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Abstract— The increasing trend in using mobile devices 

causes the power consumption to become the key aspect in 

modern digital systems design. The current flow for low-power 

design involves the use of some power-reduction technique at the 

RTL (Register Transfer Level) or lower levels. This paper 

describes an extension of current low-power design flow. It 

proposes the power-intent specification based on UPF (Unified 

Power Format) in an abstract form and integrates it into a 

system-level model. Such an abstract level gives us the 

opportunity to manage power with higher efficiency. 
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I.  INTRODUCTION 

Process technologies below 90 nm make power 
consumption the key factor constraining electronic design [1]. 
To address the continuously increasing power-reduction 
requirements, there have been many techniques developed, 
such as clock gating, power gating, or voltage scaling. The 
current low-power design flow involves the application of such 
techniques in an RTL (Register Transfer Level) or lower-level 
digital system model (see section II). These techniques impact 
all aspects of integrated-circuits development (i.e. design, 
implementation, and verification) increasing thus the ever 
growing complexity of current digital systems designs even 
more. In order to increase the efficiency of system 
development, the more abstract level above the RTL, so called 
electronic system level (ESL), should be adopted [2]. Since the 
higher level offers the opportunity of more efficient system 
development, the low-power design flow should also utilize the 
system-level advantages. 

This paper proposes an extension of typical low-power 
design flow. It moves the power-intent specification in UPF 
(Unified Power Format – see section II) up to the system level. 
The paper is organized as follows. The next section introduces 
the current way of power-intent specification in the digital 
system design process. In section III, the novel methodology 
for low-power design is proposed, the specification model 
selected for the methodology is introduced, and the proposed 
model extensions are briefly described. Before the conclusion, 
a showcase example is illustrated. 

II. MEANS OF POWER-INTENT SPECIFICATION 

To help designers with adoption of advanced power-
reduction techniques (see Table I), two main low-power 
standards were developed – UPF (Unified Power Format) [3] 

and CPF (Common Power Format) [4]. The usage of these 
formats to express power intent during the SoC design process 
is important for the designers as well as for the EDA 
(Electronic Design Automation) tools and IP (Intellectual 
Property) components providers. These formats provide unified 
mechanisms for expressing the same power intent through 
typical design stages (e.g. functional simulation, synthesis, 
place and route, or formal equivalence checking) and for 
ensuring that the verification consistently interprets the 
functional semantics implied by the power intent [4]. 

Fig. 1 shows the typical use of UPF in low-power design 
flow (CPF-based flow is basically the same). The HDL (RTL) 
item represents an HDL (Hardware Description Language) 
model at the RTL; Verilog (Netlist) represents a model at lower 
levels – after synthesis and after place-and-route (P & R) 
process. As the figure shows, power-intent in the UPF is 
separated from the main functional model. It is preserved 
throughout the whole design flow and it participates in 
verification process (simulation or equivalence checking) of the 
main model. 

TABLE I.  OVERVIEW OF SEVERAL COMMONLY USED POWER-
REDUCTION TECHNIQUES. 

Technique Description 

Clock gating Disables blocks or clock tree parts not in use. 

Multiple supply 

voltages 

Operates different blocks at different, fixed supply 

voltages. Signals that cross voltage domain boundaries 

are level-shifted. 

Adaptive voltage 

scaling 

Operates different blocks at variable supply voltages. 

Uses in-block monitors to determine frequency 

requirements, and adjusts voltage on-the-fly to satisfy 
them. 

Dynamic 

voltage/frequency 

scaling 

Operates different blocks at variable supply 

voltages/frequency. Uses look-up tables to adjust 

voltage/frequency on-the-fly to satisfy varying 
performance requirements. Signals that cross voltage 

domain boundaries are level-shifted [5]. 

Power gating Turns off supply voltage to blocks not in use. 
Significantly reduces the leakage. Block outputs float. 

Power gating 

with retention 

Stores system state prior to power-down. Avoids 

complete reset at power-up, which reduces power-

up/reset delay and power consumption. 

State retention 

power gating 

Stores the system state in local registers. When on 

standby or idling, gates the clock, and the register saves 

the data. State retention registers use both a continuous 
power supply and a switchable supply. Other logic can 

be powered down [5]. 

Save and restore 

power gating 

As State retention power gating, but uses a memory 

array. 
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The ever increasing complexity makes the adoption of 
more abstract level above the RTL in the low-power design 
flow unavoidable. Despite of the undeniable benefits of the 
developed power standards, the specification of power intent in 
a separated file using different specification language, 
inconsistent with functional specification, is undesirable at 
ESL. Such an abstract system specification should be as simple 
as possible. For designers, it is therefore more convenient to 
specify the system requirements in one style and using one 
language, especially at the system level. All the specifications 
(e.g. functionality, time, or power intent) should participate in 
the abstraction refinement process in order to achieve target 
system specification. During the high-level synthesis phase, 
when already enough details are described, the standardized 
power format file (UPF or CPF) should be automatically 
generated in order to be used at RTL and lower levels. 

III. LOW-POWER DESIGN FLOW EXTENSION 

The key idea of proposed novel methodology lies in an 
extension of the current low-power design flow illustrated in 
Fig. 1 in a way that will enable to utilize the advantages of 
system level modeling (e.g. shorter specifications, subsystems 
intercommunications, or faster verification). The current design 
flow steps remain intact, thus the traditional design/verification 
methods and tools can still be used at the lower levels. The 
proposed low-power design flow methodology extending the 
current design flow to the system level is illustrated in Fig. 2. 

This methodology starts from crude system specification at 
the ESL. The power-intent specification in the standard UPF 
format at such abstract level would disrupt the system 
specification simplicity. However, the UPF concept is not 
entirely omitted, but rather integrated into the system 
functional specification in an abstract form. The specification 
participates in the abstraction refinement process. The 
specification at respective refinement stages is verified using 
the verification technique, known as formal equivalence 
checking. Therefore, the verification can proceed continuously, 
even when simulation is not yet possible due to the lack of 
details (e.g. communication protocol with the system 

environment). When the specification is refined to the RTL and 
contains sufficiency of details, it can be converted into the RTL 
model (typically described in an HDL). This process is called 
high-level synthesis. The proposed methodology assumes that 
during this process the specified power intent will be extracted 
and the standard UPF representation will be automatically 
generated along with the HDL model. Then, the low-power 
design flow continues as shown in Fig. 1. 

According to the author’s knowledge, no ESL specification 
model is available supporting all three important concepts 
required by this methodology at the same time. These concepts 
include an abstraction refinement, formal equivalence 
checking, and power-intent specification. In order to put the 
proposed methodology into the use, a suitable system-level 
model has to be selected and enriched by the missing 
capabilities. The structure and simplicity of the specification 
model described in [7] makes it suitable for integration of 
power-intent specification since it already supports the concept 
of abstraction refinement along with formal verification. 

A. System-level specification model 

The HSSL specification language has been developed at the 
Faculty of Informatics and Information Technologies, Slovak 
University of Technology in Bratislava [7, 8]. It is intended for 
system-level specification and modeling of reactive systems. 
The language supports basic concepts used for system 
specification in the behavioral style, such as hierarchical 
behavioral decomposition, behavioral refinement, behavioral 
reuse, timing, exception handling, concurrency and 
synchronization. In addition, the underlying mathematical 
model enables formal verification of the specification [8]. The 
top-level structure in the HSSL language is a system, 
consisting of inputs and outputs, represented by the 
input/output variables, the state variables representing an 
internal state of the system, and finally the sets of agents and 
processes describing the system behavior. In addition, the sets 
of constants and types are defined in the System entity (see 
Fig. 3). 

Regarding the Fig. 3, the white color items belong to the 
original specification model as described in [7], the grey color 
items represent several additional parts of the model proposed 
and presented in this paper, and the grey-white color items are 

 
Fig. 1. Typical use of UPF in low-power design flow [3]. 

 
Fig. 2. Proposed low-power design flow using abstract UPF. 



partially extended parts with the proposed extensions also 
presented here. 

The basic entity used to specify a partial behavior is called 
an agent. Agent describes the communication of the system 
with its environment between two well-defined states. The 
communication is represented by communication formula 
consisting of a set of actions. An action represents status of 
inputs and outputs of the specified system in particular time 
given by an event. A more complex behavior can be expressed 
by a process that prescribes an execution order of the agents. It 
allows sequential and concurrent composition of the agents, 
repetitive behavior, interrupt and conditional branching. 

The timing discipline in the HSSL language is based on 
event-driven concept in which events represent significant 
discrete-time points along the continuous time interval. Except 
events, quantitative timing constraints can be set over the set of 
these events to achieve the behavior (the i/o communication) 
specified by the agent in more detailed and precise way. These 
constraints, called timing rules, are defined inside the agent in a 
way to be independent from the functional specification [8]. 

B. The model extensions and power-intent integration 

Regarding SoC design, there were several important 
features missing in the model that need to be added before the 
actual power-intent integration. These features include 
structural decomposition and reuse specification. They can be 
achieved by adding the new entities into the specification 
model (as proposed in Fig. 3), namely the libraries, 
components, and global actions. 

Library is a commonly used structure supporting reuse of 
previously created specifications. It is typically used in 
conjunction with concept of structural decomposition of the 
system into several communicating subsystems. This feature is 
very important regarding the complexity of modern highly 
integrated systems. The content of the library can consists of 
the whole subsystems, constants and defined types, or even 
individual generic agents. Therefore, it is possible to reuse not 
only the created subsystems, but also partial behaviors (agents). 
The support for intra-system reuse was also added by means of 
global actions. These actions can be used inside different 
agents of the system, thus the meaning of these actions is 
specified only once. 

The structural decomposition requires specifying precisely 
which subsystems are to be used inside a system under 
development. For this purpose, the components entity was 
added into the model. It contains also the typical mapping of 
inputs and outputs of the components. 

In order to integrate power intent specification into the 
system-level model, it is necessary to choose what details it 
should contain. Several UPF concepts could be used in an 
abstract form. One of the most important concepts of power 
management is so called power domain [9]. It is a collection of 
instances (components) with the same power supply. Different 
power supply of system blocks imply the possibility of 
different power states of these blocks. It means that an unused 
block can be powered-off or can be in stand-by mode while 
other can normally operate or operate at different voltage level. 
In general, it is a technique resulting in huge power savings, 
thus splitting the system into several power domains is one of 
the most important power-related decisions. For clarification, 
our methodology assumes that system blocks can be in the 
same power domain only if they are always in the same power 
state. 

Often it is necessary to retain current state of the block that 
is to be powered-off. Power state which models this situation is 
called off_ret. The retention slows-down the operation (saving 
and loading the state values to and from the memory) or 
excessively increases the chip area (additional retention cells). 
Therefore, this concept is suitable only for blocks that are not 
used for longer period of time (trade-off between speed, area 
and power consumption). The block that needs to retain its 
state, but retention is not suitable, can stop its operation 
without being powered-off (to save at least a dynamic power). 
This concept is known as clock-gating. In highly abstract 
specification, such a concept needs to be abstracted from clock. 
It can be modeled by power state called hold. This concept can 
be implemented by gating the clock signal or gating the control 
signals of asynchronous circuits during the high-level synthesis 
stage (we can refer to it as block gating). 

Our methodology assumes these power states: 

• normal – block operates at the basic voltage level 

• off – block is powered-off without state retention 

• off_ret – the block state is retained before powering-off 

• hold – block stops its operation but remains powered 

 
Fig. 3. The structure of HSSL’s specification model. 



• diff_voltageX – block operates at voltage level different 
from the basic one, X is just the ordinal number of 
voltage level (i.e. diff_voltage1 is different as well from 
basic voltage level as from diff_voltage2) 

IV. SHOWCASE EXAMPLE 

The use of such model extensions is shown on the 
following example. It represents a system Sys which consists of 
three interconnected components LFSR for data generation, 
COUNT for counting of the generated data, and BCD for data 
binary code conversion. In addition, the system contains one 
register for keeping the bcd count. The functionality of the 
model is not important for our showcase, thus the focus of 
analysis is targeted to power intent specification. 

System Sys{ 
 Power Domains{  
  PD_1(normal, off); 
  PD_2(normal, diff_voltage1, hold); 
  PD_3(normal, off_ret); 
 } 
 Inputs{ bool clk, ctrl; } 
 Outputs{ data bcd_out; } 
 State Vars{ 
  data BR(PD_3); //buffer register 
  power_states PS=(normal,normal,normal); 
 } 
 Components{ 
  lfsr LFSR(PD_2); 
  counter COUNT(PD_1); 
  bcd_converter BCD(PD_1); 
  Maps{ 
   LFSR.clk = clk; 
   COUNT.clk = clk; 
   COUNT.data_in = LFSR.data; 
   BCD.clk = clk; 
   BCD.data_in = COUNT.data_out; 
   BR = BCD.data_out; 
  } 
 } 
 Agent First{ 
  LV{ bool sig; } 
  DefaultTE: up(clk, 1); 
  CS{ Start.Final } 
  Action Start{ iv:sig=ctrl; } 
  Action Final{ } 
  FS{ 
   PS= if(sig==1) (off, hold, off_ret) 
   else (normal,diff_voltage1,normal); 
  } 
 } 
 Agent Second{ 
  DefaultTE: up(clk, 1); 
  CS{ Start.Final } 
  Action Start{ iv:sig=1; } 
  Action Final{ ov:bcd_out=BR; } 
 } 
 
 Process Global{ 
  loop { do First while (ctrl == 1); Second } 
 } 
 Starting Structure{ Stf Global: eon; } 
} 

The power domains are assigned to the subsystem instances 
in the components entity of the model and they can be also 
assigned to the state variables of the system. These domains are 
represented by a set of power states which the domain blocks 
can be in. These are specified in the entity power domains. The 
subsystem LFSR is assigned to the power domain PD_2 which 
supports normal, diff_voltage1, hold power states. Instances 
COUNT and BCD are assigned to PD_1 power domain, 
meaning they can be both in normal or both in off state at the 
same time. Register BR is in PD_3 domain, thus it works either 
in normal state or it can be powered off, but its state is retained. 

Power states of the entire system can be specified in a way 
similar to other system state variables. A special variable type 
is used, called power_states. Such variable has to contain its 
name and initial states for all power domains in the specified 
order. The power states changes are modeled in final state of 
an agent. In our example, the initial power state is (normal, 
normal, normal). The agent First changes this state according 
to input variable value of ctrl. If the ctrl value is 1, then the 
power states change to (off, hold, off_ret). It means that blocks 
in PD_1 domain are powered-off without the state retention, 
operation of blocks in PD_2 is stopped, and the state of the 
sequential registers in PD_3 is retained before blocks in this 
domain are powered-off. 

During the phase of high-level synthesis, the power intent is 
extracted from the functional model and the UPF standard file 
is generated. The code below shows power-intent specification 
extracted from our example. 

Firstly, the power domains need to be created. The top-
level power domain is added which represents the domain of 
the entire system. 

create_power_domain PD_top 
create_power_domain PD_1 -elements {COUNT BCD} 
create_power_domain PD_2 -elements {LFSR} 
create_power_domain PD_3 -elements {BR} 

The second step is to create supply ports, create supply 
nets, connect the nets with ports, and set the primary supply 
nets for power domains. Beside the main supply, there is 
additional port VDD2_port generated as a result of 
diff_voltage1 state of PD_2 power domain. 

create_supply_port VDD_port -domain PD_top 
create_supply_port VSS_port -domain PD_top 
create_supply_port VDD2_port -domain PD_top 
create_supply_net VDD_top -domain PD_top 
create_supply_net VSS_top -domain PD_top 
create_supply_net VPD1 -domain PD_1 
create_supply_net VSS1 -domain PD_1 
create_supply_net VPD2 -domain PD_2 
create_supply_net VSS2 -domain PD_2 
create_supply_net VPD3 -domain PD_3 
create_supply_net VSS3 -domain PD_3 
connect_supply_net VDD_top -ports {VDD_port} 
connect_supply_net VSS_top -ports {VSS_port} 
connect_supply_net VSS1 -ports {VSS_port} 
connect_supply_net VPD2_top -ports {VDD2_port} 
connect_supply_net VSS2 -ports {VSS_port} 
connect_supply_net VSS3 -ports {VSS_port} 
set_domain_supply_net PD_top -primary_power_net VDD_top -

primary_ground_net VSS_top 
set_domain_supply_net PD_1 -primary_power_net VPD1 -

primary_ground_net VSS1 



set_domain_supply_net PD_2 -primary_power_net VPD2 -
primary_ground_net VSS2 

set_domain_supply_net PD_3 -primary_power_net VPD3 -
primary_ground_net VSS3 

The domains containing the blocks that can be powered-off 
or that work at several voltage levels need power switches. The 
signals controlling these switches are added into the functional 
model. In our example, control signals PD_1_SW_ctrl and 
PD_3_SW_ctrl have the same value as ctrl input variable. 
PD_2_SW_ctrl value is inverted from ctrl. 

create_power_switch PD_1_SW -domain PD_1 -
input_supply_port {vin VDD_top} -output_supply_port {vout VPD1} -
control_port {ctrl_sig PD_1_SW_ctrl} -on_state {PD_1_ON vin 
{!ctr_sig}} -off_state {PD_1_OFF {ctr_sig}} 

create_power_switch PD_2_SW -domain PD_2 -
input_supply_port {vin1 VDD_top} -input_supply_port {vin2 
VPD2_top} -output_supply_port {vout VPD2} -control_port {ctrl_sig 
PD_2_SW_ctrl} -on_state {PD_2_ON vin1 {!ctr_sig}} -on_state 
{PD_2_DIFF vin2 {ctr_sig}} 

create_power_switch PD_3_SW -domain PD_3 -
input_supply_port {vin VDD_top} -output_supply_port {vout VPD3} -
control_port {ctr_sig PD_3_SW_ctrl} -on_state {PD_3_ON vin 
{!ctr_sig}} -off_state {PD_3_OFF {ctr_sig}} 

In the communication with the block that can be powered-
off, signals (inputs and outputs of the subsystem) have to be 
isolated. The isolation is necessary to prevent floating values 
between domains. Between blocks that work at different 
voltages, the voltage level has to be shifted. The level shifters 
change the signal between these blocks from one voltage level 
to another. Since this additional logic is necessary in some 
determinable block interfaces, there is no need to specify it 
explicitly. They are generated as follows. Inputs and outputs of 
the block in power domain PD_1 are isolated and 
inputs/outputs belonging to block in PD_2 are level-shifted. 

set_isolation isolation_1 -domain PD_1 -isolation_power_net 
VDD_top -isolation_ground_net VSS_top -clamp_value latch -
applies_to both 

set_isolation_control isolation_1 -domain PD_1 -isolation_signal 
iso1 -isolation_sense high 

set_level_shifter shifter_2 –domain PD_2 

The following command provides the state retention for all 
sequential cells in PD_3. 

set_retention retention_3 -domain PD_3 -retention_power_net 
VDD_top -retention_ground_net VSS_top 

set_retention_control retention_3 -domain PD_3 -save_signal 
{save_reg high} -restore_signal {restore_reg high} 

The power state hold representing the clock/block gating 
cannot be specified in UPF. High-level synthesis implements 
this technique directly into the functional model as stated 
before. 

V. CONCLUSIONS AND FURTHER WORK 
The paper is devoted to the problem of power management 

at the system level. In section III, the extension of current low-
power design flow to the system level is proposed as well as 
the method of specifying the power-management intent in the 
early stage of the design process. Such an approach helps the 
designer to make more suitable architectural decisions and 

therefore to have more impact on eventual power consumption. 
The method expects the functional and power-architecture 
models to be unified in order to keep the system specification 
as simple as possible (including one specification model and 
one specification style). The subsections A and B discuss 
shortly the selected specification model and the required 
specification model extensions. The proposed extensions help 
to utilize the concepts of structural decomposition, reuse, 
domains, retention and block gating in a highly-abstracted 
form. The example in section IV illustrates the usefulness of 
this methodology. The power-reduction techniques such as 
clock gating (block gating), voltage scaling and power gating 
(with or without retention) can be specified directly in the 
system-level model and in a concise manner. The extended 
methodology for low-power design only supplements the 
existing one. There are other efficient power-reduction 
techniques that cannot be applied at the system level because of 
their conjunction with lower levels, e.g. restructuring of the 
logic circuit structure, transistor resizing, or substrate biasing 
[6]. 

The further work will include the development of an 
evaluation technique that could help designer to decide 
between several possible power-architectures without the need 
for simulation. Such a technique along with the methodology 
proposed in this paper would result in more effective low-
power design flow (faster design process with fewer re-spins, 
reduced power consumption, faster verification). The 
feasibility of the methodology will be showed on a case study – 
effect on power consumption. 
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