Take F = CorRandd,...,d, € F suchthat|d,| > --->|d,|,ando; > --- > 0, > 0.
There is a matrix A € F"™*" with diagonal entries dy, . . . , d, and singular values 0y, ... ,0, ifand
only if

n—1 n—1
(il s ldal) =0 (01(A)s...,04(A) and Y |dj| = Ida| <3 6;(A) — 0, (A).

j=1 j=1

(Nonnegative matrices) Take A = [a;;] € C™*".
(a) If B = [|ajj|], then 01(A) < 01(B).

(b) If Aand B arerealand 0 < a;; < b;; V i, j, then 0,(A) < 01(B). The condition 0 < a;; is
essential. (Example 4)

(c) The condition 0 < b;; <1 V i, j does not imply 61(A o B) < o1(A). (Example 4)

(Bound on o1) Let A € C™". Then ||A|; = 01(A) < VA1 Al co-
[Zha99] (Cartesian decomposition) Let C = A +iB € C"*", where A and B are Hermitian. Let

A, B, C have singular values &, 8;, i, j = 1,... ,n. Then

Vs V) = V21 +iBil sl +iBal) <o 20715+ Va)-
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Examples:
1. Take

1 1 1 1 0 0 1 0 0

A=|1 1 1|, B=(0 1 1|, C=1]0 1 0

1 1 1 0 1 1 0 0 1

Then B is a pinching of A, and C is a pinching of both A and B. The matrices A, B, C have singular
values @ = (3,0,0), 8 = (2,1,0), and y = (1,1, 1). As stated in Fact 5, y <, 8 <, «. In fact,
since the matrices are all positive semidefinite, we may replace <,, by <. However, it is not true
that y; < «; except for i = 1. Nor is it true that | det(C)| < | det(A)|.

2. The matrices

11 -3 =5 1

1 -3 -5 1 1 -3 -5
1 -5 =3 11

A= , B= 1 -5 =3 11|, C= 1 -5 -3
-5 1 11 -3

-5 1 11 -3 -5 1 11

-3 11 1 =5

have singular values o« = (20, 12,8,4), 8 = (17.9,10.5,6.0), and y = (16.7,6.2,4.5) (to 1 decimal
place). The singular values of B interlace those of A (a4 < B3 <3 < 8, < oy < B < a3), but
those of C do not. In particular, a3 £ y,. Itistruethat o1, <y, <o; (i = 1,2).

3. Take
1 0 0 1
A= and B = .
1 0 0 1

Then [|A+ Bll, = o1(A+ B) = 2 £ v2 = 01(IAlpa + |Blpa) = || 1Alpa + |Blpa ll2- Also,
201(A*B) = 4 £ 2 = 01(A*A + B*B).
4. Setting entries of a matrix to zero can increase the largest singular value. Take

1 1 1 1
A:|: }, and B:|: }
-1 1 0 1

Then 01(A) = v/2 < (1 ++/5)/2 = 01(B).

5. A bidiagonal matrix B cannot have eigenvalues 1, 1, 1 and singular values 1/2, 1/2, 4. If B is
unreduced bidiagonal, then it cannot have repeated singular values. (See Fact 10, section 17.2.)
However, if B were reduced, then it would have a singular value equal to 1.

17.5 Matrix Approximation

Recall that || - ||y denotes a general unitarily invariant norm, and that ¢ = min{m, n}.

Facts:

The following facts can be found in standard references, for example, [H]J91, Chap. 3], unless another
reference is given.

1. (Best rank k approximation.) Let A € C"*"and1 < k < q —1.Let A = UX V* be asingular value
decomposition of A. Let = be equal to = except that £;; = 0 fori > k,and let A = USV*. Then
rank(A) < k, and

IZ — Sllur = |A — Allyr = min{|| A — Blly; : rank(B) < k}.
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In particular, for the spectral norm and the Frobenius norm, we have

0k+1(A) = min{[|A — B||; : rank(B) < k},

q 1/2
< Z Gk2+1(A)>

i=k+1

min{||A — B||F : rank(B) < k}.

2. [Bha97, p. 276] (Best unitary approximation) Take A, W € C"" with W unitary. Let A = UPbe a
polar decomposition of A. Then

[A—="Ulur < |A=Wllur < |A+ Ullur-

3. [GV96, §12.4.1] [H]85, Ex. 7.4.8] (Orthogonal Procrustes problem) Let A, B € C™*". Let B* A have
a polar decomposition B¥*A = UP. Then

IA—BU|r = min{|A— BW|/; : W e C"", W*W = I}.

This result is not true if || - || ¢ is replaced by || - ||y ([Mat93, §4]).
4. [Hig89] (Best PSD approximation) Take A € C"*". Set Ay = (A + A*)/2, B = (A + |Anl)/2).
Then B is positive semidefinite and is the unique solution to

min{||A — X||r : X € C™", X € PSD}.

There is also a formula for the best PSD approximation in the spectral norm.
5. Let A, B € C™" have singular value decompositions A = UsX,V} and B = UpXVj. Let
U € C™™ and V € C"™" be any unitary matrices. Then

124 — Zgllur < I|1A = UBV*||y;.

17.6 Characterization of the Eigenvalues of Sums
of Hermitian Matrices and Singular Values of Sums
and Products of General Matrices

There are necessary and sufficient conditions for three sets of numbers to be the eigenvalues of Hermitian
A,B,C = A+ B € C"™", or the singular values of A, B,C = A+ B € C™", or the singular values
of nonsingular A, B, C = AB € C"™". The key results in this section were first proved by Klyachko
([Kly98]) and Knutson and Tao ([KT99]). The results presented here are from a survey by Fulton [Ful00].
Bhatia has written an expository paper on the subject ([BhaO1]).

Definitions:

The inequalities are in terms of the sets T, of triples (I, J, K) of subsets of {1, . .. , n} of the same cardinality
r, defined by the following inductive procedure. Set

Zi—i—Z]’:Zk—i—r(r—i—l)/Z}.

iel jel keK

U = {(I,],K)

Whenr = 1, set T/" = U/ In general,
T" = {(I,],K) € U |for all p<r and all

(F,G,H) in T, Y it+ > jg <> ka+pp+ 1)/2}.

feF geG heH

In this section, the vectors o, B, y will have real entries ordered in nonincreasing order.
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Facts:
The following facts are in [Ful00]:

1. Atriple (@, B, y) of real n-vectors occurs as eigenvalues of Hermitian A, B,C = A+ B € C"™" if
andonlyif " y; = > o; + > B; and the inequalities

S = Y i+ > B

keK iel jel

hold for every (I, J, K) in T, for all r < n. Furthermore, the statement is true if C"*" is replaced
by Rnxﬂ'

2. Take Hermitian A,B € C™" (not necessarily PSD). Let the vectors of eigenvalues of A, B,
C = A+ Bbea, 8, and y. Then we have the (nonlinear) inequality

n n n
minges, [ [ + Bxi) < [[ v < maxqes, [ (e + Bri)-

i=1 i=1 i=1

3. Fixm, nand setq = min{m, n}. For any subset X of {1,... ,m+n},define X, ={i :i € X,i < g}
and X; ={i:i<q, m+n+1—ie X} Atriple (a,8,y) occurs as the singular values of
A,B,C = A+ B € C"™", if and only if the inequalities

D= D v = D= ait > B D B

keK, kek iel iel; j€ly j€lg
are satisfied forall (I, J, K ) in T,"’*”, forallr < m+n. This statement is not true if C"*" is replaced
by R™". (See Example 1.)

4. A triple of positive real n-vectors («, 8, y) occurs as the singular values of n by n matrices A,B,
C=ABeC™"ifandonlyify, -y, = a1 ---a,B1--- B, and

=]l 1]8

keK iel jel

forall (I,],K)in T, and all r < n. This statement is still true if C"*" is replaced by R"*".

Example:

1. Thereare A,B,C = A+ B € C?*?with singular values (1, 1), (1,0), and (1, 1), but there are no
A, B,C = A + B € R**? with these singular values.

In the complex case, take A = diag(1,1/2 + (+v/3/2)i), B = diag(0, —1).

Now suppose that A and B are real 2 x 2 matrices such that A and C = A + B both have
singular values (1,1). Then A and C are orthogonal. Consider BCT = ACT — CCT = ACT — 1.
Because ACT is real, it has eigenvalues o, @ and so BC T has eigenvalues o — 1, & — 1. Because AC T
is orthogonal, it is normal and, hence, so is BCT, and so its singular values are |@ — 1| and |d@ — 1|,
which are equal and, in particular, cannot be (1,0).

17.7 Miscellaneous Results and Generalizations

Throughout this section F can be taken to be either R or C.

Definitions:

Let X', ) be subspaces of C" of dimension m and n. The principal angles 0 < 6, < --- < 6, < 7/2
between X’ and ) and principal vectors uy, ... ,u; and vy, ... , v, are defined inductively:

cos(0)) = max{|x"y| : x € Xﬁ;le%)x, lIxll2 = llylla = 1}.
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Let u; and v; be a pair of maximizing vectors. For k = 2,... 