
Early-Stage Verification of Power-Management

Specification in Low-Power Systems Design

Dominik Macko, Katarína Jelemenská, Pavel i ák

Faculty of Informatics and Information Technologies

Slovak University of Technology

Bratislava, Slovakia

dominik.macko@stuba.sk, katarina.jelemenska@stuba.sk, pavel.cicak@stuba.sk

Abstract—Power consumption becomes a dominant problem

in current hardware-systems design. It is most commonly dealt

with use of power-management techniques, such as clock gating,

power gating, or voltage and frequency scaling. In modern

complex systems, power-management adoption is difficult to

achieve, and therefore new approaches to simplify power-

managed systems design are evolving. We have also proposed

such an approach, simplifying power-management specification

at the system level of design abstraction. This paper describes the

proposed verification approach, which can take place

continuously, beginning at the early specification stage of the

system development. It helps a designer to create correct and

consistent specification of power management.

Keywords—hardware design; low power; power management;

specification; verification

I. INTRODUCTION

In current complex systems, advanced power-reduction
techniques are usually applied using some additional
specification form, such as UPF (Unified Power Format) [1]. It
enables a designer to introduce power-management aspects to
the functional design, usually modelled in some HDL
(Hardware Description Language). It was intended for RTL
(Register-Transfer Level) and lower-level models. Although
UPF has significantly helped designers to develop low-power
systems, it is not suitable for modern design processes starting
at the system level of abstraction. Therefore, new methods and
methodologies have been developed to extend low-power
design to the system level, such as [2]-[8]. Based on the
analysis of their strengths and weaknesses (e.g. insufficient
abstraction, missing automation, separated specifications), we
have proposed a novel methodology for low-power systems
design. It is based on the specification of abstract power
management at the system level, and on the application of
high-level synthesis to obtain an RTL model [9]-[11].

This paper focuses on the verification of the introduced
power-management aspects at early stages of the design. In
Section II, the related work is analyzed. Section III provides a
brief background of the power management design strategy. In
Section IV, the proposed verification approach is described.
The experimental evaluation of the contributions is provided in
Section V. And finally, Section VI concludes the paper.

II. RELATED WORK

Most of the existing methods and methodologies, oriented
towards higher abstraction levels, target power-management
introduction into the system design in an abstract manner.
However, there are some which also target the verification
problem accompanying the power-management specification.
The verification methods and approaches used in the existing
solutions are briefly analyzed in this section.

The methodology described in [2] is oriented towards the
abstraction of several UPF concepts to the transaction level. It
enables power-architecture exploration at the system level;
however, the power information must be manually annotated to
the model. The used power-aware verification is based on
assume and guarantee assertions, which are able to report error
notifications during simulation. The assertions are generated
automatically and are hidden to the designer. The disadvantage
is that this kind of verification checks only whether the
interaction between components is correct. It does not provide
any information about the completeness of the power-
management specification. Since it depends on simulation-
based verification, it is time consuming.

There are other methods [3]-[7], which are also focused on
simulation-based verification only. Although the offered virtual
prototyping speeds-up the simulation compared to the RTL
functional verification, there are other aspects (such as
specification completeness, consistency with functional model)
which are not verified. The method used in [8] does not verify
power management at the system level; rather it uses system-
level simulation traces to analyze power at the RTL. This
analysis involves functional verification of the model. In
modern complex systems, the designers cannot rely on
simulation to properly verify the design. The verification must
be combined with formal methods to address those aspects
which are not verifiable by simulation (e.g. completeness).

The method used in [12] uses a more formal approach. The
lower-level inter-domain assertions regarding control-signal
sequences are automatically translated into a form which
enables their usage in the abstract architectural properties of the
system. These properties can be then proved formally. The
proposed method is indisputably useful; however, it still does
not focus on a comprehensive verification of the introduced
power-management aspects.

This work was partially supported by the Slovak Science Grant Agency

(VEGA 1/0616/14) and Slovak University of Technology in Bratislava.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:

D. Macko, K. Jelemenská and P. i ák, "Early-stage verification of power-management specification in low-power systems

design," 2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Kosice,

2016, pp. 157-162.

doi: 10.1109/DDECS.2016.7482449

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7482449&isnumber=7482431

Based on the analysis of the existing methods, we have
integrated into our low-power design methodology multiple
verification steps, combining formal and informal approaches.
Compared to the existing methods, our contribution is in three
key methods, which are summarized below.

• Power-management static analysis – a unique method
enabling verification of the consistency between power-
management specification and functional specification
at the system level of abstraction. Moreover, it enables
verification of specification completeness, which helps
the designer to refine the power management at early
stages of the design.

• Power-intent equivalence checking – an original
method for comparison between specifications at the
system level and RTL. It is very useful to verify
whether the power intent remains the same after the
automated high-level synthesis process. The
equivalence is checked formally and the process is fully
automated; thus, this verification step is very fast.

• Automated synthesis of power-control assertions – it is
not a completely original method (it has been inspired
by [2] and [12]); however, we have integrated it into our
high-level synthesis process in a unique form. The
synthesized assertions monitor the power-management
unit to behave functionally correctly. They are
generated based on the abstract power-management
specification only; thus, the designer is not required to
specify any additional information.

III. POWER MANAGEMENT IN SPECIFICATION

According to our previously published work [9]-[11],
power-management specification at the system level is based
on power modes, power domains, and power states. Power
state is an operation state of some system component, defined
by the operating frequency and supply voltage. Power domain
is a collection of system components that always operate in the
same power state. System power mode is a combination of
power states in individual power domains. The basic principle
of power management is to dynamically switch between power
modes of the system according to the current power
requirements. The goal is to reduce energy consumption, while
successfully completing the given task.

A designer specifies the power management directly in the
functional specification of the system. This specification
contains the following.

• Power domains – The designer specifies the name for
each domain and a set of power states, in which the
internal components can operate. The allowed abstract
power states are predefined (such as normal, hold, off;
refer to [11] for more details).

• Component assignments – The designer assigns
components to specific power domains. The
components that always operate in the same power
states are grouped into the same power domain.

• Performance levels – The designer specifies the
voltage-frequency pair for each active power state.

• Power modes – The designer specifies the name for
each power mode and a combination of power states
(one power state for each power domain).

• Management – The designer specifies the switching
between power modes directly in the functional
specification.

Based on the specification at the system level (ESL), the
UPF specification at the RTL is generated (see Fig. 1). Besides,
the power-management unit (PMU), driving control signals for
power-management elements in UPF, is automatically
synthesized. Thus, the complex RTL power management is
designed much faster using the proposed method.

IV. THE PROPOSED HYBRID VERIFICATION APPROACH

After the power management is specified, the specification
has to be verified for functional and structural correctness and
completeness [13]. This verification step needs to be
accomplished as soon as possible, enabling the designer to
create a correct specification. Since the model needs not be
executable at early phases of design, a formal approach is
suitable for this kind of verification. We use compilers to check
syntactical correctness of the specification combined with a
static analysis revealing functional and structural
inconsistencies of the abstract power-management
specification.

The next step is to verify the correct functionality of the
low-power system – this is usually accomplished by functional
simulation. Since the abstract power-management specification
does not model the effects on functionality, this verification
step needs to be taken after the high-level synthesis process. At
the RTL, the existing professional tools, such as Modelsim, can
be used to simulate the synthesized UPF along with the
functional design. As mentioned in [14], additional power-
management elements are often a rich source of errors and
must be thoroughly verified for all specified operating modes.
One of the advantages of the proposed methodology lies in the
automation. Since the power-management specification at the
RTL is automatically generated, we are able to avoid many
power-related human errors issued during the power-
management insertion at such a later stage. The designer does
not need to worry about specifying the low-level power-
management logic, such as power switches, isolation, retention,
or level shifters.

To assure the power intent is preserved during the high-
level synthesis, the equivalence checking between the
generated UPF specification and the abstract power
management is a suitable verification approach. The

Fig. 1. Abstract view of the low-power design flow.

synthesized power-management unit is ideal for the assertion-
based verification (ABV). The assertions can be generated for
verification of control sequences as well as for functional-
coverage measurement. The control-sequences assertions are
automatically generated in a way similar to [12].

The overview of the proposed verification approach is
shown in Fig. 2. The used combination of verification
techniques enables the low-level power-related logic to be
verified (both by simulation and formally) based only on the
system-level abstract specification. This simplifies the complex
verification process (especially the preparation and debugging
steps).

A. Syntactic Checks

The syntax of power-management specifications is
automatically verified by compilers at the compilation time –
the predefined language keywords drive a designer to the
correct specification. Moreover, the syntactical rules in HSSL
(Hardware-Software Specification Language) [9] assure that if
the power domains section is present in the system
specification, then at least one power domain has to be
specified. Also, each power domain has to have at least one
power state specified. Syntactical rules ensure that only the
predefined abstract power states are valid. For example, they
can also ensure that at least one power mode is specified.

Such syntactic checks are not supported in SystemC-
integrated power-management specification [10]. It relies on
the designer’s discipline to use the predefined power-
management macros, ensuring correct specification. C++
modelling introduced to the extension library ensures that only
the valid specified power mode is assigned to the variable
representing the current power mode, and that the instances can
be assigned only to the existing power domains. These issues
are not revealed by the syntactic checks in HSSL. The
mentioned unrevealed issues (in both the HSSL and SystemC)
are checked-for in other forms of verification – during an
execution time or through the static analysis.

B. Run-Time Checks

In SystemC extension library, the run-time checks reveal
several errors that could not be revealed by a compiler. These
checks are implemented in the traditional conditional manner.
If the condition is true, the error message notifies the designer
what is incorrectly specified. This verification form checks for
the valid power states assigned to the power domains and to the
power modes. In order to ensure that the designer does not
cause the violation of this condition, the predefined power-state
macros should be used. This kind of verification can also reveal

the problem of specifying some state for some power domain
more than once.

C. Static Analysis

This form of verification is mainly intended to reveal the
power-management inconsistencies that could not be revealed
in the previous verification steps. It statically analyses the
specification and checks the specified identifiers and
assignments, related to the power-management specification. It
is integrated into the high-level synthesis process but can also
be used as a separate step to verify the specification in an early
stage of development.

For example, the static analysis checks whether each power
mode has the same number of power states as the number of
power domains in the system. Also, it reveals the problem if
some component instance is assigned to multiple power
domains, or if some power domain does not contain any active
power state. The static analysis also detects redundant parts of
the specification (e.g. multiple power modes with the same
combination of power states in power domains) and notifies the
designer about their location. This verification step is a very
helpful utility, driving the designer in early versions of the
specification. The static analysis can be also used for
verification of the power-management specification
completeness. It detects missing required constructs, such as at
least one active power state in a power domain, at least one
power mode of the system, or missing power state in a power
mode (i.e. power state is missing for some power domain in
that power mode). This is very useful for the creation of early
versions of power management. It significantly shortens
debugging time.

An example of abstract power-management specification is
illustrated in Fig. 3. The highlighted text represents the
detected problems. The static analysis would detect that the
normal power state of power domain named power_domain1 is
not used in any specified power mode (the power state of
power_domain1 corresponds to the first position of states in a
power mode). The designer would be notified that the
performance level for the normal state is not assigned. An error
would be reported regarding the incorrect number of power
states in power_mode1. The static analysis would detect that
power_mode3 is not used in the functional part of the
specification (i.e. the module constructor or some process) –
i.e. such a mode is redundant. Because of that, there would also

Fig. 2. Verification process overview.

power_domain1 (off,normal,diff_level1);
power_domain2 (hold,normal,diff_level2);
diff_level1 (0.8 V, 5 MHz);
diff_level2 (1.2 V, 100 MHz);
system_component instance1(power_domain1);
system_component instance2(power_domain2);
power_mode1 (off,hold,normal);
power_mode2 (diff_level1,normal);
power_mode3 (diff_level1,diff_level2);
POWER_MODE = power_mode1;

...

if (control_condition)
 POWER_MODE = power_mode2;
else
 POWER_MODE = power_mode1;

Fig. 3. An example of static-analysis error detection.

be a notification that the diff_level2 power state of
power_domain2 is not used.

D. Equivalence Checking

After the high-level synthesis, verification of power-
management specification equivalency takes place. The power
intent is extracted from the UPF and verified whether it
corresponds to the abstract power-management specification at
the ESL. Since the UPF contains only voltage aspects of the
power management (frequency aspects are contained in the
functional model), a common representation should be used for
the comparison. Thus, even the system-level abstract power-
management specification has to be translated into this
common representation, in which the power states are
represented by the corresponding voltage levels.

The common representation is formally expressed by a
tuple CR=(PDI,PDS,PM), where PDI is a finite set of tuples
(IDd, I), where I is a finite set of instances assigned to the
power domain represented by an identifier IDd; PDS is a finite
set of tuples (IDd, VS), where VS is a finite set of voltage states
enabled in the power domain represented by an identifier IDd;
and PM is a finite set of tuples (IDm, S), where S is a finite
sequence of voltage states corresponding to power states
representing the power mode with an identifier IDm.

When checking the equivalence between two
specifications, we must distinguish between the power-
management structural equivalence and the power-intent
equivalence. The first one checks whether all specified aspects
at the ESL are present in the generated UPF specification. The
second one checks whether the power intent is preserved. The
specifications do not need to be structurally equivalent to have
the same power intent.

By an analysis of the UPF power-management
specification, a quasi-reverse process to the high-level
synthesis is used to extract the common representation. Firstly,
the lists of power domains are compared. The ESL
specification has to contain all UPF domains except for the top
domain (implicitly added to the specification). To be
structurally equivalent, the UPF specification also has to
contain all domains in abstract specification. For the
comparison purpose, the domains identifiers are used. The lists
of assigned instances to each power domain have to be the
same. In addition, the power states of power domains and the
power modes with specific power-states combinations are
compared. For the structural equivalency, the original abstract
specification is used. For the power-intent equivalency, the
abstract specification is modified using the optimization
decisions (e.g. removal of redundant parts of the specification).
This verification step produces error messages, which drives
the designer to the source of an error, speeding-up the
debugging process.

The equivalence-checking process can be explained using
the example provided in Fig. 4. The figure contains two
fragments of power-intent specifications at different abstraction
levels. The fragment A) represents the specification at the
system level of abstraction. Its transformation to the common
representation is pretty straightforward. The power states in the
specified power modes are translated to the voltage states based

on the performance-level assignments. Thus, power_mode1
specifies that the components in power_domain1 operate at the
supply voltage of 1 V. Similarly, power_mode2 specifies that
these components operate at the supply voltage of 1.2 V. A
more difficult task is to transform UPF specification to the
common representation. Based on the specified state of the
supply port connected to the primary supply net of PD_top, the
voltage level of the normal state is determined. Other supply
ports with specified states (such as VDD_1_1) imply the
presence of multiple voltages in the design, and thus the
presence of some diff_level state in the abstract specification.
The specified states of the power-switch output port
(power_domain1_SW/vout) serve as the basis for determination
of other possible power states of the power domain, to which
the switch belongs (i.e. drives its primary net). Based on the
specified power modes in the power-state table of the UPF
specification, the states of supply ports in the table are used to
determine the used voltages for individual power domains in
these power modes. In this way, we can observe that the
power_domain1_SW/vout port is in s_1_0 state in power mode
of power_mode1 and in s_1_2 state in power mode of
power_mode2. The port-state specification confirms that these
states correspond to 1 V and 1.2 V supply voltages.

A)

power_domain1 (normal,diff_level1,…);
normal (1 V, 50 MHz);
diff_level1 (1.2 V, 100 MHz);
power_mode1 (normal,…);
power_mode2 (diff_level1,…);

B)

supply_on("/TB/DUT/VDD_1_0_port", 1.0);
supply_on("/TB/DUT/VDD_1_1_port", 1.2);
…
create_supply_port VDD_1_0_port -domain PD_top
create_supply_port VDD_1_2_port -domain PD_top
create_supply_net VDD_1_0_net -domain PD_top
create_supply_net VDD_1_2_net -domain PD_top
create_supply_net VDD_power_domain1_net\
 -domain power_domain1
…
connect_supply_net VDD_1_0_net\
 -ports { VDD_1_0_port }
connect_supply_net VDD_1_2_net\
 -ports { VDD_1_2_port }
set_domain_supply_net power_domain1\
 -primary_power_net VDD_power_domain1_net\
 -primary_ground_net VSS_0_0_net
…
create_power_switch power_domain1_SW\
 -domain power_domain1\
 -input_supply_port {vin_1_0 VDD_1_0_net}\
 -input_supply_port {vin_1_2 VDD_1_2_net}\
 -output_supply_port {vout VDD_power_domain1_net}
…
add_port_state VDD_1_0_port -state { s_1_0 1.0 }
add_port_state VDD_1_2_port -state { s_1_2 1.2 }
add_port_state power_domain1_SW/vout\
 -state { s_1_0 1.0 }
add_port_state power_domain1_SW/vout\
 -state { s_1_2 1.2 }
…
create_pst PST -supplies { VDD_1_0_port
VDD_1_1_port power_domain1_SW/vout }
add_pst_state power_mode1 -pst PST\
 -state { s_1_0 s_1_2 s_1_0 }
add_pst_state power_mode2 -pst PST\
 -state { s_1_0 s_1_2 s_1_2 }
…

Fig. 4. An example for checking the power-intent equivalence. A) Abstract

power-management specification at the ESL. B) UPF power-intent

specification at the RTL.

The example just provides a simple insight into the
complex equivalence-checking process. There are other
aspects, which are not shown due to space limitation in this
paper. For example, the off port state represents the off or
off_ret abstract power state. The isolation of power-domain
inputs is used to determine the utilization of the hold state. If
the inputs are isolated, but the port driving the primary-supply
net of the domain does not have the off state specified, the hold
state has to be specified for the corresponding power domain in
the abstract specification. If there is the off state specified for
such a port, the isolation does not imply the hold abstract
power state. The presence of retention for some power domain
implies the off_ret abstract power state to be specified in the
ESL model. In this way, the common representation is
extracted from the UPF specification and can be used for
comparison to the ESL-extracted one.

E. Assertion-Based Verification

Based on the specified power management, assertions
about lower-level control sequences can be generated. Firstly,
the power states for each power domain are encoded using the
control signals for power-management elements. The number
of control signals for each domain depends on the number of
used supply voltages, the number of clock frequencies, and the
need for isolation and retention. The next step is to generate
sequences that control the power-states transitions. These
sequences include the intermediate power states, not specified
at the system-level (such as isolation or retention states). Based
on the specified power-state table, transitions between power
states of power domains are determined and sequences
generated. After the power-state encoding sequences and the
power-state transition sequences are defined, these can be used
to measure the coverage of the generated power management.
An assertions-aware simulator counts if and how many times a
property (represented by a sequence) has become true.
Moreover, power-states encoding sequences are grouped
together to define power-modes sequences. Thus, the designer
knows how well the design has been tested in the simulation
and what power modes yet need to be verified.

There is also a need to identify incorrect behavior of the
power-management unit, generating the control signals. There
are seven classes of illegal sequences, which reflect five
categories described in [12] and additional two that we added
(third and fourth). The properties representing these illegal
sequences are asserted in the opposite way. If some of these
properties evaluates true, an illegal sequence has occurred. The
classes of illegal sequences include:

• illegal restoration before power-on,

• illegal power-off before retention,

• illegal de-isolation before power-on,

• illegal power-off before isolation,

• illegal retention before isolation,

• illegal de-isolation before restoration, and

• illegal performance-level transition.

Besides the assertions checking these illegal sequences,
another three classes of control properties are asserted. One
controlling that isolation is enabled during retention period, one
controlling that isolation is enabled while powered-off, and the

last controlling that retention is activated while powered-off.
For now, we have used the generated assertions only in
simulation-based verification; however, work of [12] gives us
hope that they can also be used in formal property verification
of the power-management unit.

V. EXPERIMENTAL EVALUATION

We have evaluated the proposed verification approach by
validating the synthesized power management using the
existing industrial EDA (Electronic Design Automation) tool at
the RTL. This evaluation checked whether our verification
approach catches all errors, which would be otherwise detected
at the RTL, in the specification phase of the design process.

In this evaluation, we have used power-aware static
analysis offered by Modelsim SE 10.2c. We have created 15
samples of abstract power-management specification in
SystemC and synthesized them into the UPF form. In order
these samples to be representative we have used various
complexity of power management (from under two thousand to
over thirteen thousand characters in UPF specifications).
Modelsim successfully validated the generated UPF
specifications; thus, the proposed verification steps indeed
drive a designer to the correct power-management
specification. In addition to the static analysis, we have used
the power-aware simulation capabilities offered by Modelsim
to functionally verify the synthesized power management units.
Also, the communication between the PMU and power-
management elements in UPF is verified. For the simulation to
take place we had to create test-benches, in which the power
supplies were activated and the switching between various
power modes occurred (using pseudorandom approach). These
test-benches also contained the generated assertion (written in
SystemVerilog Assertions language), used for checking the
PMU functionality as well as for measuring the coverage
during the simulation.

Data for the used samples are provided in Table I. The first
column contains just the sample number for referencing. The
ESL column represents the number of characters required for
abstract power-management specification in SystemC. The
UPF column contains the number of characters of the
synthesized UPF specification. PMU represents the number of

TABLE I. POWER-MANAGEMENT VERIFICATION EVALUATION

SAMPLES

ESL UPF PMU Assert Directives Coverage

1 313 1680 3300 3863 10 100 %

2 500 2706 4452 4749 17 100 %

3 642 2850 4619 3194 15 100 %

4 643 6035 35205 25912 103 98 %

5 751 4658 8658 9488 29 100 %

6 760 4854 7017 10340 34 100 %

7 813 5678 10094 13433 41 97.5 %

8 862 5557 63304 17779 81 100 %

9 953 8778 142992 52330 175 81.1 %

10 1051 9399 131478 45150 156 96.1 %

11 1090 11605 586303 100721 421 85.5 %

12 1275 7443 199866 48111 146 89 %

13 1324 9039 107068 43833 172 91.2 %

14 1402 13397 67691 50911 126 99.2 %

15 1939 12232 214122 91620 188 82.4 %

characters required for functional description of the synthesized
power-management unit. The Assert column provides the
number of characters of the generated assertion statements. The
Directives column provides the number of explicit coverage
directives in the generated assertions. The last column
(Coverage) reflects the directive coverage reported by
Modelsim.

To achieve full coverage for each sample, another stimuli
generation approach should be used, such as directed testing.
The goal was to show that the generated assertions can be
directly used to verify the PMU and for coverage measurement,
what has been proved. The number of characters of assertion
statements can be really high; therefore, their automated
synthesis spare significant amount of time, required for the
manual verification preparation. Moreover, the human errors,
possibly introduced by such a manual process, are completely
avoided; thus, the debugging effort is reduced. The
experiments have also shown that all the verification steps and
proposed methods are scalable, since both the ESL static
analysis and the equivalence checking after the high-level
synthesis have taken only few seconds. The longest time is
taken by the generation of the assertions. However, compared
to the manual assertion creation, the proposed automated
method can save days, or even weeks, of design time.

VI. CONCLUSIONS

The power-management specification and synthesis
methods, which we have proposed in previous work, bring by
themselves undeniable verification benefits. The abstraction
from error-prone low-level details (e.g. power switches,
isolation or retention) results into very concise and intuitive
specification, avoiding many common power-management
errors. This paper describes a way how a designer is guided to
build a correct and complete abstract specification by
automated means of the syntactical checks during the
compilation, the run-time checks during the system-level
simulation, and the original static analysis during specification
creation and power-management synthesis. After the synthesis,
the equivalence between the generated specification and the
abstract power-management specification is verified by the
novel equivalence checking approach. Besides these
verification steps, the power-management synthesis generates
the controlling assertions, checking the correct operation of the
power-management unit. Also, the coverage assertions are
automatically generated for a designer to track the power-
modes verification progress.

In comparison to the analyzed existing approaches, we have
proposed the most robust power-management verification
approach. The early verification drives the designer to develop
a complete and consistent power-management specification at
the system level and the continuous verification steps during
design flow ensure that the power intent remains preserved.
Most of the verification steps are automated; thus, the
preparation and debugging verification processes are
significantly shortened.

The further work in this area can be oriented towards
automated test-bench synthesis, specifically to creation of

directed power-mode switching. It could provide a faster way
to completely verify the synthesized power management at the
RTL.

The possible next challenge is to properly generate power-
management control sequences for asynchronous systems. The
method [15] could help the PMU to know when the power state
can be switched in the corresponding power domain. It could
make power management to be more adaptive to the
environment. However, the verification of such a PMU could
be very difficult, since the generated assertions are strongly
clock-based.

REFERENCES

[1] IEEE standard for design and verification of low power integrated
circuits, IEEE Standard 1801-2013, May 2013.

[2] O. Mbarek, A. Pegatoquet, and M. Auguin, "Using unified power format
standard concepts for power-aware design and verification of systems-
on-chip at transaction level," IET Circuits, Devices & Systems, vol. 6,
no. 5, pp. 287-296, 2012.

[3] J. Karmann and W. Ecker, "The semantic of the power intent format
UPF: Consistent power modeling from system level to implementation,"
in 2013 23rd international workshop on power and timing modeling,
optimization and simulation (PATMOS), pp. 45-50.

[4] F. Mischkalla and W. Mueller, "Advanced SoC virtual prototyping for
system-level power planning and validation," in 2014 24th International
Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS), pp. 112-119.

[5] Y. Xu, R. Rosales, B. Wang, M. Streubühr, R. Hasholzner, C. Haubelt,
and J. Teich, "A very fast and quasi-accurate power-state-based system-
level power modeling methodology," in ARCS'12 Proceedings of the
25th international conference on architecture of computing systems,
2012, pp. 37-49.

[6] H. Lebreton and P. Vivet, "Power modeling in SystemC at transaction
level, Application to a DVFS architecture," in IEEE Computer society
annual symposium on VLSI, 2008, pp. 463-466.

[7] T. Bouhadiba, M. Moy, and F. Maraninchi, "System-level modeling of
energy in TLM for early validation of power and thermal management,"
in DATE '13 Proceedings of the conference on design, automation and
test in Europe, 2013, pp. 1609-1614.

[8] S. Ahuja, "High level power estimation and reduction techniques for
power aware hardware design," Ph.D. dissertation, Faculty of the
Virginia Polytechnic Institute and State University, 2010.

[9] D. Macko and K. Jelemenská, "Managing digital-system power at the
system level," in IEEE Africon 2013 Sustainable Engineering for a
Better Future, pp. 179-183.

[10] D. Macko, K. Jelemenská, and P. i ák, "Power-management
specification in SystemC," in 2015 IEEE 18th International Symposium
on Design and Diagnostics of Electronic Circuits and Systems, pp. 259-
262.

[11] D. Macko, K. Jelemenská, and P. i ák, “Power-management high-level
synthesis,” in The 23rd IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), 2015, pp. 63-68.

[12] A. Hazra, S. Goyal, P. Dasgupta and A. Pal, "Formal verification of
architectural power intent," IEEE Transaction on very large scale
integration (VLSI) systems, vol. 21, no. 1, pp. 78-91, January 2013.

[13] Cadence Design Systems, A Practical Guide to Low Power Design: User
Experience with CPF, 2012.

[14] N. Khan, "Cosed-loop verification methodology for low-power SoC
design," Special Technology Report – Low Power Design, no. 1, pp. 7-
8, September 2008.

[15] L. Nagy and V. Stopjaková, “Current sensing completion detection in
dual-rail asynchronous systems,” in 2012 IEEE 15th International
Symposium on Design and Diagnostics of Electronic Circuits and
Systems, pp. 28-41.

