
VHDLVisualizer: HDL Model Visualization with

Simulation-Based Verification

Dominik Macko, Katarína Jelemenská

Slovak University of Technology

Faculty of Informatics and Information Technologies

Bratislava, Slovakia

macko@fiit.stuba.sk; jelemenska@fiit.stuba.sk

Abstract— The usage of the HDLs (Hardware Description

Languages) in a present digital system development process is

indispensable. Although, their great contribution is undeniable,

they also bring about several disadvantages. The textual form of

a HDL model is less illustrative for a human being than

schematic representation of its structure. Moreover, simulation

of such models is most commonly displayed in a waveform

representation, even though sufficient for verification, but hard-

to-identify design errors, The paper presents a tool for

supporting both, the model structure visualization and a proper

form of the simulation results display.

Keywords - digital system; hardware design; simulation;

verification; VHDL; visualization

I. INTRODUCTION

With the VHDL (Very-High-Speed Integrated Circuits
HDL) standardization in 1987, the massive development of
supporting EDA (Electronic Design Automation) tools has
begun. The HDL-based digital system design has many
significant advantages – clearer design with fewer mistakes,
verification by simulation, and technology-independence.
However, the textual form of the structural HDL model is less
illustrative for human being than a schematic representation,
where the possible design errors are easier to detect.
Consequently, many of the complex HDL design development
environments support the conversion of an HDL model to its
schematic representation. However, for simulation-based
design verification a waveform representation of simulation
results is the only one available in most of these tools.
Although, this representation has a high verification power,
especially the inexperienced designers find it hard-to-read and
difficult to reveal the potential errors. This issue could be
addressed by a tool that can display the simulation results
directly in the schematic representation of an HDL model.
Based on the analysis of available environments several
possibilities of simulation flow visualization are offered.
Connection color based logical value display is used in most of
the logic circuit simulators (e.g. LOGiX [1]). Another
possibility is to change a color of the port itself (used in TINA
Design Suite [2]). These two possibilities work perfectly for
one-bit signals, but when transmitting multi-bit signals one
connection/port color cannot represent the logic value of
multiple bits. In HDL simulator ModelSim [3] a connection
label is used for displaying the signal value which is working

well for multi-bit signals as well. However, the mentioned
commercial tools are very complex and quite expensive to be
used by beginners. Therefore, a simpler, intuitive and
affordably priced tool is needed especially for education and
novice designers.

II. PROPOSED TOOL DESIGN ASPECTS

These aspects are divided into two parts concerning the
visualization of model structure and simulation results.

A. Intermediate Representation and Visualization

The VHDL model information is analyzed from source
code using parser generator ANTLRv3 [4]. This information
can be saved to an intermediate representation, suitable for
visualization. An XML (eXtensible Markup Language)
representation has the appropriate properties for this purpose
since it can preserve the hierarchical structure, is widely used
and allows easy to analyze contained information. The similar
approaches were used in [5] and [6]. Four types of nodes have
been defined in the proposed XML schema: Architecture
(structure/behavior), Port, Entity instance, and Connection.
The architecture in the XML file represents one hierarchical
level. In fact, it is an entity instance at the upper hierarchical
level. Its description includes the ports of the given entity
instance (upper level ports), the entity instances of the given
level, their ports, and the interconnections among the ports. To
visualize the data it is necessary to design graphical
representation of each object of the architecture. An entity
instance is visualized as “black box”, which functionality is not
known. It is represented by a rectangle, displaying the entity
name, the name of the respective instance, and the input and
output ports. A port can be specified in different mode (in, out,
inout, buffer, or linkage), according to which the shape of port
is drawn. A connection is represented as a line, which
interconnects two ports. In case of connection among the ports
of internal instances, the signal name is displayed as well. The
branching and splitting/joining of the connection has to be
considered as well. For the architectures describing behavior of
an entity instead of a structure, the visual difference has to be
obvious. Therefore, in case an instance of the lowest level is
selected, an object with no instance name and no entity name
will be displayed. For structural model visualization a layout
optimization algorithm is used that positions the entities in two

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:

D. Macko and K. Jelemenská, "VHDLVisualizer: HDL model visualization with simulation-based verification," 2012 IEEE 15th

International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Tallinn, 2012, pp. 199-200.

doi: 10.1109/DDECS.2012.6219056

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6219056&isnumber=6219000

rows, sequentially, according to their occurrence in the VHDL
source code. All the connections are positioned into a so called
virtual bus located between the entities rows. Each connection
has its own part of virtual bus reserved, therefore just the
vertical parts of the connections are checked up for
overlapping. If there is an overlap, the connection is shifted.

B. VHDL Model Simulation and Results Visualization

There are two ways to simulate the visualized VHDL
model. The designed internal simulator allows the interactive
simulation, where the designer can set up the input ports values
for the selected hierarchical level. The values are spread
through the design hierarchy, and subsequently the output ports
values are calculated using the VHDL behavioral description
loaded from the XML representation. When simulating test-
bench entity, the input ports values are loaded also from XML.
For the chosen simulation time, all the changes that should
occur till that time are executed. The results of simulation are
displayed directly in the schematic view. Another designed
possibility is to simulate the VHDL model using an external
simulator that will provide the simulation results to the
VHDLVisualizer. The GHDL simulator [7] was chosen for this
purpose. This simulator enables to check the VHDL code
syntax, to analyze it and to run the simulation saving the
simulation results into the standardized VCD (Value Change
Dump) format [8] for which we created an analyzer. After the
simulation is finished, the results are loaded from the generated
temporary VCD file. Thus, for the visualized hierarchical level
it is possible to display the value of the chosen port at the
selected time. In the case lower level entity (not test-bench
entity) is simulated using the external simulator, it is necessary
to generate a new test-bench entity. In the architecture of this
new entity, the values set up by the designer are assigned to the
input ports (interactive simulation). Both simulators have
limitations concerning the VHDL support, so their combination
helps to increase this support. Based on the analysis of
available solutions, we decided to display the simulation flow
by means of connections labeling. Moreover, the color of the
label changes when the signal state alters to improve the
visibility. The simulation results are displayed in the labels
located above the connections, but close to the ports (see
Figure 1). In complex architectures, where a large amount of
connections is displayed, this solution is much more
convenient compared to the possibility to display the signal
value somewhere in the middle of the connection. The
simulation results can also be displayed in the commonly used

waveform. For this purpose the external tool GTKWave [9] is
used, loading the information from the VCD file generated by
GHDL simulator [7].

III. CONCLUSIONS AND FURTHER WORK

The paper is devoted to the problem of visualization and
simulation of digital system models described in VHDL. We
present the tool usable in digital systems design process. For a
human being, the graphical representation of the structural
model, generated by this tool, is better to understand and easier
and faster to detect the errors made during the VHDL structural
model creation. The VHDL model visualization is useful not
only for verification purposes, but also for design
documentation. For simulation results visualization in the
schematic representation the solution possibility and algorithm
were chosen and integrated into the VHDLVisualizer which
brings the simplest, fastest, the most definite and the illustrative
presentation of the simulation flow. Due to the unusual
simulation and its visualization, this environment becomes a
strong design and verification tool. The VHDLVisualizer
nature makes it especially suitable for beginners in VHDL
design - therefore education is the most natural area of
application. However, it can become the useful verification tool
for professional designs as well.

The tool is ready to be extended for other HDLs support
such as Verilog and SystemC. Another possible extension is
elimination of restrictions in the support of VHDL
constructions, or object layout algorithm optimization. These
extensions represent our further effort and future work.

ACKNOWLEDGMENT

This work was partially supported by the Slovak Science
Grant Agency (VEGA 1/1008/12 “Optimization of low-power
design of digital and mixed integrated systems“).

REFERENCES

[1] CommTec - Software Engineering, “LOGiX - Simulation of logic
circuits,” Simtel products, Online, December 2011.

http://www.simtel.net/product/view/id/90288

[2] DesignSoft, “Analog, digital, symbolic, RF, VHDL, MCU and mixed-
mode circuit simulation & PCB design,” Tina Design Suite, Online,
December 2011. http://www.tina.com/English/tina/start.php

[3] Mentor Graphics, “ModelSim,” Mentor Graphics's products, Online,
December 2011.

http://www.mentor.com/products/fpga/simulation/modelsim

[4] R. M. Volkmann, “ANTLR 3,” Online, December 2011.

http://jnb.ociweb.com/jnb/jnbJun2008.html.

[5] J. Petráš, “VHDL model visualization,” master theses, FIIT STU
Bratislava (Slovakia), 2008, 85 p.

[6] M. H. Reshadi, B. Goji-Ara, Z. Navabi,”HDML: compiled VHDL in
XML,” in VHDL International Users Forum Fall Workshop, Tehran
Univ., 2000, pp. 69-74.

[7] T. Gingold, “GHDL – Where VHDL meets gcc,” Online, December
2011. http://ghdl.free.fr/

[8] IEEE, “IEEE standard Verilog hardware description language,” IEEE
Standards (IEEE Std 1364-2001), September 2001.

[9] GTKWave Project, “Welcome to GTKWave,” sourceforge’s projects,
Online, December 2011. http://gtkwave.sourceforge.net/

Figure 1. Structural VHDL model visualization with simulation results

displayed

