
PMS2UPF: An Automated Transition from ESL to

RTL Power-Intent Specification

Miroslav Siro, Dominik Macko, Katarína Jelemenská

Faculty of Informatics and Information Technologies

Slovak University of Technology

Bratislava, Slovakia

miroslav.siro@stuba.sk, dominik.macko@stuba.sk, katarina.jelemenska@stuba.sk

Abstract—High power density is the most crucial problem in

deeply integrated hardware systems. Therefore, the power has to

be reduced in such systems, what is most commonly achieved by

the utilization of power management. Unfortunately, the

standardized application of power management is quite complex

and does not very well support the system level of design

abstraction, which is increasingly used by the industry. An

immediately applicable solution to this problem is to use

increased automation in the design process, regarding the power

management. This paper proposes a tool, called PMS2UPF,

which can automatically generate the standard UPF (Unified

Power Format) power intent based on the abstract power-

management specification in SystemC/PMS. The automated

transition between the two abstraction levels not only accelerates

the design process, but also prevents possible introduction of

human errors into the refined design.

Keywords—design automation; electronic system level; high

level synthesis; low power electronics; power control

I. INTRODUCTION

In the recent times, the power and the corresponding energy
consumption are the key design issues when developing a
modern hardware system. It does not matter if we want to
prolong the battery life of mobile devices, to cut down the
energy costs of server farms and data centers, or to prevent the
overheating of highly integrated systems-on-chips (SoC). All
of these goals have contributed to the rising significance of the
power-management support integration into the hardware
design process. It is nowadays supported in various ways: there
are built-in power-management constructs in some hardware
description languages (HDLs) [1], there are extension libraries
for HDLs (PowerSC [2] or PMS – Power Management
Specification [3]), or there even exist specification languages
dedicated to capturing the power intent (UPF – Unified Power
Format [4] or CPF – Common Power Format [5]).

The power management enables to adopt various power-
reduction techniques [5], such as clock gating, voltage and
frequency scaling, power shut-off, operand isolation, and
others. One of the most basic concepts of power management
is to split the system into the so-called power domains. The
power domain represents a set of system modules with the
same power supply. The idea is to dynamically change the
operation state (power state) of the power domains and thus to
save power or redirect it to other parts of the system. The

standard way of power-management adoption is using the UPF
or CPF power-intent specification alongside the HDL model,
as illustrated in Fig. 1 (P & R item represents the place and
route process). However, the commonly used design-
automation tools support these formats at the register-transfer
level (RTL) and at the lower abstraction levels, where current
complex systems are difficult to manage manually. The design
automation at the system level (ESL), which is nowadays a
common design starting point (because of the ever-growing
systems complexity), does not currently support power-intent
synthesis. Instead, the UPF/CPF power-intent specification has
to be designed manually to accompany the synthetized ESL
functional specification. Since the standardly used design
language at the ESL is SystemC [6], several standard and
custom techniques to include power specification in SystemC
have been developed (see Section II). However, these
techniques either do not offer enough abstraction needed for
ESL, or do not offer automated transition to the lower levels.

In this paper, a tool is introduced, called PSM2UPF, which
can automatically analyze the ESL specification model in
SystemC/PMS, extract the abstract power-management
specification, create additional power-intent components,
required at the RTL, and generate the standard UPF
specification supported by the commonly used power-analysis

Fig. 1 Typical use of UPF in low-power design flow [4].

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:

M. Siro, D. Macko and K. Jelemenská, "PMS2UPF: An automated transition from ESL to RTL power-intent specification," 2017

IEEE 20th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Dresden, 2017, pp.

140-144.

doi: 10.1109/DDECS.2017.7934558

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7934558&isnumber=7934552

tools. In the next section, the state of the art is presented. In
Section III, the UPF synthesis method implemented in the
proposed tool is described. Section IV is focused on the
experimental evaluation and verification of the tool. And
finally, the conclusions are summarized in Section V.

II. RELATED WORK

To support the ESL, the UPF standard has been recently
updated [7]. It has standardized a way, in which a designer can
specify power consumption of an IP (Intellectual Property)
block in multiple power states. This enabled the design-
automation tools to analyze and to estimate power at the ESL.
However, it is not standardized how the power information is
obtained. It is most commonly obtained from the previously
implemented designs. Therefore, it is not suitable for the top-
down design approach. Also, the specification of power
management uses low-level details (e.g. power-supply
networks), which are not suitable for the ESL.

PowerSC [2], TLM Power3 [8], and PKtool [9] represent
extension libraries for SystemC that enable a designer to
monitor and estimate power consumption. However, these
libraries do not provide functions to manage it, and therefore
the resulting estimations might be highly inaccurate when the
power management is used in the system. On the other hand,
Power Modelling Framework [10] enables to model power-
management at the ESL. The main limitation of the method is
that it uses customized power-intent modelling with no
connection to the standard power-intent specification at the
lower levels. Thus, the verification of power-intent equivalency
is difficult to achieve.

PwARCH [11] represents a framework for ESL power-
management modelling, which is based on the abstracted UPF
specification. The power-intent specification is separated from
the functional specification, which is not very convenient for a
designer at such an early design stage. Moreover, transition to
the RTL is mostly manual. The LP-HLS methodology [12]
seems to be more automated. It is based on a generic power-
management module description at the system level, which is
then used to generate CPF directives for implementation.
However, it is focused only on the power shut-off technique,
which is not sufficient in the complex SoC designs.

In PMS library [3], the abstract UPF concepts are used as
well, this time directly integrated into the SystemC functional
specification. The power-management high abstraction level
enables a designer to focus on the functionality. However, the
power management is only specified at the ESL, not modelled.
Therefore, the power can be analyzed only later, in the RTL
model. For this reason the fast and automated UPF synthesis
tool would be required to enable fast design-space exploration,
based on the design alternatives comparison.

A. Comparison of PMS and UPF

The PMS [3] extension library is based on the UPF
concepts. It means that it also uses power domains to group the
system components, always operating in the same power states.
However, the power state is not dependent only on the power
supply, but also on the operation frequency of the component.
In UPF, a power state is defined by a combination of values of

control signals for the power-management elements (e.g.
power switches or isolation cells). These elements are
abstracted away in PMS, and therefore they must be introduced
during the high-level synthesis (targeted in this paper). For
further simplification of the power-management specification,
PMS defines the power mode. It is a specific combination of
power states in individual power domains. A designer can then
switch the power mode of the whole system rather than set
appropriate power state (control-signals values) of each power
domain. This is an abstract view of the UPF power-state table.

To summarize, PMS enables a designer to assign
components to power domains, to specify power states in
which the components of the domain can operate, to define a
voltage-frequency pair for each active power state, to specify
power modes in which the system can operate, and to specify
switching among power modes.

In PMS several predefined power states are available and
each of them implies application of some power-reduction
technique. These predefined power states and their implication
to UPF constructs are briefly described below.

 1) NORMAL
In this power state no explicit power-reduction technique is

used, so the UPF power domain is supplied by the system main
supply net (i.e. the primary supply net of the top domain). The
components of the domain in this state are operating at the
primary supply voltage and at the basic frequency of the
system (the frequency cannot be modelled in UPF).

 2) HOLD
This state represents the usage of clock-gating and operand-

isolation techniques. All input signals (clock included) of a
power domain in this state are isolated, meaning that isolation
cells and isolation control constructs must be specified in UPF.

 3) DiffLevel
This state means that a performance level different to the

normal one is used in the domain. It means that the voltage, or
frequency, or both are different to those used in the NORMAL
power state. This power state enables to apply the voltage and
frequency scaling power-reduction technique, or to use
multiple fixed voltages/frequencies in the system. Multiple
possible voltages in the power domain imply the power switch
in the UPF specification. If there is a high difference between
the voltages of interconnected power domains, the level shifter
is also required.

 4) OFF
This power state represents an application of the power

shut-off technique. The power supply of the domain is
switched-off; therefore, the power switch is required in UPF.
Moreover, inputs and outputs of the power domain must be
isolated to prevent unnecessary power dissipation; therefore,
the isolation cells are also required in UPF.

 5) OFF_RET
In this power state, the power shut-off with the state

retention is applied. There are the same implications to UPF as
in case of the OFF power state; however, the retention must be
set for the domain in this state in UPF.

III. ESL TO RTL TRANSITION PROCESS

As it was mentioned in the introductory section, the
PMS2UPF tool transforms the power management, specified in
SystemC with PMS constructs, to the equivalent UPF
specification. This transformation process consists of three
basic steps illustrated in Fig. 2. The first step is the analysis of
the input specification files, which identifies the important
constructs in the design (e.g. modules, power domains). In the
next step, the objects of important design structures are created,
which are necessary for RTL power-intent specification
(supply nets, power switches, isolation cells etc.). The created
object model is then used in the last step for generation of the
UPF specification. These steps are executed in this order. The
following subsections contain a more detailed description of
these steps.

A. ESL Model Analysis

This step involves parsing of the SystemC source code
mixed with the PMS specification. An example of input
SystemC/PMS specification is provided in Fig. 3. In the figure,
a part of the SystemC module constructor is illustrated, in
which the system0 module contains four components (CPU –
representing microprocessor, and M1, M2, M3 – representing
memories). There are two power domains specified, PD1 and
PD2, each has assigned components and power states it can
operate in. There are three power modes specified (PM1, PM2,
and PM3), which represent a combination of power states in
power domains. For example, the specification of PM1 implies
that PD1 operates in NORMAL power state and PD2 operates
in DiffLevel(1) power state. It means that when the system is
switched into this power mode, the power states of power
domains are correspondingly adjusted. Finally, there are
voltage and frequency values assigned to the NORMAL and

DiffLevel(1) power states. More on the SystemC/PMS
specification can be found in [3].

For the code-analysis purpose, we have developed a custom
parser. The parser loads all source files and extracts module
definitions from them. Each module is stored in a dedicated
string structure, what simplifies the further analysis. These
module-representing strings are further split into a list of
smaller tokens by using semicolons and composed brackets.
Several iterations through the tokens are then necessary in
order to extract required information (e.g. sub-modules, ports,
channels, PMS constructs) from these tokens, which is then
used to fill the objects in the next transformation step.

Several issues had to be solved in implementation of the
parser:

• Some information required for UPF commands cannot
be extracted from the PMS specification. Therefore, the
SystemC design has to be also analyzed.

• Module and port identifiers are not known beforehand;
therefore, declarations and definitions of the modules
have to be recognized. The parser iterates over the
tokens multiple times, which prolongs the analysis
process. There is a potential for future optimization of
this algorithm.

• The designer’s coding style in the input files is not
known beforehand (e.g. whitespaces, brackets, number
of lines and number of modules per file). Therefore, a
robust solution has to be developed, which tokenizes the
files and purifies tokens from redundant characters
(whitespaces, semicolon, brackets).

• Some tokens include comments or SystemC constructs
that do not influence the power management. Therefore,
the parser has to distinguish the required tokens from
the unnecessary ones.

B. Object Model Construction

The goal of this step is to create a list of objects that include
all the information required to create a proper UPF
specification at the RTL. The object model will therefore
contain not only the information extracted in the previous step,
but also the more-detailed UPF-required information. There are
dedicated objects created that represent individual UPF
commands. It must be noted that only the fractional
information about those objects is explicitly specified in PMS
specification; therefore, the missing data has to be determined
by analysis of relations of the specified objects. To be more
specific, in the analyzed ESL specification, there is no
information regarding the supply nets, power switches,
isolation cells, level shifters, retention cells, or power-state
table. However, this information can be deduced based on the
abstract power states, structural dependencies of the system
components (e.g. hierarchy, communication), and relations
among power domains implied by the abstract power modes.

For example, in case of the PM2 power mode in Fig. 3, the
first power domain is powered down and the second one is on.
It implies that the first power domain requires a power switch
to take it down. To prevent unnecessary switching power to be

Fig. 3 SystemC/PMS source-code fragment.

Fig. 2 Power intent transformation steps.

consumed, the input signals of this domain should be isolated;
therefore, the isolation cells are added in front of the input
ports. Eventually, the output ports must also be isolated in case
of inter-domains communication, in order to prevent wrong
values propagation. Such a deduction is fully automated, what
saves time and avoids potential human errors.

The internal object model consists of three parts (see
Fig. 4):

• Abstract model – includes object prototypes
representing some specific parts of the SystemC design.
For example, each type of module is represented by one
object prototype, which is then used to create individual
instances of the module.

• Specific model – includes objects representing instances
of the modules and other constructs of the SystemC
design with the PMS specification. These objects
contain all data required for UPF generation.

• Auxiliary objects – have only the supplementary roles
for creation of abstract and specific models. For
example, there is an object representing a connection of
a port to a channel. These objects just simplify the
implementation.

C. UPF Specification Synthesis

The developed UPF generator sequentially iterates through
the lists of created objects, representing UPF specification, and
generates the required UPF commands based on the objects.
After the commands are generated, they are concatenated and
written to a text file. However, in order to generate a correct
UPF specification, we have to follow some constrains:

• The correct order of the UPF commands has to be
preserved. For example, the power domains have to be
created before the supply nets can be generated.

• The structural dependencies among some UPF
commands have to be respected. For example, the
number of power switch control ports is dependent on
the number of voltage levels the corresponding power
domain can operate at.

 An example of a UPF code fragment, obtained as an output
from the PMS2UPF tool is provided in Fig. 5. More
specifically, the provided UPF code includes specification of
power domains (PD1, PD2, and implicit PD_TOP), the supply
net and the supply port sn_1, and one power switch
ps_system0_PD1. The tool also generates isolation cells, level
shifter cells, retention cells, and power-state table. These are

not shown in the figure. Even when the abstract power-intent
specification using the PMS library is quite simple (such as the
one in the example in Fig. 3) a complete UPF specification can
require hundreds of lines. For simplified illustration purpose,
full output is not provided. Even from this simple example, one
can see that the proposed automation is really helpful. In
average the UPF complexity is about five times higher
compared to the PMS complexity [3].

IV. EXPERIMENTAL EVALUATION

For an experimental evaluation of the proposed tool, we
have designed a simple case-study SoC, consisting of one
microprocessor mu0 and three memories ram0 (RTL
description of the components is available in [13]). They are
interconnected using a memory controller, which selects the
memory with which the microprocessor will communicate
based on the address at the address bus. We have described this
system in SystemC code in order to mimic top-down design
and to use the proposed ESL to RTL transition process. The
SoC architecture overview is provided in Fig. 6. This system
also corresponds to the examples provided in Fig. 3 and Fig. 5.
We have incorporated into this system various power-
management specifications in PMS, synthesized the UPF
specifications and verified the results. Correctness of the
generated UPF specifications has been verified using the
professional verification tool Questa Power Aware Simulator
[14], especially its UPF static checks.

In Table I, experimental results are provided for six test
cases. The first column contains test-case number. PD
represents the number of power domains in the PMS

Fig. 4 Internal object model composition.

Fig. 5 An example of the generated UPF specification fragment.

Fig. 6 The case-study system architecture overview.

specification, PM represents the number of power modes in the
PMS specification, and PS contains power states that have been
used in the PMS specification. The next column (UPF chars)
represents the number of characters generated in the UPF
specification, SW represents the number of generated power
switches, ISO represents the number of generated isolation
cells and SN represents the number of supply nets in the UPF
specification. The last column states whether the UPF
specification is correct as reported by the utilized verification
tool. We can see in the table that the tool has synthesized the
correct UPF specification in all the test cases.

The only available comparable tool is the one used in [15],
called PMHLS. The difference between these two tools is that
PMHLS is a complex experimental system, which has not been
developed for actual SystemC designs but for artificial PMS
samples. As we have shown in our experiments, PMS2UPF is
able to work with a real-life SoC. PMHLS can use only single-
file input and PMS2UPF operates with unlimited designs.
Moreover, PMS2UPF can be easily used in a complex design
environment because of its simple command line interface.
This cannot be done with PMHLS.

V. CONCLUSIONS

In this paper the PMS2UPF tool has been described, which
speeds-up the transition between ESL and RTL abstraction
levels during the design process. More specifically, it is
dedicated to the power-intent specification; therefore, it is
usable in low-power systems designs. The proposed tool
enables the designers using the SystemC/PMS abstract
specification to easily convert their power intent into the UPF
standard. It replaces a time-consuming manual synthesis
process, and thus it not only saves time but also reduces the
possibility of introducing human errors into the design. It
simplifies the validation and debugging process. The designed
tool provides a simple command line user interface, which
makes it easy to use in more robust development platforms, but
also it provides a graphical user interface to be usable as a
standalone tool.

Future enhancements can be oriented towards optimization
of the analysis algorithm, reducing the number of iterations
through the tokens, or to support other output formats, such as
CPF – to be used in Cadence’s design toolchain.

ACKNOWLEDGMENT

This work was supported by the Slovak Scientific Grant
Agency (VEGA 1/0836/16), the Slovak Research and
Development Agency (APVV-15-0789), and the Ministry of
Education, Science, Research and Sport of the Slovak Republic
within the Research and Development Operational Programme
for the project “University Science Park of STU Bratislava”,
ITMS 26240220084, co-funded by the European Regional
Development Fund.

REFERENCES

[1] D. Macko and K. Jelemenská, “Managing digital-system power at the
system level,” in IEEE Africon 2013 Sustainable Engineering for a
Better Future, 2013, pp. 179-183.

[2] F. Klein, R. Azevedo, L. Santos, and G. Araujo, “SystemC-based power
evaluation with PowerSC,” in Electronic System Level Design: An
Open-Source Approach, S. Rigo, R. Azevedo and L. Santos, Eds.
Springer, 2011, pp. 129-144.

[3] D. Macko, K. Jelemenská, and P. i ák, “Power-management
specification in SystemC,” in 2015 IEEE 18th International Symposium
on Design and Diagnostics of Electronic Circuits and Systems, pp. 259-
262.

[4] IEEE Standard for Design and Verification of Low Power Integrated
Circuits, IEEE Standard 1801-2013, May 2013.

[5] Cadence Design Systems, A Practical Guide to Low Power Design: User
Experience with CPF, 2009.

[6] IEEE Standard for Standard SystemC Language Reference Manual,
IEEE Standard 1666-2011, Jan. 2012.

[7] IEEE Standard for Design and Verification of Low-Power, Energy-
Aware Electronic Systems, IEEE Standard 1801-2015, Dec. 2015.

[8] D. Greaves and M. Yasin, “TLM POWER3: Power estimation
methodology for SystemC TLM 2.0,” in Models, Methods, and Tools
for Complex Chip Design, LNEE, vol. 265, J. Haase Ed. Springer, 2014,
pp. 53-68.

[9] “PKtool: Power estimation in SystemC,” [Online]. Available:
http://pktool.sourceforge.net/

[10] H. Lebreton and P. Vivet, “Power modeling in SystemC at transaction
level, Application to a DVFS architecture,” in IEEE Computer Society
Annual Symposium on VLSI, 2008, pp. 463-466.

[11] O. Mbarek, A. Pegatoquet, and M. Auguin, “Using unified power format
standard concepts for power-aware design and verification of systems-
on-chip at transaction level,” IET Circuits, Devices & Systems, vol. 6,
no. 5, pp. 287-296, 2012.

[12] A. Qamar, F.B. Muslim, J. Iqbal, and L. Lavagno, “LP-HLS: Automatic
power-intent generation for high-level synthesis based hardware
implementation flow,” Microprocessors and Microsystems, vol. 50, pp.
26-38, May 2017.

[13] A. Rogers, “Designing a simple system-on-a-chip in under 60 minutes
with the mu0 microprocessor and Xilinx tools,” 2003. [Online]. Tutorial.
Available: http://www.ece.uah.edu/~lacasa/tutorials/mu0/mu0tutorial.
html

[14] Mentor Graphics, “Questa Power Aware Simulator: Verify active power
management.” [Online]. Available: https://www.mentor.com/products/
fv/questa-power-aware-simulator

[15] D. Macko, K. Jelemenská, and P. i ák, “Power-management high-level
synthesis,” in The 23rd IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), 2015, pp. 63-68.

TABLE I. TESTING RESULTS

Test

case PD PM PS

UPF

chars SW ISO SN RESULT

1 3 3 NORMAL, HOLD 2145 0 3 2 correct

2 4 4

NORMAL,

HOLD, OFF,

OFF_RET,
DIFF_LEVEL(1),

DIFF_LEVEL(2)

5091 4 2 4 correct

3 3 3
NORMAL, OFF,

OFF_RET
5113 4 4 2 correct

4 2 3

NORMAL, OFF,

OFF_RET,

DIFF_LEVEL(1)

3421 2 2 3 correct

5 0 0 (NORMAL) 497 0 0 2 correct

6 1 7

NORMAL,

HOLD, OFF,

OFF_RET,
DIFF_LEVEL(1),

DIFF_LEVEL(2),

DIFF_LEVEL(3)

3214 1 1 5 correct

