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Brain is comprised of networks of neurons

connected and communicating via synapses
]

104 synapses



Learning and brain plasticity

Traditionally: Learning is an acquisition of memories.

Memory is an organism's ability to store, retain, and
subsequently recall information.

Learning is related to a more general phenomenon,
called brain plasticity.

Brain plasticity (neuroplasticity) is a lifelong ability of
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Neuron in action: threshold and spikes
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Neuron rate model schematically and formally
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Types of learning in ANN

Supervised learning: ANN weights are adjusted
according to the target output (MLP, RBF, RNN)

Reinforcement learning: ANN weights are adjusted
according to the information about the probability

of success (MLP, RBF) — extension of the supervised
learning

Unsupervised learning: ANN weights are adjusted
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input: THIS SEEMS TO OCCUR IN THE BRAIN!



Somatosensory and motor systems in animals
topological mapping from periphery to cortex
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Fascinating phenomenon of brain cortex plasticity
caused by experience

A.1 Before differential
stimulation

LA

A, After differential
stimulation
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vibrissae,

Upper lip

Dorsal surface

Orderly or topographic representation of Use-dependent expansion of
somatosensory bodily maps in the cortex representation of more used
fingertips

[Merzenich et al] 8



Visual maps of elementary features like
orientation of edges and direction of motion

R. Miikkulainen,
J.A. Bednar, Y.
Choe, J. Sirosh.
Computational
Maps in the Visual
Cortex. Springer,
Berlin, 2005.
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Hebb rule of synaptic plasticity (1949)

“When an axon of cell A =t
is near enough to excite i
a cell B and repeatedly

or persistently takes part !—HMHH—HH“F Output

in firing it, some growth
process or metabolic
change takes place in TR
one or both cells such NIRRT
that A's efficiency, as

one of the cells firing B,

is increased.” N outpu

Neurons that fire out of sync lose their link.

Neurons that fire together wire together.
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Experimental results in the developing visual cortex
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Classical experiments of monocular
deprivation

b
9

% of reponsive cells

Cells in the visual cortex tend to be
Right eye Left eye binocular and respond to stimulation in
both eyes, with different preferences,
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8 Closing the eye for a brief period
5 | causes a shift in the responses towards
> ' the non-deprived eye.
Right eye Left eye
- Bl {1 - M-+ Letteye (closed)
This shift in ocular D—HHH—H— Right eye (open)
dominance corresponds
to Hebbian synaptic Output correlates with right eye input
plasticity therefore the right input strengthens

-
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Reverse suture experiments

<] _
© & Can the Hebbian learning explain
& ]{ —’—‘ reverse suture experimental
Righteve Left eye results, when formerly disconnected
J eye becomes dominant ?

<

L

Right eye Left eye

> - M- I - -|-|1]- Left (open but depressed)
—H

i i Right (strong but closed)

i A
| \ ! H - II Output (weak activity)

Righteye Left eye

12



Bienenstock, Cooper, Munro (BCM)
y:Zjo X;

dw.
d—tJ:U Xj ¢(y19M)

oy, 0,)=y(y—06y)

METAPLASTICITY: Position of 4, depends on the neuron’s past activity !
Term coined by [Abraham and Bear, TINS, 1996]
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BCM postulated: there is threshold for synaptic
potentiation that decreases when postsynaptic activity is
low on average and increases when it is high on average
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After closing the right eye >
and opening the left eye, ' ‘ .
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[Cooper et al, 1982-2004]
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Experimental evidence: It is easlier to obtain
potentiation in the cortex of dark-reared animals
and it Is harder to induced synaptic depression in
these cortices

% change

Kirkwood et al. 1996
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Results for somatosensory cortex of rats

Shott-latency input

25 Principal whisker
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LTP/LTD = long-term potentiation/depression of
synaptic efficacy

e LTP/LTD are the gold standard synaptic models for
mammalian memory mechanisms for 3 decades;

e LTP/LTD occur in hippocampus and in neocortex,
which are brain regions involved in formation of
long-term memories;

e LTP/LTD are long-lasting synaptic changes; can last
for hours, days even weeks;

e LTP/LTD are synaptic activity-dependent, eitherin a
homo- or heterosynaptic fashion.
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LTP/LTD in hippocampus

Hippocampus
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Induction of LTP
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Bidirectional properties of LTP and LTD

Before After Befare After
. - 150
— e B "t Early LTP Persistent LTP ::‘i
B —
E :‘ﬂ'- & v : E
8 150l '-l.ﬁ";i..-.-_._ wo gomemws ,+ 100} sl
8 Meavsgteudeis T
L= e l'.q- oy -
3 100 weddivios & 501 ke
-] "
E [ :
o Ty ¥
L of & .D .
= | | | | | | [ | I ]
-10 0 30 80 120 =10 0 30 &0 120
Time (minutes) Tim# {minutes)

The change is bidirectional, i.e. the same synapse can
become potentiated or depressed based on frequency
of tetanus: ~ 100 Hz (LTP) ~ 10 Hz (LTD), i.e. there is a
threshold around 10 Hz
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LTP/LTD: spike-timing dependent plasticity
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Exponential windows of the sign and
magnitude of synaptic plasticity
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[Dan & Poo, Neuron 2004]
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STDP leads to BCM potentiation threshold

e |zhikevich and Desai (2003) showed STDP leads to BCM for the
nearest neighbour STDP, i.e. w(t+1) = w(t) (1 + Aw, -Aw )

average potentiation —average depression

0

—_— |
Cy= | Apemxe™dt+ [ A_el/™ e dt Threshold for potentiation
0 —00
A A_ AL/t +A_/T
(v ) =g =) g, - Az
T X Tt A_|_ + A_
B 3 )]
90- Where A’s and 7’s are constants,

amplitudes and decays for
potentiation and depression
windows, respectively
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Spiking versus rate neurons
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Izhikevich model — the fast and precise
implementation of spiking neuron
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Hippocampus

Data: Tetanus of MPP leads to

homosynaptic potentiation of MPP and
... heterosynaptic depression of LPP input
“““““ s s upon granule cell (GC)

[Abraham et al, PNAS 2001]
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Assumptions of the model

e \We take into account the pre- and postsynaptic

spontaneous spiking activity, which is correlated and
has a theta frequency

e The STDP rule is allowed to dynamically change the
sizes of LTP and LTD windows according to the

previous mean spike count of the postsynaptic
neuron

e We temporarily de-correlate the spiking activity of
MPP and LPP pathways during LTP induction
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Consequences of assumptions

e De-correlated presynaptic activity leads to lower postsynaptic
activity than before tetanus, and thus LTD window shrinks and
LTP window expands. This corresponds to lower threshold for
homosynaptic LTP.

e MPP presynaptic tetanus is correlated with postsynaptic
spikes (due to temporal summation of EPSPs) and thus
homosynaptic LTP follows.

e Ongoing spontaneous spiking of LPP is de-correlated with
postsynaptic spikes and thus heterosynaptic LTD follows.
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Changing windows for LTP / LTD

 Benuskova and Abraham (2007) for the first time introduced
moving LTP threshold into the STDP equations through changing
LTD/LTP windows according to postsynaptic average activity:

AW, (At) = A, exp(-At/ z,) if At>0
AW (At) = A_exp(At/ 7)if At<0

A, (1) = A (0) (1 /{c(t)),)
A_(t) = A(0) (c(t)),

—t') (1 if there isa postsynaptic spike
(c(t)). —jc(t)exp( ( t)]dt’ where c(t') = _ _ POSEYNSP _ p_
T 0 if there is no postsynaptic spike
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w (% change)

w (% change)

Results of STDP with metaplasticity
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w (% change)

w (% change)
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Results of ordinary STDP

Weight changes for 50M + 50L (STDP only)

60
30

-30
-60

MPP

&
éllé’ i

LPP

time (min)

Weight changes for 50M + 50L (STDP only)

s e | | | MPII:’
mwmw»@w
BRI LPP

-60 0 60 120 180 240 300 360 420

time (min)

Amplitudes and decays for
potentiation and depression
windows are constant and

w(t+1) = w(t) (1+Aw,—Aw ) -\ w(t)
[Song and Abbott, 2000]

AD) =k Wiy — WD)
A (t) = w(t)
w(t+1) = w(t) (1+Aw,—Aw )
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[Delorme et al., 200
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Prediction from this model:
if the spontaneous activity (noise) is blocked so is the
hetero-plasticity
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Abraham WC, Logan B, Wolff A,
Benuskova L :

"Heterosynaptic" LTD in the dentate
gyrus of anesthetized rat requires
homosynaptic activity.

Journal of Neurophysiology, 98:
1048-1051, 2007.
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Conclusion: towards more general plasticity rule

STDP rule Variable windows
AW, (A1) = A, exp(-At/ 7)) If At>0 A, (1) =A,0) 1/ o(t) (c(t)))
AW _(At) = A_exp(At/ ) IfAt<O

A1) = A(0) o(t) {c()),

(o(t)) =< j c(t)exp( (t_t')jdt' '

§+ 0.02 +
T <
0 0 e v vv,
|
) =X, Y, Z, ..., 1)
) ) )y =" )
-0.04 ' :
-100 -50 0 50 100
Time difference (ms)
TAacl, £~
Ao |

or future: to find the function ®» W ich is
the function of different blochemlcal factor X,
Y,Z,...., and time.
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