
Early-Stage Verification of Power-Management 

Specification in Low-Power Systems Design 
 

Dominik Macko, Katarína Jelemenská, Pavel i ák 

Faculty of Informatics and Information Technologies 

Slovak University of Technology 

Bratislava, Slovakia 

dominik.macko@stuba.sk, katarina.jelemenska@stuba.sk, pavel.cicak@stuba.sk 

 

 
Abstract—Power consumption becomes a dominant problem 

in current hardware-systems design. It is most commonly dealt 

with use of power-management techniques, such as clock gating, 

power gating, or voltage and frequency scaling. In modern 

complex systems, power-management adoption is difficult to 

achieve, and therefore new approaches to simplify power-

managed systems design are evolving. We have also proposed 

such an approach, simplifying power-management specification 

at the system level of design abstraction. This paper describes the 

proposed verification approach, which can take place 

continuously, beginning at the early specification stage of the 

system development. It helps a designer to create correct and 

consistent specification of power management. 

Keywords—hardware design; low power; power management; 

specification; verification 

I.  INTRODUCTION 

In current complex systems, advanced power-reduction 
techniques are usually applied using some additional 
specification form, such as UPF (Unified Power Format) [1]. It 
enables a designer to introduce power-management aspects to 
the functional design, usually modelled in some HDL 
(Hardware Description Language). It was intended for RTL 
(Register-Transfer Level) and lower-level models. Although 
UPF has significantly helped designers to develop low-power 
systems, it is not suitable for modern design processes starting 
at the system level of abstraction. Therefore, new methods and 
methodologies have been developed to extend low-power 
design to the system level, such as [2]-[8]. Based on the 
analysis of their strengths and weaknesses (e.g. insufficient 
abstraction, missing automation, separated specifications), we 
have proposed a novel methodology for low-power systems 
design. It is based on the specification of abstract power 
management at the system level, and on the application of 
high-level synthesis to obtain an RTL model [9]-[11]. 

This paper focuses on the verification of the introduced 
power-management aspects at early stages of the design. In 
Section II, the related work is analyzed. Section III provides a 
brief background of the power management design strategy. In 
Section IV, the proposed verification approach is described. 
The experimental evaluation of the contributions is provided in 
Section V. And finally, Section VI concludes the paper. 

II. RELATED WORK 

Most of the existing methods and methodologies, oriented 
towards higher abstraction levels, target power-management 
introduction into the system design in an abstract manner. 
However, there are some which also target the verification 
problem accompanying the power-management specification. 
The verification methods and approaches used in the existing 
solutions are briefly analyzed in this section. 

The methodology described in [2] is oriented towards the 
abstraction of several UPF concepts to the transaction level. It 
enables power-architecture exploration at the system level; 
however, the power information must be manually annotated to 
the model. The used power-aware verification is based on 
assume and guarantee assertions, which are able to report error 
notifications during simulation. The assertions are generated 
automatically and are hidden to the designer. The disadvantage 
is that this kind of verification checks only whether the 
interaction between components is correct. It does not provide 
any information about the completeness of the power-
management specification. Since it depends on simulation-
based verification, it is time consuming. 

There are other methods [3]-[7], which are also focused on 
simulation-based verification only. Although the offered virtual 
prototyping speeds-up the simulation compared to the RTL 
functional verification, there are other aspects (such as 
specification completeness, consistency with functional model) 
which are not verified. The method used in [8] does not verify 
power management at the system level; rather it uses system-
level simulation traces to analyze power at the RTL. This 
analysis involves functional verification of the model. In 
modern complex systems, the designers cannot rely on 
simulation to properly verify the design. The verification must 
be combined with formal methods to address those aspects 
which are not verifiable by simulation (e.g. completeness). 

The method used in [12] uses a more formal approach. The 
lower-level inter-domain assertions regarding control-signal 
sequences are automatically translated into a form which 
enables their usage in the abstract architectural properties of the 
system. These properties can be then proved formally. The 
proposed method is indisputably useful; however, it still does 
not focus on a comprehensive verification of the introduced 
power-management aspects. 
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Based on the analysis of the existing methods, we have 
integrated into our low-power design methodology multiple 
verification steps, combining formal and informal approaches. 
Compared to the existing methods, our contribution is in three 
key methods, which are summarized below. 

• Power-management static analysis – a unique method 
enabling verification of the consistency between power-
management specification and functional specification 
at the system level of abstraction. Moreover, it enables 
verification of specification completeness, which helps 
the designer to refine the power management at early 
stages of the design. 

• Power-intent equivalence checking – an original 
method for comparison between specifications at the 
system level and RTL. It is very useful to verify 
whether the power intent remains the same after the 
automated high-level synthesis process. The 
equivalence is checked formally and the process is fully 
automated; thus, this verification step is very fast. 

• Automated synthesis of power-control assertions – it is 
not a completely original method (it has been inspired 
by [2] and [12]); however, we have integrated it into our 
high-level synthesis process in a unique form. The 
synthesized assertions monitor the power-management 
unit to behave functionally correctly. They are 
generated based on the abstract power-management 
specification only; thus, the designer is not required to 
specify any additional information. 

III. POWER MANAGEMENT IN SPECIFICATION 

According to our previously published work [9]-[11], 
power-management specification at the system level is based 
on power modes, power domains, and power states. Power 
state is an operation state of some system component, defined 
by the operating frequency and supply voltage. Power domain 
is a collection of system components that always operate in the 
same power state. System power mode is a combination of 
power states in individual power domains. The basic principle 
of power management is to dynamically switch between power 
modes of the system according to the current power 
requirements. The goal is to reduce energy consumption, while 
successfully completing the given task. 

A designer specifies the power management directly in the 
functional specification of the system. This specification 
contains the following. 

• Power domains – The designer specifies the name for 
each domain and a set of power states, in which the 
internal components can operate. The allowed abstract 
power states are predefined (such as normal, hold, off; 
refer to [11] for more details). 

• Component assignments – The designer assigns 
components to specific power domains. The 
components that always operate in the same power 
states are grouped into the same power domain. 

• Performance levels – The designer specifies the 
voltage-frequency pair for each active power state. 

• Power modes – The designer specifies the name for 
each power mode and a combination of power states 
(one power state for each power domain). 

• Management – The designer specifies the switching 
between power modes directly in the functional 
specification. 

Based on the specification at the system level (ESL), the 
UPF specification at the RTL is generated (see Fig. 1). Besides, 
the power-management unit (PMU), driving control signals for 
power-management elements in UPF, is automatically 
synthesized. Thus, the complex RTL power management is 
designed much faster using the proposed method. 

IV. THE PROPOSED HYBRID VERIFICATION APPROACH 

After the power management is specified, the specification 
has to be verified for functional and structural correctness and 
completeness [13]. This verification step needs to be 
accomplished as soon as possible, enabling the designer to 
create a correct specification. Since the model needs not be 
executable at early phases of design, a formal approach is 
suitable for this kind of verification. We use compilers to check 
syntactical correctness of the specification combined with a 
static analysis revealing functional and structural 
inconsistencies of the abstract power-management 
specification. 

The next step is to verify the correct functionality of the 
low-power system – this is usually accomplished by functional 
simulation. Since the abstract power-management specification 
does not model the effects on functionality, this verification 
step needs to be taken after the high-level synthesis process. At 
the RTL, the existing professional tools, such as Modelsim, can 
be used to simulate the synthesized UPF along with the 
functional design. As mentioned in [14], additional power-
management elements are often a rich source of errors and 
must be thoroughly verified for all specified operating modes. 
One of the advantages of the proposed methodology lies in the 
automation. Since the power-management specification at the 
RTL is automatically generated, we are able to avoid many 
power-related human errors issued during the power-
management insertion at such a later stage. The designer does 
not need to worry about specifying the low-level power-
management logic, such as power switches, isolation, retention, 
or level shifters. 

To assure the power intent is preserved during the high-
level synthesis, the equivalence checking between the 
generated UPF specification and the abstract power 
management is a suitable verification approach. The 

 
Fig. 1. Abstract view of the low-power design flow. 



synthesized power-management unit is ideal for the assertion-
based verification (ABV). The assertions can be generated for 
verification of control sequences as well as for functional-
coverage measurement. The control-sequences assertions are 
automatically generated in a way similar to [12]. 

The overview of the proposed verification approach is 
shown in Fig. 2. The used combination of verification 
techniques enables the low-level power-related logic to be 
verified (both by simulation and formally) based only on the 
system-level abstract specification. This simplifies the complex 
verification process (especially the preparation and debugging 
steps). 

A. Syntactic Checks 

The syntax of power-management specifications is 
automatically verified by compilers at the compilation time – 
the predefined language keywords drive a designer to the 
correct specification. Moreover, the syntactical rules in HSSL 
(Hardware-Software Specification Language) [9] assure that if 
the power domains section is present in the system 
specification, then at least one power domain has to be 
specified. Also, each power domain has to have at least one 
power state specified. Syntactical rules ensure that only the 
predefined abstract power states are valid. For example, they 
can also ensure that at least one power mode is specified. 

Such syntactic checks are not supported in SystemC-
integrated power-management specification [10]. It relies on 
the designer’s discipline to use the predefined power-
management macros, ensuring correct specification. C++ 
modelling introduced to the extension library ensures that only 
the valid specified power mode is assigned to the variable 
representing the current power mode, and that the instances can 
be assigned only to the existing power domains. These issues 
are not revealed by the syntactic checks in HSSL. The 
mentioned unrevealed issues (in both the HSSL and SystemC) 
are checked-for in other forms of verification – during an 
execution time or through the static analysis. 

B. Run-Time Checks 

In SystemC extension library, the run-time checks reveal 
several errors that could not be revealed by a compiler. These 
checks are implemented in the traditional conditional manner. 
If the condition is true, the error message notifies the designer 
what is incorrectly specified. This verification form checks for 
the valid power states assigned to the power domains and to the 
power modes. In order to ensure that the designer does not 
cause the violation of this condition, the predefined power-state 
macros should be used. This kind of verification can also reveal 

the problem of specifying some state for some power domain 
more than once. 

C. Static Analysis 

This form of verification is mainly intended to reveal the 
power-management inconsistencies that could not be revealed 
in the previous verification steps. It statically analyses the 
specification and checks the specified identifiers and 
assignments, related to the power-management specification. It 
is integrated into the high-level synthesis process but can also 
be used as a separate step to verify the specification in an early 
stage of development. 

For example, the static analysis checks whether each power 
mode has the same number of power states as the number of 
power domains in the system. Also, it reveals the problem if 
some component instance is assigned to multiple power 
domains, or if some power domain does not contain any active 
power state. The static analysis also detects redundant parts of 
the specification (e.g. multiple power modes with the same 
combination of power states in power domains) and notifies the 
designer about their location. This verification step is a very 
helpful utility, driving the designer in early versions of the 
specification. The static analysis can be also used for 
verification of the power-management specification 
completeness. It detects missing required constructs, such as at 
least one active power state in a power domain, at least one 
power mode of the system, or missing power state in a power 
mode (i.e. power state is missing for some power domain in 
that power mode). This is very useful for the creation of early 
versions of power management. It significantly shortens 
debugging time. 

An example of abstract power-management specification is 
illustrated in Fig. 3. The highlighted text represents the 
detected problems. The static analysis would detect that the 
normal power state of power domain named power_domain1 is 
not used in any specified power mode (the power state of 
power_domain1 corresponds to the first position of states in a 
power mode). The designer would be notified that the 
performance level for the normal state is not assigned. An error 
would be reported regarding the incorrect number of power 
states in power_mode1. The static analysis would detect that 
power_mode3 is not used in the functional part of the 
specification (i.e. the module constructor or some process) – 
i.e. such a mode is redundant. Because of that, there would also 

 
Fig. 2. Verification process overview. 

power_domain1 (off,normal,diff_level1); 
power_domain2 (hold,normal,diff_level2); 
diff_level1 (0.8 V, 5 MHz); 
diff_level2 (1.2 V, 100 MHz); 
system_component instance1(power_domain1); 
system_component instance2(power_domain2); 
power_mode1 (off,hold,normal); 
power_mode2 (diff_level1,normal); 
power_mode3 (diff_level1,diff_level2); 
POWER_MODE = power_mode1; 
 
... 
 
if (control_condition) 
  POWER_MODE = power_mode2; 
else 
  POWER_MODE = power_mode1; 

Fig. 3. An example of static-analysis error detection. 



be a notification that the diff_level2 power state of 
power_domain2 is not used. 

D. Equivalence Checking 

After the high-level synthesis, verification of power-
management specification equivalency takes place. The power 
intent is extracted from the UPF and verified whether it 
corresponds to the abstract power-management specification at 
the ESL. Since the UPF contains only voltage aspects of the 
power management (frequency aspects are contained in the 
functional model), a common representation should be used for 
the comparison. Thus, even the system-level abstract power-
management specification has to be translated into this 
common representation, in which the power states are 
represented by the corresponding voltage levels. 

The common representation is formally expressed by a 
tuple CR=(PDI,PDS,PM), where PDI is a finite set of tuples 
(IDd, I), where I is a finite set of instances assigned to the 
power domain represented by an identifier IDd; PDS is a finite 
set of tuples (IDd, VS), where VS is a finite set of voltage states 
enabled in the power domain represented by an identifier IDd; 
and PM is a finite set of tuples (IDm, S), where S is a finite 
sequence of voltage states corresponding to power states 
representing the power mode with an identifier IDm. 

When checking the equivalence between two 
specifications, we must distinguish between the power-
management structural equivalence and the power-intent 
equivalence. The first one checks whether all specified aspects 
at the ESL are present in the generated UPF specification. The 
second one checks whether the power intent is preserved. The 
specifications do not need to be structurally equivalent to have 
the same power intent. 

By an analysis of the UPF power-management 
specification, a quasi-reverse process to the high-level 
synthesis is used to extract the common representation. Firstly, 
the lists of power domains are compared. The ESL 
specification has to contain all UPF domains except for the top 
domain (implicitly added to the specification). To be 
structurally equivalent, the UPF specification also has to 
contain all domains in abstract specification. For the 
comparison purpose, the domains identifiers are used. The lists 
of assigned instances to each power domain have to be the 
same. In addition, the power states of power domains and the 
power modes with specific power-states combinations are 
compared. For the structural equivalency, the original abstract 
specification is used. For the power-intent equivalency, the 
abstract specification is modified using the optimization 
decisions (e.g. removal of redundant parts of the specification). 
This verification step produces error messages, which drives 
the designer to the source of an error, speeding-up the 
debugging process. 

The equivalence-checking process can be explained using 
the example provided in Fig. 4. The figure contains two 
fragments of power-intent specifications at different abstraction 
levels. The fragment A) represents the specification at the 
system level of abstraction. Its transformation to the common 
representation is pretty straightforward. The power states in the 
specified power modes are translated to the voltage states based 

on the performance-level assignments. Thus, power_mode1 
specifies that the components in power_domain1 operate at the 
supply voltage of 1 V. Similarly, power_mode2 specifies that 
these components operate at the supply voltage of 1.2 V. A 
more difficult task is to transform UPF specification to the 
common representation. Based on the specified state of the 
supply port connected to the primary supply net of PD_top, the 
voltage level of the normal state is determined. Other supply 
ports with specified states (such as VDD_1_1) imply the 
presence of multiple voltages in the design, and thus the 
presence of some diff_level state in the abstract specification. 
The specified states of the power-switch output port 
(power_domain1_SW/vout) serve as the basis for determination 
of other possible power states of the power domain, to which 
the switch belongs (i.e. drives its primary net). Based on the 
specified power modes in the power-state table of the UPF 
specification, the states of supply ports in the table are used to 
determine the used voltages for individual power domains in 
these power modes. In this way, we can observe that the 
power_domain1_SW/vout port is in s_1_0 state in power mode 
of power_mode1 and in s_1_2 state in power mode of 
power_mode2. The port-state specification confirms that these 
states correspond to 1 V and 1.2 V supply voltages. 

A)

power_domain1 (normal,diff_level1,…); 
normal (1 V, 50 MHz); 
diff_level1 (1.2 V, 100 MHz); 
power_mode1 (normal,…); 
power_mode2 (diff_level1,…); 

B)

supply_on("/TB/DUT/VDD_1_0_port", 1.0); 
supply_on("/TB/DUT/VDD_1_1_port", 1.2); 
… 
create_supply_port VDD_1_0_port -domain PD_top 
create_supply_port VDD_1_2_port -domain PD_top 
create_supply_net VDD_1_0_net -domain PD_top 
create_supply_net VDD_1_2_net -domain PD_top 
create_supply_net VDD_power_domain1_net\ 
 -domain power_domain1 
… 
connect_supply_net VDD_1_0_net\ 
 -ports { VDD_1_0_port } 
connect_supply_net VDD_1_2_net\ 
 -ports { VDD_1_2_port } 
set_domain_supply_net power_domain1\ 
 -primary_power_net VDD_power_domain1_net\ 
 -primary_ground_net VSS_0_0_net 
… 
create_power_switch power_domain1_SW\ 
 -domain power_domain1\ 
 -input_supply_port {vin_1_0 VDD_1_0_net}\ 
 -input_supply_port {vin_1_2 VDD_1_2_net}\ 
 -output_supply_port {vout VDD_power_domain1_net} 
… 
add_port_state VDD_1_0_port -state { s_1_0 1.0 } 
add_port_state VDD_1_2_port -state { s_1_2 1.2 } 
add_port_state power_domain1_SW/vout\ 
 -state { s_1_0 1.0 } 
add_port_state power_domain1_SW/vout\ 
 -state { s_1_2 1.2 } 
… 
create_pst PST -supplies { VDD_1_0_port 
VDD_1_1_port power_domain1_SW/vout } 
add_pst_state power_mode1 -pst PST\ 
 -state { s_1_0 s_1_2 s_1_0 } 
add_pst_state power_mode2 -pst PST\ 
 -state { s_1_0 s_1_2 s_1_2 } 
… 

Fig. 4. An example for checking the power-intent equivalence. A) Abstract 

power-management specification at the ESL. B) UPF power-intent 

specification at the RTL. 



The example just provides a simple insight into the 
complex equivalence-checking process. There are other 
aspects, which are not shown due to space limitation in this 
paper. For example, the off port state represents the off or 
off_ret abstract power state. The isolation of power-domain 
inputs is used to determine the utilization of the hold state. If 
the inputs are isolated, but the port driving the primary-supply 
net of the domain does not have the off state specified, the hold 
state has to be specified for the corresponding power domain in 
the abstract specification. If there is the off state specified for 
such a port, the isolation does not imply the hold abstract 
power state. The presence of retention for some power domain 
implies the off_ret abstract power state to be specified in the 
ESL model. In this way, the common representation is 
extracted from the UPF specification and can be used for 
comparison to the ESL-extracted one. 

E. Assertion-Based Verification 

Based on the specified power management, assertions 
about lower-level control sequences can be generated. Firstly, 
the power states for each power domain are encoded using the 
control signals for power-management elements. The number 
of control signals for each domain depends on the number of 
used supply voltages, the number of clock frequencies, and the 
need for isolation and retention. The next step is to generate 
sequences that control the power-states transitions. These 
sequences include the intermediate power states, not specified 
at the system-level (such as isolation or retention states). Based 
on the specified power-state table, transitions between power 
states of power domains are determined and sequences 
generated. After the power-state encoding sequences and the 
power-state transition sequences are defined, these can be used 
to measure the coverage of the generated power management. 
An assertions-aware simulator counts if and how many times a 
property (represented by a sequence) has become true. 
Moreover, power-states encoding sequences are grouped 
together to define power-modes sequences. Thus, the designer 
knows how well the design has been tested in the simulation 
and what power modes yet need to be verified. 

There is also a need to identify incorrect behavior of the 
power-management unit, generating the control signals. There 
are seven classes of illegal sequences, which reflect five 
categories described in [12] and additional two that we added 
(third and fourth). The properties representing these illegal 
sequences are asserted in the opposite way. If some of these 
properties evaluates true, an illegal sequence has occurred. The 
classes of illegal sequences include: 

• illegal restoration before power-on, 

• illegal power-off before retention, 

• illegal de-isolation before power-on, 

• illegal power-off before isolation, 

• illegal retention before isolation, 

• illegal de-isolation before restoration, and 

• illegal performance-level transition. 

Besides the assertions checking these illegal sequences, 
another three classes of control properties are asserted. One 
controlling that isolation is enabled during retention period, one 
controlling that isolation is enabled while powered-off, and the 

last controlling that retention is activated while powered-off. 
For now, we have used the generated assertions only in 
simulation-based verification; however, work of [12] gives us 
hope that they can also be used in formal property verification 
of the power-management unit. 

V. EXPERIMENTAL EVALUATION 

We have evaluated the proposed verification approach by 
validating the synthesized power management using the 
existing industrial EDA (Electronic Design Automation) tool at 
the RTL. This evaluation checked whether our verification 
approach catches all errors, which would be otherwise detected 
at the RTL, in the specification phase of the design process. 

In this evaluation, we have used power-aware static 
analysis offered by Modelsim SE 10.2c. We have created 15 
samples of abstract power-management specification in 
SystemC and synthesized them into the UPF form. In order 
these samples to be representative we have used various 
complexity of power management (from under two thousand to 
over thirteen thousand characters in UPF specifications). 
Modelsim successfully validated the generated UPF 
specifications; thus, the proposed verification steps indeed 
drive a designer to the correct power-management 
specification. In addition to the static analysis, we have used 
the power-aware simulation capabilities offered by Modelsim 
to functionally verify the synthesized power management units. 
Also, the communication between the PMU and power-
management elements in UPF is verified. For the simulation to 
take place we had to create test-benches, in which the power 
supplies were activated and the switching between various 
power modes occurred (using pseudorandom approach). These 
test-benches also contained the generated assertion (written in 
SystemVerilog Assertions language), used for checking the 
PMU functionality as well as for measuring the coverage 
during the simulation. 

Data for the used samples are provided in Table I. The first 
column contains just the sample number for referencing. The 
ESL column represents the number of characters required for 
abstract power-management specification in SystemC. The 
UPF column contains the number of characters of the 
synthesized UPF specification. PMU represents the number of 

TABLE I.  POWER-MANAGEMENT VERIFICATION EVALUATION 

SAMPLES 

# ESL UPF PMU Assert Directives Coverage

1 313 1680 3300 3863 10 100 % 

2 500 2706 4452 4749 17 100 % 

3 642 2850 4619 3194 15 100 % 

4 643 6035 35205 25912 103 98 % 

5 751 4658 8658 9488 29 100 % 

6 760 4854 7017 10340 34 100 % 

7 813 5678 10094 13433 41 97.5 % 

8 862 5557 63304 17779 81 100 % 

9 953 8778 142992 52330 175 81.1 % 

10 1051 9399 131478 45150 156 96.1 % 

11 1090 11605 586303 100721 421 85.5 % 

12 1275 7443 199866 48111 146 89 % 

13 1324 9039 107068 43833 172 91.2 % 

14 1402 13397 67691 50911 126 99.2 % 

15 1939 12232 214122 91620 188 82.4 % 



characters required for functional description of the synthesized 
power-management unit. The Assert column provides the 
number of characters of the generated assertion statements. The 
Directives column provides the number of explicit coverage 
directives in the generated assertions. The last column 
(Coverage) reflects the directive coverage reported by 
Modelsim. 

To achieve full coverage for each sample, another stimuli 
generation approach should be used, such as directed testing. 
The goal was to show that the generated assertions can be 
directly used to verify the PMU and for coverage measurement, 
what has been proved. The number of characters of assertion 
statements can be really high; therefore, their automated 
synthesis spare significant amount of time, required for the 
manual verification preparation. Moreover, the human errors, 
possibly introduced by such a manual process, are completely 
avoided; thus, the debugging effort is reduced. The 
experiments have also shown that all the verification steps and 
proposed methods are scalable, since both the ESL static 
analysis and the equivalence checking after the high-level 
synthesis have taken only few seconds. The longest time is 
taken by the generation of the assertions. However, compared 
to the manual assertion creation, the proposed automated 
method can save days, or even weeks, of design time. 

VI. CONCLUSIONS 

The power-management specification and synthesis 
methods, which we have proposed in previous work, bring by 
themselves undeniable verification benefits. The abstraction 
from error-prone low-level details (e.g. power switches, 
isolation or retention) results into very concise and intuitive 
specification, avoiding many common power-management 
errors. This paper describes a way how a designer is guided to 
build a correct and complete abstract specification by 
automated means of the syntactical checks during the 
compilation, the run-time checks during the system-level 
simulation, and the original static analysis during specification 
creation and power-management synthesis. After the synthesis, 
the equivalence between the generated specification and the 
abstract power-management specification is verified by the 
novel equivalence checking approach. Besides these 
verification steps, the power-management synthesis generates 
the controlling assertions, checking the correct operation of the 
power-management unit. Also, the coverage assertions are 
automatically generated for a designer to track the power-
modes verification progress. 

In comparison to the analyzed existing approaches, we have 
proposed the most robust power-management verification 
approach. The early verification drives the designer to develop 
a complete and consistent power-management specification at 
the system level and the continuous verification steps during 
design flow ensure that the power intent remains preserved. 
Most of the verification steps are automated; thus, the 
preparation and debugging verification processes are 
significantly shortened. 

The further work in this area can be oriented towards 
automated test-bench synthesis, specifically to creation of 

directed power-mode switching. It could provide a faster way 
to completely verify the synthesized power management at the 
RTL. 

The possible next challenge is to properly generate power-
management control sequences for asynchronous systems. The 
method [15] could help the PMU to know when the power state 
can be switched in the corresponding power domain. It could 
make power management to be more adaptive to the 
environment. However, the verification of such a PMU could 
be very difficult, since the generated assertions are strongly 
clock-based. 
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