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Abstract

The subject of quantum computing brings together ideas from classical information theory, computer science,
and quantum physics. This review aims to summarise not just quantum computing, but the whole subject of
quantum information theory. Information can be identified as the most general thing which must propagate
from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However,
the mathematical treatment of information, especially information processing, is quite recent, dating from the
mid-twentieth century. This has meant that the full significance of information as a basic concept in physics is
only now being discovered. This is especially true in quantum mechanics. The theory of quantum information
and computing puts this significance on a firm footing, and has lead to some profound and exciting new
insights into the natural world. Among these are the use of quantum states to permit the secure transmission of
classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission
of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible
noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation
(quantum computation). The common theme of all these insights is the use of quantum entanglement as a
computational resource.

It turns out that information theory and quantum mechanics fit together very well. In order to explain their rela-
tionship, this review begins with an introduction to classical information theory and computer science, including
Shannon’s theorem, error correcting codes, Turing machines and computational complexity. The principles of
quantum mechanics are then outlined, and the EPR experiment described. The EPR-Bell correlations, and
quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical
information theory, and, arguably, quantum from classical physics.

Basic quantum information ideas are next outlined, including qubits and data compression, quantum gates, the
‘no cloning’ property, and teleportation. Quantum cryptography is briefly sketched. The universal quantum
computer is described, based on the Church-Turing Principle and a network model of computation. Algorithms
for such a computer are discussed, especially those for finding the period of a function, and searching a random
list. Such algorithms prove that a quantum computer of sufficiently precise construction is not only fundamen-
tally different from any computer which can only manipulate classical information, but can compute a small
class of functions with greater efficiency. This implies that some important computational tasks are impossible
for any device apart from a quantum computer.

To build a universal quantum computer is well beyond the abilities of current technology. However, the principles
of quantum information physics can be tested on smaller devices. The current experimental situation is reviewed,
with emphasis on the linear ion trap, high-Q optical cavities, and nuclear magnetic resonance methods. These
allow coherent control in a Hilbert space of eight dimensions (3 qubits), and should be extendable up to a
thousand or more dimensions (10 qubits). Among other things, these systems will allow the feasibility of
quantum computing to be assessed. In fact such experiments are so difficult that it seemed likely until recently
that a practically useful quantum computer (requiring, say, 1000 qubits) was actually ruled out by considerations
of experimental imprecision and the unavoidable coupling between any system and its environment. However, a
further fundamental part of quantum information physics provides a solution to this impasse. This is quantum
error correction (QEC).

An introduction to quantum error correction is provided. The evolution of the quantum computer is restricted
to a carefully chosen sub-space of its Hilbert space. Errors are almost certain to cause a departure from
this sub-space. QEC provides a means to detect and undo such departures without upsetting the quantum
computation. This achieves the apparently impossible, since the computation preserves quantum coherence
even though during its course all the qubits in the computer will have relaxed spontaneously many times.
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The review concludes with an outline of the main features of quantum information physics, and avenues for
future research.

PACS 03.65.Bz, 89.70.+c
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1 Introduction

The science of physics seeks to ask, and find precise
answers to, basic questions about why nature is as it
is. Historically, the fundamental principles of physics
have been concerned with questions such as “what are
things made of?” and “why do things move as they
do?” In his Principia, Newton gave very wide-ranging
answers to some of these questions. By showing that
the same mathamatical equations could describe the
motions of everyday objects and of planets, he showed
that an everyday object such as a tea pot is made of
essentially the same sort of stuff as a planet: the mo-
tions of both can be described in terms of their mass
and the forces acting on them. Nowadays we would
say that both move in such a way as to conserve en-
ergy and momentum. In this way, physics allows us to
abstract from nature concepts such as energy or mo-
mentum which always obey fixed equations, although
the same energy might be expressed in many different
ways: for example, an electron in the large electron-
positron collider at CERN, Geneva, can have the same
kinetic energy as a slug on a lettuce leaf.

Another thing which can be expressed in many dif-
ferent ways is information. For example, the two
statements “the quantum computer is very interest-
ing” and “l’ordinateur quantique est très intéressant”
have something in common, although they share no
words. The thing they have in common is their in-

formation content. Essentially the same information
could be expressed in many other ways, for example
by substituting numbers for letters in a scheme such
as a → 97, b → 98, c → 99 and so on, in which case
the english version of the above statement becomes 116
104 101 32 113 117 97 110 116 117 109 . . . . It is very
significant that information can be expressed in differ-
ent ways without losing its essential nature, since this
leads to the possibility of the automatic manipulation
of information: a machine need only be able to ma-
nipulate quite simple things like integers in order to
do surprisingly powerful information processing, from
document preparation to differential calculus, even to
translating between human languages. We are familiar
with this now, because of the ubiquitous computer, but
even fifty years ago such a widespread significance of
automated information processing was not forseen.

However, there is one thing that all ways of express-

ing information must have in common: they all use
real physical things to do the job. Spoken words are
conveyed by air pressure fluctuations, written ones by
arrangements of ink molecules on paper, even thoughts
depend on neurons (Landauer 1991). The rallying cry
of the information physicist is “no information without
physical representation!” Conversely, the fact that in-
formation is insensitive to exactly how it is expressed,
and can be freely translated from one form to another,
makes it an obvious candidate for a fundamentally im-
portant role in physics, like energy and momentum and
other such abstractions. However, until the second
half of this century, the precise mathematical treat-
ment of information, especially information process-
ing, was undiscovered, so the significance of informa-
tion in physics was only hinted at in concepts such
as entropy in thermodynamics. It now appears that
information may have a much deeper significance. His-
torically, much of fundamental physics has been con-
cerned with discovering the fundamental particles of
nature and the equations which describe their motions
and interactions. It now appears that a different pro-
gramme may be equally important: to discover the
ways that nature allows, and prevents, information to
be expressed and manipulated, rather than particles to
move. For example, the best way to state exactly what
can and cannot travel faster than light is to identify
information as the speed-limited entity. In quantum
mechanics, it is highly significant that the state vec-
tor must not contain, whether explicitly or implicitly,
more information than can meaningfully be associated
with a given system. Among other things this produces
the wavefunction symmetry requirements which lead to
Bose Einstein and Fermi Dirac statistics, the periodic
structure of atoms, and so on.

The programme to re-investigate the fundamental prin-
ciples of physics from the standpoint of information
theory is still in its infancy. However, it already ap-
pears to be highly fruitful, and it is this ambitious pro-
gramme that I aim to summarise.

Historically, the concept of information in physics does
not have a clear-cut origin. An important thread can
be traced if we consider the paradox of Maxwell’s de-
mon of 1871 (fig. 1) (see also Brillouin 1956). Re-
call that Maxwell’s demon is a creature that opens
and closes a trap door between two compartments of
a chamber containing gas, and pursues the subversive
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policy of only opening the door when fast molecules
approach it from the right, or slow ones from the left.
In this way the demon establishes a temperature dif-
ference between the two compartments without doing
any work, in violation of the second law of thermody-
namics, and consequently permitting a host of contra-
dictions.

A number of attempts were made to exorcise Maxwell’s
demon (see Bennett 1987), such as arguments that the
demon cannot gather information without doing work,
or without disturbing (and thus heating) the gas, both
of which are untrue. Some were tempted to propose
that the 2nd law of thermodynamics could indeed be
violated by the actions of an “intelligent being.” It
was not until 1929 that Leo Szilard made progress by
reducing the problem to its essential components, in
which the demon need merely identify whether a sin-
gle molecule is to the right or left of a sliding partition,
and its action allows a simple heat engine, called Szi-
lard’s engine, to be run. Szilard still had not solved the
problem, since his analysis was unclear about whether
or not the act of measurement, whereby the demon
learns whether the molecule is to the left or the right,
must involve an increase in entropy.

A definitive and clear answer was not forthcoming, sur-
prisingly, until a further fifty years had passed. In the
intermediate years digital computers were developed,
and the physical implications of information gathering
and processing were carefully considered. The ther-
modynamic costs of elementary information manipu-
lations were analysed by Landauer and others during
the 1960s (Landauer 1961, Keyes and Landauer 1970),
and those of general computations by Bennett, Fred-
kin, Toffoli and others during the 1970s (Bennett 1973,
Toffoli 1980, Fredkin and Toffoli 1982). It was found
that almost anything can in principle be done in a
reversible manner, i.e. with no entropy cost at all
(Bennett and Landauer 1985). Bennett (1982) made
explicit the relation between this work and Maxwell’s
paradox by proposing that the demon can indeed learn
where the molecule is in Szilard’s engine without doing
any work or increasing any entropy in the environment,
and so obtain useful work during one stroke of the en-
gine. However, the information about the molecule’s
location must then be present in the demon’s memory
(fig. 1). As more and more strokes are performed, more
and more information gathers in the demon’s memory.

To complete a thermodynamic cycle, the demon must
erase its memory, and it is during this erasure opera-
tion that we identify an increase in entropy in the en-
vironment, as required by the 2nd law. This completes
the essential physics of Maxwell’s demon; further sub-
tleties are discussed by Zurek (1989), Caves (1990), and
Caves, Unruh and Zurek (1990).

The thread we just followed was instructive, but to
provide a complete history of ideas relevent to quan-
tum computing is a formidable task. Our subject
brings together what are arguably two of the great-
est revolutions in twentieth-century science, namely
quantum mechanics and information science (includ-
ing computer science). The relationship between these
two giants is illustrated in fig. 2.

Classical information theory is founded on the defi-
nition of information. A warning is in order here.
Whereas the theory tries to capture much of the normal
meaning of the term ‘information’, it can no more do
justice to the full richness of that term in everyday lan-
guage than particle physics can encapsulate the every-
day meaning of ‘charm’. ‘Information’ for us will be an
abstract term, defined in detail in section 2.1. Much of
information theory dates back to seminal work of Shan-
non in the 1940’s (Slepian 1974). The observation that
information can be translated from one form to another
is encapsulated and quantified in Shannon’s noiseless
coding theorem (1948), which quantifies the resources
needed to store or transmit a given body of informa-
tion. Shannon also considered the fundamentally im-
portant problem of communication in the presence of
noise, and established Shannon’s main theorem (sec-
tion 2.4) which is the central result of classical informa-
tion theory. Error-free communication even in the pres-
ence of noise is achieved by means of ‘error-correcting
codes’, and their study is a branch of mathematics in
its own right. Indeed, the journal IEEE Transactions

on Information Theory is almost totally taken up with
the discovery and analysis of error-correction by cod-
ing. Pioneering work in this area was done by Golay
(1949) and Hamming (1950).

The foundations of computer science were formulated
at roughly the same time as Shannon’s information
theory, and this is no coincidence. The father of com-
puter science is arguably Alan Turing (1912-1954), and
its prophet is Charles Babbage (1791-1871). Babbage
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conceived of most of the essential elements of a mod-
ern computer, though in his day there was not the
technology available to implement his ideas. A cen-
tury passed before Babbage’s Analytical Engine was
improved upon when Turing described the Universal
Turing Machine in the mid 1930s. Turing’s genius (see
Hodges 1983) was to clarify exactly what a calculat-
ing machine might be capable of, and to emphasise the
role of programming, i.e. software, even more than
Babbage had done. The giants on whose shoulders
Turing stood in order to get a better view were chiefly
the mathematicians David Hilbert and Kurt Gödel.
Hilbert had emphasised between the 1890s and 1930s
the importance of asking fundamental questions about
the nature of mathematics. Instead of asking “is this
mathematical proposition true?” Hilbert wanted to ask
“is it the case that every mathematical proposition can
in principle be proved or disproved?” This was un-
known, but Hilbert’s feeling, and that of most mathe-
maticians, was that mathematics was indeed complete,
so that conjectures such as Goldbach’s (that every even
number can be written as the sum of two primes) could
be proved or disproved somehow, although the logical
steps might be as yet undiscovered.

Gödel destroyed this hope by establishing the existence
of mathematical propositions which were undecidable,
meaning that they could be neither proved nor dis-
proved. The next interesting question was whether it
would be easy to identify such propositions. Progress
in mathematics had always relied on the use of cre-
ative imagination, yet with hindsight mathematical
proofs appear to be automatic, each step following in-
evitably from the one before. Hilbert asked whether
this ‘inevitable’ quality could be captured by a ‘me-
chanical’ process. In other words, was there a universal
mathematical method, which would establish the truth
or otherwise of every mathematical assertion? After
Gödel, Hilbert’s problem was re-phrased into that of
establishing decidability rather than truth, and this is
what Turing sought to address.

In the words of Newman, Turing’s bold innovation was
to introduce ‘paper tape’ into symbolic logic. In the
search for an automatic process by which mathemat-
ical questions could be decided, Turing envisaged a
thoroughly mechanical device, in fact a kind of glo-
rified typewriter (fig. 7). The importance of the Tur-

ing machine (Turing 1936) arises from the fact that it

is sufficiently complicated to address highly sophisti-
cated mathematical questions, but sufficiently simple
to be subject to detailed analysis. Turing used his
machine as a theoretical construct to show that the
assumed existence of a mechanical means to establish
decidability leads to a contradiction (see section 3.3).
In other words, he was initially concerned with quite
abstract mathematics rather than practical computa-
tion. However, by seriously establishing the idea of
automating abstract mathematical proofs rather than
merely arithmatic, Turing greatly stimulated the de-
velopment of general purpose information processing.
This was in the days when a “computer” was a person
doing mathematics.

Modern computers are neither Turing machines nor
Babbage engines, though they are based on broadly
similar principles, and their computational power is
equivalent (in a technical sense) to that of a Turing
machine. I will not trace their development here, since
although this is a wonderful story, it would take too
long to do justice to the many people involved. Let
us just remark that all of this development represents
a great improvement in speed and size, but does not
involve any change in the essential idea of what a com-
puter is, or how it operates. Quantum mechanics raises
the possibility of such a change, however.

Quantum mechanics is the mathematical structure
which embraces, in principle, the whole of physics. We
will not be directly concerned with gravity, high ve-
locities, or exotic elementary particles, so the standard
non-relativistic quantum mechanics will suffice. The
significant feature of quantum theory for our purpose
is not the precise details of the equations of motion, but
the fact that they treat quantum amplitudes, or state
vectors in a Hilbert space, rather than classical vari-
ables. It is this that allows new types of information
and computing.

There is a parallel between Hilbert’s questions about
mathematics and the questions we seek to pose in quan-
tum information theory. Before Hilbert, almost all
mathematical work had been concerned with estab-
lishing or refuting particular hypotheses, but Hilbert
wanted to ask what general type of hypothesis was
even amenable to mathematical proof. Similarly, most
research in quantum physics has been concerned with
studying the evolution of specific physical systems, but
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we want to ask what general type of evolution is even
conceivable under quantum mechanical rules.

The first deep insight into quantum information the-
ory came with Bell’s 1964 analysis of the paradoxical
thought-experiment proposed by Einstein, Podolsky
and Rosen (EPR) in 1935. Bell’s inequality draws at-
tention to the importance of correlations between sepa-
rated quantum systems which have interacted (directly
or indirectly) in the past, but which no longer influence
one another. In essence his argument shows that the
degree of correlation which can be present in such sys-
tems exceeds that which could be predicted on the basis
of any law of physics which describes particles in terms
of classical variables rather than quantum states. Bell’s
argument was clarified by Bohm (1951, also Bohm and
Aharonov 1957) and by Clauser, Holt, Horne and Shi-
mony (1969), and experimental tests were carried out
in the 1970s (see Clauser and Shimony (1978) and ref-
erences therein). Improvements in such experiments
are largely concerned with preventing the possibility
of any interaction between the separated quantum sys-
tems, and a significant step forward was made in the
experiment of Aspect, Dalibard and Roger (1982), (see
also Aspect 1991) since in their work any purported in-
teraction would have either to travel faster than light,
or possess other almost equally implausible qualities.

The next link between quantum mechanics and infor-
mation theory came about when it was realised that
simple properties of quantum systems, such as the un-
avoidable disturbance involved in measurement, could
be put to practical use, in quantum cryptography (Wies-
ner 1983, Bennett et. al. 1982, Bennett and Brassard
1984; for a recent review see Brassard and Crepeau
1996). Quantum cryptography covers several ideas, of
which the most firmly established is quantum key dis-
tribution. This is an ingenious method in which trans-
mitted quantum states are used to perform a very par-
ticular communication task: to establish at two sepa-
rated locations a pair of identical, but otherwise ran-
dom, sequences of binary digits, without allowing any
third party to learn the sequence. This is very useful
because such a random sequence can be used as a cryp-
tographic key to permit secure communication. The
significant feature is that the principles of quantum
mechanics guarantee a type of conservation of quan-
tum information, so that if the necessary quantum in-
formation arrives at the parties wishing to establish

a random key, they can be sure it has not gone else-
where, such as to a spy. Thus the whole problem of
compromised keys, which fills the annals of espionage,
is avoided by taking advantage of the structure of the
natural world.

While quantum cryptography was being analysed and
demonstrated, the quantum computer was undergoing
a quiet birth. Since quantum mechanics underlies the
behaviour of all systems, including those we call classi-
cal (“even a screwdriver is quantum mechanical”, Lan-
dauer (1995)), it was not obvious how to conceive of
a distinctively quantum mechanical computer, i.e. one
which did not merely reproduce the action of a classical
Turing machine. Obviously it is not sufficient merely
to identify a quantum mechanical system whose evolu-
tion could be interpreted as a computation; one must
prove a much stronger result than this. Conversely, we
know that classical computers can simulate, by their
computations, the evolution of any quantum system
. . . with one reservation: no classical process will allow
one to prepare separated systems whose correlations
break the Bell inequality. It appears from this that the
EPR-Bell correlations are the quintessential quantum-
mechanical property (Feynman 1982).

In order to think about computation from a quantum-
mechanical point of view, the first ideas involved con-
verting the action of a Turing machine into an equiv-
alent reversible process, and then inventing a Hamil-
tonian which would cause a quantum system to evolve
in a way which mimicked a reversible Turing machine.
This depended on the work of Bennett (1973; see also
Lecerf 1963) who had shown that a universal classical
computing machine (such as Turing’s) could be made
reversible while retaining its simplicity. Benioff (1980,
1982) and others proposed such Turing-like Hamiltoni-
ans in the early 1980s. Although Benioff’s ideas did not
allow the full analysis of quantum computation, they
showed that unitary quantum evolution is at least as
powerful computationally as a classical computer.

A different approach was taken by Feynman (1982,
1986) who considered the possibility not of univer-
sal computation, but of universal simulation—i.e. a
purpose-built quantum system which could simulate
the physical behaviour of any other. Clearly, such a
simulator would be a universal computer too, since
any computer must be a physical system. Feynman
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gave arguments which suggested that quantum evolu-
tion could be used to compute certain problems more
efficiently than any classical computer, but his device
was not sufficiently specified to be called a computer,
since he assumed that any interaction between adjacent
two-state systems could be ‘ordered’, without saying
how.

In 1985 an important step forward was taken by
Deutsch. Deutsch’s proposal is widely considered to
represent the first blueprint for a quantum computer,
in that it is sufficiently specific and simple to allow real
machines to be contemplated, but sufficiently versa-
tile to be a universal quantum simulator, though both
points are debatable. Deutsch’s system is essentially a
line of two-state systems, and looks more like a regis-
ter machine than a Turing machine (both are universal
classical computing machines). Deutsch proved that
if the two-state systems could be made to evolve by
means of a specific small set of simple operations, then
any unitary evolution could be produced, and there-
fore the evolution could be made to simulate that of
any physical system. He also discussed how to pro-
duce Turing-like behaviour using the same ideas.

Deutsch’s simple operations are now called quantum
‘gates’, since they play a role analogous to that of bi-
nary logic gates in classical computers. Various authors
have investigated the minimal class of gates which are
sufficient for quantum computation.

The two questionable aspects of Deutsch’s proposal are
its efficiency and realisability. The question of effi-
ciency is absolutely fundamental in computer science,
and on it the concept of ‘universality’ turns. A uni-

versal computer is one that not only can reproduce
(i.e. simulate) the action of any other, but can do so
without running too slowly. The ‘too slowly’ here is
defined in terms of the number of computational steps
required: this number must not increase exponentially
with the size of the input (the precise meaning will be
explained in section 3.1). Deutsch’s simulator is not
universal in this strict sense, though it was shown to
be efficient for simulating a wide class of quantum sys-
tems by Lloyd (1996). However, Deutsch’s work has es-
tablished the concepts of quantum networks (Deutsch
1989) and quantum logic gates, which are extremely
important in that they allow us to think clearly about
quantum computation.

In the early 1990’s several authors (Deutsch and Jozsa
1992, Berthiaume and Brassard 1992, Bernstein and
Vazirani 1993) sought computational tasks which could
be solved by a quantum computer more efficiently than
any classical computer. Such a quantum algorithm
would play a conceptual role similar to that of Bell’s
inequality, in defining something of the essential nature
of quantum mechanics. Initially only very small differ-
ences in performance were found, in which quantum
mechanics permitted an answer to be found with cer-
tainty, as long as the quantum system was noise-free,
where a probabilistic classical computer could achieve
an answer ‘only’ with high probability. An important
advance was made by Simon (1994), who described
an efficient quantum algorithm for a (somewhat ab-
stract) problem for which no efficient solution was pos-
sible classically, even by probabilistic methods. This
inspired Shor (1994) who astonished the community
by describing an algorithm which was not only efficient
on a quantum computer, but also addressed a central
problem in computer science: that of factorising large
integers.

Shor discussed both factorisation and discrete log-
arithms, making use of a quantum Fourier trans-
form method discovered by Coppersmith (1994) and
Deutsch. Further important quantum algorithms were
discovered by Grover (1997) and Kitaev (1995).

Just as with classical computation and information the-
ory, once theoretical ideas about computation had got
under way, an effort was made to establish the essential
nature of quantum information—the task analogous to
Shannon’s work. The difficulty here can be seen by
considering the simplest quantum system, a two-state
system such as a spin half in a magnetic field. The
quantum state of a spin is a continuous quantity de-
fined by two real numbers, so in principle it can store
an infinite amount of classical information. However,
a measurement of a spin will only provide a single two-
valued answer (spin up/spin down)—there is no way to
gain access to the infinite information which appears
to be there, therefore it is incorrect to consider the
information content in those terms. This is reminis-
cent of the renormalisation problem in quantum elec-
trodynamics. How much information can a two-state
quantum system store, then? The answer, provided by
Jozsa and Schumacher (1994) and Schumacher (1995),
is one two-state system’s worth! Of course Schumacher
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and Jozsa did more than propose this simple answer,
rather they showed that the two-state system plays the
role in quantum information theory analogous to that
of the bit in classical information theory, in that the
quantum information content of any quantum system
can be meaningfully measured as the minimum num-
ber of two-state systems, now called quantum bits or
qubits, which would be needed to store or transmit the
system’s state with high accuracy.

Let us return to the question of realisability of quan-
tum computation. It is an elementary, but fundamen-
tally important, observation that the quantum inter-
ference effects which permit algorithms such as Shor’s
are extremely fragile: the quantum computer is ultra-
sensitive to experimental noise and impression. It is
not true that early workers were unaware of this diffi-
culty, rather their first aim was to establish whether a
quantum computer had any fundamental significance
at all. Armed with Shor’s algorithm, it now appears
that such a fundamental significance is established, by
the following argument: either nature does allow a
device to be run with sufficient precision to perform
Shor’s algorithm for large integers (greater than, say, a
googol, 10100), or there are fundamental natural limits
to precision in real systems. Both eventualities repre-
sent an important insight into the laws of nature.

At this point, ideas of quantum information and quan-
tum computing come together. For, a quantum com-
puter can be made much less sensitive to noise by
means of a new idea which comes directly from the
marriage of quantum mechanics with classical infor-
mation theory, namely quantum error correction. Al-
though the phrase ‘error correction’ is a natural one
and was used with reference to quantum comput-
ers prior to 1996, it was only in that year that two
important papers, of Calderbank and Shor, and in-
dependently Steane, established a general framework
whereby quantum information processing can be used
to combat a very wide class of noise processes in a
properly designed quantum system. Much progress has
since been made in generalising these ideas (Knill and
Laflamme 1997, Ekert and Macchiavello 1996, Bennett
et. al. 1996b, Gottesman 1996, Calderbank et. al.

1997). An important development was the demonstra-
tion by Shor (1996) and Kitaev (1996) that correction
can be achieved even when the corrective operations
are themselves imperfect. Such methods lead to a gen-

eral concept of ‘fault tolerant’ computing, of which a
helpful review is provided by Preskill (1997).

If, as seems almost certain, quantum computation will
only work in conjunction with quantum error correc-
tion, it appears that the relationship between quantum
information theory and quantum computers is even
more intimate than that between Shannon’s informa-
tion theory and classical computers. Error correction
does not in itself guarantee accurate quantum compu-
tation, since it cannot combat all types of noise, but
the fact that it is possible at all is a significant devel-
opment.

A computer which only exists on paper will not actu-
ally perform any computations, and in the end the only
way to resolve the issue of feasibility in quantum com-
puter science is to build a quantum computer. To this
end, a number of authors proposed computer designs
based on Deutsch’s idea, but with the physical details
more fully worked out (Teich et. al. 1988, Lloyd 1993,
Berman et. al. 1994, DiVincenco 1995b). The great
challenge is to find a sufficiently complex system whose
evolution is nevertheless both coherent (i.e. unitary)
and controlable. It is not sufficient that only some as-
pects of a system should be quantum mechanical, as in
solid-state ‘quantum dots’, or that there is an implicit
assumption of unfeasible precision or cooling, which is
often the case for proposals using solid-state devices.
Cirac and Zoller (1995) proposed the use of a linear ion
trap, which was a significant improvement in feasibil-
ity, since heroic efforts in the ion trapping community
had already achieved the necessary precision and low
temperature in experimental work, especially the group
of Wineland who demonstrated cooling to the ground
state of an ion trap in the same year (Diedrich et. al.

1989, Monroe et. al. 1995). More recently, Gershen-
feld and Chuang (1997) and Cory et. al. (1996,1997)
have shown that nuclear magnetic resonance (NMR)
techniques can be adapted to fulfill the requirements
of quantum computation, making this approach also
very promising. Other recent proposals of Privman et.

al. (1997) and Loss and DiVincenzo (1997) may also
be feasible.

As things stand, no quantum computer has been built,
nor looks likely to be built in the author’s lifetime, if
we measure it in terms of Shor’s algorithm, and ask
for factoring of large numbers. However, if we ask in-
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stead for a device in which quantum information ideas
can be explored, then only a few quantum bits are re-
quired, and this will certainly be achieved in the near
future. Simple two-bit operations have been carried
out in many physics experiments, notably magnetic
resonance, and work with three to ten qubits now seems
feasible. Notable recent experiments in this regard are
those of Brune et. al. (1994), Monroe et. al. (1995b),
Turchette et. al. (1995) and Mattle et. al. (1996).
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2 Classical information theory

This and the next section will summarise the classical
theory of information and computing. This is text-
book material (Minsky 1967, Hamming 1986) but is
included here since it forms a background to quantum
information and computing, and the article is aimed at
physicists to whom the ideas may be new.

2.1 Measures of information

The most basic problem in classical information the-
ory is to obtain a measure of information, that is, of
amount of information. Suppose I tell you the value of
a number X . How much information have you gained?
That will depend on what you already knew about X .
For example, if you already knew X was equal to 2,
you would learn nothing, no information, from my rev-
elation. On the other hand, if previously your only
knowledge was that X was given by the throw of a die,
then to learn its value is to gain information. We have
met here a basic paradoxical property, which is that
information is often a measure of ignorance: the infor-
mation content (or ‘self-information’) of X is defined
to be the information you would gain if you learned the
value of X .

IfX is a random variable which has value x with proba-
bility p(x), then the information content ofX is defined
to be

S({p(x)}) = −
∑

x

p(x) log2 p(x). (1)

Note that the logarithm is taken to base 2, and that
S is always positive since probabilities are bounded by
p(x) ≤ 1. S is a function of the probability distribi-

tion of values of X . It is important to remember this,
since in what follows we will adopt the standard prac-
tice of using the notation S(X) for S({p(x)}). It is
understood that S(X) does not mean a function of X ,
but rather the information content of the variable X .
The quantity S(X) is also referred to as an entropy,
for obvious reasons.

If we already know that X = 2, then p(2) = 1 and
there are no other terms in the sum, leading to S = 0,
so X has no information content. If, on the other hand,

X is given by the throw of a die, then p(x) = 1/6 for
x ∈ {1, 2, 3, 4, 5, 6} so S = − log2(1/6) ≃ 2.58. IfX can
take N different values, then the information content
(or entropy) of X is maximised when the probability
distribution p is flat, with every p(x) = 1/N (for ex-
ample a fair die yields S ≃ 2.58, but a loaded die with
p(6) = 1/2, p(1 · · ·5) = 1/10 yields S ≃ 2.16). This is
consistent with the requirement that the information
(what we would gain if we learned X) is maximum
when our prior knowledge of X is minimum.

Thus the maximum information which could in princi-
ple be stored by a variable which can take on N dif-
ferent values is log2(N). The logarithms are taken to
base 2 rather than some other base by convention. The
choice dictates the unit of information: S(X) = 1 when
X can take two values with equal probability. A two-
valued or binary variable thus can contain one unit of
information. This unit is called a bit. The two values
of a bit are typically written as the binary digits 0 and
1.

In the case of a binary variable, we can define p to be
the probability that X = 1, then the probability that
X = 0 is 1 − p and the information can be written as
a function of p alone:

H(p) = −p log2 p− (1 − p) log2(1 − p) (2)

This function is called the entropy function, 0 ≤
H(p) ≤ 1.

In what follows, the subscript 2 will be dropped on
logarithms, it is assumed that all logarithms are to
base 2 unless otherwise indicated.

The probability that Y = y given thatX = x is written
p(y|x). The conditional entropy S(Y |X) is defined by

S(Y |X) = −
∑

x

p(x)
∑

y

p(y|x) log p(y|x) (3)

= −
∑

x

∑

y

p(x, y) log p(y|x) (4)

where the second line is deduced using p(x, y) =
p(x)p(y|x) (this is the probability that X = x and

Y = y). By inspection of the definition, we see that
S(Y |X) is a measure of how much information on av-
erage would remain in Y if we were to learn X . Note
that S(Y |X) ≤ S(Y ) always and S(Y |X) 6= S(X |Y )
usually.
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The conditional entropy is important mainly as a
stepping-stone to the next quantity, the mutual infor-

mation, defined by

I(X : Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
(5)

= S(X) − S(X |Y ) (6)

From the definition, I(X : Y ) is a measure of how
much X and Y contain information about each other1.
If X and Y are independent then p(x, y) = p(x)p(y)
so I(X : Y ) = 0. The relationships between the basic
measures of information are indicated in fig. 3. The
reader may like to prove as an exercise that S(X,Y ),
the information content of X and Y (the information
we would gain if, initially knowing neither, we learned
the value of both X and Y ) satisfies S(X,Y ) = S(X)+
S(Y ) − I(X : Y ).

Information can disappear, but it cannot spring spon-
taneously from nowhere. This important fact finds
mathematical expression in the data processing inequal-

ity:

if X → Y → Z then I(X : Z) ≤ I(X : Y ). (7)

The symbol X → Y → Z means that X,Y and Z form
a process (a Markov chain) in which Z depends on Y
but not directly on X : p(x, y, z) = p(x)p(y|x)p(z|y).
The content of the data processing inequality is that
the ‘data processor’ Y can pass on to Z no more infor-
mation about X than it received.

2.2 Data compression

Having pulled the definition of information content,
equation (1), out of a hat, our aim is now to prove
that this is a good measure of information. It is not
obvious at first sight even how to think about such a
task. One of the main contributions of classical infor-
mation theory is to provide useful ways to think about
information. We will describe a simple situation in
order to illustrate the methods. Let us suppose one
person, traditionally called Alice, knows the value of
X , and she wishes to communicate it to Bob. We re-
strict ourselves to the simple case that X has only two

1Many authors write I(X; Y ) rather than I(X : Y ). I prefer
the latter since the symmetry of the colon reflects the fact that
I(X : Y ) = I(Y : X).

possible values: either ‘yes’ or ‘no’. We say that Alice
is a ‘source’ with an ‘alphabet’ of two symbols. Alice
communicates by sending binary digits (noughts and
ones) to Bob. We will measure the information con-
tent of X by counting how many bits Alice must send,
on average, to allow Bob to learn X . Obviously, she
could just send 0 for ‘no’ and 1 for ‘yes’, giving a ‘bit
rate’ of one bit per X value communicated. However,
what if X were an essentially random variable, except
that it is more likely to be ‘no’ than ‘yes’? (think of
the output of decisions from a grant funding body, for
example). In this case, Alice can communicate more
efficiently by adopting the following procedure.

Let p be the probability that X = 1 and 1 − p be the
probability that X = 0. Alice waits until n values of
X are available to be sent, where n will be large. The
mean number of ones in such a sequence of n values
is np, and it is likely that the number of ones in any
given sequence is close to this mean. Suppose np is
an integer, then the probability of obtaining any given
sequence containing np ones is

pnp(1 − p)n−np = 2−nH(p). (8)

The reader should satisfy him or herself that the two
sides of this equation are indeed equal: the right hand
side hints at how the argument can be generalised.
Such a sequence is called a typical sequence. To be
specific, we define the set of typical sequences to be all
sequences such that

2−n(H(p)+ǫ) ≤ p(sequence) ≤ 2−n(H(p)−ǫ) (9)

Now, it can be shown that the probability that Alice’s
n values actually form a typical sequence is greater
than 1− ǫ, for sufficiently large n, no matter how small
ǫ is. This implies that Alice need not communicate
n bits to Bob in order for him to learn n decisions.
She need only tell Bob which typical sequence she has.
They must agree together beforehand how the typical
sequences are to be labelled: for example, they may
agree to number them in order of increasing binary
value. Alice just sends the label, not the sequence it-
self. To deduce how well this works, it can be shown
that the typical sequences all have equal probability,
and there are 2nH(p) of them. To communicate one
of 2nH(p) possibilities, clealy Alice must send nH(p)
bits. Also, Alice cannot do better than this (i.e. send
fewer bits) since the typical sequences are equiproba-
ble: there is nothing to be gained by further manipu-
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lating the information. Therefore, the information con-
tent of each value of X in the original sequence must
be H(p), which proves (1).

The mathematical details skipped over in the above
argument all stem from the law of large numbers, which
states that, given arbitrarily small ǫ, δ

P (|m− np| < nǫ) > 1 − δ (10)

for sufficiently large n, where m is the number of ones
obtained in a sequence of n values. For large enough n,
the number of ones m will differ from the mean np by
an amount arbitrarily small compared to n. For exam-
ple, in our case the noughts and ones will be distributed
according to the binomial distribution

P (n,m) = C(n,m)pm(1 − p)n−m (11)

≃ 1

σ
√

2π
e−(m−np)2/2σ2

(12)

where the Gaussian form is obtained in the limit
n, np → ∞, with the standard deviation σ =
√

np(1 − p), and C(n,m) = n!/m!(n−m)!.

The above argument has already yielded a signifi-
cant practical result associated with (1). This is that
to communicate n values of X , we need only send
nS(X) ≤ n bits down a communication channel. This
idea is referred to as data compression, and is also
called Shannon’s noiseless coding theorem.

The typical sequences idea has given a means to calcu-
late information content, but it is not the best way to
compress information in practice, because Alice must
wait for a large number of decisions to accumulate
before she communicates anything to Bob. A better
method is for Alice to accumulate a few decisions, say
4, and communicate this as a single ‘message’ as best
she can. Huffman derived an optimal method whereby
Alice sends short strings to communicate the most
likely messages, and longer ones to communicate the
least likely messages, see table 1 for an example. The
translation process is referred to as ‘encoding’ and ‘de-
coding’ (fig. 4); this terminology does not imply any
wish to keep information secret.

For the case p = 1/4 Shannon’s noiseless coding the-
orem tells us that the best possible data compression
technique would communicate each message of four X
values by sending on average 4H(1/4) ≃ 3.245 bits.

The Huffman code in table 1 gives on average 3.273 bits
per message. This is quite close to the minimum, show-
ing that practical methods like Huffman’s are powerful.

Data compression is a concept of great practical impor-
tance. It is used in telecommunications, for example
to compress the information required to convey tele-
vision pictures, and data storage in computers. From
the point of view of an engineer designing a commu-
nication channel, data compression can appear mirac-
ulous. Suppose we have set up a telephone link to a
mountainous area, but the communication rate is not
high enough to send, say, the pixels of a live video
image. The old-style engineering option would be to
replace the telephone link with a faster one, but infor-
mation theory suggests instead the possibility of using
the same link, but adding data processing at either end
(data compression and decompression). It comes as a
great surprise that the usefulness of a cable can thus
be improved by tinkering with the information instead
of the cable.

2.3 The binary symmetric channel

So far we have considered the case of communication
down a perfect, i.e. noise-free channel. We have gained
two main results of practical value: a measure of the
best possible data compression (Shannon’s noiseless
coding theorem), and a practical method to compress
data (Huffman coding). We now turn to the important
question of communication in the presence of noise. As
in the last section, we will analyse the simplest case in
order to illustrate principles which are in fact more
general.

Suppose we have a binary channel, i.e. one which al-
lows Alice to send noughts and ones to Bob. The noise-
free channel conveys 0 → 0 and 1 → 1, but a noisy
channel might sometimes cause 0 to become 1 and vice
versa. There is an infinite variety of different types of
noise. For example, the erroneous ‘bit flip’ 0 → 1 might
be just as likely as 1 → 0, or the channel might have
a tendency to ‘relax’ towards 0, in which case 1 → 0
happens but 0 → 1 does not. Also, such errors might
occur independently from bit to bit, or occur in bursts.

A very important type of noise is one which affects
different bits independently, and causes both 0 → 1
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and 1 → 0 errors. This is important because it captures
the essential features of many processes encountered
in realistic situations. If the two errors 0 → 1 and
1 → 0 are equally likely, then the noisy channel is called
a ‘binary symmetric channel’. The binary symmetric
channel has a single parameter, p, which is the error
probability per bit sent. Suppose the message sent into
the channel by Alice is X , and the noisy message which
Bob receives is Y . Bob is then faced with the task of
deducing X as best he can from Y . If X consists of a
single bit, then Bob will make use of the conditional
probabilities

p(x = 0|y = 0) = p(x = 1|y = 1) = 1 − p

p(x = 0|y = 1) = p(x = 1|y = 0) = p

giving S(X |Y ) = H(p) using equations (3) and (2).
Therefore, from the definition (6) of mutual informa-
tion, we have

I(X : Y ) = S(X) −H(p) (13)

Clearly, the presence of noise in the channel limits the
information about Alice’s X contained in Bob’s re-
ceived Y . Also, because of the data processing inequal-
ity, equation (7), Bob cannot increase his information
about X by manipulating Y . However, (13) shows that
Alice and Bob can communicate better if S(X) is large.
The general insight is that the information communi-
cated depends both on the source and the properties
of the channel. It would be useful to have a measure
of the channel alone, to tell us how well it conveys in-
formation. This quantity is called the capacity of the
channel and it is defined to be the maximum possi-
ble mutual information I(X : Y ) between the input
and output of the channel, maximised over all possible
sources:

Channel capacity C ≡ max
{p(x)}

I(X : Y ) (14)

Channel capacity is measured in units of ‘bits out per
symbol in’ and for binary channels must lie between
zero and one.

It is all very well to have a definition, but (14) does
not allow us to compare channels very easily, since we
have to perform the maximisation over input strategies,
which is non-trivial. To establish the capacity C(p) of
the binary symmetric channel is a basic problem in
information theory, but fortunately this case is quite

simple. From equations (13) and (14) one may see
that the answer is

C(p) = 1 −H(p), (15)

obtained when S(X) = 1 (i.e. P (x = 0) = P (x = 1) =
1/2).

2.4 Error-correcting codes

So far we have investigated how much information gets
through a noisy channel, and how much is lost. Alice
cannot convey to Bob more information than C(p) per
symbol communicated. However, suppose Bob is busy
defusing a bomb and Alice is shouting from a distance
which wire to cut : she will not say “the blue wire” just
once, and hope that Bob heard correctly. She will re-
peat the message many times, and Bob will wait until
he is sure to have got it right. Thus error-free commu-
nication can be achieved even over a noisy channel. In
this example one obtains the benefit of reduced error
rate at the sacrifice of reduced information rate. The
next stage of our information theoretic programme is to
identify more powerful techniques to circumvent noise
(Hamming 1986, Hill 1986, Jones 1979, MacWilliams
and Sloane 1977).

We will need the following concepts. The set {0, 1} is
considered as a group (a Galois field GF(2)) where the
operations +,−,×,÷ are carried out modulo 2 (thus,
1 + 1 = 0). An n-bit binary word is a vector of n
components, for example 011 is the vector (0, 1, 1). A
set of such vectors forms a vector space under addition,
since for example 011+101 means (0, 1, 1)+ (1, 0, 1) =
(0+1, 1+0, 1+1) = (1, 1, 0) = 110 by the standard rules
of vector addition. This is equivalent to the exclusive-
or operation carried out bitwise between the two binary
words.

The effect of noise on a word u can be expressed u →
u′ = u + e, where the error vector e indicates which
bits in u were flipped by the noise. For example, u =
1001101 → u′ = 1101110 can be expressed u′ = u +
0100011. An error correcting code C is a set of words
such that

u+ e 6=v + f ∀u, v ∈ C (u 6= v), ∀e, f ∈ E (16)

where E is the set of errors correctable by C, which in-
cludes the case of no error, e = 0. To use such a code,
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Alice and Bob agree on which codeword u corresponds
to which message, and Alice only ever sends codewords
down the channel. Since the channel is noisy, Bob re-
ceives not u but u + e. However, Bob can deduce u
unambiguously from u + e since by condition (16), no
other codeword v sent by Alice could have caused Bob
to receive u+ e.

An example error-correcting code is shown in the right-
hand column of table 1. This is a [7, 4, 3] Hamming
code, named after its discoverer. The notation [n, k, d]
means that the codewords are n bits long, there are
2k of them, and they all differ from each other in
at least d places. Because of the latter feature, the
condition (16) is satisfied for any error which affects
at most one bit. In other words the set E of cor-
rectable errors is {0000000,1000000,0100000,0010000,
0001000,0000100,0000010, 0000001}. Note that E can
have at most 2n−k members. The ratio k/n is called
the rate of the code, since each block of n transmitted
bits conveys k bits of information, thus k/n bits per
bit.

The parameter d is called the ‘minimum distance’ of
the code, and is important when encoding for noise
which affects successive bits independently, as in the
binary symmetric channel. For, a code of minumum
distance d can correct all errors affecting less than d/2
bits of the transmitted codeword, and for independent
noise this is the most likely set of errors. In fact, the
probability that an n-bit word receivesm errors is given
by the binomial distribution (11), so if the code can
correct more than the mean number of errors np, the
correction is highly likely to succeed.

The central result of classical information theory is that
powerful error correcting codes exist:

Shannon’s theorem: If the rate k/n < C(p)
and n is sufficiently large, there exists a bi-
nary code allowing transmission with an ar-
bitrarily small error probability.

The error probability here is the probability that an
uncorrectable error occurs, causing Bob to misinter-
pret the received word. Shannon’s theorem is highly
surprising, since it implies that it is not necessary to en-
gineer very low-noise communication channels, an ex-
pensive and difficult task. Instead, we can compensate

noise by error correction coding and decoding, that is,
by information processing! The meaning of Shannon’s
theorem is illustrated by fig. 5.

The main problem of coding theory is to identify codes
with large rate k/n and large distance d. These two
conditions are mutually incompatible, so a compromise
is needed. The problem is notoriously difficult and has
no general solution. To make connection with quan-
tum error correction, we will need to mention one im-
portant concept, that of the parity check matrix. An
error correcting code is called linear if it is closed under
addition, i.e. u+ v ∈ C ∀u, v ∈ C. Such a code is com-
pletely specified by its parity check matrix H , which is
a set of (n − k) linearly independent n-bit words sat-
isfying H · u = 0 ∀u ∈ C. The important property is
encapsulated by the following equation:

H · (u+ e) = (H · u) + (H · e) = H · e. (17)

This states that if Bob evaluates H ·u′ for his noisy re-
ceived word u′ = u+ e, he will obtain the same answer
H · e, no matter what word u Alice sent him! If this
evaluation were done automatically, Bob could learn
H · e, called the error syndrome, without learning u. If
Bob can deduce the error e from H · e, which one can
show is possible for all correctable errors, then he can
correct the message (by subtracting e from it) without
ever learning what it was! In quantum error correc-
tion, this is the origin of the reason one can correct a
quantum state without disturbing it.

3 Classical theory of computa-

tion

We now turn to the theory of computation. This is
mostly concerned with the questions “what is com-
putable?” and “what resources are necessary?”

The fundamental resources required for computing are
a means to store and to manipulate symbols. The im-
portant questions are such things as how complicated
must the symbols be, how many will we need, how com-
plicated must the manipulations be, and how many of
them will we need?

The general insight is that computation is deemed hard

or inefficient if the amount of resources required rises
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exponentially with a measure of the size of the prob-
lem to be addressed. The size of the problem is given
by the amount of information required to specify the
problem. Applying this idea at the most basic level, we
find that a computer must be able to manipulate bi-
nary symbols, not just unary symbols2, otherwise the
number of memory locations needed would grow ex-
ponentially with the amount of information to be ma-
nipulated. On the other hand, it is not necessary to
work in decimal notation (10 symbols) or any other
notation with an ‘alphabet’ of more than two symbols.
This greatly simplifies computer design and analysis.

To manipulate n binary symbols, it is not necessary
to manipulate them all at once, since it can be shown
that any transformation can be brought about by ma-
nipulating the binary symbols one at a time or in pairs.
A binary ‘logic gate’ takes two bits x, y as inputs, and
calculates a function f(x, y). Since f can be 0 or 1,
and there are four possible inputs, there are 16 possi-
ble functions f . This set of 16 different logic gates is
called a ‘universal set’, since by combining such gates
in series, any transformation of n bits can be carried
out. Futhermore, the action of some of the 16 gates
can be reproduced by combining others, so we do not
need all 16, and in fact only one, the nand gate, is
necessary (nand is not and, for which the output is
0 if and only if both inputs are 1).

By concatenating logic gates, we can manipulate n-bit
symbols (see fig. 6). This general approach is called
the network model of computation, and is useful for
our purposes because it suggests the model of quan-
tum computation which is currently most feasible ex-
perimentally. In this model, the essential components
of a computer are a set of bits, many copies of the
universal logic gate, and connecting wires.

3.1 Universal computer; Turing ma-

chine

The word ‘universal’ has a further significance in rela-
tion to computers. Turing showed that it is possible to
construct a universal computer, which can simulate the
action of any other, in the following sense. Let us write

2Unary notation has a single symbol, 1. The positive integers
are written 1,11,111,1111,. . .

T (x) for the output of a Turing machine T (fig. 7) act-
ing on input tape x. Now, a Turing machine can be
completely specified by writing down how it responds
to 0 and 1 on the input tape, for every possible inter-
nal configuration of the machine (of which there are a
finite number). This specification can itself be written
as a binary number d[T ]. Turing showed that there
exists a machine U , called a universal Turing machine,
with the properties

U(d[T ], x) = T (x) (18)

and the number of steps taken by U to simulate each
step of T is only a polynomial (not exponential) func-
tion of the length of d[T ]. In other words, if we provide
U with an input tape containing both a description of
T and the input x, then U will compute the same func-
tion as T would have done, for any machine T , without
an exponential slow-down.

To complete the argument, it can be shown that other
models of computation, such as the network model, are
computationally equivalent to the Turing model: they
permit the same functions to be computed, with the
same computational efficiency (see next section). Thus
the concept of the univeral machine establishes that a
certain finite degree of complexity of construction is
sufficient to allow very general information processing.
This is the fundamental result of computer science. In-
deed, the power of the Turing machine and its cousins is
so great that Church (1936) and Turing (1936) framed
the “Church-Turing thesis,” to the effect that

Every function ‘which would naturally be regarded as

computable’ can be computed by the universal Turing

machine.

This thesis is unproven, but has survived many at-
tempts to find a counterexample, making it a very
powerful result. To it we owe the versatility of the
modern general-purpose computer, since ‘computable
functions’ include tasks such as word processing, pro-
cess control, and so on. The quantum computer, to
be described in section 6 will throw new light on this
central thesis.
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3.2 Computational complexity

Once we have established the idea of a universal com-
puter, computational tasks can be classified in terms
of their difficulty in the following manner. A given al-
gorithm is deemed to address not just one instance of
a problem, such as “find the square of 237,” but one
class of problem, such as “given x, find its square.” The
amount of information given to the computer in order
to specify the problem is L = log x, i.e. the number of
bits needed to store the value of x. The computational

complexity of the problem is determined by the num-
ber of steps s a Turing machine must make in order to
complete any algorithmic method to solve the problem.
In the network model, the complexity is determined by
the number of logic gates required. If an algorithm ex-
ists with s given by any polynomial function of L (eg
s ∝ L3 +L) then the problem is deemed tractable and
is placed in the complexity class “p”. If s rises expo-
nentially with l (eg s ∝ 2L = x) then the problem is
hard and is in another complexity class. It is often eas-
ier to verify a solution, that is, to test whether or not
it is correct, than to find one. The class “np” is the set
of problems for which solutions can be verified in poly-
nomial time. Obviously p ∈ np, and one would guess
that there are problems in np which are not in p, (i.e.
np 6= p) though surprisingly the latter has never been
proved, since it is very hard to rule out the possible
existence of as yet undiscovered algorithms. However,
the important point is that the membership of these
classes does not depend on the model of computation,
i.e. the physical realisation of the computer, since the
Turing machine can simulate any other computer with
only a polynomial, rather than exponential slow-down.

An important example of an intractable problem is
that of factorisation: given a composite (i.e. non-
prime) number x, the task is to find one of its fac-
tors. If x is even, or a multiple of any small number,
then it is easy to find a factor. The interesting case is
when the prime factors of x are all themselves large.
In this case there is no known simple method. The
best known method, the number field sieve (Menezes
et. al. 1997) requires a number of computational steps
of order s ∼ exp(2L1/3(logL)2/3) where L = lnx. By
devoting a substantial machine network to this task,
one can today factor a number of 130 decimal digits
(Crandall 1997), i.e. L ≃ 300, giving s ∼ 1018. This is
time-consuming but possible (for example 42 days at

1012 operations per second). However, if we double L, s
increases to ∼ 1025, so now the problem is intractable:
it would take a million years with current technology,
or would require computers running a million times
faster than current ones. The lesson is an important
one: a computationally ‘hard’ problem is one which in
practice is not merely difficult but impossible to solve.

The factorisation problem has acquired great practical
importance because it is at the heart of widely used
cyptographic systems such as that of Rivest, Shamir
and Adleman (1979) (see Hellman 1979). For, given a
message M (in the form of a long binary number), it is
easy to calculate an encrypted version E = M s mod c
where s and c are well-chosen large integers which can
be made public. To decrypt the message, the receiver
calculates Et mod c which is equal to M for a value of
t which can be quickly deduced from s and the factors
of c (Schroeder 1984). In practice c = pq is chosen to
be the product of two large primes p, q known only to
the user who published c, so only that user can read
the messages—unless someone manages to factorise c.
It is a very useful feature that no secret keys need be
distributed in such a system: the ‘key’ c, s allowing
encryption is public knowledge.

3.3 Uncomputable functions

There is an even stronger way in which a task may be
impossible for a computer. In the quest to solve some
problem, we could ‘live with’ a slow algorithm, but
what if one does not exist at all? Such problems are
termed uncomputable. The most important example is
the “halting problem”, a rather beautiful result. A fea-
ture of computers familiar to programmers is that they
may sometimes be thrown into a never-ending loop.
Consider, for example, the instruction “while x > 2,
divide x by 1” for x initially greater than 2. We can
see that this algorithm will never halt, without actu-
ally running it. More interesting from a mathematical
point of view is an algorithm such as “while x is equal
to the sum of two primes, add 2 to x, otherwise print
x and halt”, beginning at x = 8. The algorithm is cer-
tainly feasible since all pairs of primes less than x can
be found and added systematically. Will such an algo-
rithm ever halt? If so, then a counterexample to the
Goldbach conjecture exists. Using such techniques, a
vast section of mathematical and physical theory could
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be reduced to the question “would such and such an
algorithm halt if we were to run it?” If we could find
a general way to establish whether or not algorithms
will halt, we would have an extremely powerful math-
ematical tool. In a certain sense, it would solve all of
mathematics!

Let us suppose that it is possible to find a general algo-
rithm which will work out whether any Turing machine
will halt on any input. Such an algorithm solves the
problem “given x and d[T ], would Turing machine T
halt if it were fed x as input?”. Here d[T ] is the de-
scription of T . If such an algorithm exists, then it is
possible to make a Turing machine TH which halts if
and only if T (d[T ]) does not halt, where d[T ] is the
description of T . Here TH takes as input d[T ], which
is sufficient to tell TH about both the Turing machine
T and the input to T . Hence we have

TH(d[T ]) halts ↔ T (d[T ]) does not halt (19)

So far everything is ok. However, what if we feed TH

the description of itself, d[TH ]? Then

TH (d[TH ]) halts ↔ TH (d[TH ]) does not halt (20)

which is a contradiction. By this argument Turing
showed that there is no automatic means to estab-
lish whether Turing machines will halt in general: the
“halting problem” is uncomputable. This implies that
mathematics, and information processing in general,
is a rich body of different ideas which cannot all be
summarised in one grand algorithm. This liberating
observation is closely related to Gödel’s theorem.
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4 Quantum verses classical

physics

In order to think about quantum information theory,
let us first state the principles of non-relativisitic quan-
tum mechanics, as follows (Shankar 1980).

1. The state of an isolated system Q is represented
by a vector |ψ(t)〉 in a Hilbert space.

2. Variables such as position and momentum are
termed observables and are represented by Her-
mitian operators. The position and momentum
operatorsX,P have the following matrix elements
in the eigenbasis of X :

〈x|X |x′〉 = xδ(x − x′)

〈x|P |x′〉 = −ih̄δ′(x − x′)

3. The state vector obeys the Schrödinger equation

ih̄
d

dt
|ψ(t)〉 = H |ψ(t)〉 (21)

where H is the quantum Hamiltonian operator.

4. Measurement postulate.

The fourth postulate, which has not been made ex-
plicit, is a subject of some debate, since quite different
interpretive approaches lead to the same predictions,
and the concept of ‘measurement’ is fraught with am-
biguities in quantum mechanics (Wheeler and Zurek
1983, Bell 1987, Peres 1993). A statement which is
valid for most practical purposes is that certain phys-
ical interactions are recognisably ‘measurements’, and
their effect on the state vector |ψ〉 is to change it
to an eigenstate |k〉 of the variable being measured,
the value of k being randomly chosen with probability
P ∝ | 〈k |ψ〉 |2. The change |ψ〉 → |k〉 can be expressed
by the projection operator (|k〉 〈k|)/ 〈k |ψ〉.

Note that according to the above equations, the evo-
lution of an isolated quantum system is always uni-

tary, in other words |ψ(t)〉 = U(t) |ψ(0)〉 where U(t) =
exp(−i

∫

Hdt/h̄) is a unitary operator, UU † = I. This
is true, but there is a difficulty that there is no such
thing as a truly isolated system (i.e. one which experi-
ences no interactions with any other systems), except

possibly the whole universe. Therefore there is always
some approximation involved in using the Schrödinger
equation to describe real systems.

One way to handle this approximation is to speak of
the system Q and its environment T . The evolution
of Q is primarily that given by its Schrödinger equa-
tion, but the interaction between Q and T has, in part,
the character of a measurement of Q. This produces a
non-unitary contribution to the evolution of Q (since
projections are not unitary), and this ubiquitous phe-
nomenon is called decoherence. I have underlined these
elementary ideas because they are central in what fol-
lows.

We can now begin to bring together ideas of physics
and of information processing. For, it is clear that
much of the wonderful behaviour we see around us in
Nature could be understood as a form of information
processing, and conversely our computers are able to
simulate, by their processing, many of the patterns of
Nature. The obvious, if somewhat imprecise, questions
are

1. “can Nature usefully be regarded as essentially an
information processor?”

2. “could a computer simulate the whole of Nature?”

The principles of quantum mechanics suggest that the
answer to the first quesion is yes3. For, the state vector
|ψ〉 so central to quantum mechanics is a concept very
much like those of information science: it is an abstract
entity which contains exactly all the information about
the system Q. The word ‘exactly’ here is a reminder
that not only is |ψ〉 a complete description of Q, it is
also one that does not contain any extraneous informa-
tion which can not meaningfully be associated with Q.
The importance of this in quantum statistics of Fermi
and Bose gases was mentioned in the introduction.

The second question can be made more precise by con-
verting the Church-Turing thesis into a principle of

3This does not necessarily imply that such language captures
everthing that can be said about Nature, merely that this is a
useful abstraction at the descriptive level of physics. I do not
believe any physical ‘laws’ could be adequate to completely de-
scribe human behaviour, for example, since they are sufficiently
approximate or non-prescriptive to leave us room for manoeuvre
(Polkinghorne 1994).
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physics,

Every finitely realizible physical system can be simu-

lated arbitrarily closely by a universal model computing

machine operating by finite means.

This statement is based on that of Deutsch (1985). The
idea is to propose that a principle like this is not derived
from quantum mechanics, but rather underpins it, like
other principles such as that of conservation of energy.
The qualifications introduced by ‘finitely realizible’ and
‘finite means’ are important in order to state something
useful.

The new version of the Church-Turing thesis (now
called the ‘Church-Turing Principle’) does not refer to
Turing machines. This is important because there are
fundamental differences between the very nature of the
Turing machine and the principles of quantum mechan-
ics. One is described in terms of operations on classical
bits, the other in terms of evolution of quantum states.
Hence there is the possibility that the universal Turing
machine, and hence all classical computers, might not
be able to simulate some of the behaviour to be found
in Nature. Conversely, it may be physically possible
(i.e. not ruled out by the laws of Nature) to realise a
new type of computation essentially different from that
of classical computer science. This is the central aim
of quantum computing.

4.1 EPR paradox, Bell’s inequality

In 1935 Einstein, Podolski and Rosen (EPR) drew
attention to an important feature of non-relativistic
quantum mechanics. Their argument, and Bell’s anal-
ysis, can now be recognised as one of the seeds from
which quantum information theory has grown. The
EPR paradox should be familiar to any physics gradu-
ate, and I will not repeat the argument in detail. How-
ever, the main points will provide a useful way in to
quantum information concepts.

The EPR thought-experiment can be reduced in
essence to an experiment involving pairs of two-state
quantum systems (Bohm 1951, Bohm and Aharonov
1957). Let us consider a pair of spin-half particles
A and B, writing the (mz = +1/2) spin ‘up’ state
|↑〉 and the (mz = −1/2) spin ‘down’ state |↓〉. The

particles are prepared initially in the singlet state
(|↑〉 |↓〉 − |↓〉 |↑〉)/

√
2, and they subsequently fly apart,

propagating in opposite directions along the y-axis. Al-
ice and Bob are widely separated, and they receive par-
ticle A and B respectively. EPR were concerned with
whether quantum mechanics provides a complete de-
scription of the particles, or whether something was
left out, some property of the spin angular momenta
sA, sB which quantum theory failed to describe. Such
a property has since become known as a ‘hidden vari-
able’. They argued that something was left out, be-
cause this experiment allows one to predict with cer-
tainty the result of measuring any component of sB,
without causing any disturbance of B. Therefore all
the components of sB have definite values, say EPR,
and the quantum theory only provides an incomplete
description. To make the certain prediction without
disturbing B, one chooses any axis η along which one
wishes to know B’s angular momentum, and then mea-
sures not B but A, using a Stern-Gerlach apparatus
aligned along η. Since the singlet state carries no net
angular momentum, one can be sure that the corre-
sponding measurement on B would yield the opposite
result to the one obtained for A.

The EPR paper is important because it is carefully ar-
gued, and the fallacy is hard to unearth. The fallacy
can be exposed in one of two ways: one can say either
that Alice’s measurement does influence Bob’s particle,
or (which I prefer) that the quantum state vector |φ〉 is
not an intrinsic property of a quantum system, but an
expression for the information content of a quantum
variable. In a singlet state there is mutual informa-
tion between A and B, so the information content of
B changes when we learn something about A. So far
there is no difference from the behaviour of classical
information, so nothing surprising has occurred.

A more thorough analysis of the EPR experiment
yields a big surprise. This was discovered by Bell
(1964,1966). Suppose Alice and Bob measure the spin
component of A and B along different axes ηA and
ηB in the x-z plane. Each measurement yields an an-
swer + or −. Quantum theory and experiment agree
that the probability for the two measurements to yield
the same result is sin2((φA − φB)/2), where φA (φB)
is the angle between ηA (ηB) and the z axis. How-
ever, there is no way to assign local properties, that
is properties of A and B independently, which lead to

21



this high a correlation, in which the results are cer-
tain to be opposite when φA = φB , certain to be
equal when φA = φB + 180◦, and also, for example,
have a sin2(60◦) = 3/4 chance of being equal when
φA − φB = 120◦. Feynman (1982) gives a particularly
clear analysis. At φA − φB = 120◦ the highest cor-
relation which local hidden variables could produce is
2/3.

The Bell-EPR argument allows us to identify a task
which is physically possible, but which no classical
computer could perform: when repeatedly given in-
puts φA, φB at completely separated locations, respond
quickly (i.e. too quick to allow light-speed communi-
cation between the locations) with yes/no responses
which are perfectly correlated when φA = φB + 180◦,
anticorrelated when φA = φB, and more than ∼ 70%
correlated when φA − φB = 120◦.

Experimental tests of Bell’s argument were carried out
in the 1970’s and 80’s and the quantum theory was ver-
ified (Clauser and Shimony 1978, Aspect et. al. 1982;
for more recent work see Aspect (1991), Kwiat et. al.

1995 and references therein). This was a significant
new probe into the logical structure of quantum me-
chanics. The argument can be made even stronger
by considering a more complicated system. In par-
ticular, for three spins prepared in a state such as
(|↑〉 |↑〉 |↑〉 + |↓〉 |↓〉 |↓〉)/

√
2, Greenberger, Horne and

Zeilinger (1989) (GHZ) showed that a single measure-
ment along a horizontal axis for two particles, and
along a vertical axis for the third, will yield with cer-
tainty a result which is the exact opposite of what a
local hidden-variable theory would predict. A wider
discussion and references are provided by Greenberger
et. al. (1990), Mermin (1990).

The Bell-EPR correlations show that quantum me-
chanics permits at least one simple task which is be-
yond the capabilities of classical computers, and they
hint at a new type of mutual information (Schumacher
and Nielsen 1996). In order to pursue these ideas, we
will need to construct a complete theory of quantum
information.

5 Quantum Information

Just as in the discussion of classical information the-
ory, quantum information ideas are best introduced by
stating them, and then showing afterwards how they
link together. Quantum communication is treated in a
special issue of J. Mod. Opt., volume 41 (1994); reviews
and references for quantum cryptography are given by
Bennett et. al. (1992); Hughes et. al. (1995); Phoenix
and Townsend (1995); Brassard and Crepeau (1996);
Ekert (1997). Spiller (1996) reviews both communica-
tion and computing.

5.1 Qubits

The elementary unit of quantum information is the
qubit (Schumacher 1995). A single qubit can be envis-
aged as a two-state system such as a spin-half or a two-
level atom (see fig. 12), but when we measure quan-
tum information in qubits we are really doing some-
thing more abstract: a quantum system is said to have
n qubits if it has a Hilbert space of 2n dimensions,
and so has available 2n mutually orthogonal quantum
states (recall that n classical bits can represent up to
2n different things). This definition of the qubit will
be elaborated in section 5.6.

We will write two orthogonal states of a single
qubit as {|0〉 , |1〉}. More generally, 2n mutually or-
thogonal states of n qubits can be written {|i〉},
where i is an n-bit binary number. For example,
for three qubits we have {|000〉 , |001〉 , |010〉 , |011〉 ,
|100〉 , |101〉 , |110〉 , |111〉}.

5.2 Quantum gates

Simple unitary operations on qubits are called quan-
tum ‘logic gates’ (Deutsch 1985, 1989). For example,
if a qubit evolves as |0〉 → |0〉, |1〉 → exp(iωt) |1〉, then
after time t we may say that the operation, or ‘gate’

P (θ) =

(

1 0
0 eiθ

)

(22)

has been applied to the qubit, where θ = ωt. This can
also be written P (θ) = |0〉 〈0|+exp(iθ) |1〉 〈1|. Here are
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some other elementary quantum gates:

I ≡ |0〉 〈0| + |1〉 〈1| = identity (23)

X ≡ |0〉 〈1| + |1〉 〈0| = not (24)

Z ≡ P (π) (25)

Y ≡ XZ (26)

H ≡ 1√
2

[

(|0〉 + |1〉) 〈0| + (|0〉 − |1〉) 〈1|
]

(27)

these all act on a single qubit, and can be achieved by
the action of some Hamiltonian in Schrödinger’s equa-
tion, since they are all unitary operators4. There are an
infinite number of single-qubit quantum gates, in con-
trast to classical information theory, where only two
logic gates are possible for a single bit, namely the
identity and the logical not operation. The quantum
not gate carries |0〉 to |1〉 and vice versa, and so is
analagous to a classical not. This gate is also called
X since it is the Pauli σx operator. Note that the set
{I,X, Y, Z} is a group under multiplication.

Of all the possible unitary operators acting on a pair
of qubits, an interesting subset is those which can be
written |0〉 〈0|⊗I+|1〉 〈1|⊗U , where I is the single-qubit
identity operation, and U is some other single-qubit
gate. Such a two-qubit gate is called a “controlled U”
gate, since the action I or U on the second qubit is
controlled by whether the first qubit is in the state
|0〉 or |1〉. For example, the effect of controlled-not

(“cnot”) is

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉 (28)

Here the second qubit undergoes a not if and only
if the first qubit is in the state |1〉. This list of state
changes is the analogue of the truth table for a classical
binary logic gate. The effect of controlled-not acting
on a state |a〉 |b〉 can be written a→ a, b→ a⊕b, where
⊕ signifies the exclusive or (xor) operation. For this
reason, this gate is also called the xor gate.

Other logical operations require further qubits. For
example, the and operation is achieved by use of the

4The letter H is adopted for the final gate here because its
effect is a Hadamard transformation. This is not to be confused
with the Hamiltonian H.

3-qubit “controlled-controlled-not” gate, in which the
third qubit experiences not if and only if both the
others are in the state |1〉. This gate is named a Toffoli
gate, after Toffoli (1980) who showed that the classical
version is universal for classical reversible computation.
The effect on a state |a〉 |b〉 |0〉 is a→ a, b→ b, 0 → a ·b.
In other words if the third qubit is prepared in |0〉 then
this gate computes the and of the first two qubits.
The use of three qubits is necessary in order to permit
the whole operation to be unitary, and thus allowed in
quantum mechanical evolution.

It is an amusing excercise to find the combinations
of gates which perform elementary arithmatical op-
erations such as binary addition and multiplication.
Many basic constructions are given by Barenco et. al.

(1995b), further general design considerations are dis-
cussed by Vedral et. al. (1996) and Beckman et. al.

(1996).

The action of a sequence of quantum gates can be writ-
ten in operator notation, for example X1H2xor1,3 |φ〉
where |φ〉 is some state of three qubits, and the sub-
scripts on the operators indicate to which qubits they
apply. However, once more than a few quantum gates
are involved, this notation is rather obscure, and can
usefully be replaced by a diagram known as a quan-
tum network—see fig. 8. These diagrams will be used
hereafter.

5.3 No cloning

No cloning theorem: An unknown quantum state can-
not be cloned.

This states that it is impossible to generate copies of
a quantum state reliably, unless the state is already
known (i.e. unless there exists classical information
which specifies it). Proof: to generate a copy of a
quantum state |α〉, we must cause a pair of quantum
systems to undergo the evolution U(|α〉 |0〉) = |α〉 |α〉
where U is the unitary evolution operator. If this is
to work for any state, then U must not depend on α,
and therefore U(|β〉 |0〉) = |β〉 |β〉 for |β〉 6= |α〉. How-
ever, if we consider the state |γ〉 = (|α〉 + |β〉)/

√
2, we

have U(|γ〉 |0〉) = (|α〉 |α〉+ |β〉 |β〉)/
√

2 6= |γ〉 |γ〉 so the
cloning operation fails. This argument applies to any
purported cloning method (Wooters and Zurek 1982,

23



Dieks 1982).

Note that any given ‘cloning’ operation U can work
on some states (|α〉 and |β〉 in the above example),
though since U is trace-preserving, two different clon-
able states must be orthogonal, 〈α| β〉 = 0. Unless
we already know that the state to be copied is one of
these states, we cannot guarantee that the chosen U
will correctly clone it. This is in contrast to classi-
cal information, where machines like photocopiers can
easily copy whatever classical information is sent to
them. The controlled-not or xor operation of equa-
tion (28) is a copying operation for the states |0〉 and
|1〉, but not for states such as |+〉 ≡ (|0〉+ |1〉)/

√
2 and

|−〉 ≡ (|0〉 − |1〉)/
√

2.

The no-cloning theorem and the EPR paradox together
reveal a rather subtle way in which non-relativistic
quantum mechanics is a consistent theory. For, if
cloning were possible, then EPR correlations could be
used to communicate faster than light, which leads
to a contradiction (an effect preceding a cause) once
the principles of special relativity are taken into ac-
count. To see this, observe that by generating many
clones, and then measuring them in different bases,
Bob could deduce unambiguously whether his mem-
ber of an EPR pair is in a state of the basis {|0〉 , |1〉}
or of the basis {|+〉 , |−〉}. Alice would communicate
instanteously by forcing the EPR pair into one basis
or the other through her choice of measurement axis
(Glauber 1986).

5.4 Dense coding

We will discuss the following statement:

Quantum entanglement is an information resource.

Qubits can be used to store and transmit classical in-
formation. To transmit a classical bit string 00101,
for example, Alice can send 5 qubits prepared in the
state |00101〉. The receiver Bob can extract the infor-
mation by measuring each qubit in the basis {|0〉 , |1〉}
(i.e. these are the eigenstates of the measured observ-
able). The measurement results yield the classical bit
string with no ambiguity. No more than one classical
bit can be communicated for each qubit sent.

Suppose now that Alice and Bob are in possession of
an entangled pair of qubits, in the state |00〉 + |11〉
(we will usually drop normalisation factors such as

√
2

from now on, to keep the notation uncluttered). Al-
ice and Bob need never have communicated: we imag-
ine a mechanical central facility generating entangled
pairs and sending one qubit to each of Alice and Bob,
who store them (see fig. 9a). In this situation, Al-
ice can communicate two classical bits by sending Bob
only one qubit (namely her half of the entangled pair).
This idea due to Wiesner (Bennett and Wiesner 1992)
is called “dense coding”, since only one quantum bit
travels from Alice to Bob in order to convey two clas-
sical bits. Two quantum bits are involved, but Al-
ice only ever sees one of them. The method relies on
the following fact: the four mutually orthogonal states
|00〉 + |11〉 , |00〉 − |11〉, |01〉 + |10〉 , |01〉 − |10〉 can
be generated from each other by operations on a sin-
gle qubit. This set of states is called the Bell basis,
since they exhibit the strongest possible Bell-EPR cor-
relations (Braunstein et. al. 1992). Starting from
|00〉 + |11〉, Alice can generate any of the Bell basis
states by operating on her qubit with one of the opera-
tors {I,X, Y, Z}. Since there are four possibilities, her
choice of operation represents two bits of classical in-
formation. She then sends her qubit to Bob, who must
deduce which Bell basis state the qubits are in. This he
does by operating on the pair with the xor gate, and
measuring the target bit, thus distinguishing |00〉±|11〉
from |01〉 ± |10〉. To find the sign in the superposition,
he operates with H on the remaining qubit, and mea-
sures it. Hence Bob obtains two classical bits with no
ambiguity.

Dense coding is difficult to implement, and so has no
practical value merely as a standard communication
method. However, it can permit secure communica-
tion: the qubit sent by Alice will only yield the two
classical information bits to someone in possession of
the entangled partner qubit. More generally, dense
coding is an example of the statement which began
this section. It reveals a relationship between classi-
cal information, qubits, and the information content of
quantum entanglement (Barenco and Ekert 1995). A
laboratory demonstration of the main features is de-
scribed by Mattle et. al. (1996); Weinfurter (1994)
and Braunstein and Mann (1995) discuss some of the
methods employed, based on a source of EPR photon
pairs from parametric down-conversion.
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5.5 Quantum teleportation

It is possible to transmit qubits without sending qubits!

Suppose Alice wishes to communicate to Bob a single
qubit in the state |φ〉. If Alice already knows what
state she has, for example |φ〉 = |0〉, she can commu-
nicate it to Bob by sending just classical information,
eg “Dear Bob, I have the state |0〉. Regards, Alice.”
However, if |φ〉 is unknown there is no way for Alice
to learn it with certainty: any measurement she may
perform may change the state, and she cannot clone it
and measure the copies. Hence it appears that the only
way to transmit |φ〉 to Bob is to send him the phys-
ical qubit (i.e. the electron or atom or whatever), or
possibly to swap the state into another quantum sys-
tem and send that. In either case a quantum system is
transmitted.

Quantum teleportation (Bennett et. al. 1993, Ben-
nett 1995) permits a way around this limitation. As
in dense coding, we will use quantum entanglement
as an information resource. Suppose Alice and Bob
possess an entangled pair in the state |00〉 + |11〉. Al-
ice wishes to transmit to Bob a qubit in an unknown
state |φ〉. Without loss of generality, we can write
|φ〉 = a |0〉 + b |1〉 where a and b are unknown coef-
ficients. Then the initial state of all three qubits is

a |000〉 + b |100〉 + a |011〉 + b |111〉 (29)

Alice now measures in the Bell basis the first two
qubits, i.e. the unknown one and her member of the en-
tangled pair. The network to do this is shown in fig. 9b.
After Alice has applied the xor and Hadamard gates,
and just before she measures her qubits, the state is

|00〉 (a |0〉 + b |1〉) + |01〉 (a |1〉 + b |0〉)
+ |10〉 (a |0〉 − b |1〉) + |11〉 (a |1〉 − b |0〉) . (30)

Alice’s measurements collapse the state onto one of four
different possibilities, and yield two classical bits. The
two bits are sent to Bob, who uses them to learn which
of the operators {I,X, Z, Y } he must apply to his qubit
in order to place it in the state a |0〉 + b |1〉 = |φ〉.
Thus Bob ends up with the qubit (i.e. the quantum
information, not the actual quantum system) which
Alice wished to transmit.

Note that the quantum information can only arrive at
Bob if it disappears from Alice (no cloning). Also,

quantum information is complete information: |φ〉 is
the complete description of Alice’s qubit. The use of
the word ‘teleportation’ draws attention to these two
facts. Teleportation becomes an especially important
idea when we come to consider communication in the
presence of noise, section 9.

5.6 Quantum data compression

Having introduced the qubit, we now wish to show
that it is a useful measure of quantum information con-
tent. The proof of this is due to Jozsa and Schumacher
(1994) and Schumacher (1995), building on work of
Kholevo (1973) and Levitin (1987). To begin the ar-
gument, we first need a quantity which expresses how
much information you would gain if you were to learn
the quantum state of some system Q. A suitable quan-
tity is the Von Neumann entropy

S(ρ) = −Trρ log ρ (31)

where Tr is the trace operation, and ρ is the density
operator describing an ensemble of states of the quan-
tum system. This is to be compared with the classi-
cal Shannon entropy, equation (1). Suppose a classi-
cal random variable X has a probability distribution
p(x). If a quantum system is prepared in a state |x〉
dictated by the value of X , then the density matrix
is

∑

x p(x) |x〉 〈x|, where the states |x〉 need not be
orthogonal. It can be shown (Kholevo 1973, Levitin
1987) that S(ρ) is an upper limit on the classical mu-
tual information I(X : Y ) between X and the result Y
of a measurement on the system.

To make connection with qubits, we consider the re-
sources needed to store or transmit the state of a quan-
tum system q of density matrix ρ. The idea is to collect
n ≫ 1 such systems, and transfer (‘encode’) the joint
state into some smaller system. The smaller system
is transmitted down the channel, and at the receiving
end the joint state is ‘decoded’ into n systems q′ of the
same type as q (see fig. 9c). The final density matrix of
each q′ is ρ′, and the whole process is deemed success-
ful if ρ′ is sufficiently close to ρ. The measure of the
similarity between two density matrices is the fidelity

defined by

f(ρ, ρ′) =
(

Tr
√

ρ1/2ρ′ρ1/2
)2

(32)
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This can be interpreted as the probability that q′ passes
a test which ascertained if it was in the state ρ. When
ρ and ρ′ are both pure states, |φ〉 〈φ| and |φ′〉 〈φ′|, the
fidelity is none other than the familiar overlap: f =
| 〈φ| φ′〉 |2.

Our aim is to find the smallest transmitted system
which permits f = 1 − ǫ for ǫ ≪ 1. The argument is
analogous to the ‘typical sequences’ idea used in section
2.2. Restricting ourselves for simplicity to two-state
systems, the total state of n systems is represented by
a vector in a Hilbert space of 2n dimensions. However,
if the von Neumann entropy S(ρ) < 1 then it is highly
likely (i.e. tends to certainty in the limit of large n)
that, in any given realisation, the state vector actually
falls in a typical sub-space of Hilbert space. Schumacher
and Jozsa showed that the dimension of the typical sub-
space is 2nS(ρ). Hence only nS(ρ) qubits are required
to represent the quantum information faithfully, and
the qubit (i.e. the logarithm of the dimensionality of
Hilbert space) is a useful measure of quantum informa-
tion. Furthermore, the encoding and decoding opera-
tion is ‘blind’: it does not depend on knowledge of the
exact states being transmitted.

Schumacher and Josza’s result is powerful because it
is general: no assumptions are made about the exact
nature of the quantum states involved. In particular,
they need not be orthogonal. If the states to be trans-
mitted were mutually orthogonal, the whole problem
would reduce to one of classical information.

The ‘encoding’ and ‘decoding’ required to achieve such
quantum data compression and decompression is tech-
nologically very demanding. It cannot at present be
done at all using photons. However, it is the ultimate
compression allowed by the laws of physics. The details
of the required quantum networks have been deduced
by Cleve and DiVincenzo (1996).

As well as the essential concept of information, other
classical ideas such as Huffman coding have their quan-
tum counterparts. Furthermore, Schumacher and Niel-
son (1996) derive a quantity which they call ‘coherent
information’ which is a measure of mutual informa-
tion for quantum systems. It includes that part of the
mutual information between entangled systems which
cannot be accounted for classically. This is a helpful
way to understand the Bell-EPR correlations.

5.7 Quantum cryptography

No overview of quantum information is complete with-
out a mention of quantum cryptography. This area
stems from an unpublished paper of Wiesner written
around 1970 (Wiesner 1983). It includes various ideas
whereby the properties of quantum systems are used to
achieve useful cryptographic tasks, such as secure (i.e.
secret) communication. The subject may be divided
into quantum key distribution, and a collection of other
ideas broadly related to bit commitment. Quantum
key distribution will be outlined below. Bit commit-
ment refers to the scenario in which Alice must make
some decision, such as a vote, in such a way that Bob
can be sure that Alice fixed her vote before a given
time, but where Bob can only learn Alice’s vote at some
later time which she chooses. A classical, cumbersome
method to achieve bit commitment is for Alice to write
down her vote and place it in a safe which she gives to
Bob. When she wishes Bob, later, to learn the infor-
mation, she gives him the key to the safe. A typical
quantum protocol is a carefully constructed variation
on the idea that Alice provides Bob with a prepared
qubit, and only later tells him in what basis it was
prepared.

The early contributions to the field of quantum cryp-
tography were listed in the introduction, further refer-
ences may be found in the reviews mentioned at the be-
ginning of this section. Cryptography has the unusual
feature that it is not possible to prove by experiment
that a cryptographic procedure is secure: who knows
whether a spy or cheating person managed to beat the
system? Instead, the users’ confidence in the methods
must rely on mathematical proofs of security, and it
is here that much important work has been done. A
concerted effort has enabled proofs to be established
for the security of correctly implemented quantum key
distribution. However, the bit commitment idea, long
thought to be secure through quantum methods, was
recently proved to be insecure (Mayers 1997, Lo and
Chau 1997) because the participants can cheat by mak-
ing use of quantum entanglement.

Quantum key distribution is a method in which quan-
tum states are used to establish a random secret key for
cryptography. The essential ideas are as follows: Alice
and Bob are, as usual, widely seperated and wish to
communicate. Alice sends to Bob 2n qubits, each pre-
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pared in one of the states |0〉 , |1〉 , |+〉 , |−〉, randomly
chosen5. Bob measures his received bits, choosing the
measurement basis randomly between {|0〉 , |1〉} and
{|+〉 , |−〉}. Next, Alice and Bob inform each other
publicly (i.e. anyone can listen in) of the basis they
used to prepare or measure each qubit. They find out
on which occasions they by chance used the same basis,
which happens on average half the time, and retain just
those results. In the absence of errors or interference,
they now share the same random string of n classical
bits (they agree for example to associate |0〉 and |+〉
with 0; |1〉 and |−〉 with 1). This classical bit string is
often called the raw quantum transmission, RQT.

So far nothing has been gained by using qubits. The
important feature is, however, that it is impossible for
anyone to learn Bob’s measurement results by observ-
ing the qubits en route, without leaving evidence of
their presence. The crudest way for an eavesdopper
Eve to attempt to discover the key would be for her
to intercept the qubits and measure them, then pass
them on to Bob. On average half the time Eve guesses
Alice’s basis correctly and thus does not disturb the
qubit. However, Eve’s correct guesses do not coincide
with Bob’s, so Eve learns the state of half of the n
qubits which Alice and Bob later decide to trust, and
disturbs the other half, for example sending to Bob |+〉
for Alice’s |0〉. Half of those disturbed will be projected
by Bob’s measurement back onto the original state sent
by Alice, so overall Eve corrupts n/4 bits of the RQT.

Alice and Bob can now detect Eve’s presence simply by
randomly choosing n/2 bits of the RQT and announc-
ing publicly the values they have. If they agree on all
these bits, then they can trust that no eavesdropper
was present, since the probability that Eve was present
and they happened to choose n/2 uncorrupted bits is
(3/4)n/2 ≃ 10−125 for n = 1000. The n/2 undisclosed
bits form the secret key.

In practice the protocol is more complicated since Eve
might adopt other strategies (e.g. not intercept all the
qubits), and noise will currupt some of the qubits even
in the absence of an evesdropper. Instead of reject-
ing the key if many of the disclosed bits differ, Alice
and Bob retain it as long as they find the error rate
to be well below 25%. They then process the key in

5Many other methods are possible, we adopt this one merely
to illustrate the concepts.

two steps. The first is to detect and remove errors,
which is done by publicly comparing parity checks on
publicly chosen random subsets of the bits, while dis-
carding bits to prevent increasing Eve’s information.
The second step is to decrease Eve’s knowledge of the
key, by distilling from it a smaller key, composed of
parity values calculated from the original key. In this
way a key of around n/4 bits is obtained, of which Eve
probably knows less than 10−6 of one bit (Bennett et.

al. 1992).

The protocol just described is not the only one possible.
Another approach (Ekert 1991) involves the use of EPR
pairs, which Alice and Bob measure along one of three
different axes. To rule out eavesdropping they check
for Bell-EPR correlations in their results.

The great thing about quantum key distribution is
that it is feasible with current technology. A pioneer-
ing experiment (Bennett and Brassard 1989) demon-
strated the principle, and much progress has been made
since then. Hughes et. al. (1995) and Phoenix and
Townsend (1995) summarised the state of affairs two
years ago, and recently Zbinden et. al. (1997) have
reported excellent key distribution through 23 km of
standard telecom fibre under lake Geneva. The qubits
are stored in the polarisation states of laser pulses, i.e.
coherent states of light, with on average 0.1 photons
per pulse. This low light level is necessary so that
pulses containing more than one photon are unlikely.
Such pulses would provide duplicate qubits, and hence
a means for an evesdropper to go undetected. The sys-
tem achieves a bit error rate of 1.35%, which is low
enough to guarantee privacy in the full protocol. The
data transmission rate is rather low: MHz as opposed
to the GHz rates common in classical communications,
but the system is very reliable.

Such spectacular experimental mastery is in contrast
to the subject of the next section.

6 The universal quantum com-

puter

We now have sufficient concepts to understand the
jewel at the heart of quantum information theory,
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namely, the quantum computer (QC). Ekert and Jozsa
(1996) and Barenco (1996) give introductory reviews
concentrating on the quantum computer and factori-
sation; a review with emphasis on practicalities is pro-
vided by Spiller (1996). Introductory material is also
provided by DiVincenzo (1995b) and Shor (1996).

The QC is first and foremost a machine which is a
theoretical construct, like a thought-experiment, whose
purpose is to allow quantum information processing to
be formally analysed. In particular it establishes the
Church-Turing Principle introduced in section 4.

Here is a prescription for a quantum computer, based
on that of Deutsch (1985, 1989):

A quantum computer is a set of n qubits in which the
following operations are experimentally feasible:

1. Each qubit can be prepared in some known state
|0〉.

2. Each qubit can be measured in the basis {|0〉 , |1〉}.

3. A universal quantum gate (or set of gates) can
be applied at will to any fixed-size subset of the
qubits.

4. The qubits do not evolve other than via the above
transformations.

This prescription is incomplete in certain technical
ways to be discussed, but it encompasses the main
ideas. The model of computation we have in mind is
a network model, in which logic gates are applied se-
quentially to a set of bits (here, quantum bits). In an
electronic classical computer, logic gates are spread out
in space on a circuit board, but in the QC we typically
imagine the logic gates to be interactions turned on and
off in time, with the qubits at fixed positions, as in a
quantum network diagram (fig. 8, 12). Other models
of quantum computation can be conceived, such as a
cellular automaton model (Margolus 1990).

6.1 Universal gate

The universal quantum gate is the quantum equivalent
of the classical universal gate, namely a gate which

by its repeated use on different combinations of bits
can generate the action of any other gate. What is
the set of all possible quantum gates, however? To
answer this, we appeal to the principles of quantum
mechanics (Schrödinger’s equation), and answer that
since all quantum evolution is unitary, it is sufficient
to be able to generate all unitary transformations of
the n qubits in the computer. This might seem a tall
order, since we have a continuous and therefore infinite
set. However, it turns out that quite simple quantum
gates can be universal, as Deutsch showed in 1985.

The simplest way to think about universal gates is to
consider the pair of gates V (θ, φ) and controlled-not
(or xor), where V (θ, φ) is a general rotation of a single
qubit, ie

V (θ, φ) =

(

cos(θ/2) −ie−iφ sin(θ/2)
−ieiφ sin(θ/2) cos(θ/2)

)

. (33)

It can be shown that any n × n unitary matrix can
be formed by composing 2-qubit xor gates and single-
qubit rotations. Therefore, this pair of operations is
universal for quantum computation. A purist may ar-
gue that V (θ, φ) is an infinite set of gates since the
parameters θ and φ are continuous, but it suffices to
choose two particular irrational angles for θ and φ,
and the resulting single gate can generate all single-
qubit rotations by repeated application; however, a
practical system need not use such laborious methods.
The xor and rotation operations can be combined to
make a controlled rotation which is a single univer-
sal gate. Such universal quantum gates were discussed
by Deutsch et. al. (1995), Lloyd (1995), DiVincenzo
(1995a) and Barenco (1995).

It is remarkable that 2-qubit gates are sufficient for
quantum computation. This is why the quantum gate
is a powerful and important concept.

6.2 Church-Turing principle

Having presented the QC, it is necessary to argue for
its universality, i.e. that it fulfills the Church-Turing
Principle as claimed. The two-step argument is very
simple. First, the state of any finite quantum system
is simply a vector in Hilbert space, and therefore can be
represented to arbitrary precision by a finite number of
qubits. Secondly, the evolution of any finite quantum
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system is a unitary transformation of the state, and
therefore can be simulated on the QC, which can gen-
erate any unitary transformation with arbitrary preci-
sion.

A point of principle is raised by Myers (1997), who
points out that there is a difficulty with computational
tasks for which the number of steps for completion can-
not be predicted. We cannot in general observe the QC
to find out if it has halted, in contrast to a classical
computer. However, we will only be concerned with
tasks where either the number of steps is predictable,
or the QC can signal completion by setting a dedicated
qubit which is otherwise not involved in the compu-
tation (Deutsch 1985). This is a very broad class of
problems. Nielsen and Chuang (1997) consider the use
of a fixed quantum gate array, showing that there is
no array which, operating on qubits representing both
data and program, can perform any unitary transfor-
mation on the data. However, we consider a machine
in which a classical computer controls the quantum
gates applied to a quantum register, so any gate array
can be ‘ordered’ by a classical program to the classical
computer.

The QC is certainly an interesting theoretical tool.
However, there hangs over it a large and important
question-mark: what about imperfection? The pre-
scription given above is written as if measurements and
gates can be applied with arbitrary precision, which is
unphysical, as is the fourth requirement (no extraneous
evolution). The prescription can be made realistic by
attaching to each of the four requirements a statement
about the degree of allowable imprecision. This is a
subject of on-going research, and we will take it up in
section 9. Meanwhile, let us investigate more specifi-
cally what a sufficiently well-made quantum computer
might do.

7 Quantum algorithms

It is well known that classical computers are able to cal-
culate the behaviour of quantum systems, so we have
not yet demonstrated that a quantum computer can do
anything which a classical computer can not. Indeed,
since our theories of physics always involve equations
which we can write down and manipulate, it seems

highly unlikely that quantum mechanics, or any future
physical theory, would permit computational problems
to be addressed which are not in principle solvable on a
large enough classical Turing machine. However, as we
saw in section 3.2, those words ‘large enough’, and also
‘fast enough’, are centrally important in computer sci-
ence. Problems which are computationally ‘hard’ can
be impossible in practice. In technical language, while
quantum computing does not enlarge the set of compu-
tational problems which can be addressed (compared
to classical computing), it does introduce the possibil-
ity of new complexity classes. Put more simply, tasks
for which classical computers are too slow may be solv-
able with quantum computers.

7.1 Simulation of physical systems

The first and most obvious application of a QC is that
of simulating some other quantum system. To simulate
a state vector in a 2n-dimensional Hilbert space, a clas-
sical computer needs to manipulate vectors containing
of order 2n complex numbers, whereas a quantum com-
puter requires just n qubits, making it much more effi-
cient in storage space. To simulate evolution, in general
both the classical and quantum computers will be inef-
ficient. A classical computer must manipulate matrices
containing of order 22n elements, which requires a num-
ber of operations (multiplication, addition) exponen-
tially large in n, while a quantum computer must build
unitary operations in 2n-dimensional Hilbert space,
which usually requires an exponentially large num-
ber of elementary quantum logic gates. Therefore the
quantum computer is not guaranteed to simulate every

physical system efficiently. However, it can be shown
that it can simulate a large class of quantum systems
efficiently, including many for which there is no effi-
cient classical algorithm, such as many-body systems
with local interactions (Lloyd 1996, Zalka 1996, Wies-
ner 1996, Meyer 1996, Lidar and Biam 1996, Abrams
and Lloyd 1997, Boghosian and Taylor 1997).

7.2 Period finding and Shor’s factorisa-

tion algorithm

So far we have discussed simulation of Nature, which is
a rather restricted type of computation. We would like
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to let the QC loose on more general problems, but it
has so far proved hard to find ones on which it performs
better than classical computers. However, the fact that
there exist such problems at all is a profound insight
into physics, and has stimulated much of the recent
interest in the field.

Currently one of the most important quantum algo-
rithms is that for finding the period of a function.
Suppose a function f(x) is periodic with period r, i.e.
f(x) = f(x + r). Suppose further that f(x) can be
efficiently computed from x, and all we know initially
is that N/2 < r < N for some N . Assuming there is
no analytic technique to deduce the period of f(x), the
best we can do on a classical computer is to calculate
f(x) for of order N/2 values of x, and find out when
the function repeats itself (for well-behaved functions
only O(

√
N) values may be needed on average). This

is inefficient since the number of operations is exponen-
tial in the input size logN (the information required
to specify N).

The task can be solved efficiently on a QC by the el-
egant method shown in fig. 10, due to Shor (1994),
building on Simon (1994). The QC requires 2n qubits,
plus a further 0(n) for workspace, where n = ⌈2 logN⌉
(the notation ⌈x⌉ means the nearest integer greater
than x). These are divided into two ‘registers’, each
of n qubits. They will be referred to as the x and y
registers; both are initially prepared in the state |0〉
(i.e. all n qubits in states |0〉). Next, the operation H
is applied to each qubit in the x register, making the
total state

1√
w

w−1
∑

x=0

|x〉 |0〉 (34)

where w = 2n. This operation is referred to as a
Fourier transform in fig. 10, for reasons that will
shortly become apparant. The notation |x〉 means a
state such as |0011010〉, where 0011010 is the integer x
in binary notation. In this context the basis {|0〉 , |1〉}
is referred to as the ‘computational basis.’ It is conve-
nient (though not of course necessary) to use this basis
when describing the computer.

Next, a network of logic gates is applied to both x and
y regisiters, to perform the transformation Uf |x〉 |0〉 =
|x〉 |f(x)〉. Note that this transformation can be uni-
tary because the input state |x〉 |0〉 is in one to one

correspondance with the output state |x〉 |f(x)〉, so the
process is reversible. Now, applying Uf to the state
given in eq. (34), we obtain

1√
w

w−1
∑

x=0

|x〉 |f(x)〉 (35)

This state is illustrated in fig. 11a. At this point some-
thing rather wonderful has taken place: the value of
f(x) has been calculated for w = 2n values of x, all in
one go! This feature is referred to as quantum paral-

lelism and represents a huge parallelism because of the
exponential dependence on n (imagine having 2100, i.e.
a million times Avagadro’s number, of classical proces-
sors!)

Although the 2n evaluations of f(x) are in some sense
‘present’ in the quantum state in eq. (35), unfortu-
nately we cannot gain direct access to them. For, a
measurement (in the computational basis) of the y reg-
ister, which is the next step in the algorithm, will only
reveal one value of f(x)6. Suppose the value obtained
is f(x) = u. The y register state collapses onto |u〉,
and the total state becomes

1√
M

M−1
∑

j=0

|du + jr〉 |u〉 (36)

where du + jr, for j = 0, 1, 2 . . .M − 1, are all the
values of x for which f(x) = u. In other words the
periodicity of f(x) means that the x register remains
in a superposition of M ≃ w/r states, at values of x
separated by the period r. Note that the offset du of
the set of x values depends on the value u obtained in
the measurement of the y register.

It now remains to extract the periodicity of the state
in the x register. This is done by applying a Fourier
transform, and then measuring the state. The discrete
Fourier transform employed is the following unitary
process:

UFT |x〉 =
1√
w

w−1
∑

k=0

ei2πkx/w |k〉 (37)

Note that eq. (34) is an example of this, operating on
the initial state |0〉. The quantum network to apply

6It is not strictly necessary to measure the y register, but this
simplifies the description.
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UFT is based on the fast Fourier transform algorithm
(see, e.g., Knuth (1981)). The quantum version was
worked out by Coppersmith (1994) and Deutsch (1994)
independently, a clear presentation may also be found
in Ekert and Josza (1996), Barenco (1996)7. Before
applying UFT to eq. (36) we will make the simplifying
assumption that r divides w exactly, so M = w/r. The
essential ideas are not affected by this restriction; when
it is relaxed some added complications must be taken
into account (Shor 1994, 1995a; Ekert and Josza 1996).

The y register no longer concerns us, so we will just
consider the x state from eq. (36):

UFT
1

√

w/r

w/r−1
∑

j=0

|du + jr〉 =
1√
r

∑

k

f̃(k) |k〉 (38)

where

|f̃(k)| =

{

1 if k is a multiple of w/r
0 otherwise

(39)

This state is illustrated in fig. 11b. The final state of
the x register is now measured, and we see that the
value obtained must be a multiple of w/r. It remains
to deduce r from this. We have x = λw/r where λ
is unknown. If λ and r have no common factors, then
we cancel x/w down to an irreducible fraction and thus
obtain λ and r. If λ and r have a common factor, which
is unlikely for large r, then the algorithm fails. In this
case, the whole algorithm must be repeated from the
start. After a number of repetitions no greater than ∼
log r, and usually much less than this, the probability
of success can be shown to be arbitrarily close to 1
(Ekert and Josza 1996).

The quantum period-finding algorithm we have de-
scribed is efficient as long as Uf , the evaluation of f(x),
is efficient. The total number of elementary logic gates
required is a polynomial rather than exponential func-
tion of n. As was emphasised in section 3.2, this makes
all the difference between tractable and intractable in
practice, for sufficiently large n.

To add the icing on the cake, it can be remarked that
the important factorisation problem mentioned in sec-
tion 3.2 can be reduced to one of finding the period of

7An exact quantum Fourier transform would require rotation
operations of precision exponential in n, which raises a problem
with the efficiency of Shor’s algorithm. However, an approximate
version of the Fourier transform is sufficient (Barenco et. al.

1996)

a simple function. This and all the above ingredients
were first brought together by Shor (1994), who thus
showed that the factorisation problem is tractable on
an ideal quantum computer. The function to be eval-
uated in this case is f(x) = ax mod N where N is
the number to be factorised, and a < N is chosen ran-
domly. One can show using elementary number theory
(Ekert and Josza 1996) that for most choices of a, the
period r is even and ar/2 ± 1 shares a common factor
with N . The common factor (which is of course a fac-
tor N) can then be deduced rapidly using a classical
algorithm due to Euclid (circa 300 BC; see, e.g. Hardy
and Wright 1965).

To evaluate f(x) efficiently, repeated squaring (modulo
N) is used, giving powers ((a2)2)2 . . .. Selected such
powers of a, corresponding to the binary expansion of
a, are then multiplied together. Complete networks
for the whole of Shor’s algorithm were described by
Miquel et. al. (1996), Vedral et. al. (1996) and Beck-
man et. al. (1996). They require of order 300(logN)3

logic gates. Therefore, to factorise numbers of order
10130, i.e. at the limit of current classical methods,
would require ∼ 2 × 1010 gates per run, or 7 hours if
the ‘switching rate’ is one megaHertz8. Considering
how difficult it is to make a quantum computer, this
offers no advantage over classical computation. How-
ever, if we double the number of digits to 260 then
the problem is intractable classically (see section 3.2),
while the ideal quantum computer takes just 8 times
longer than before. The existence of such a powerful
method is an exciting and profound new insight into
quantum theory.

The period-finding algorithm appears at first sight like
a conjuring trick: it is not quite clear how the quan-
tum computer managed to produce the period like a
rabbit out of a hat. Examining fig. 11 and equations
(34) to (38), I would say that the most important fea-
tures are contained in eq. (35). They are not only the
quantum parallelism already mentioned, but also quan-

tum entanglement, and, finally, quantum interference.
Each value of f(x) retains a link with the value of x
which produced it, through the entanglement of the x
and y registers in eq. (35). The ‘magic’ happens when
a measurement of the y register produces the special

8The algorithm might need to be run log r ∼ 60 times to
ensure at least one successful run, but the average number of
runs required will be much less than this.
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state |ψ〉 (eq. 36) in the x register, and it is quan-
tum entanglement which permits this (see also Jozsa
1997a). The final Fourier transform can be regarded as
an interference between the various superposed states
in the x register (compare with the action of a diffrac-
tion grating).

Interference effects can be used for computational pur-
poses with classical light fields, or water waves for that
matter, so interference is not in itself the essentially
quantum feature. Rather, the exponentially large num-
ber of interfering states, and the entanglement, are fea-
tures which do not arise in classical systems.

7.3 Grover’s search algorithm

Despite considerable efforts in the quantum computing
community, the number of useful quantum algorithms
which have been discovered remains small. They con-
sist mainly of variants on the period-finding algorithm
presented above, and another quite different task: that
of searching an unstructured list. Grover (1997) pre-
sented a quantum algorithm for the following problem:
given an unstructured list of items {xi}, find a partic-
ular item xj = t. Think, for example, of looking for a
particular telephone number in the telephone directory
(for someone whose name you do not know). It is not
hard to prove that classical algorithms can do no better
than searching through the list, requiring on average
N/2 steps, for a list of N items. Grover’s algorithm
requires of order

√
N steps. The task remains compu-

tationally hard: it is not transferred to a new complex-
ity class, but it is remarkable that such a seemingly
hopeless task can be speeded up at all. The ‘quan-
tum speed-up’ ∼

√
N/2 is greater than that achieved

by Shor’s factorisation algorithm (∼ exp(2(lnN)1/3)),
and would be important for the huge sets (N ≃ 1016)
which can arise, for example, in code-breaking prob-
lems (Brassard 1997).

An important further point was proved by Bennett et.

al. (1997), namely that Grover’s algorithm is optimal:
no quantum algorithm can do better than O(

√
N).

A brief sketch of Grover’s algorithm is as follows. Each
item has a label i, and we must be able to test in a
unitary way whether any item is the one we are seeking.
In other words there must exist a unitary operator S

such that S |i〉 = |i〉 if i 6= j, and S |j〉 = − |j〉, where
j is the label of the special item. For example, the
test might establish whether i is the solution of some
hard computational problem9. The method begins by
placing a single quantum register in a superposition
of all computational states, as in the period-finding
algorithm (eq. (34)). Define

|Ψ(θ)〉 ≡ sin θ |j〉 +
cos θ√
N − 1

∑

i6=j

|i〉 (40)

where j is the label of the element t = xj to be found.
The initially prepared state is an equally-weighted su-
perposition, |Ψ(θ0)〉 where sin θ0 = 1/

√
N . Now apply

S, which reverses the sign of the one special element of
the superposition, then Fourier transform, change the
sign of all components except |0〉, and Fourier trans-
form back again. These operations represent a subtle
interference effect which achieves the following trans-
formation:

UG |θ〉 = |Ψ(θ + φ)〉 (41)

where sinφ = 2
√
N − 1/N . The coefficient of the spe-

cial element is now slightly larger than that of all the
other elements. The method proceeds simply by apply-
ing UG m times, where m ≃ (π/4)

√
N . The slow rota-

tion brings θ very close to π/2, so the quantum state
becomes almost precisely equal to |j〉. After the m it-
erations the state is measured and the value j obtained
(with error probability O(1/N)). If UG is applied too
many times, the success probability diminishes, so it is
important to know m, which was deduced by Boyer et.

al. (1996). Kristen Fuchs compares the technique to
cooking a soufflé. The state is placed in the ‘quantum
oven’ and the desired answer rises slowly. You must
open the oven at the right time, neither too soon not
too late, to guarantee success. Otherwise the soufflé
will fall—the state collapses to the wrong answer.

The two algorithms I have presented are the easiest to
describe, and illustrate many of the methods of quan-
tum computation. However, just what further methods
may exist is an open question. Kitaev (1996) has shown
how to solve the factorisation and related problems us-
ing a technique fundamentally different from Shor’s.
His ideas have some similarities to Grover’s. Kitaev’s
method is helpfully clarified by Jozsa (1997b) who also

9That is, an “np” problem for which finding a solution is hard,
but testing a proposed solution is easy.
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brings out the common features of several quantum al-
gorithms based on Fourier transforms. The quantum
programmer’s toolbox is thus slowly growing. It seems
safe to predict, however, that the class of problems for
which quantum computers out-perform classical ones is
a special and therefore small class. On the other hand,
any problem for which finding solutions is hard, but
testing a candidate solution is easy, can at last resort
be solved by an exhaustive search, and here Grover’s
algorithm may prove very useful.
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8 Experimental quantum infor-

mation processors

The most elementary quantum logical operations have
been demonstrated in many physics experiments dur-
ing the past 50 years. For example, the not operation
(X) is no more than a stimulated transition between
two energy levels |0〉 and |1〉. The important xor op-
eration can also be identified as a driven transition in a
four-level system. However, if we wish to contemplate
a quantum computer it is necessary to find a system
which is sufficiently controllable to allow quantum logic
gates to be applied at will, and yet is sufficiently com-
plicated to store many qubits of quantum information.

It is very hard to find such systems. One might hope to
fabricate quantum devices on solid state microchips—
this is the logical progression of the microfabrication
techniques which have allowed classical computers to
become so powerful. However, quantum computation
relies on complicated interference effects and the great
problem in realising it is the problem of noise. No
quantum system is really isolated, and the coupling to
the environment produces decoherence which destroys
the quantum computation. In solid state devices the
environment is the substrate, and the coupling to this
environment is strong, producing typical decoherence
times of the order of picoseconds. It is important to re-
alise that it is not enough to have two different states
|0〉 and |1〉 which are themselves stable (for example
states of different current in a superconductor): we re-
quire also that superpositions such as |0〉+ |1〉 preserve
their phase, and this is typically where the decoherence
timescale is so short.

At present there are two candidate systems which
should permit quantum computation on 10 to 40
qubits. These are the proposal of Cirac and Zoller
(1995) using a line of singly charged atoms confined
and cooled in vacuum in an ion trap, and the pro-
posal of Gershenfeld and Chuang (1997), and simulta-
neously Cory et. al. (1996), using the methods of bulk
nuclear magnetic resonance. In both cases the propos-
als rely on the impressive efforts of a large commu-
nity of researchers which developed the experimental
techniques. Previous proposals for experimental quan-
tum computation (Lloyd 1993, Berman et. al. 1994,
Barenco et. al. 1995a, DiVincenzo 1995b) touched on

some of the important methods but were not experi-
mentally feasible. Further recent proposals (Privman
et. al. 1997, Loss and DiVincenzo 1997) may become
feasible in the near future.

8.1 Ion trap

The ion trap method is illustrated in fig. 12, and de-
scribed in detail by Steane (1997b). A string of ions is
confined by a combination of oscillating and static elec-
tric fields in a linear ‘Paul trap’ in high vacuum (10−8

Pa). A single laser beam is split by beam splitters and
acousto-optic modulators into many beam pairs, one
pair illuminating each ion. Each ion has two long-lived
states, for example different levels of the ground state
hyperfine structure (the lifetime of such states against
spontaneous decay can exceed thousands of years). Let
us refer to these two states as |g〉 and |e〉; they are or-
thogonal and so together represent one qubit. Each
laser beam pair can drive coherent Raman transitions
between the internal states of the relevant ion. This
allows any single-qubit quantum gate to be applied to
any ion, but not two-qubit gates. The latter requires
an interaction between ions, and this is provided by
their Coulomb repulsion. However, exactly how to use
this interaction is far from obvious; it required the im-
portant insight of Cirac and Zoller.

Light carries not only energy but also momentum, so
whenever a laser beam pair interacts with an ion, it
exchanges momentum with the ion. In fact, the mu-
tual repulsion of the ions means that the whole string
of ions moves en masse when the motion is quantised
(Mössbauer effect). The motion of the ion string is
quantised because the ion string is confined in the po-
tential provided by the Paul trap. The quantum states
of motion correspond to the different degrees of exci-
tation (‘phonons’) of the normal modes of vibration
of the string. In particular we focus on the ground
state of the motion |n = 0〉 and the lowest excited
state |n = 1〉 of the fundamental mode. To achieve,
for example, controlled-Z between ion x and ion y, we
start with the motion in the ground state |n = 0〉. A
pulse of the laser beams on ion x drives the transition
|n = 0〉 |g〉x → |n = 0〉 |g〉x, |n = 0〉 |e〉x → |n = 1〉 |g〉x,
so the ion finishes in the ground state, and the motion
finishes in the initial state of the ion: this is a ‘swap’
operation. Next a pulse of the laser beams on ion y
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drives the transition

|n = 0〉 |g〉y → |n = 0〉 |g〉y
|n = 0〉 |e〉y → |n = 0〉 |e〉y
|n = 1〉 |g〉y → |n = 1〉 |g〉y
|n = 1〉 |e〉y → −|n = 1〉 |e〉y

Finally, we repeat the initial pulse on ion x. The overall
effect of the three pulses is

|n = 0〉 |g〉x |g〉y → |n = 0〉 |g〉x |g〉y
|n = 0〉 |g〉x |e〉y → |n = 0〉 |g〉x |e〉y
|n = 0〉 |e〉x |g〉y → |n = 0〉 |e〉x |g〉y
|n = 0〉 |e〉x |e〉y → −|n = 0〉 |e〉x |e〉y

which is exactly a controlled-Z between x and y. Each
laser pulse must have a precisely controlled frequency
and duration. The controlled-Z gate and the single-
qubit gates together provide a universal set, so we can
perform arbitrary transformations of the joint state of
all the ions!

To complete the prescription for a quantum computer
(section 6), we must be able to prepare the initial
state and measure the final state. The first is possible
through the methods of optical pumping and laser cool-
ing, the second through the ‘quantum jump’ or ‘elec-
tron shelving’ measurement technique. All these are
powerful techniques developed in the atomic physics
community over the past twenty years. However, the
combination of all the techniques at once has only been
achieved in a single experiment, which demonstrated
preparation, quantum gates, and measurement for just
a single trapped ion (Monroe et. al 1995b).

The chief experimental difficulty in the ion trap method
is to cool the string of ions to the ground state of the
trap (a sub-microKelvin temperature), and the chief
source of decoherence is the heating of this motion ow-
ing to the coupling between the charged ion string and
noise voltages in the electrodes (Steane 1997, Wineland
et. al. 1997). It is unknown just how much the heat-
ing can be reduced. A conservative statement is that
in the next few years 100 quantum gates could be ap-
plied to a few ions without losing coherence. In the
longer term one may hope for an order of magnitude
increase in both figures. It seems clear that an ion trap
processor will never achieve sufficient storage capacity

and coherence to permit factorisation of hundred-digit
numbers. However, it would be fascinating to try a
quantum algorithm on just a few qubits (4 to 10) and
thus to observe the principles of quantum information
processing at work. We will discuss in section 9 meth-
ods which should allow the number of coherent gate
operations to be greatly increased.

8.2 Nuclear magnetic resonance

The proposal using nuclear magnetic resonance (NMR)
is illustrated in fig. 13. The quantum processor in this
case is a molecule containing a ‘backbone’ of about ten
atoms, with other atoms such as hydrogen attached
so as to use up all the chemical bonds. It is the nu-
clei which interest us. Each has a magnetic moment
associated with the nuclear spin, and the spin states
provide the qubits. The molecule is placed in a large
magnetic field, and the spin states of the nuclei are
manipulated by applying oscillating magnetic fields in
pulses of controlled duration.

So far, so good. The problem is that the spin state
of the nuclei of a single molecule can be neither pre-
pared nor measured. To circumvent this problem, we
use not a single molecule, but a cup of liquid contain-
ing some 1020 molecules! We then measure the aver-
age spin state, which can be achieved since the average
oscillating magnetic moment of all the nuclei is large
enough to produce a detectable magnetic field. Some
subtleties enter at this point. Each of the molecules in
the liquid has a very slightly different local magnetic
field, influenced by other molecules in the vicinity, so
each ‘quantum processor’ evolves slightly differently.
This problem is circumvented by the spin-echo tech-
nique, a standard tool in NMR which allows the effects
of free evolution of the spins to be reversed, without
reversing the effect of the quantum gates. However,
this increases the difficulty of applying long sequences
of quantum gates.

The remaining problem is to prepare the initial state.
The cup of liquid is in thermal equilibrium to be-
gin with, so the different spin states have occupation
probabilities given by the Boltzman distribution. One
makes use of the fact that spin states are close in en-
ergy, and so have nearly equal occupations initially.
Thus the density matrix ρ of the O(1020) nuclear spins
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is very close to the identity matrix I. It is the small dif-
ference ∆ = ρ− I which can be used to store quantum
information. Although ∆ is not the density matrix of
any quantum system, it nevertheless transforms under
well-chosen field pulses in the same way as a density
matrix would, and hence can be considered to repre-
sent an effective quantum computer. The reader is
referred to Gershenfeld and Chuang (1997) for a de-
tailed description, including the further subtlety that
an effective pure state must be distilled out of ∆ by
means of a pulse sequence which performs quantum
data compression.

NMR experiments have for some years routinely
achieved spin state manipulations and measurements
equivalent in complexity to those required for quan-
tum information processing on a few qubits, therefore
the first few-qubit quantum processors will be NMR
systems. The method does not scale very well as the
number of qubits is increased, however. For example,
with n qubits the measured signal scales as 2−n. Also
the possibility to measure the state is limited, since
only the average state of many processors is detectable.
This restricts the ability to apply quantum error correc-
tion (section 9), and complicates the design of quantum
algorithms.

8.3 High-Q optical cavities

Both systems we have described permit simple quan-
tum information processing, but not quantum commu-
nication. However, in a very high-quality optical cav-
ity, a strong coupling can be achieved between a single
atom or ion and a single mode of the electromagnetic
field. This coupling can be used to apply quantum
gates between the field mode and the ion, thus opening
the way to transferring quantum information between
separated ion traps, via high-Q optical cavities and op-
tical fibres (Cirac et. al. 1997). Such experiments are
now being contemplated. The required strong coupling
between a cavity field and an atom has been demon-
strated by Brune et. al. (1994), and Turchette et. al.

(1995). An electromagnetic field mode can also be used
to couple ions within a single trap, providing a faster
alternative to the phonon method (Pellizzari et. al.

1995).

9 Quantum error correction

In section 7 we discussed some beautiful quantum al-
gorithms. Their power only rivals classical computers,
however, on quite large problems, requiring thousands
of qubits and billions of quantum gates (with the pos-
sible exception of algorithms for simulation of physical
systems). In section 8 we examined some experimen-
tal systems, and found that we can only contemplate
‘computers’ of a few tens of qubits and perhaps some
thousands of gates. Such systems are not ‘computers’
at all because they are not sufficiently versatile: they
should at best be called modest quantum information
processors. Whence came this huge disparity between
the hope and the reality?

The problem is that the prescription for the univer-
sal quantum computer, section 6, is unphysical in its
fourth requirement. There is no such thing as a perfect
quantum gate, nor is there such a thing as an isolated
system. One may hope that it is possible in principle to
achieve any degree of perfection in a real device, but
in practice this is an impossible dream. Gates such
as xor rely on a coupling between separated qubits,
but if qubits are coupled to each other, they will un-
avoidably be coupled to something else as well (Plenio
and Knight 1996). A rough guide is that it is very
hard to find a system in which the loss of coherence
is smaller than one part in a million each time a xor

gate is applied. This means the decoherence is roughly
107 times too fast to allow factorisation of a 130 digit
number! It is an open question whether the laws of
physics offer any intrinsic lower limit to the decoher-
ence rate, but it is safe to say that it would be sim-
pler to speed up classical computation by a factor of
106 than to achieve such low decoherence in a large
quantum computer. Such arguments were eloquently
put forward by Haroche and Raimond (1996). Their
work, and that of others such as Landauer (1995,1996)
sounds a helpful note of caution. More detailed treat-
ments of decoherence in quantum computers are given
by Unruh (1995), Palma et. al. (1996) and Chuang et.

al. (1995). Large numerical studies are described by
Miquel et. al. (1996) and Barenco et. al. (1997).

Classical computers are reliable not because they are
perfectly engineered, but because they are insensitive
to noise. One way to understand this is to examine
in detail a device such as a flip-flop, or even a humble
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mechanical switch. Their stability is based on a com-
bination of amplification and dissipation: a small de-
parture of a mechanical switch from ‘on’ or ‘off’ results
in a large restoring force from the spring. Amplifiers
do the corresponding job in a flip-flop. The restoring
force is not sufficient alone, however: with a conser-
vative force, the switch would oscillate between ‘on’
and ‘off’. It is important also to have damping, sup-
plied by an inelastic collision which generates heat in
the case of a mechanical switch, and by resistors in the
electronic flip-flop. However, these methods are ruled
out for a quantum computer by the fundamental prin-
ciples of quantum mechanics. The no-cloning theorem
means amplification of unknown quantum states is im-
possible, and dissipation is incompatible with unitary
evolution.

Such fundamental considerations lead to the widely ac-
cepted belief that quantum mechanics rules out the
possibility to stabilize a quantum computer against the
effects of random noise. A repeated projection of the
computer’s state by well-chosen measurements is not
in itself sufficient (Berthiaume et. al. 1994, Miquel et.

al 1997). However, by careful application of informa-
tion theory one can find a way around this impasse.
The idea is to adapt the error correction methods of
classical information theory to the quantum situation.

Quantum error correction (QEC) was established as
an important and general method by Steane (1996b)
and independently Calderbank and Shor (1996). Some
of the ideas had been introduced previously by Shor
(1995b) and Steane (1996a). They are related to the
‘entanglement purification’ introduced by Bennett et.

al. (1996a) and independently Deutsch et. al. (1996).
The theory of QEC was further advanced by Knill
and Laflamme (1997), Ekert and Macchiavello (1996),
Bennett et. al. (1996b). The latter paper describes
the optimal 5-qubit code also independently discov-
ered by Laflamme et. al. (1996). Gottesman (1996)
and Calderbank et. al. (1997) discovered a general
group-theoretic framework, introducing the important
concept of the stabilizer, which also enabled many
more codes to be found (Calderbank et. al. 1996,
Steane 1996cd). Quantum coding theory reached a
further level of maturity with the discovery by Shor
and Laflamme (1997) of a quantum analogue to the
MacWilliams identities of classical coding theory.

QEC uses networks of quantum gates and measure-
ments, and at first is was not clear whether these net-
works had themselves to be perfect in order for the
method to work. An important step forward was taken
by Shor (1996) and Kitaev (1996) who showed how
to make error correcting networks tolerant of errors
within the network. In other words, such ‘fault tol-
erant’ networks remove more noise than they intro-
duce. Shor’s methods were generalised by DiVincenzo
and Shor (1996) and made more efficient by Steane
(1997a,c). Knill and Laflamme (1996) introduced the
idea of ‘concatenated’ coding, which is a recursive cod-
ing method. It has the advantage of allowing arbitrar-
ily long quantum computations as long as the noise
per elementary operation is below a finite threshold,
at the cost of inefficient use of quantum memory (so
requiring a large computer). This threshold result was
derived by several authors (Knill et al 1996, Aharonov
and Ben-Or 1996, Gottesman et. al. 1996). Further
fault tolerant methods are described by Knill et. al.

(1997), Gottesman (1997), Kitaev (1997).

The discovery of QEC was roughly simultaneous with
that of a related idea which also permits noise-free
transmission of quantum states over a noisy quantum
channel. This is the ‘entanglement purification’ (Ben-
nett et. al. 1996a, Deutsch et. al. 1996). The cen-
tral idea here is for Alice to generate many entangled
pairs of qubits, sending one of each pair down the noisy
channel to Bob. Bob and Alice store their qubits, and
perform simple parity checking measurements: for ex-
ample, Bob’s performs xor between a given qubit and
the next he receives, then measures just the target
qubit. Alice does the same on her qubits, and they
compare results. If they agree, the unmeasured qubits
are (by chance) closer than average to the desired state
|00〉 + |11〉. If they disagree, the qubits are rejected.
By recursive use of such checks, a few ‘good’ entangled
pairs are distilled out of the many noisy ones. Once in
possession of a good entangled state, Alice and Bob can
communicate by teleportation. A thorough discussion
is given by Bennett et. al. (1996b).

Using similar ideas, with important improvements, van
Enk et. al. (1997) have recently shown how quan-
tum information might be reliably transmitted between
atoms in separated high-Q optical cavities via imper-
fect optical fibres, using imperfect gate operations.
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I will now outline the main principles of QEC.

Let us write down the worst possible thing which could
happen to a single qubit: a completely general interac-
tion between a qubit and its environment is

|ei〉 (a |0〉 + b |1〉) → a (c00 |e00〉 |0〉 + c01 |e01〉 |1〉)
+ b (c10 |e10〉 |1〉 + c11 |e11〉 |0〉) (42)

where |e...〉 denotes states of the environment and c...
are coefficients depending on the noise. The first sig-
nificant point is to notice that this general interaction
can be written

|ei〉 |φ〉 → (|eI〉 I + |eX〉X + |eY 〉Y + |eZ〉Z) |φ〉 (43)

where |φ〉 = a |0〉 + b |1〉 is the initial state of the
qubit, and |eI〉 = c00 |e00〉+c10 |e10〉, |eX〉 = c01 |e01〉+
c11 |e11〉, and so on. Note that these environment states
are not necessarily normalised. Eq. (43) tells us that
we have essentially three types of error to correct on
each qubit: X , Y and Z errors. These are ‘bit flip’ (X)
errors, phase errors (Z) or both (Y = XZ).

Suppose our computer q is to manipulate k qubits of
quantum information. Let a general state of the k
qubits be |φ〉. We first make the computer larger, in-
troducing a further n − k qubits, initially in the state
|0〉. Call the enlarged system qc. An ‘encoding’ oper-
ation is performed: E(|φ〉 |0〉) = |φE〉. Now, let noise
affect the n qubits of qc. Without loss of generality,
the noise can be written as a sum of ‘error operators’
M , where each error operator is a tensor product of
n operators (one for each qubit), taken from the set
{I,X, Y, Z}. For example M = I1X2I3Y4Z5X6I7 for
the case n = 7. A general noisy state is

∑

s

|es〉Ms |φE〉 (44)

Now we introduce even more qubits: a further n − k,
prepared in the state |0〉a. This additional set is
called an ‘ancilla’. For any given encoding E, there
exists a syndrome extraction operation A, operating
on the joint system of qc and a. whose effect is
A(Ms |φE〉 |0〉a) = (Ms |φE〉) |s〉a ∀Ms ∈ S. The set S
is the set of correctable errors, which depends on the
encoding. In the notation |s〉a, s is just a binary num-
ber which indicates which error operator Ms we are
dealing with, so the states |s〉a are mutually orthogo-
nal. Suppose for simplicity that the general noisy state

(44) only contains Ms ∈ S, then the joint state of en-
vironment, qc and a after syndrome extraction is

∑

s

|es〉 (Ms |φE〉) |s〉a (45)

We now measure the ancilla state, and something
rather wonderful happens: the whole state collapses
onto |es〉 (Ms |φE〉) |s〉a, for some particular value of s.
Now, instead of general noise, we have just one partic-
ular error operator Ms to worry about. Furthermore,
the measurement tells us the value s (the ‘error syn-
drome’) from which we can deduce which Ms we have!
Armed with this knowledge, we apply M−1

s to qc by
means of a few quantum gates (X , Z or Y ), thus pro-
ducing the final state |es〉 |φE〉 |s〉a. In other words, we
have recovered the noise-free state of qc! The final en-
vironment state is immaterial, and we can re-prepare
the ancilla in |0〉a for further use.

The only assumption in the above was that the noise in
eq. (44) only contains error operators in the correctable
set S. In practice, the noise includes both members and
non-members of S, and the important quantity is the
probability that the state collapses onto a correctable
one when the syndrome is extracted. It is here that the
theory of error-correcting codes enters in: our task is to
find encoding and extraction operations E,A such that
the set S of correctable errors includes all the errors
most likely to occur. This is a very difficult problem.

It is a general truth that to permit efficient stabiliza-
tion against noise, we have to know something about
the noise we wish to suppress. The most obvious quasi-
realistic assumption is that of uncorrelated stochastic
noise. That is, at a given time or place the noise might
have any effect, but the effects on different qubits, or
on the same qubit at different times, are uncorrelated.
This is the quantum equivalent of the binary symet-
ric channel, section 2.3. By assuming uncorrelated
stochastic noise we can place all possible error oper-
ators M in a heirarchy of probability: those affecting
few qubits (i.e. only a few terms in the tensor product
are different from I) are most likely, while those af-
fecting many qubits at once are unlikely. Our aim will
be to find quantum error correcting codes (QECCs)
such that all errors affecting up to t qubits will be cor-
rectable. Such a QECC is termed a ‘t-error correcting
code’.

The simplest code construction (that discovered by
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Calderbank and Shor and Steane) goes as follows. First
we notice that a classical error correcting code, such as
the Hamming code shown in table 1, can be used to
correct X errors. The proof relies on eq. (17) which
permits the syndrome extraction A to produce an an-
cilla state |s〉 which depends only on the error Ms and
not on the computer’s state |φ〉. This suggests that
we store k quantum bits by means of the 2k mutually
orthogonal n-qubit states |i〉, where the binary num-
ber i is a member of a classical error correcting code
C, see section 2.4. This will not allow correction of
Z errors, however. Observe that since Z = HXH , the
correction of Z errors is equivalent to rotating the state
of each qubit by H , correcting X errors, and rotating
back again. This rotation is called a Hadamard trans-
form; it is just a change in basis. The next ingredient is
to notice the following special property (Steane 1996a):

H̃
∑

i∈C

|i〉 =
1√
2k

∑

j∈C⊥

|j〉 (46)

where H̃ ≡ H1H2H3 · · ·Hn. In words, this says that
if we make a quantum state by superposing all the
members of a classical error correcting code C, then
the Hadamard-transformed state is just a superposition
of all the members of the dual code C⊥. From this
it follows, after some further steps, that it is possible
to correct both X and Z errors (and therefore also Y
errors) if we use quantum states of the form given in
eq. (46), as long as both C and C⊥ are good classical
error correcting codes, i.e. both have good correction
abilities.

The simplest QECC constructed by the above recipe
requires n = 7 qubits to store a single (k = 1) qubit
of useful quantum information. The two orthogonal
states required to store the information are built from
the Hamming code shown in table 1:

|0E〉 ≡ |0000000〉 + |1010101〉 + |0110011〉 + |1100110〉
+ |0001111〉 + |1011010〉 + |0111100〉 + |1101001〉 (47)

|1E〉 ≡ |1111111〉 + |0101010〉 + |1001100〉 + |0011001〉
+ |1110000〉 + |0100101〉 + |1000011〉 + |0010110〉 (48)

Such a QECC has the following remarkable property.
Imagine I store a general (unknown) state of a single
qubit into a spin state a |0E〉 + b |1E〉 of 7 spin-half
particles. I then allow you to do anything at all to
any one of the 7 spins. I could nevertheless extract
my original qubit state exactly. Therefore the large

perturbation you introduced did nothing at all to the
stored quantum information!

More powerful QECCs can be obtained from more pow-
erful classical codes, and there exist quantum code con-
structions more efficient than the one just outlined.
Suppose we store k qubits into n. There are 3n ways
for a single qubit to be in error, since the error might
be one of X , Y or Z. The number of syndrome bits
is n − k, so if every single-qubit error, and the error-
free case, is to have a different syndrome, we require
2n−k ≥ 3n+ 1. For k = 1 this lower limit is filled ex-
actly by n = 5 and indeed such a 5-qubit single-error
correcting code exists (Laflamme et. al. 1996, Bennett
et. al. 1996b).

More generally, the remarkable fact is that for fixed
k/n, codes exist for which t/n is bounded from below
as n → ∞ (Calderbank and Shor 1995, Steane 1996b,
Calderbank et. al. 1997). This leads to a quantum
version of Shannon’s theorem (section 2.4), though an
exact definition of the capacity of a quantum channel
remains unclear (Schumacher and Nielsen 1996, Bar-
num et. al. 1996, Lloyd 1997, Bennett et. al. 1996b,
Knill and Laflamme 1997a). For finite n, the probabil-
ity that the noise produces uncorrectable errors scales
roughly as (nǫ)t+1, where ǫ ≪ 1 is the probability of
an arbitrary error on each qubit. This represents an
extremely powerful noise suppression. We need to be
able to reduce ǫ to a sufficiently small value by pas-
sive means, and then QEC does the rest. For exam-
ple, consider the case ǫ ≃ 0.001. With n = 23 there
exisits a code correcting all t = 3-qubit errors (Go-
lay 1949, Steane 1996c). The probability that uncor-
rectable noise occurs is ∼ 0.0234 ≃ 3 × 10−7, thus the
noise is suppressed by more than three orders of mag-
nitude.

So far I have described QEC as if the ancilla and the
many quantum gates and measurements involved were
themselves noise-free. Obviously we must drop this as-
sumption if we want to form a realistic impression of
what might be possible in quantum computing. Shor
(1996) and Kitaev (1996) discovered ways in which all
the required operations can be arranged so that the cor-
rection suppresses more noise than it introduces. The
essential ideas are to verify states wherever possible,
to restrict the propagation of errors by careful network
design, and to repeat the syndrome extraction: for each
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group of qubits qc, the syndrome is extracted several
times and qc is only corrected once t+1 mutually con-
sistent syndromes are obtained. Fig. 14 illustrates a
fault-tolerant syndrome extraction network, i.e. one
which restricts the propagation of errors. Note that a
is verified before it is used, and each qubit in qc only
interacts with one qubit in a.

In fault-tolerant computing, we cannot apply arbitrary
rotations of a logical qubit, eq. (33), in a single step.
However, particular rotations through irrational angles
can be carried out, and thus general rotations are gen-
erated to an arbitrary degree of precision through repe-
tition. Note that the set of computational gates is now
discrete rather than continuous.

Recently the requirements for reliable quantum com-
puting using fault-tolerant QEC have been estimated
(Preskill 1997, Steane 1997c). They are formidable.
For example, a computation beyond the capabilities of
the best classical computers might require 1000 qubits
and 1010 quantum gates. Without QEC, this would
require a noise level of order 10−13 per qubit per gate,
which we can rule out as impossible. With QEC, the
computer would have to be made ten or perhaps one
hundred times larger, and many thousands of gates
would be involved in the correctors for each elemen-
tary step in the computation. However, much more
noise could be tolerated: up to about 10−5 per qubit
per gate (i.e. in any of the gates, including those in
the correctors) (Steane 1997c). This is daunting but
possible.

The error correction methods briefly described here are
not the only type possible. If we know more about
the noise, then humbler methods requiring just a few
qubits can be quite powerful. Such a method was pro-
posed by Cirac et. al. (1996) to deal with the principle
noise source in an ion trap, which is changes of the mo-
tional state during gate operations. Also, some joint
states of several qubits can have reduced noise if the en-
vironment affects all qubits together. For example the
two states |01〉 ± |10〉 are unchanged by environmental
coupling of the form |e0〉 I1I2 + |e1〉X1X2. (Palma et.

al. 1996, Chuang and Yamamoto 1997). Such states
offer a calm eye within the storm of decoherence, in
which quantum information can be manipulated with
relative impunity. A practical computer would proba-
bly use a combination of methods.

10 Discussion

The idea of ‘Quantum Computing’ has fired many
imaginations simply because the words themselves sug-
gest something strange but powerful, as if the physi-
cists have come up with a second revolution in informa-
tion processing to herald the next millenium. This is a
false impression. Quantum computing will not replace
classical computing for similar reasons that quantum
physics does not replace classical physics: no one ever
consulted Heisenberg in order to design a house, and
no one takes their car to be mended by a quantum
mechanic. If large quantum computers are ever made,
they will be used to address just those special tasks
which benefit from quantum information processing.

A more lasting reason to be excited about quantum
computing is that it is a new and insightful way to
think about the fundamental laws of physics. The
quantum computing community remains fairly small
at present, yet the pace of progress has been fast and
accelerating in the last few years. The ideas of clas-
sical information theory seem to fit into quantum me-
chanics like a hand into a glove, giving us the feel-
ing that we are uncovering something profound about
Nature. Shannon’s noiseless coding theorem leads to
Schumacher and Josza’s quantum coding theorem and
the significance of the qubit as a useful measure of in-
formation. This enables us to keep track of quantum
information, and to be confident that it is indepen-
dent of the details of the system in which it is stored.
This is necessary to underpin other concepts such as
error correction and computing. The classical theory
of error correction leads to the discovery of quantum
error correction. This allows a physical process pre-
viously thought to be impossible, namely the almost
perfect recovery of a general quantum state, undoing
even irreversible processes such as relaxation by spon-
taneous emission. For example, during a long error-
corrected quantum computation, using fault-tolerant
methods, every qubit in the computer might decay a
million times and yet the coherence of the quantum
information be preserved.

Hilbert’s questions regarding the logical structure of
mathematics encourage us to ask a new type of
question about the laws of physics. In looking at
Schrödinger’s equation, we can neglect whether it is
describing an electron or a planet, and just ask about
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the state manipulations it permits. The language of
information and computer science enables us to frame
such questions. Even such a simple idea as the quan-
tum gate, the cousin of the classical binary logic gate,
turns out to be very useful, because it enables us
to think clearly about quantum state manipulations
which would otherwise seem extremely complicated or
impractical. Such ideas open the way to the design of
quantum algorithms such as those of Shor, Grover and
Kitaev. These show that quantum mechanics allows
information processing of a kind ruled out in classical
physics. It relies on the propagation of a quantum state
through a huge (exponentially large) number of dimen-
sions of Hilbert space. The computation result arises
from a controlled interference among many computa-
tional paths, which even after we have examined the
mathematical description, still seems wonderful and
surprising.

The intrinsic difficulty of quantum computation lies in
the sensitivity of large-scale interference to noise and
imprecision. A point often raised against the quantum
computer is that it is essentially an analogue rather
than a digital device, and has many limitations as a re-
sult. This is a misconception. It is true that any quan-
tum system has a continuous state space, but so has
any classical system, including the circuits of a digital
computer. The fault-tolerant methods used to permit
error correction in a quantum computer restrict the set
of quantum gates to a discrete set, therefore the ‘legal’
states of the quantum computer are discrete, just as
in a classical digital computer. The really important
difference between analogue and digital computing is
that to increase the precision of a result arrived at by
analogue means, one must re-engineer the whole com-
puter, whereas with digital methods one need merely
increase the number of bits and operations. The fault-
tolerant quantum computer has more in common with
a digital than an analogue device.

Shor’s algorithm for the factorisation problem stimu-
lated a lot of interest in part because of the connection
with data encryption. However, I feel that the signifi-
cance of Shor’s algorithm is not primarily in its possible
use for factoring large integers in the distant future.
Rather, it has acted as a stimulus to the field, prov-
ing the existence of a powerful new type of computing
made possible by controlled quantum evolution, and
exhibiting some of the new methods. At present, the

most practically significant achievement in the general
area of quantum information physics is not in comput-
ing at all, but in quantum key distribution.

The title ‘quantum computer’ will remain a misnomer
for any experimental device realised in the next twenty
years. It is an abuse of language to call even a pocket
calculator a ‘computer’, because the word has come to
be reserved for general-purpose machines which more
or less realise Turing’s concept of the Universal Ma-
chine. The same ought to be true for quantum comput-
ers if we do not want to mislead people. However, small
quantum information processors may serve useful roles.
For example, concepts learned from quantum informa-
tion theory may permit the discovery of useful new
spectroscopic methods in nuclear magnetic resonance.
Quantum key distribution could be made more secure,
and made possible over larger distances, if small ‘relay
stations’ could be built which applied purification or
error correction methods. The relay station could be
an ion trap combined with a high-Q cavity, which is
realisable with current technology. It will surely not
be long before a quantum state is teleported from one
laboratory to another, a very exciting prospect.

The great intrinsic value of a large quantum computer
is offset by the difficulty of making one. However, few
would argue that this prize does not at least merit a lot
of effort to find out just how unattainable, or hopefully
attainable, it is. One of the chief uses of a processor
which could manipulate a few quantum bits may be to
help us better understand decoherence in quantum me-
chanics. This will be amenable to experimental inves-
tigation during the next few years: rather than waiting
in hope, there is useful work to be done now.

On the theoretical side, there are two major open ques-
tions: the nature of quantum algorithms, and the lim-
its on reliability of quantum computing. It is not yet
clear what is the essential nature of quantum comput-
ing, and what general class of computational problem is
amenable to efficient solution by quantum methods. Is
there a whole mine of useful quantum algorithms wait-
ing to be delved, or will the supply dry up with the
few nuggets we have so far discovered? Can significant
computational power be achieved with less than 100
qubits? This is by no means ruled out, since it is hard
to simulate even 20 qubits by classical means. Concern-
ing reliability, great progress has been made, so that we
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can now be cautiously optimistic that quantum com-
puting is not an impossible dream. We can identify re-
quirements sufficient to guarantee reliable computing,
involving for example uncorrelated stochastic noise of
order 10−5 per gate, and a quantum computer a hun-
dred times larger than the logical machine embedded
within it. However, can quantum decoherence be re-
lied upon to have the properties assumed in such an
estimate, and if not then can error correction methods
still be found? Conversely, once we know more about
the noise, it may be possible to identify considerably
less taxing requirements for reliable computing.

To conclude with, I would like to propose a more wide-
ranging theoretical task: to arrive at a set of principles
like energy and momentum conservation, but which ap-
ply to information, and from which much of quantum
mechanics could be derived. Two tests of such ideas
would be whether the EPR-Bell correlations thus be-
came transparent, and whether they rendered obvious
the proper use of terms such as ‘measurement’ and
‘knowledge’.

I hope that quantum information physics will be recog-
nised as a valuable part of fundamental physics. The
quest to bring together Turing machines, information,
number theory and quantum physics is for me, and
I hope will be for readers of this review, one of the
most fascinating cultural endeavours one could have
the good fortune to encounter.

I thank the Royal Society and St Edmund Hall, Oxford,
for their support.
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Fig. 1. Maxwell’s demon. In this illustration the demon sets up a pressure difference by only raising the
partition when more gas molecules approach it from the left than from the right. This can be done in a
completely reversible manner, as long as the demon’s memory stores the random results of its observations of
the molecules. The demon’s memory thus gets hotter. The irreversible step is not the acquisition of information,
but the loss of information if the demon later clears its memory.

51



   data

compression

Shannon's

 theorem

Entanglement

  Bell-EPR

correlations

multiple particle

  interference

Measurement

Decoherence

cryptography

Quantum

computer

Computer

(Turing)

Error correcting

      codes

Schrodinger's

   equation

 Quantum
Mechanics

Information
   Theory

computational

   complexity

Maxwell's

  demon

Quantum

error

correction

Statistical

Mechanics

Quantum

key

distribution

 quantum

algorithms

Hilbert space

Fig. 2. Relationship between quantum mechanics and information theory. This diagram is not intended to
be a definitive statement, the placing of entries being to some extent subjective, but it indicates many of the
connections discussed in the article.
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A BEncode channel Decode

Fig. 4. The standard communication channel (“the information theorist’s coat of arms”). The source (Alice)
produces information which is manipulated (‘encoded’) and then sent over the channel. At the receiver (Bob)
the received values are ’decoded’ and the information thus extracted.
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Fig. 5. Illustration of Shannon’s theorem. Alice sends n = 100 bits over a noisy channel, in order to communicate
k bits of information to Bob. The figure shows the probability that Bob interprets the received data correctly, as
a function of k/n, when the error probability per bit is p = 0.25. The channel capacity is C = 1−H(0.25) ≃ 0.19.
Dashed line: Alice sends each bit repeated n/k times. Full line: Alice uses the best linear error-correcting code
of rate k/n. The dotted line gives the performance of error-correcting codes with larger n, to illustrate Shannon’s
theorem.
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Fig. 6. A classical computer can be built from a network of logic gates.
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0 0 000001 11111 1 1 1

Fig. 7. The Turing Machine. This is a conceptual mechanical device which can be shown to be capable of
efficiently simulating all classical computational methods. The machine has a finite set of internal states, and
a fixed design. It reads one binary symbol at a time, supplied on a tape. The machine’s action on reading a
given symbol s depends only on that symbol and the internal state G. The action consists in overwriting a new
symbol s′ on the current tape location, changing state to G′, and moving the tape one place in direction d (left
or right). The internal construction of the machine can therefore be specified by a finite fixed list of rules of
the form (s,G → s′, G′, d). One special internal state is the ‘halt’ state: once in this state the machine ceases
further activity. An input ‘programme’ on the tape is transformed by the machine into an output result printed
on the tape.
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H|j> { } |j>X1 H2 XOR1,3

Fig. 8. Example ‘quantum network.’ Each horizontal line represents one qubit evolving in time from left to
right. A symbol on one line represents a single-qubit gate. Symbols on two qubits connected by a vertical
line represent a two-qubit gate operating on those two qubits. The network shown carries out the operation
X1H2xor1,3 |φ〉. The ⊕ symbol represents X (not), the encircled H is the H gate, the filled circle linked to ⊕
is controlled-not.
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Fig. 9. Basic quantum communication concepts. The figure gives quantum networks for (a) dense coding, (b)
teleportation and (c) data compression. The spatial separation of Alice and Bob is in the vertical direction;
time evolves from left to right in these diagrams. The boxes represent measurements, the dashed lines represent
classical information.
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Fig. 10. Quantum network for Shor’s period-finding algorithm. Here each horizontal line is a quantum register
rather than a single qubit. The circles at the left represent the preparation of the input state |0〉. The encircled
ft represents the Fourier transform (see text), and the box linking the two registers represents a network to
perform Uf . The algorithm finishes with a measurement of the x regisiter.
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Fig. 11. Evolution of the quantum state in Shor’s algorithm. The quantum state is indicated schematically by
identifying the non-zero contributions to the superposition. Thus a general state

∑

cx,y |x〉 |y〉 is indicated by
placing a filled square at all those coordinates (x, y) on the diagram for which cx,y 6= 0. (a) eq. (35). (b) eq.
(38).
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Fig. 12. Ion trap quantum information processor. A string of singly-charged atoms is stored in a linear ion
trap. The ions are separated by ∼ 20 µm by their mutual repulsion. Each ion is addressed by a pair of laser
beams which coherently drive both Raman transitions in the ions, and also transitions in the state of motion
of the string. The motional degree of freedom serves as a single-qubit ‘bus’ to transport quantum information
among the ions. State preparation is by optical pumping and laser cooling; readout is by electron shelving and
resonance fluorescence, which enables the state of each ion to be measured with high signal to noise ratio.
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Fig. 13. Bulk nuclear spin resonance quantum information processor. A liquid of ∼ 1020 ‘designer’ molecules
is placed in a sensitive magnetometer, which can both generate oscillating magnetic fields and also detect the
precession of the mean magnetic moment of the liquid. The situation is somewhat like having 1020 independent
processors, but the initial state is one of thermal equilibrium, and only the average final state can be detected.
The quantum information is stored and manipulated in the nuclear spin states. The spin state energy levels of
a given nucleus are influenced by neighbouring nuclei in the molecule, which enables xor gates to be applied.
They are little influenced by anything else, owing to the small size of a nuclear magnetic moment, which means
the inevitable dephasing of the processors with respect to each other is relatively slow. This dephasing can be
undone by ‘spin echo’ methods.
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Fig. 14. Fault tolerant syndrome extraction, for the QECC given in equations (47),(48). The upper 7 qubits
are qc, the lower are the ancilla a. All gates, measurements and free evolution are assumed to be noisy. Only
H and 2-qubit xor gates are used; when several xors have the same control or target bit they are shown
superimposed, NB this is a non-standard notation. The first part of the network, up until the 7 H gates,
prepares a in |0E〉, and also verifies a: a small box represents a single-qubit measurement. If any measurement
gives 1, the preparation is restarted. The H gates transform the state of a to |0E〉 + |1E〉. Finally, the 7 xor

gates between qc and a carry out a single xor in the encoded basis {|0E〉 , |1E〉}. This operation carriesX errors
from qc into a, and Z errors from a into qc. The X errors in qc can be deduced from the result of measuring
a. A further network is needed to identify Z errors. Such correction never makes qc completely noise-free, but
when applied between computational steps it reduces the accumulation of errors to an acceptable level.
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Message Huffman Hamming

0000 10 0000000
0001 000 1010101
0010 001 0110011
0011 11000 1100110
0100 010 0001111
0101 11001 1011010
0110 11010 0111100
0111 1111000 1101001
1000 011 1111111
1001 11011 0101010
1010 11100 1001100
1011 111111 0011001
1100 11101 1110000
1101 111110 0100101
1110 111101 1000011
1111 1111001 0010110

Table 1: Huffman and Hamming codes. The left column shows the sixteen possible 4-bit messages, the other
columns show the encoded version of each message. The Huffman code is for data compression: the most likely
messages have the shortest encoded forms; the code is given for the case that each message bit is three times
more likely to be zero than one. The Hamming code is an error correcting code: every codeword differs from
all the others in at least 3 places, therefore any single error can be corrected. The Hamming code is also linear:
all the words are given by linear combinations of 1010101, 0110011, 0001111, 1111111. They satisfy the parity
checks 1010101, 0110011, 0001111.
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