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History of Learning Classifier System (LCS)? 
 
Initially introduced by John Holland in his famous book Adaptation in Natural and 
Artificial Systems (1976) 

                               
In this book he introduced simultaneously Genetic Algoritm (GA) and Learning 
Classifier Systems (LCS)  
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Recently, LCE theory is very intensively developed and applied to different 
interesting examples. Main sources to LCE may be found in the following three 
books: 
 

[1] Jan Drugowitsch: Design and Analysis of Learning Classifier 
Systems. A Probabilistic Approach. Springer, Berlin, 2008. 

 
[2] L. Bull and T. Kovacs: Foundations of Learning Classifier Systems: 

An Introduction. Springer, Berlin, 2005. 
 

[3] Martin V. Butz: Rule-Based Evolutionary Online Learning Systems. 
A Principled Approach to LCS Analysis and Design. Springer, 
Berlin, 2006. 

 
An extensive bibliography may be found on ftp address: 

ftp://math.chtf.stuba.sk/pub/vlado/LearnigClassifierSystem/Bibliography_lcs.pdf 
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Specification of LCS 

 
• LCS is a machine learning symbolic approach which combines GA, 

reinforcement learning, and heuristics to produce adaptive systems.  

• They are rule-based systems, where the rules are usually in the traditional 
production system form of “IF state THEN action”.  

• GA and heuristics are used to search the space of possible rules, whilst a 
credit assignment algorithm is used to assign utility to existing rules, thereby 
guiding the search for better rules. 

• The main superiority of LCS with respect to standard neural (symbolic) 
approaches is:  

(1) The produced symbolic rule system has simple straightforward 
interpretation, and 

(2) rule systems offered by two different agents controlled by LCE may by 
simply merged into one bigger consistent system.  
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Why it is used in recent days, when we have  
available many effective subsymbolic techniques?  

 
• Contemporary AI is oriented mainly to solution of higher cognitive 

activities (reasoning, planning,…), where subsymbolic approaches are 
clumsy and not very effective. 

• This is a main reason why in contemporary AI exists a renaissance of 
symbolic techniques that are combined with modern non-neural 
subsymbolic techniques (e. g. evolutionary algorithms, reinforcement 
learning, and fuzzy logic).       

• In the course of last a few years the so-called cognitive control is created, 
where a standard control by neural networks is substituted by symbolic 
expert system (a set of rules if…, then …), which specifies what has to do a 
supervisor controlling a given plant. 
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• LCE offers for cognitive control very effective and robust technique for 
classification and control complex environments.  

• The main problem in the cognitive control is an implantation of adaptation 
method for updating of the expert system for changing environment. 

• LCE technique may be considered as a type of cognitive control, where  
(1) the problem of updating of rule system is solved by a rudimentary form 

of GA and reinforcement learning, and 
(2) the merging of two rule sets that were produced by two agents is simply 

done by their union and then by removing rule that are inconsistent with 
other dominant rules. 
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A relationship between symbolic and subsymbolic methods  

of classification and control 

classification and 
control  problem

symbolic 
methods

subsymbolic 
methods

cognitive 
control

LCE

adaptation of 
rules

(1) clumsy interpretation of
        resulting neural networks
(2) still uknown methods for 
    merging of  information

             contained in neural networks
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Formal description of LCE 
 

1. Environment (states and actions) 
 

The environment is specified by two sets and one mapping 
(a) Set of environment states 

{ }1 2 aS s ,s ,...,s=  
(b) Set of actions onto system states  

{ }1 2 bA a ,a ,...,a=  
(c) Relationship between states and actions are specified by a function 

( )s g a,s′ =  

gs

a
s’

................

s

s’ s’    ’....s’’

a’ a’’ a’    ’....

A B  
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2. Set of classifiers (an expert system) 
 
• Set of classifiers  

{ }1 2 pR r ,r ,...,r=  
is composed of rules r R∈  that are specified as ordered pairs of condition s%  and 
action a   

( )r s ,a= %  
where the condition { }0 1 us , ,#∈%  is a string of length u composed of  three 
symbols 0, 1, and # (called “wild card”), and the action { }0 1 va ,∈  is a string of 
length v  composed of symbols 0 and 1.  
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• Standard specification of conditions is that these entities are string of symbols 0 

and 1 with the fixed length u, i. e. { }0 1 us ,∈ , already used condition s%  from the 
rule ( )r s ,a= %  contains third symbol #, which is interpreted as an auxiliary 
symbol (wild card) that can be substitute either by 0 or 1.  

 
• We say that a condition ( ) { }1 2 0 1 u

us s ,s ,...,s , ,#= ∈% % % %  is the scheme of a condition 
( ) { }1 2 0 1 u

us s ,s ,...,s ,= ∈ , s s≤ % , iff one of the following two conditions is satisfied 
(but not both) 

( )1 i is s= % ,  orexclusive  ( )2 is #=%  
or formally  

( ) ( )( )def i i exclusive is s i s or s #≤ = ∀ α = =% % %  
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• A scheme ( ) { }1 2 0 1 u

us s ,s ,...,s , ,#= ∈% % % % , where s s≤ % ,  may be interpreted as a set 
composed of conditions that are created from α%  in such a way that it “wilds” # 
are substituted by 0 or 1. For example, let ( )01 1s # #=%  be a scheme composed of 
two symbols #, then this scheme specifies a set composed of 22=4 conditions 

( ) ( ) ( ) ( ) ( ) ( ){ }01 1 01010 01011 01110 01111s # # set s , , ,= ⇒ =% %  
 
• We may say that a scheme s%  (or its set set(s%)) represents an abstraction of the 

class of standard conditions ( )s set s∈ % .    
 
• Each rule r R∈  is evaluated by a positive number, ( )F r , called the fitness 

( )0F : R ,→ ∞  
As will be demonstrated latterly, the process of evaluation of rules by fitness 
belongs to the main part of the suggested method LCE.   
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3. An application of rules to environment 

 
Let us have a rule ( )r s ,a R= ∈%  and let the environment be in a state s S∈ . Our goal 
is to demonstrate a method how to apply a rule to an environment; this method is 
composed of the following elementary steps:    
 
(1) Let be the environment in state s, then we determine a subset of R as follows 

( ) ( ) ( ){ } ( )R s r s,a R;s set s match s,R= = ∈ ∈ =% %  
This subset of rules is composed of those ones r with state parts s%  specified as an 
abstraction of the given state s, i. e. ( )s set s∈ % . 

 
(2) From the subset R(s) we select a rule ( ) ( )maxr s R s∈  such that 

( )
( )

( )max r R s
r s arg max F r

∈
=  

Where this optimal rule (with respect to a state s and for an actual evaluation F) 
has a form 

( ) ( )max max maxr s s ,a= %  
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(3) The action amax is applied to the environment in state s, we arrive at the 

environment in a new state ( )s F a,s′ = . 
 

s s’

amax

s R R s( ) r smax( )

amax

smax

g s’
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The whole process of transformation of environment from an “input” state s to 
“output” state s’ (with respect to the rule system R) is formally expressed by an 
operator Otrans  

( )transs O s,R′ =  
 
or diagrammatically  

s

R

s’Otrans

R

s’’Otrans

R

s’’’Otrans

R

s

R

sfinOtrans

.. ”  ”

s

R

s’Otrans

 
 

A sequence of transformations 
that transform an initial 
environment state s onto a final 
state sfin. 
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4. Simple reinforcement learning 
 
The above process of application of an action amax to system states creates a sequence 
of states 

( ) ( )max max maxini fina a as s s s ....s′ ′′′ ′′= ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  
 
In such a way we may transform an initial state ( )inis  onto a final state ( )fins  

 
( ) ( )ini fins .... s→ →  

 
 

Goal: To create such rule system optR , which transform initial state  
           ( )inis  onto a required final state ( )fin

reqs   
 

How to achieve this goal?  
           We use the method of reinforcement learning! 
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Learning Classifier System 
 
In order to be adapted (learned) a software system; it must have variable (flexible) 
parameters that specify its resulting properties. E. g., a neural network system is 
adapted (learned) with respect to its weight coefficients that specify neural-network 
output. 
 
 

• In LCS a role of the mentioned variable parameters play fitness 
parameters that specify an applicability of LCS to a given 
environment state.      

 
• Reinforcement learning offers effective technique how to 

systematically change fitness of rules in such a way that an 
application of LCS will produce the final required environment 
state. 
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Diagrammatic interpretation of adaption process  
applied to rule system R  when  

a sequence of environment states was created. 
 

s=s( )ini s’amax amax s’ ’’........ s( )fin

this sequence of environment states
is generated for the same rule system R

an adaptation process applied to fitness of R 
after finishing a sequence of environment states

R’ R

 
 

( )( )fins,s ,s ,...,s ; z′ ′′ …a sequence of environment states initialized by s and 

                                  finished by a state ( )fins ; real number “reward” z specified 
                                  whether the expected-required final state was achieved. 

 reward, -1≤z≤1 
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Illustrative example of moving through the labyrinth 

 
 

z=1

z=1

z=-1
z=-1

z=-1

z=-1

z=-1

z=-1z=-1

z=-1

s

s’

s ’’ s ’’ ’

s ’’ ’’ s s( )fin (req)=

x
x

x x
x
x

xx

x

z=-1

xz=-1
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Roman mosaic picturing Theseus and the Minotaur. 
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Famous labyrinth on floor of Cathedral of Our Lady of Chartres 

            
 
 

It is not a genuine labyrinth, 
the path from start point to the 
goal point is unambiguously 
determined (a linear labyrinth)  
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Alternative description of creation of a sequence  

of states of environment 
 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3

...
max max max max

q ...
maxmax max max

ini fina a a a'' '

r s'' 'r s r s r sini fin

s s s s .... s

s s s s .... s

′ ′′

′ ′′

′ ′′= ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

′ ′′= ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

 

 
It means that a sequence of environment states ( )( )fins,s ,s ,...,s′ ′′  is substituted by a 

sequence rules ( )1 2 3 qr ,r ,r ,...,r  from the fixed rule system R 
( )( )

( )1 2 3

fin

q

s,s ,s ,...,s

r ,r ,r ,...,r

′ ′′
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We shall postulate that the rule sequence ( )1 2 3 qr ,r ,r ,...,r  is evaluated by a reward z, we 
get 

( )1 2 3 qr ,r ,r ,...,r ; z  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reward, -1≤z≤1 

This is a basic concept, which will 
be studied in our forthcoming 
considerations on LCE  
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Update of fitness for a sequence ( )1 2 3 qr ,r ,r ,...,r ; z  

 
1p i

i iF F z− +′ = + λγ  
 
where 0λ >  is the learning rate and 0 1≤ γ ≤  is the discount factor. This modification 
of fitness satisfies the following obvious property 

0 i iz F F′> ⇒ >      (reward) 
        0 i iz F F′< ⇒ <      (punishment)   

The discount factor γ  controls a deep of updating of fitness: 
(γ=1)  ⇒   fitness of all rules from the sequence is updated in the same level, 
(γ<1)  ⇒   fitness of all rules from the sequence is updated in a decreasing level 
                 going from the last rule to the first rule, i. e. the fitness medication 
                 are smaller as we go to the first initial rule. 
(γ=0)  ⇒  fitness of all rules from the sequence remains unchanged. 
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Formally, a process of updating of fitness with respect to a sequence of environment 
states (which is evaluated by reward z) is expressed by an operator Oupdate 

 
( )( )1 2 3update qF O F , r ,r ,r ,...,r ; z′ =  
 
 

s

R

s’Otrans

R

s’’Otrans

R

s’’’Otrans

R

s

R

sfinOtrans

.. ”  ” ( , ’, ’’,..., , )s s s s zfin

z
F

F’Oupdate
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4. GA innovation of rule set R 

 
(1) Crossover operation 

( ) ( )crossr ,r O r,r′ ′=% %  
 

r

r’

condition action

crossover points

Ocross
r

r’

~

~

 
 
( )( )
( )( )

( )( )
( )( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

cross
i i m j j n i i m j j nO

i i m j j n i i m j j n

s ,...,s ,s ...,s a ,...,a ,a ,...a s ,...,s ,s ...,s a ,...,a ,a ,...a

s ,...,s ,s ...,s a ,...,a ,a ,...a s ,...,s ,s ...,s a ,...,a ,a ,...a
+ + + +

+ + + +

′ ′ ′ ′⎧ ⎫ ⎧⎪ ⎪ ⎪⎯⎯⎯→⎨ ⎬ ⎨
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′⎪ ⎪⎩ ⎭ ⎩

⎫⎪
⎬

⎪ ⎪⎭
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(1) Mutation operation 

( ) ( )crossr O r=%  
 

r

condition action

Ocross
r~

mutations

 
 

( )( ) ( )( )1 2 1 2 1 2 1 2
mutO

m n m n

s a s a

s ,s ,...,s a ,a ,...,s s ,s ,...,s a ,a ,...,a⎯⎯⎯→
% %

% % % % % %
1424314243 142431442443

 

 
( ) ( )

( )
i mut

i
i

comp s prob P
s

s otherwise
<⎧

= ⎨
⎩

%       
( ) ( )

( )
i mut

i
i

comp a prob P
a

a otherwise
<⎧

= ⎨
⎩

%  

 
 probability of mutation 

small positive number 
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Elementary GA step applied to an actual rule system 
such that an innovated rule system is produced 

 
 

( )innoR O R′ =  
 
This elementary step of LCS is composed of the following step: 
 
(1) Select quasirandomly (with respect to fitness of rules) by roulette wheel two rules, 

( ) ( )select selectr O R , r O R′= = ’ 
 
(2) Apply to these selected rules operations of crossover and mutation  

( ) ( ) ( ) ( )cross mut mutˆ ˆ ˆ ˆr ,r O r,r , r O r , r O r′ ′ ′ ′= = =% %  
 
(3) Select by inverse roulette wheel (with respect to inverse fitness) two rules, 

( ) ( )inv inv
select selectr O R , r O R′= =  
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(4) The original rule set R is updated to a new set R’  

{ }( ) { }R R r ,r r ,r′ ′ ′= − ∪ % %  
 
(5) Finally, the new rules r ,r′% %  are evaluated by fitness, e. g. by arithmetic mean 

( ) ( ) ( ) ( )[ ]1
2

F r F r F r F r′ ′= = +% %  

 
 

 
Note: This step may be realized by many alternative ways 
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5. Summary of LCS algorithm 
 
 
Main components of  LCE are: 
 
 

• set of rules, 
• mechanism of interaction of rules with environment 
• updating of rules fitness by RL, 
• GA mechanism of innovation of rule sets. 
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An evolution of LCS for a given environment 
 with specified pair of initial and final states 

 
 
 
 
 
 

s

R

s’Otrans

R

s’’Otrans

R

s’’’Otrans

R

s

R

sfinOtrans

.. ”  ” ( , ’, ’’,..., , )s s s s zfin

z

F

F’Oupdate Oinno

R’s=sini

R=R’
F=F’

R
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Hill Climbing with Learning (HCwL) 
 
We have an objective function { }0 1 rf : , R→ , which maps binary vectors of the 
length r onto real numbers. Our goal is to find a solution of the global minimization 
problem 

{ }
( )

0 1 ropt
x ,

x arg min f x
∈

=  

In the forthcoming we demonstrate a simple method, called the hill climbing, to solve 
this discrete optimization problem.   
 Basic ideas of the hill climbing consists in a simple approach how to 
systematically generate new approximate solutions of optimization problem such that 
for a given temporally solution { }0 1 rx ,∈  a new solution is constricted with a 
neighborhood U(x) of the solution x 

( )
( )

y U x
x arg min f y

∈
′ =  
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The neighborhood is o the form 

( ) ( ){ }mutU x y; y O x= =  
where Omut(x) is an application of mutation operator (well known in GA) to the 
binary vector x. 

( ) ( )1 2 1 2r mut rx x ,x ,...,x O x ,x ,...,x′ ′ ′ ′= =  
 

( )( )
( )

1 0 1i mut
i

i

x random , P
x

x otherwise

− <⎧⎪′ = ⎨
⎪⎩

 

 
( )

0mut
mutP

lim O x x
→

= ,  ( ) ( )
1

1
mut

mut iP
lim O x x ..., x ,...

→
= = −   
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 Found locally optimal solution x’ is used in the forthcoming step aqn a centre of  
new neighborhood U(x’) 

 
 

                               

U x( )0

náhodne vygenerovaný
vektor

x0

x1

U x( )1

U x( )2

x2

x3

U x( )3
x4  

  

Though the hill climbing 
does not contain any 
evolutionary strategy, it is 
very effective and robust 
algorithm which is capable to 
find global minimum of 
many optimization problems.  
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Standard hill climbing algorithm may be simply modified in the so-called hill 
climbing with learning algorithm. This modification consists in a modification of 
construction of the neighborhood U(x). Its original specification uses stochastic 
mutation operator Omut , but in the generalized version the neighborhood is defined as 
follows: 
(1) First we introduce a probability vector ( ) [ ]1 2 0 1 r

rw ,w ,...,w ,= =w , its single 
elements 0 1iw≤ ≤  specify a probability of appearing element ‘1’ in the i-th position 
of solution ( )ix ...,x ,...=  

[ ]( )
( )

1 0 1

0 otherwise
i

i

random , w
x

⎧ <⎪= ⎨
⎪⎩

 

 

This stochastic construction of the binary string x we denote as 
( )x R= w  
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A neighborhood is constructed as follows  

( ) ( ){ }U x;x R= =w w  

If all components of probability vector are closely related either to zero or one, then a 
“diameter” of neighborhood is “small”, in the opposite case, if components are 
closely related to ½, then the neighborhood is distributed through all binary vectors   
 
 
 

 
 
 
 
 
 
 
 
 
 
 

All components of w are closely 
related either to 0 or 1 

All components of w are closely 
related to ½  
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Second important item of the proposed method is the so-called learning. Let x%  be a 
optimal solution of a local minimization within the neighborhood U(w) 

( )
( )

y U
x arg min f y

∈
=%

w
 

The learning process consists in the following updating of the probability vector }(an 
analogue of Hebbian learning) 

( ) ( )1w w x w w x← +λ − = − λ + λ% %  
by a convex combination of weight vector w and local solution x% , and λ (small 
positive number) is a learning rate.      
 ww’

x∼

 
 

new probability vector 
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Plot of components wi of probability vector w 
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Some computer  
jokes at the end 
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 The End


