
transparency 1

Theory and applications of simple
Learning Classifier System (LCS)

Vladimír Kvasnička
Institute of Applied Informatics

FIIT STU

transparency 2

History of Learning Classifier System (LCS)?

Initially introduced by John Holland in his famous book Adaptation in Natural and
Artificial Systems (1976)

In this book he introduced simultaneously Genetic Algoritm (GA) and Learning
Classifier Systems (LCS)

transparency 3

Recently, LCE theory is very intensively developed and applied to different
interesting examples. Main sources to LCE may be found in the following three
books:

[1] Jan Drugowitsch: Design and Analysis of Learning Classifier
Systems. A Probabilistic Approach. Springer, Berlin, 2008.

[2] L. Bull and T. Kovacs: Foundations of Learning Classifier Systems:

An Introduction. Springer, Berlin, 2005.

[3] Martin V. Butz: Rule-Based Evolutionary Online Learning Systems.
A Principled Approach to LCS Analysis and Design. Springer,
Berlin, 2006.

An extensive bibliography may be found on ftp address:

ftp://math.chtf.stuba.sk/pub/vlado/LearnigClassifierSystem/Bibliography_lcs.pdf

transparency 4

Specification of LCS

• LCS is a machine learning symbolic approach which combines GA,

reinforcement learning, and heuristics to produce adaptive systems.

• They are rule-based systems, where the rules are usually in the traditional
production system form of “IF state THEN action”.

• GA and heuristics are used to search the space of possible rules, whilst a
credit assignment algorithm is used to assign utility to existing rules, thereby
guiding the search for better rules.

• The main superiority of LCS with respect to standard neural (symbolic)
approaches is:

(1) The produced symbolic rule system has simple straightforward
interpretation, and

(2) rule systems offered by two different agents controlled by LCE may by
simply merged into one bigger consistent system.

transparency 5

Why it is used in recent days, when we have
available many effective subsymbolic techniques?

• Contemporary AI is oriented mainly to solution of higher cognitive

activities (reasoning, planning,…), where subsymbolic approaches are
clumsy and not very effective.

• This is a main reason why in contemporary AI exists a renaissance of
symbolic techniques that are combined with modern non-neural
subsymbolic techniques (e. g. evolutionary algorithms, reinforcement
learning, and fuzzy logic).

• In the course of last a few years the so-called cognitive control is created,
where a standard control by neural networks is substituted by symbolic
expert system (a set of rules if…, then …), which specifies what has to do a
supervisor controlling a given plant.

transparency 6

• LCE offers for cognitive control very effective and robust technique for
classification and control complex environments.

• The main problem in the cognitive control is an implantation of adaptation
method for updating of the expert system for changing environment.

• LCE technique may be considered as a type of cognitive control, where
(1) the problem of updating of rule system is solved by a rudimentary form

of GA and reinforcement learning, and
(2) the merging of two rule sets that were produced by two agents is simply

done by their union and then by removing rule that are inconsistent with
other dominant rules.

transparency 7

A relationship between symbolic and subsymbolic methods

of classification and control

classification and
control problem

symbolic
methods

subsymbolic
methods

cognitive
control

LCE

adaptation of
rules

(1) clumsy interpretation of
 resulting neural networks
(2) still uknown methods for
 merging of information

 contained in neural networks

transparency 8

Formal description of LCE

1. Environment (states and actions)

The environment is specified by two sets and one mapping
(a) Set of environment states

{ }1 2 aS s ,s ,...,s=
(b) Set of actions onto system states

{ }1 2 bA a ,a ,...,a=
(c) Relationship between states and actions are specified by a function

()s g a,s′ =

gs

a
s’

................

s

s’ s’ ’....s’’

a’ a’’ a’ ’....

A B

transparency 9

2. Set of classifiers (an expert system)

• Set of classifiers

{ }1 2 pR r ,r ,...,r=
is composed of rules r R∈ that are specified as ordered pairs of condition s% and
action a

()r s ,a= %
where the condition { }0 1 us , ,#∈% is a string of length u composed of three
symbols 0, 1, and # (called “wild card”), and the action { }0 1 va ,∈ is a string of
length v composed of symbols 0 and 1.

transparency 10

• Standard specification of conditions is that these entities are string of symbols 0

and 1 with the fixed length u, i. e. { }0 1 us ,∈ , already used condition s% from the
rule ()r s ,a= % contains third symbol #, which is interpreted as an auxiliary
symbol (wild card) that can be substitute either by 0 or 1.

• We say that a condition () { }1 2 0 1 u

us s ,s ,...,s , ,#= ∈% % % % is the scheme of a condition
() { }1 2 0 1 u

us s ,s ,...,s ,= ∈ , s s≤ % , iff one of the following two conditions is satisfied
(but not both)

()1 i is s= % , orexclusive ()2 is #=%
or formally

() ()()def i i exclusive is s i s or s #≤ = ∀ α = =% % %

transparency 11

• A scheme () { }1 2 0 1 u

us s ,s ,...,s , ,#= ∈% % % % , where s s≤ % , may be interpreted as a set
composed of conditions that are created from α% in such a way that it “wilds” #
are substituted by 0 or 1. For example, let ()01 1s # #=% be a scheme composed of
two symbols #, then this scheme specifies a set composed of 22=4 conditions

() () () () () (){ }01 1 01010 01011 01110 01111s # # set s , , ,= ⇒ =% %

• We may say that a scheme s% (or its set set(s%)) represents an abstraction of the

class of standard conditions ()s set s∈ % .

• Each rule r R∈ is evaluated by a positive number, ()F r , called the fitness

()0F : R ,→ ∞
As will be demonstrated latterly, the process of evaluation of rules by fitness
belongs to the main part of the suggested method LCE.

transparency 12

3. An application of rules to environment

Let us have a rule ()r s ,a R= ∈% and let the environment be in a state s S∈ . Our goal
is to demonstrate a method how to apply a rule to an environment; this method is
composed of the following elementary steps:

(1) Let be the environment in state s, then we determine a subset of R as follows

() () (){ } ()R s r s,a R;s set s match s,R= = ∈ ∈ =% %
This subset of rules is composed of those ones r with state parts s% specified as an
abstraction of the given state s, i. e. ()s set s∈ % .

(2) From the subset R(s) we select a rule () ()maxr s R s∈ such that

()
()

()max r R s
r s arg max F r

∈
=

Where this optimal rule (with respect to a state s and for an actual evaluation F)
has a form

() ()max max maxr s s ,a= %

transparency 13

(3) The action amax is applied to the environment in state s, we arrive at the

environment in a new state ()s F a,s′ = .

s s’

amax

s R R s() r smax()

amax

smax

g s’

transparency 14

The whole process of transformation of environment from an “input” state s to
“output” state s’ (with respect to the rule system R) is formally expressed by an
operator Otrans

()transs O s,R′ =

or diagrammatically

s

R

s’Otrans

R

s’’Otrans

R

s’’’Otrans

R

s

R

sfinOtrans

.. ” ”

s

R

s’Otrans

A sequence of transformations
that transform an initial
environment state s onto a final
state sfin.

transparency 15

4. Simple reinforcement learning

The above process of application of an action amax to system states creates a sequence
of states

() ()max max maxini fina a as s s ss′ ′′′ ′′= ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

In such a way we may transform an initial state ()inis onto a final state ()fins

() ()ini fins s→ →

Goal: To create such rule system optR , which transform initial state
 ()inis onto a required final state ()fin

reqs

How to achieve this goal?
 We use the method of reinforcement learning!

transparency 16

Learning Classifier System

In order to be adapted (learned) a software system; it must have variable (flexible)
parameters that specify its resulting properties. E. g., a neural network system is
adapted (learned) with respect to its weight coefficients that specify neural-network
output.

• In LCS a role of the mentioned variable parameters play fitness
parameters that specify an applicability of LCS to a given
environment state.

• Reinforcement learning offers effective technique how to

systematically change fitness of rules in such a way that an
application of LCS will produce the final required environment
state.

transparency 17

Diagrammatic interpretation of adaption process
applied to rule system R when

a sequence of environment states was created.

s=s()ini s’amax amax s’ ’’........ s()fin

this sequence of environment states
is generated for the same rule system R

an adaptation process applied to fitness of R
after finishing a sequence of environment states

R’ R

()()fins,s ,s ,...,s ; z′ ′′ …a sequence of environment states initialized by s and

 finished by a state ()fins ; real number “reward” z specified
 whether the expected-required final state was achieved.

 reward, -1≤z≤1

transparency 18

Illustrative example of moving through the labyrinth

z=1

z=1

z=-1
z=-1

z=-1

z=-1

z=-1

z=-1z=-1

z=-1

s

s’

s ’’ s ’’ ’

s ’’ ’’ s s()fin (req)=

x
x

x x
x
x

xx

x

z=-1

xz=-1

transparency 19

Roman mosaic picturing Theseus and the Minotaur.

transparency 20

Famous labyrinth on floor of Cathedral of Our Lady of Chartres

It is not a genuine labyrinth,
the path from start point to the
goal point is unambiguously
determined (a linear labyrinth)

transparency 21

Alternative description of creation of a sequence

of states of environment

() ()

() () () () () () () () () ()1 2 3

...
max max max max

q ...
maxmax max max

ini fina a a a'' '

r s'' 'r s r s r sini fin

s s s s s

s s s s s

′ ′′

′ ′′

′ ′′= ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

′ ′′= ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

It means that a sequence of environment states ()()fins,s ,s ,...,s′ ′′ is substituted by a

sequence rules ()1 2 3 qr ,r ,r ,...,r from the fixed rule system R
()()

()1 2 3

fin

q

s,s ,s ,...,s

r ,r ,r ,...,r

′ ′′

transparency 22

We shall postulate that the rule sequence ()1 2 3 qr ,r ,r ,...,r is evaluated by a reward z, we
get

()1 2 3 qr ,r ,r ,...,r ; z

reward, -1≤z≤1

This is a basic concept, which will
be studied in our forthcoming
considerations on LCE

transparency 23

Update of fitness for a sequence ()1 2 3 qr ,r ,r ,...,r ; z

1p i

i iF F z− +′ = + λγ

where 0λ > is the learning rate and 0 1≤ γ ≤ is the discount factor. This modification
of fitness satisfies the following obvious property

0 i iz F F′> ⇒ > (reward)
 0 i iz F F′< ⇒ < (punishment)

The discount factor γ controls a deep of updating of fitness:
(γ=1) ⇒ fitness of all rules from the sequence is updated in the same level,
(γ<1) ⇒ fitness of all rules from the sequence is updated in a decreasing level
 going from the last rule to the first rule, i. e. the fitness medication
 are smaller as we go to the first initial rule.
(γ=0) ⇒ fitness of all rules from the sequence remains unchanged.

transparency 24

Formally, a process of updating of fitness with respect to a sequence of environment
states (which is evaluated by reward z) is expressed by an operator Oupdate

()()1 2 3update qF O F , r ,r ,r ,...,r ; z′ =

s

R

s’Otrans

R

s’’Otrans

R

s’’’Otrans

R

s

R

sfinOtrans

.. ” ” (, ’, ’’,..., ,)s s s s zfin

z
F

F’Oupdate

transparency 25

4. GA innovation of rule set R

(1) Crossover operation

() ()crossr ,r O r,r′ ′=% %

r

r’

condition action

crossover points

Ocross
r

r’

~

~

()()
()()

()()
()()

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

cross
i i m j j n i i m j j nO

i i m j j n i i m j j n

s ,...,s ,s ...,s a ,...,a ,a ,...a s ,...,s ,s ...,s a ,...,a ,a ,...a

s ,...,s ,s ...,s a ,...,a ,a ,...a s ,...,s ,s ...,s a ,...,a ,a ,...a
+ + + +

+ + + +

′ ′ ′ ′⎧ ⎫ ⎧⎪ ⎪ ⎪⎯⎯⎯→⎨ ⎬ ⎨
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′⎪ ⎪⎩ ⎭ ⎩

⎫⎪
⎬

⎪ ⎪⎭

transparency 26

(1) Mutation operation

() ()crossr O r=%

r

condition action

Ocross
r~

mutations

()() ()()1 2 1 2 1 2 1 2
mutO

m n m n

s a s a

s ,s ,...,s a ,a ,...,s s ,s ,...,s a ,a ,...,a⎯⎯⎯→
% %

% % % % % %
1424314243 142431442443

() ()

()
i mut

i
i

comp s prob P
s

s otherwise
<⎧

= ⎨
⎩

%
() ()

()
i mut

i
i

comp a prob P
a

a otherwise
<⎧

= ⎨
⎩

%

 probability of mutation

small positive number

transparency 27

Elementary GA step applied to an actual rule system
such that an innovated rule system is produced

()innoR O R′ =

This elementary step of LCS is composed of the following step:

(1) Select quasirandomly (with respect to fitness of rules) by roulette wheel two rules,

() ()select selectr O R , r O R′= = ’

(2) Apply to these selected rules operations of crossover and mutation

() () () ()cross mut mutˆ ˆ ˆ ˆr ,r O r,r , r O r , r O r′ ′ ′ ′= = =% %

(3) Select by inverse roulette wheel (with respect to inverse fitness) two rules,

() ()inv inv
select selectr O R , r O R′= =

transparency 28

(4) The original rule set R is updated to a new set R’

{ }() { }R R r ,r r ,r′ ′ ′= − ∪ % %

(5) Finally, the new rules r ,r′% % are evaluated by fitness, e. g. by arithmetic mean

() () () ()[]1
2

F r F r F r F r′ ′= = +% %

Note: This step may be realized by many alternative ways

transparency 29

5. Summary of LCS algorithm

Main components of LCE are:

• set of rules,
• mechanism of interaction of rules with environment
• updating of rules fitness by RL,
• GA mechanism of innovation of rule sets.

transparency 30

An evolution of LCS for a given environment
 with specified pair of initial and final states

s

R

s’Otrans

R

s’’Otrans

R

s’’’Otrans

R

s

R

sfinOtrans

.. ” ” (, ’, ’’,..., ,)s s s s zfin

z

F

F’Oupdate Oinno

R’s=sini

R=R’
F=F’

R

transparency 31

Hill Climbing with Learning (HCwL)

We have an objective function { }0 1 rf : , R→ , which maps binary vectors of the
length r onto real numbers. Our goal is to find a solution of the global minimization
problem

{ }
()

0 1 ropt
x ,

x arg min f x
∈

=

In the forthcoming we demonstrate a simple method, called the hill climbing, to solve
this discrete optimization problem.
 Basic ideas of the hill climbing consists in a simple approach how to
systematically generate new approximate solutions of optimization problem such that
for a given temporally solution { }0 1 rx ,∈ a new solution is constricted with a
neighborhood U(x) of the solution x

()
()

y U x
x arg min f y

∈
′ =

transparency 32

The neighborhood is o the form

() (){ }mutU x y; y O x= =
where Omut(x) is an application of mutation operator (well known in GA) to the
binary vector x.

() ()1 2 1 2r mut rx x ,x ,...,x O x ,x ,...,x′ ′ ′ ′= =

()()
()

1 0 1i mut
i

i

x random , P
x

x otherwise

− <⎧⎪′ = ⎨
⎪⎩

()

0mut
mutP

lim O x x
→

= , () ()
1

1
mut

mut iP
lim O x x ..., x ,...

→
= = −

transparency 33

 Found locally optimal solution x’ is used in the forthcoming step aqn a centre of
new neighborhood U(x’)

U x()0

náhodne vygenerovaný
vektor

x0

x1

U x()1

U x()2

x2

x3

U x()3
x4

Though the hill climbing
does not contain any
evolutionary strategy, it is
very effective and robust
algorithm which is capable to
find global minimum of
many optimization problems.

transparency 34

Standard hill climbing algorithm may be simply modified in the so-called hill
climbing with learning algorithm. This modification consists in a modification of
construction of the neighborhood U(x). Its original specification uses stochastic
mutation operator Omut , but in the generalized version the neighborhood is defined as
follows:
(1) First we introduce a probability vector () []1 2 0 1 r

rw ,w ,...,w ,= =w , its single
elements 0 1iw≤ ≤ specify a probability of appearing element ‘1’ in the i-th position
of solution ()ix ...,x ,...=

[]()
()

1 0 1

0 otherwise
i

i

random , w
x

⎧ <⎪= ⎨
⎪⎩

This stochastic construction of the binary string x we denote as
()x R= w

transparency 35

A neighborhood is constructed as follows

() (){ }U x;x R= =w w

If all components of probability vector are closely related either to zero or one, then a
“diameter” of neighborhood is “small”, in the opposite case, if components are
closely related to ½, then the neighborhood is distributed through all binary vectors

All components of w are closely
related either to 0 or 1

All components of w are closely
related to ½

transparency 36

Second important item of the proposed method is the so-called learning. Let x% be a
optimal solution of a local minimization within the neighborhood U(w)

()
()

y U
x arg min f y

∈
=%

w

The learning process consists in the following updating of the probability vector }(an
analogue of Hebbian learning)

() ()1w w x w w x← +λ − = − λ + λ% %
by a convex combination of weight vector w and local solution x% , and λ (small
positive number) is a learning rate.
 ww’

x∼

new probability vector

transparency 37

Plot of components wi of probability vector w

0 50 100 150 200 250
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

number of epochs

pr
o b

ab
il i

tie
s w

i

transparency 38

Some computer
jokes at the end

transparency 39

transparency 40

transparency 41

 The End

