
Managing digital-system power at the system level

Dominik Macko, Katarína Jelemenská

Slovak University of Technology

Faculty of Informatics and Information Technologies

Bratislava, Slovakia

macko@fiit.stuba.sk; jelemenska@fiit.stuba.sk

Abstract— The increasing trend in using mobile devices

causes the power consumption to become the key aspect in

modern digital systems design. The current flow for low-power

design involves the use of some power-reduction technique at the

RTL (Register Transfer Level) or lower levels. This paper

describes an extension of current low-power design flow. It

proposes the power-intent specification based on UPF (Unified

Power Format) in an abstract form and integrates it into a

system-level model. Such an abstract level gives us the

opportunity to manage power with higher efficiency.

Keywords—consumption; design; hardware; power; system

I. INTRODUCTION

Process technologies below 90 nm make power
consumption the key factor constraining electronic design [1].
To address the continuously increasing power-reduction
requirements, there have been many techniques developed,
such as clock gating, power gating, or voltage scaling. The
current low-power design flow involves the application of such
techniques in an RTL (Register Transfer Level) or lower-level
digital system model (see section II). These techniques impact
all aspects of integrated-circuits development (i.e. design,
implementation, and verification) increasing thus the ever
growing complexity of current digital systems designs even
more. In order to increase the efficiency of system
development, the more abstract level above the RTL, so called
electronic system level (ESL), should be adopted [2]. Since the
higher level offers the opportunity of more efficient system
development, the low-power design flow should also utilize the
system-level advantages.

This paper proposes an extension of typical low-power
design flow. It moves the power-intent specification in UPF
(Unified Power Format – see section II) up to the system level.
The paper is organized as follows. The next section introduces
the current way of power-intent specification in the digital
system design process. In section III, the novel methodology
for low-power design is proposed, the specification model
selected for the methodology is introduced, and the proposed
model extensions are briefly described. Before the conclusion,
a showcase example is illustrated.

II. MEANS OF POWER-INTENT SPECIFICATION

To help designers with adoption of advanced power-
reduction techniques (see Table I), two main low-power
standards were developed – UPF (Unified Power Format) [3]

and CPF (Common Power Format) [4]. The usage of these
formats to express power intent during the SoC design process
is important for the designers as well as for the EDA
(Electronic Design Automation) tools and IP (Intellectual
Property) components providers. These formats provide unified
mechanisms for expressing the same power intent through
typical design stages (e.g. functional simulation, synthesis,
place and route, or formal equivalence checking) and for
ensuring that the verification consistently interprets the
functional semantics implied by the power intent [4].

Fig. 1 shows the typical use of UPF in low-power design
flow (CPF-based flow is basically the same). The HDL (RTL)
item represents an HDL (Hardware Description Language)
model at the RTL; Verilog (Netlist) represents a model at lower
levels – after synthesis and after place-and-route (P & R)
process. As the figure shows, power-intent in the UPF is
separated from the main functional model. It is preserved
throughout the whole design flow and it participates in
verification process (simulation or equivalence checking) of the
main model.

TABLE I. OVERVIEW OF SEVERAL COMMONLY USED POWER-
REDUCTION TECHNIQUES.

Technique Description

Clock gating Disables blocks or clock tree parts not in use.

Multiple supply

voltages

Operates different blocks at different, fixed supply

voltages. Signals that cross voltage domain boundaries

are level-shifted.

Adaptive voltage

scaling

Operates different blocks at variable supply voltages.

Uses in-block monitors to determine frequency

requirements, and adjusts voltage on-the-fly to satisfy
them.

Dynamic

voltage/frequency

scaling

Operates different blocks at variable supply

voltages/frequency. Uses look-up tables to adjust

voltage/frequency on-the-fly to satisfy varying
performance requirements. Signals that cross voltage

domain boundaries are level-shifted [5].

Power gating Turns off supply voltage to blocks not in use.
Significantly reduces the leakage. Block outputs float.

Power gating

with retention

Stores system state prior to power-down. Avoids

complete reset at power-up, which reduces power-

up/reset delay and power consumption.

State retention

power gating

Stores the system state in local registers. When on

standby or idling, gates the clock, and the register saves

the data. State retention registers use both a continuous
power supply and a switchable supply. Other logic can

be powered down [5].

Save and restore

power gating

As State retention power gating, but uses a memory

array.

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:

D. Macko and K. Jelemenská, "Managing digital-system power at the system level," 2013 Africon, Pointe-Aux-Piments, 2013, pp.

179-183.

doi: 10.1109/AFRCON.2013.6757781

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6757781&isnumber=6757586

The ever increasing complexity makes the adoption of
more abstract level above the RTL in the low-power design
flow unavoidable. Despite of the undeniable benefits of the
developed power standards, the specification of power intent in
a separated file using different specification language,
inconsistent with functional specification, is undesirable at
ESL. Such an abstract system specification should be as simple
as possible. For designers, it is therefore more convenient to
specify the system requirements in one style and using one
language, especially at the system level. All the specifications
(e.g. functionality, time, or power intent) should participate in
the abstraction refinement process in order to achieve target
system specification. During the high-level synthesis phase,
when already enough details are described, the standardized
power format file (UPF or CPF) should be automatically
generated in order to be used at RTL and lower levels.

III. LOW-POWER DESIGN FLOW EXTENSION

The key idea of proposed novel methodology lies in an
extension of the current low-power design flow illustrated in
Fig. 1 in a way that will enable to utilize the advantages of
system level modeling (e.g. shorter specifications, subsystems
intercommunications, or faster verification). The current design
flow steps remain intact, thus the traditional design/verification
methods and tools can still be used at the lower levels. The
proposed low-power design flow methodology extending the
current design flow to the system level is illustrated in Fig. 2.

This methodology starts from crude system specification at
the ESL. The power-intent specification in the standard UPF
format at such abstract level would disrupt the system
specification simplicity. However, the UPF concept is not
entirely omitted, but rather integrated into the system
functional specification in an abstract form. The specification
participates in the abstraction refinement process. The
specification at respective refinement stages is verified using
the verification technique, known as formal equivalence
checking. Therefore, the verification can proceed continuously,
even when simulation is not yet possible due to the lack of
details (e.g. communication protocol with the system

environment). When the specification is refined to the RTL and
contains sufficiency of details, it can be converted into the RTL
model (typically described in an HDL). This process is called
high-level synthesis. The proposed methodology assumes that
during this process the specified power intent will be extracted
and the standard UPF representation will be automatically
generated along with the HDL model. Then, the low-power
design flow continues as shown in Fig. 1.

According to the author’s knowledge, no ESL specification
model is available supporting all three important concepts
required by this methodology at the same time. These concepts
include an abstraction refinement, formal equivalence
checking, and power-intent specification. In order to put the
proposed methodology into the use, a suitable system-level
model has to be selected and enriched by the missing
capabilities. The structure and simplicity of the specification
model described in [7] makes it suitable for integration of
power-intent specification since it already supports the concept
of abstraction refinement along with formal verification.

A. System-level specification model

The HSSL specification language has been developed at the
Faculty of Informatics and Information Technologies, Slovak
University of Technology in Bratislava [7, 8]. It is intended for
system-level specification and modeling of reactive systems.
The language supports basic concepts used for system
specification in the behavioral style, such as hierarchical
behavioral decomposition, behavioral refinement, behavioral
reuse, timing, exception handling, concurrency and
synchronization. In addition, the underlying mathematical
model enables formal verification of the specification [8]. The
top-level structure in the HSSL language is a system,
consisting of inputs and outputs, represented by the
input/output variables, the state variables representing an
internal state of the system, and finally the sets of agents and
processes describing the system behavior. In addition, the sets
of constants and types are defined in the System entity (see
Fig. 3).

Regarding the Fig. 3, the white color items belong to the
original specification model as described in [7], the grey color
items represent several additional parts of the model proposed
and presented in this paper, and the grey-white color items are

Fig. 1. Typical use of UPF in low-power design flow [3].

Fig. 2. Proposed low-power design flow using abstract UPF.

partially extended parts with the proposed extensions also
presented here.

The basic entity used to specify a partial behavior is called
an agent. Agent describes the communication of the system
with its environment between two well-defined states. The
communication is represented by communication formula
consisting of a set of actions. An action represents status of
inputs and outputs of the specified system in particular time
given by an event. A more complex behavior can be expressed
by a process that prescribes an execution order of the agents. It
allows sequential and concurrent composition of the agents,
repetitive behavior, interrupt and conditional branching.

The timing discipline in the HSSL language is based on
event-driven concept in which events represent significant
discrete-time points along the continuous time interval. Except
events, quantitative timing constraints can be set over the set of
these events to achieve the behavior (the i/o communication)
specified by the agent in more detailed and precise way. These
constraints, called timing rules, are defined inside the agent in a
way to be independent from the functional specification [8].

B. The model extensions and power-intent integration

Regarding SoC design, there were several important
features missing in the model that need to be added before the
actual power-intent integration. These features include
structural decomposition and reuse specification. They can be
achieved by adding the new entities into the specification
model (as proposed in Fig. 3), namely the libraries,
components, and global actions.

Library is a commonly used structure supporting reuse of
previously created specifications. It is typically used in
conjunction with concept of structural decomposition of the
system into several communicating subsystems. This feature is
very important regarding the complexity of modern highly
integrated systems. The content of the library can consists of
the whole subsystems, constants and defined types, or even
individual generic agents. Therefore, it is possible to reuse not
only the created subsystems, but also partial behaviors (agents).
The support for intra-system reuse was also added by means of
global actions. These actions can be used inside different
agents of the system, thus the meaning of these actions is
specified only once.

The structural decomposition requires specifying precisely
which subsystems are to be used inside a system under
development. For this purpose, the components entity was
added into the model. It contains also the typical mapping of
inputs and outputs of the components.

In order to integrate power intent specification into the
system-level model, it is necessary to choose what details it
should contain. Several UPF concepts could be used in an
abstract form. One of the most important concepts of power
management is so called power domain [9]. It is a collection of
instances (components) with the same power supply. Different
power supply of system blocks imply the possibility of
different power states of these blocks. It means that an unused
block can be powered-off or can be in stand-by mode while
other can normally operate or operate at different voltage level.
In general, it is a technique resulting in huge power savings,
thus splitting the system into several power domains is one of
the most important power-related decisions. For clarification,
our methodology assumes that system blocks can be in the
same power domain only if they are always in the same power
state.

Often it is necessary to retain current state of the block that
is to be powered-off. Power state which models this situation is
called off_ret. The retention slows-down the operation (saving
and loading the state values to and from the memory) or
excessively increases the chip area (additional retention cells).
Therefore, this concept is suitable only for blocks that are not
used for longer period of time (trade-off between speed, area
and power consumption). The block that needs to retain its
state, but retention is not suitable, can stop its operation
without being powered-off (to save at least a dynamic power).
This concept is known as clock-gating. In highly abstract
specification, such a concept needs to be abstracted from clock.
It can be modeled by power state called hold. This concept can
be implemented by gating the clock signal or gating the control
signals of asynchronous circuits during the high-level synthesis
stage (we can refer to it as block gating).

Our methodology assumes these power states:

• normal – block operates at the basic voltage level

• off – block is powered-off without state retention

• off_ret – the block state is retained before powering-off

• hold – block stops its operation but remains powered

Fig. 3. The structure of HSSL’s specification model.

• diff_voltageX – block operates at voltage level different
from the basic one, X is just the ordinal number of
voltage level (i.e. diff_voltage1 is different as well from
basic voltage level as from diff_voltage2)

IV. SHOWCASE EXAMPLE

The use of such model extensions is shown on the
following example. It represents a system Sys which consists of
three interconnected components LFSR for data generation,
COUNT for counting of the generated data, and BCD for data
binary code conversion. In addition, the system contains one
register for keeping the bcd count. The functionality of the
model is not important for our showcase, thus the focus of
analysis is targeted to power intent specification.

System Sys{
 Power Domains{
 PD_1(normal, off);
 PD_2(normal, diff_voltage1, hold);
 PD_3(normal, off_ret);
 }
 Inputs{ bool clk, ctrl; }
 Outputs{ data bcd_out; }
 State Vars{
 data BR(PD_3); //buffer register
 power_states PS=(normal,normal,normal);
 }
 Components{
 lfsr LFSR(PD_2);
 counter COUNT(PD_1);
 bcd_converter BCD(PD_1);
 Maps{
 LFSR.clk = clk;
 COUNT.clk = clk;
 COUNT.data_in = LFSR.data;
 BCD.clk = clk;
 BCD.data_in = COUNT.data_out;
 BR = BCD.data_out;
 }
 }
 Agent First{
 LV{ bool sig; }
 DefaultTE: up(clk, 1);
 CS{ Start.Final }
 Action Start{ iv:sig=ctrl; }
 Action Final{ }
 FS{
 PS= if(sig==1) (off, hold, off_ret)
 else (normal,diff_voltage1,normal);
 }
 }
 Agent Second{
 DefaultTE: up(clk, 1);
 CS{ Start.Final }
 Action Start{ iv:sig=1; }
 Action Final{ ov:bcd_out=BR; }
 }

 Process Global{
 loop { do First while (ctrl == 1); Second }
 }
 Starting Structure{ Stf Global: eon; }
}

The power domains are assigned to the subsystem instances
in the components entity of the model and they can be also
assigned to the state variables of the system. These domains are
represented by a set of power states which the domain blocks
can be in. These are specified in the entity power domains. The
subsystem LFSR is assigned to the power domain PD_2 which
supports normal, diff_voltage1, hold power states. Instances
COUNT and BCD are assigned to PD_1 power domain,
meaning they can be both in normal or both in off state at the
same time. Register BR is in PD_3 domain, thus it works either
in normal state or it can be powered off, but its state is retained.

Power states of the entire system can be specified in a way
similar to other system state variables. A special variable type
is used, called power_states. Such variable has to contain its
name and initial states for all power domains in the specified
order. The power states changes are modeled in final state of
an agent. In our example, the initial power state is (normal,
normal, normal). The agent First changes this state according
to input variable value of ctrl. If the ctrl value is 1, then the
power states change to (off, hold, off_ret). It means that blocks
in PD_1 domain are powered-off without the state retention,
operation of blocks in PD_2 is stopped, and the state of the
sequential registers in PD_3 is retained before blocks in this
domain are powered-off.

During the phase of high-level synthesis, the power intent is
extracted from the functional model and the UPF standard file
is generated. The code below shows power-intent specification
extracted from our example.

Firstly, the power domains need to be created. The top-
level power domain is added which represents the domain of
the entire system.

create_power_domain PD_top
create_power_domain PD_1 -elements {COUNT BCD}
create_power_domain PD_2 -elements {LFSR}
create_power_domain PD_3 -elements {BR}

The second step is to create supply ports, create supply
nets, connect the nets with ports, and set the primary supply
nets for power domains. Beside the main supply, there is
additional port VDD2_port generated as a result of
diff_voltage1 state of PD_2 power domain.

create_supply_port VDD_port -domain PD_top
create_supply_port VSS_port -domain PD_top
create_supply_port VDD2_port -domain PD_top
create_supply_net VDD_top -domain PD_top
create_supply_net VSS_top -domain PD_top
create_supply_net VPD1 -domain PD_1
create_supply_net VSS1 -domain PD_1
create_supply_net VPD2 -domain PD_2
create_supply_net VSS2 -domain PD_2
create_supply_net VPD3 -domain PD_3
create_supply_net VSS3 -domain PD_3
connect_supply_net VDD_top -ports {VDD_port}
connect_supply_net VSS_top -ports {VSS_port}
connect_supply_net VSS1 -ports {VSS_port}
connect_supply_net VPD2_top -ports {VDD2_port}
connect_supply_net VSS2 -ports {VSS_port}
connect_supply_net VSS3 -ports {VSS_port}
set_domain_supply_net PD_top -primary_power_net VDD_top -

primary_ground_net VSS_top
set_domain_supply_net PD_1 -primary_power_net VPD1 -

primary_ground_net VSS1

set_domain_supply_net PD_2 -primary_power_net VPD2 -
primary_ground_net VSS2

set_domain_supply_net PD_3 -primary_power_net VPD3 -
primary_ground_net VSS3

The domains containing the blocks that can be powered-off
or that work at several voltage levels need power switches. The
signals controlling these switches are added into the functional
model. In our example, control signals PD_1_SW_ctrl and
PD_3_SW_ctrl have the same value as ctrl input variable.
PD_2_SW_ctrl value is inverted from ctrl.

create_power_switch PD_1_SW -domain PD_1 -
input_supply_port {vin VDD_top} -output_supply_port {vout VPD1} -
control_port {ctrl_sig PD_1_SW_ctrl} -on_state {PD_1_ON vin
{!ctr_sig}} -off_state {PD_1_OFF {ctr_sig}}

create_power_switch PD_2_SW -domain PD_2 -
input_supply_port {vin1 VDD_top} -input_supply_port {vin2
VPD2_top} -output_supply_port {vout VPD2} -control_port {ctrl_sig
PD_2_SW_ctrl} -on_state {PD_2_ON vin1 {!ctr_sig}} -on_state
{PD_2_DIFF vin2 {ctr_sig}}

create_power_switch PD_3_SW -domain PD_3 -
input_supply_port {vin VDD_top} -output_supply_port {vout VPD3} -
control_port {ctr_sig PD_3_SW_ctrl} -on_state {PD_3_ON vin
{!ctr_sig}} -off_state {PD_3_OFF {ctr_sig}}

In the communication with the block that can be powered-
off, signals (inputs and outputs of the subsystem) have to be
isolated. The isolation is necessary to prevent floating values
between domains. Between blocks that work at different
voltages, the voltage level has to be shifted. The level shifters
change the signal between these blocks from one voltage level
to another. Since this additional logic is necessary in some
determinable block interfaces, there is no need to specify it
explicitly. They are generated as follows. Inputs and outputs of
the block in power domain PD_1 are isolated and
inputs/outputs belonging to block in PD_2 are level-shifted.

set_isolation isolation_1 -domain PD_1 -isolation_power_net
VDD_top -isolation_ground_net VSS_top -clamp_value latch -
applies_to both

set_isolation_control isolation_1 -domain PD_1 -isolation_signal
iso1 -isolation_sense high

set_level_shifter shifter_2 –domain PD_2

The following command provides the state retention for all
sequential cells in PD_3.

set_retention retention_3 -domain PD_3 -retention_power_net
VDD_top -retention_ground_net VSS_top

set_retention_control retention_3 -domain PD_3 -save_signal
{save_reg high} -restore_signal {restore_reg high}

The power state hold representing the clock/block gating
cannot be specified in UPF. High-level synthesis implements
this technique directly into the functional model as stated
before.

V. CONCLUSIONS AND FURTHER WORK
The paper is devoted to the problem of power management

at the system level. In section III, the extension of current low-
power design flow to the system level is proposed as well as
the method of specifying the power-management intent in the
early stage of the design process. Such an approach helps the
designer to make more suitable architectural decisions and

therefore to have more impact on eventual power consumption.
The method expects the functional and power-architecture
models to be unified in order to keep the system specification
as simple as possible (including one specification model and
one specification style). The subsections A and B discuss
shortly the selected specification model and the required
specification model extensions. The proposed extensions help
to utilize the concepts of structural decomposition, reuse,
domains, retention and block gating in a highly-abstracted
form. The example in section IV illustrates the usefulness of
this methodology. The power-reduction techniques such as
clock gating (block gating), voltage scaling and power gating
(with or without retention) can be specified directly in the
system-level model and in a concise manner. The extended
methodology for low-power design only supplements the
existing one. There are other efficient power-reduction
techniques that cannot be applied at the system level because of
their conjunction with lower levels, e.g. restructuring of the
logic circuit structure, transistor resizing, or substrate biasing
[6].

The further work will include the development of an
evaluation technique that could help designer to decide
between several possible power-architectures without the need
for simulation. Such a technique along with the methodology
proposed in this paper would result in more effective low-
power design flow (faster design process with fewer re-spins,
reduced power consumption, faster verification). The
feasibility of the methodology will be showed on a case study –
effect on power consumption.

ACKNOWLEDGMENT

This work was partially supported by the Slovak Science
Grant Agency (VEGA 1/1008/12 “Optimization of low-power
design of digital and mixed integrated systems“) and COST
Action IC 1103 MEDIAN.

REFERENCES

[1] S. Bailey, G. Chidolue and A. Crone, “Low power design and
verification techniques,” Mentor Graphics, 2007.

[2] The International Technology Roadmap for Semiconductors: Design.
ITRS, 2011 edition, 2011.

[3] IEEE Standard for Design and Verification of Low Power Integrated
Circuits. IEEE, 2009. IEEE Std 1801-2009.

[4] S. Carver, A. Mathur, L. Sharma, P. Subbarao, S. Urish and Q. Wang,
“Low-power design using the Si2 common power format,” IEEE Design
& Test of Computers, vol. 29, no. 2, pp. 62-70, 2012.

[5] R. Goering, “Low power design,” [Online; accessed January 13, 2013].
http://www.leepr.com/PDF/SCDsource_STR_LowPower.pdf

[6] Power Forward Initiative, A Practical Guide to Low Power Design: User
Experience with CPF. Power Forward, 2012.

[7] N. Fristacky, J. Kacerik, T. Bartos and M. Kardos, “Behavioral
specification model and language for digital systems,” Slovak University
of Technology, 2000. Technical report.

[8] N. Fristacky, J. Kacerik and T. Bartos, “A mixed event-value based
specification model for reactive systems,” in SoC Methodologies and
design Languages, Kluwer academic publishers, 2001.

[9] F. Bembaron, S. Kakkar, R. Mukherjee, A. Srivastava, “Low power
verification methodology using UPF,” Proc. of Design & Verification
Conference & Exhibition (DVCon), 2009, pp. 228-233.

