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Abstract—High power density is the most crucial problem in 

deeply integrated hardware systems. Therefore, the power has to 

be reduced in such systems, what is most commonly achieved by 

the utilization of power management. Unfortunately, the 

standardized application of power management is quite complex 

and does not very well support the system level of design 

abstraction, which is increasingly used by the industry. An 

immediately applicable solution to this problem is to use 

increased automation in the design process, regarding the power 

management. This paper proposes a tool, called PMS2UPF, 

which can automatically generate the standard UPF (Unified 

Power Format) power intent based on the abstract power-

management specification in SystemC/PMS. The automated 

transition between the two abstraction levels not only accelerates 

the design process, but also prevents possible introduction of 

human errors into the refined design. 

Keywords—design automation; electronic system level; high 

level synthesis; low power electronics; power control 

I.   INTRODUCTION 

In the recent times, the power and the corresponding energy 
consumption are the key design issues when developing a 
modern hardware system. It does not matter if we want to 
prolong the battery life of mobile devices, to cut down the 
energy costs of server farms and data centers, or to prevent the 
overheating of highly integrated systems-on-chips (SoC). All 
of these goals have contributed to the rising significance of the 
power-management support integration into the hardware 
design process. It is nowadays supported in various ways: there 
are built-in power-management constructs in some hardware 
description languages (HDLs) [1], there are extension libraries 
for HDLs (PowerSC [2] or PMS – Power Management 
Specification [3]), or there even exist specification languages 
dedicated to capturing the power intent (UPF – Unified Power 
Format [4] or CPF – Common Power Format [5]). 

The power management enables to adopt various power-
reduction techniques [5], such as clock gating, voltage and 
frequency scaling, power shut-off, operand isolation, and 
others. One of the most basic concepts of power management 
is to split the system into the so-called power domains. The 
power domain represents a set of system modules with the 
same power supply. The idea is to dynamically change the 
operation state (power state) of the power domains and thus to 
save power or redirect it to other parts of the system. The 

standard way of power-management adoption is using the UPF 
or CPF power-intent specification alongside the HDL model, 
as illustrated in Fig. 1 (P & R item represents the place and 
route process). However, the commonly used design-
automation tools support these formats at the register-transfer 
level (RTL) and at the lower abstraction levels, where current 
complex systems are difficult to manage manually. The design 
automation at the system level (ESL), which is nowadays a 
common design starting point (because of the ever-growing 
systems complexity), does not currently support power-intent 
synthesis. Instead, the UPF/CPF power-intent specification has 
to be designed manually to accompany the synthetized ESL 
functional specification. Since the standardly used design 
language at the ESL is SystemC [6], several standard and 
custom techniques to include power specification in SystemC 
have been developed (see Section II). However, these 
techniques either do not offer enough abstraction needed for 
ESL, or do not offer automated transition to the lower levels. 

In this paper, a tool is introduced, called PSM2UPF, which 
can automatically analyze the ESL specification model in 
SystemC/PMS, extract the abstract power-management 
specification, create additional power-intent components, 
required at the RTL, and generate the standard UPF 
specification supported by the commonly used power-analysis 

 
Fig. 1 Typical use of UPF in low-power design flow [4]. 
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tools. In the next section, the state of the art is presented. In 
Section III, the UPF synthesis method implemented in the 
proposed tool is described. Section IV is focused on the 
experimental evaluation and verification of the tool. And 
finally, the conclusions are summarized in Section V. 

II.  RELATED WORK 

To support the ESL, the UPF standard has been recently 
updated [7]. It has standardized a way, in which a designer can 
specify power consumption of an IP (Intellectual Property) 
block in multiple power states. This enabled the design-
automation tools to analyze and to estimate power at the ESL. 
However, it is not standardized how the power information is 
obtained. It is most commonly obtained from the previously 
implemented designs. Therefore, it is not suitable for the top-
down design approach. Also, the specification of power 
management uses low-level details (e.g. power-supply 
networks), which are not suitable for the ESL. 

PowerSC [2], TLM Power3 [8], and PKtool [9] represent 
extension libraries for SystemC that enable a designer to 
monitor and estimate power consumption. However, these 
libraries do not provide functions to manage it, and therefore 
the resulting estimations might be highly inaccurate when the 
power management is used in the system. On the other hand, 
Power Modelling Framework [10] enables to model power-
management at the ESL. The main limitation of the method is 
that it uses customized power-intent modelling with no 
connection to the standard power-intent specification at the 
lower levels. Thus, the verification of power-intent equivalency 
is difficult to achieve. 

PwARCH [11] represents a framework for ESL power-
management modelling, which is based on the abstracted UPF 
specification. The power-intent specification is separated from 
the functional specification, which is not very convenient for a 
designer at such an early design stage. Moreover, transition to 
the RTL is mostly manual. The LP-HLS methodology [12] 
seems to be more automated. It is based on a generic power-
management module description at the system level, which is 
then used to generate CPF directives for implementation. 
However, it is focused only on the power shut-off technique, 
which is not sufficient in the complex SoC designs. 

In PMS library [3], the abstract UPF concepts are used as 
well, this time directly integrated into the SystemC functional 
specification. The power-management high abstraction level 
enables a designer to focus on the functionality. However, the 
power management is only specified at the ESL, not modelled. 
Therefore, the power can be analyzed only later, in the RTL 
model. For this reason the fast and automated UPF synthesis 
tool would be required to enable fast design-space exploration, 
based on the design alternatives comparison. 

A.  Comparison of PMS and UPF 

The PMS [3] extension library is based on the UPF 
concepts. It means that it also uses power domains to group the 
system components, always operating in the same power states. 
However, the power state is not dependent only on the power 
supply, but also on the operation frequency of the component. 
In UPF, a power state is defined by a combination of values of 

control signals for the power-management elements (e.g. 
power switches or isolation cells). These elements are 
abstracted away in PMS, and therefore they must be introduced 
during the high-level synthesis (targeted in this paper). For 
further simplification of the power-management specification, 
PMS defines the power mode. It is a specific combination of 
power states in individual power domains. A designer can then 
switch the power mode of the whole system rather than set 
appropriate power state (control-signals values) of each power 
domain. This is an abstract view of the UPF power-state table. 

To summarize, PMS enables a designer to assign 
components to power domains, to specify power states in 
which the components of the domain can operate, to define a 
voltage-frequency pair for each active power state, to specify 
power modes in which the system can operate, and to specify 
switching among power modes. 

In PMS several predefined power states are available and 
each of them implies application of some power-reduction 
technique. These predefined power states and their implication 
to UPF constructs are briefly described below. 

    1)  NORMAL 
In this power state no explicit power-reduction technique is 

used, so the UPF power domain is supplied by the system main 
supply net (i.e. the primary supply net of the top domain). The 
components of the domain in this state are operating at the 
primary supply voltage and at the basic frequency of the 
system (the frequency cannot be modelled in UPF). 

    2)  HOLD 
This state represents the usage of clock-gating and operand-

isolation techniques. All input signals (clock included) of a 
power domain in this state are isolated, meaning that isolation 
cells and isolation control constructs must be specified in UPF. 

    3)  DiffLevel 
This state means that a performance level different to the 

normal one is used in the domain. It means that the voltage, or 
frequency, or both are different to those used in the NORMAL 
power state. This power state enables to apply the voltage and 
frequency scaling power-reduction technique, or to use 
multiple fixed voltages/frequencies in the system. Multiple 
possible voltages in the power domain imply the power switch 
in the UPF specification. If there is a high difference between 
the voltages of interconnected power domains, the level shifter 
is also required. 

    4)  OFF 
This power state represents an application of the power 

shut-off technique. The power supply of the domain is 
switched-off; therefore, the power switch is required in UPF. 
Moreover, inputs and outputs of the power domain must be 
isolated to prevent unnecessary power dissipation; therefore, 
the isolation cells are also required in UPF. 

    5)  OFF_RET 
In this power state, the power shut-off with the state 

retention is applied. There are the same implications to UPF as 
in case of the OFF power state; however, the retention must be 
set for the domain in this state in UPF. 



III.  ESL TO RTL TRANSITION PROCESS 

As it was mentioned in the introductory section, the 
PMS2UPF tool transforms the power management, specified in 
SystemC with PMS constructs, to the equivalent UPF 
specification. This transformation process consists of three 
basic steps illustrated in Fig. 2. The first step is the analysis of 
the input specification files, which identifies the important 
constructs in the design (e.g. modules, power domains). In the 
next step, the objects of important design structures are created, 
which are necessary for RTL power-intent specification 
(supply nets, power switches, isolation cells etc.). The created 
object model is then used in the last step for generation of the 
UPF specification. These steps are executed in this order. The 
following subsections contain a more detailed description of 
these steps.  

A.  ESL Model Analysis 

This step involves parsing of the SystemC source code 
mixed with the PMS specification. An example of input 
SystemC/PMS specification is provided in Fig. 3. In the figure, 
a part of the SystemC module constructor is illustrated, in 
which the system0 module contains four components (CPU – 
representing microprocessor, and M1, M2, M3 – representing 
memories). There are two power domains specified, PD1 and 
PD2, each has assigned components and power states it can 
operate in. There are three power modes specified (PM1, PM2, 
and PM3), which represent a combination of power states in 
power domains. For example, the specification of PM1 implies 
that PD1 operates in NORMAL power state and PD2 operates 
in DiffLevel(1) power state. It means that when the system is 
switched into this power mode, the power states of power 
domains are correspondingly adjusted. Finally, there are 
voltage and frequency values assigned to the NORMAL and 

DiffLevel(1) power states. More on the SystemC/PMS 
specification can be found in [3]. 

For the code-analysis purpose, we have developed a custom 
parser. The parser loads all source files and extracts module 
definitions from them. Each module is stored in a dedicated 
string structure, what simplifies the further analysis. These 
module-representing strings are further split into a list of 
smaller tokens by using semicolons and composed brackets. 
Several iterations through the tokens are then necessary in 
order to extract required information (e.g. sub-modules, ports, 
channels, PMS constructs) from these tokens, which is then 
used to fill the objects in the next transformation step. 

Several issues had to be solved in implementation of the 
parser: 

• Some information required for UPF commands cannot 
be extracted from the PMS specification. Therefore, the 
SystemC design has to be also analyzed. 

• Module and port identifiers are not known beforehand; 
therefore, declarations and definitions of the modules 
have to be recognized. The parser iterates over the 
tokens multiple times, which prolongs the analysis 
process. There is a potential for future optimization of 
this algorithm. 

• The designer’s coding style in the input files is not 
known beforehand (e.g. whitespaces, brackets, number 
of lines and number of modules per file). Therefore, a 
robust solution has to be developed, which tokenizes the 
files and purifies tokens from redundant characters 
(whitespaces, semicolon, brackets). 

• Some tokens include comments or SystemC constructs 
that do not influence the power management. Therefore, 
the parser has to distinguish the required tokens from 
the unnecessary ones. 

B.  Object Model Construction 

The goal of this step is to create a list of objects that include 
all the information required to create a proper UPF 
specification at the RTL. The object model will therefore 
contain not only the information extracted in the previous step, 
but also the more-detailed UPF-required information. There are 
dedicated objects created that represent individual UPF 
commands. It must be noted that only the fractional 
information about those objects is explicitly specified in PMS 
specification; therefore, the missing data has to be determined 
by analysis of relations of the specified objects. To be more 
specific, in the analyzed ESL specification, there is no 
information regarding the supply nets, power switches, 
isolation cells, level shifters, retention cells, or power-state 
table. However, this information can be deduced based on the 
abstract power states, structural dependencies of the system 
components (e.g. hierarchy, communication), and relations 
among power domains implied by the abstract power modes. 

For example, in case of the PM2 power mode in Fig. 3, the 
first power domain is powered down and the second one is on. 
It implies that the first power domain requires a power switch 
to take it down. To prevent unnecessary switching power to be 

 

Fig. 3 SystemC/PMS source-code fragment. 

 
Fig. 2 Power intent transformation steps. 



consumed, the input signals of this domain should be isolated; 
therefore, the isolation cells are added in front of the input 
ports. Eventually, the output ports must also be isolated in case 
of inter-domains communication, in order to prevent wrong 
values propagation. Such a deduction is fully automated, what 
saves time and avoids potential human errors.  

The internal object model consists of three parts (see 
Fig. 4): 

• Abstract model – includes object prototypes 
representing some specific parts of the SystemC design. 
For example, each type of module is represented by one 
object prototype, which is then used to create individual 
instances of the module. 

• Specific model – includes objects representing instances 
of the modules and other constructs of the SystemC 
design with the PMS specification. These objects 
contain all data required for UPF generation. 

• Auxiliary objects – have only the supplementary roles 
for creation of abstract and specific models. For 
example, there is an object representing a connection of 
a port to a channel. These objects just simplify the 
implementation. 

C.  UPF Specification Synthesis 

The developed UPF generator sequentially iterates through 
the lists of created objects, representing UPF specification, and 
generates the required UPF commands based on the objects. 
After the commands are generated, they are concatenated and 
written to a text file. However, in order to generate a correct 
UPF specification, we have to follow some constrains: 

• The correct order of the UPF commands has to be 
preserved. For example, the power domains have to be 
created before the supply nets can be generated. 

• The structural dependencies among some UPF 
commands have to be respected. For example, the 
number of power switch control ports is dependent on 
the number of voltage levels the corresponding power 
domain can operate at. 

 An example of a UPF code fragment, obtained as an output 
from the PMS2UPF tool is provided in Fig. 5. More 
specifically, the provided UPF code includes specification of 
power domains (PD1, PD2, and implicit PD_TOP), the supply 
net and the supply port sn_1, and one power switch 
ps_system0_PD1. The tool also generates isolation cells, level 
shifter cells, retention cells, and power-state table. These are 

not shown in the figure. Even when the abstract power-intent 
specification using the PMS library is quite simple (such as the 
one in the example in Fig. 3) a complete UPF specification can 
require hundreds of lines. For simplified illustration purpose, 
full output is not provided. Even from this simple example, one 
can see that the proposed automation is really helpful. In 
average the UPF complexity is about five times higher 
compared to the PMS complexity [3]. 

IV.  EXPERIMENTAL EVALUATION 

For an experimental evaluation of the proposed tool, we 
have designed a simple case-study SoC, consisting of one 
microprocessor mu0 and three memories ram0 (RTL 
description of the components is available in [13]). They are 
interconnected using a memory controller, which selects the 
memory with which the microprocessor will communicate 
based on the address at the address bus. We have described this 
system in SystemC code in order to mimic top-down design 
and to use the proposed ESL to RTL transition process. The 
SoC architecture overview is provided in Fig. 6. This system 
also corresponds to the examples provided in Fig. 3 and Fig. 5. 
We have incorporated into this system various power-
management specifications in PMS, synthesized the UPF 
specifications and verified the results. Correctness of the 
generated UPF specifications has been verified using the 
professional verification tool Questa Power Aware Simulator 
[14], especially its UPF static checks. 

In Table I, experimental results are provided for six test 
cases. The first column contains test-case number. PD 
represents the number of power domains in the PMS 

 
Fig. 4 Internal object model composition. 

Fig. 5 An example of the generated UPF specification fragment. 

 
Fig. 6 The case-study system architecture overview. 



specification, PM represents the number of power modes in the 
PMS specification, and PS contains power states that have been 
used in the PMS specification. The next column (UPF chars) 
represents the number of characters generated in the UPF 
specification, SW represents the number of generated power 
switches, ISO represents the number of generated isolation 
cells and SN represents the number of supply nets in the UPF 
specification. The last column states whether the UPF 
specification is correct as reported by the utilized verification 
tool. We can see in the table that the tool has synthesized the 
correct UPF specification in all the test cases. 

The only available comparable tool is the one used in [15], 
called PMHLS. The difference between these two tools is that 
PMHLS is a complex experimental system, which has not been 
developed for actual SystemC designs but for artificial PMS 
samples. As we have shown in our experiments, PMS2UPF is 
able to work with a real-life SoC. PMHLS can use only single-
file input and PMS2UPF operates with unlimited designs. 
Moreover, PMS2UPF can be easily used in a complex design 
environment because of its simple command line interface. 
This cannot be done with PMHLS. 

V.  CONCLUSIONS 

In this paper the PMS2UPF tool has been described, which 
speeds-up the transition between ESL and RTL abstraction 
levels during the design process. More specifically, it is 
dedicated to the power-intent specification; therefore, it is 
usable in low-power systems designs. The proposed tool 
enables the designers using the SystemC/PMS abstract 
specification to easily convert their power intent into the UPF 
standard. It replaces a time-consuming manual synthesis 
process, and thus it not only saves time but also reduces the 
possibility of introducing human errors into the design. It 
simplifies the validation and debugging process. The designed 
tool provides a simple command line user interface, which 
makes it easy to use in more robust development platforms, but 
also it provides a graphical user interface to be usable as a 
standalone tool. 

Future enhancements can be oriented towards optimization 
of the analysis algorithm, reducing the number of iterations 
through the tokens, or to support other output formats, such as 
CPF – to be used in Cadence’s design toolchain. 
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TABLE I.  TESTING RESULTS 

Test 

case PD PM PS 

UPF 

chars SW ISO SN RESULT

1 3 3 NORMAL, HOLD 2145 0 3 2 correct 

2 4 4 

NORMAL, 

HOLD, OFF, 

OFF_RET, 
DIFF_LEVEL(1), 

DIFF_LEVEL(2) 

5091 4 2 4 correct 

3 3 3 
NORMAL, OFF, 

OFF_RET 
5113 4 4 2 correct 

4 2 3 

NORMAL, OFF, 

OFF_RET, 

DIFF_LEVEL(1) 

3421 2 2 3 correct 

5 0 0 (NORMAL) 497 0 0 2 correct 

6 1 7 

NORMAL, 

HOLD, OFF, 

OFF_RET, 
DIFF_LEVEL(1), 

DIFF_LEVEL(2), 

DIFF_LEVEL(3) 

3214 1 1 5 correct 

 


