
Contribution to Automated Generating of System 

Power-Management Specification 
 

Dominik Macko 

Faculty of Informatics and Information Technologies 

Slovak University of Technology 

Bratislava, Slovakia 

dominik.macko@stuba.sk 

 

 
Abstract—Nowadays, the electronic system design is 

constrained by several factors. One of them is the system power 

consumption, since many devices have limited energy source (e.g. 

Internet of Things sensor devices) – they run on batteries or are 

powered by energy harvesting from environment. The so-called 

power management is usually adopted during system design to 

minimize power consumption of the system under development, 

which enables to apply very popular power-reduction techniques, 

such as clock gating, power gating, or voltage and frequency 

scaling. The specification of power management is not an easy 

task, and therefore in our previous work, we have proposed a 

simplification method by increasing abstraction and automation 

of the design process. In this paper, we are taking the design 

automation one more step forward by proposal of a method that 

enables automated specification of system power management 

using the system architecture and abstract simulation results. 

The automatically generated power management can reduce the 

power by tens of percent as showed by the experiments. 

Keywords—design automation; hardware design; low power; 
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I.  INTRODUCTION 

The continuously increasing power density in modern 
complex Systems-on-Chips (SoCs) causes packaging and 
cooling problems and can potentially damage the device [1]. 
Therefore, the power reduction is one of the key issues during 
the system development. Another point of view is that many 
mobile devices (e.g. smart phones, laptops, or wearable 
electronics) and Internet-of-Things (IoT) sensor devices [2] 
(e.g. video camera, or humidity and temperature monitoring 
device) are powered by batteries or by limited amount of 
energy harvested from the system environment. For such 
devices, energy efficiency is very important and reduction of 
energy consumption can prolong lifetime of the device, reduce 
maintenance costs, or can enable new features and more 
functions of the device. 

Therefore, in any modern electronic system, the power 
must be properly managed. The power management as a 
concept enables to switch the system operating modes 
according to current needs – i.e. not used components are 
powered down, or at least switched to some low-power state to 
save the available energy. This is accomplished by application 
of the power-reduction techniques, such as clock gating, power 

gating, or voltage and frequency scaling [1]. The supporting 
logics and structures behind these techniques and their 
introduction to the system design are rather complicated, which 
prolongs the development time. Therefore, the design-
automation techniques are evolving also in this sphere. 

The International technology roadmap for semiconductors 
[3] suggested the adoption of an abstract electronic system 
level (ESL) in the design process to cope with the increasing 
design complexity and to improve the design productivity. The 
ESL slowly becomes the design starting point in the industry 
and there are methods developed to raise the abstraction level 
for adoption of power management into the design. In our 
previous work, we have also proposed such a method in [4], 
which was targeted to system-level specification of abstract 
power management for a SoC design. We have also integrated 
automated power-management high-level synthesis [5] to the 
design process to speed-up the system development. And 
finally, we have enhanced power-management verification at 
early design stages [6], which also contributes to development 
process speed-up. 

In this paper, we are going one more step forward in 
automated power-management specification. We have 
proposed a method that takes a system-level functional model 
(i.e. a SystemC algorithmic model) as an input and 
automatically provides the abstract power-management 
specification for this model (in SystemC/PMS). It is especially 
useful for designers who are not familiar with power-reduction 
techniques to design an energy-efficient low-power system. 

The paper is organized as follows. In the next section, the 
existing works related to this problem area are analyzed. The 
Section 3 is focused on description of the proposed automation 
method for power-management introduction. We provide 
experimental results in Section 4, and Section 5 concludes the 
paper. 

II. RELATED WORKS 

There exist several works automating the transformation 
from a more abstract specification of power intent to a more 
detailed implementation. For example, professional tools (e.g. 
Power Compiler [7] or Genus Synthesis Solution [8]) 
commonly accept a power-intent specification in the 
standardized UPF (Unified Power Format) [9] or widely spread 
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CPF (Common Power Format) [10] at the RTL (Register-
Transfer Level) abstraction, and automate its transition to lower 
levels. However, the specification of power intent at RTL is 
complex and it must itself be automated to increase 
productivity. 

Using a system-level specification and automated UPF/CPF 
synthesis is obvious way to deal with the complexity. Such an 
approach was used in [11]. It proposed a SCPower extension 
for SystemC modelling, which enables to specify power intent 
directly in SystemC design, perform power-aware verification, 
and generate the corresponding UPF file. However, it uses the 
RTL power-intent abstraction level, and is focused more on 
enabling power-aware verification of SystemC designs. 
Therefore, from a specification perspective it represents just 
another way of annotating the required information. Thus, the 
supported UPF generation represents rewriting of that 
information from one form to another. Another approach [12] 
proposed a LP-HLS methodology. It enables to specify power 
intent regarding the usage of power gating technique in 
SystemC model and generates the corresponding CPF 
specification at RTL. It offers a simplified specification with 
respect to [11], but it enables a limited number of power-
reduction techniques (power gating, and perhaps operand 
isolation). The used abstraction is also not very suitable for 
system level. The methodology requires also specification of 
used cells and isolation rules, or specification of isolation 
activating and power-gating activating signals. Thus, it also 
seems more like a rewriting procedure than high-level 
synthesis of CPF specification. In our previous work [5], we 
have incorporated even more abstraction, in which all the 
control signals and power-management low-level elements are 
synthesized automatically. The proposed PMHLS method not 
only synthesizes specification in UPF, but also description of 
the corresponding power-management unit in RTL functional 
model. Beside the power-gating and isolation techniques, it 
supports also voltage and frequency scaling, clock gating, and 
multi-voltage designs. 

Based on the current state-of-the-art, we focused our work, 
presented in this paper, to automate the power-management 
specification even more. The goal is to automatically specify as 
much power-related information as possible to alleviate design 
aspects on which a designer must focus at early design stages. 

III. A NEW POWER-MANAGEMENT SPECIFICATION 

AUTOMATION METHOD 

In order to understand what aspects can be automatically 
specified for proper introduction of power management into the 
system design, we firstly present the underlying specification 
model. If we selected the standard power intent specification in 
UPF, the automation would be very complicated. The reason is 
that it was primarily developed for RTL and lower abstraction 
levels. The result is that a designer must specify low-level 
details regarding the power management, such as power supply 
networks, power switches, or isolation and retention cells. Such 
information is unsuitable for early design stages, where the 
designer must primarily focus on system functional aspects. 
And introduction of the power management at later design 
stages makes the system verification unbearable. Therefore, we 
have chosen the abstract power-management specification 

model, proposed in our previous work [4]. This model is 
briefly described in the following subsection. 

A. The Underlying Specification Model 

The abstract power-management specification model is 
based on five key aspects: power domains with power states, 
power modes, component assignments, performance levels, 
and policy. 

1) Power domains 
A power domain is a collection of system components that 

operate in the identical power states during the system lifetime. 
The specification of a power domain includes its identifier and 
a set of power states, in which the domain components can 
operate. There are five predefined abstract power states, 
summarized in Table 1. 

2) Power modes 
A power mode of the system is a specific combination of 

power states in power domains (i.e. one power state per 
domain). The specification of a system power mode consists of 
its identifier and a sequence of power states. The order of 
specified power states is important, because the first power 
state is the state of the firstly specified power domain, the 
second state relates to the second domain, and so on. The 
number of states in a power-mode specification has to match 
the number of power domains in the system. 

3) Component assignments 
The system components must be explicitly assigned to the 

specified power domains in order the system be split into parts 
that can be powered separately (i.e. operate in different power 
states). The specification connects identifier of a power domain 
with an identifier of a component. There can be multiple 
components in a power domain, but one component cannot be 
assigned to multiple domains. 

4) Performance levels 
A performance level represents a specific combination of 

voltage and frequency values. It must be explicitly specified for 
active power states (NORMAL and DIFF_LEVEL), since it 

TABLE I.  THE PREDEFINED ABSTRACT POWER STATES 

Power State Overview 

OFF, 

OFF_RET 

A component is not powered in order to save energy. 

In case of OFF_RET, the state of memory elements of 

the component is retained. These power states 
represent application of the power-gating technique. 

HOLD 

A component is powered, but it stops operation in 

order to reduce dynamic power consumption. It 

represents application of the clock gating and operand 
isolation techniques.  

DIFF_LEVEL 

A component operates at the performance level higher 

or lower than the basic performance level of the 
system (i.e. either the voltage or operation frequency 

differs). Such a power state enables to use multiple 

fixed voltages or frequencies in the system. It also 
enables application of dynamic voltage and frequency 

scaling power-reduction techniques. 

NORMAL 

A component operate at the basic performance level 

of the system (i.e. it uses the primary voltage and 
clock supplies). Meaning that no power-reduction 

technique is explicitly applied in this power state. 

 



cannot be deduced. HOLD has the frequency nulled and the 
voltage is the lowest voltage level specified in the domain. 
OFF and OFF_RET have both parameters nulled. The 
specification includes the power state, the voltage value and the 
frequency value. 

5) Power-managment policy 
The power-management policy represents the specification 

of a control function, which defines how and when the power 
mode of the system is switched. It is the key aspect, which 
enables dynamic power management during the system 
runtime. It can switch the system into some energy-saving 
power mode or it can redirect the power from currently 
unneeded components to others, what can speed-up the 
operation. Since the power-management policy is part of the 
functional specification, there is no predefined way of 
specification of this aspect – i.e. usual software or hardware 
functional design can be used. 

B. The Specification-Automation Method Requirements 

Based on the analysis of related works and using of the 
previously described underlying specification model, we have 
stated the following requirements for the method. 

• Analysis of the system model – the method must be 
able to parse the functional specification of the 
modelled system and analyze structural dependencies 
among the components. 

• Analysis of the simulation results – in order to make 
proper decisions regarding the power-management 
specification, the method must be able to analyze the 
runtime behavior of the system. 

• Partitioning of the system into power domains – based 
on analysis of the components activity, the method 
should group the components that are active during the 
same time periods into the same power domains. 

• Selection of power states for power domains – based on 
the analysis of the system behavior, the method must 
specify suitable power states, in which the components 
can operate. 

• Selection of allowed power modes – the method must 
be able to provide a list of actually required power 
modes, in order to minimize the generation of unneeded 
power-management elements at later design stages. 

• Generation of the power-management specification – 
the method must automatically generate the source code 
specifying the mentioned aspects. 

• Integration into the system model – the method should 
integrate the generated specification directly into the 
system functional model. 

• Verification of the generated specification – the method 
should provide means to check whether the 
specification is complete and consistent with the 
functional model. 

The proposed method fulfilling these requirements is more 
closely described in the following subsection. 

C. The Proposed Method 

As one can notice from the stated requirements for the 
method, it consists from multiple parts: analysis part, 
specification part, generation part, and verification part. The 
method overview is illustrated in Fig. 1. 

1) System analysis 
This part of the method is focused on the first two 

requirements regarding analysis of the system model and 
system-level simulation results. An input of the analysis part is 
a SystemC model of the system and simulation results in the 
VCD (Value Change Dump) form. The goal is to parse the 
model source files and to obtain a hierarchy of SystemC 
modules (representing system components definitions), their 
identifiers, input/output and state variables, identify clock 
variables for each component, identify a top module 
(representing the whole system), and identify vector-variables 
representing interconnections among the components. The next 
step is to analyze the VCD file and to obtain time intervals, in 
which the system components are active and in which they are 
just waiting. A component is considered active, if its variables 
are switching values during that time interval. All the analyzed 
objects and data are then filled into the prepared structures and 
passed to the specification part of the proposed method. 

2) Power-related specification 
This part covers the next three requirements regarding 

specification of power domains, power states, and power 
modes. Using the analyzed information about time intervals of 
components activity, the components that are active in the 

 
Fig. 1. The proposed method overview. 



same time intervals and inactive in the others are assigned into 
the same power domain. The result is that these components 
are managed together, and therefore the power management is 
more efficient. 

Then, the power states are specified for power domains. For 
inactive periods, a power domain must contain some passive 
power state (HOLD, OFF, OFF_RET). Which of the passive 
states is the most suitable depends on length of time intervals. 
Since both off power states represent the power-gating 
technique application, it takes time to power down and power 
up the components. Therefore, there is a threshold value 
representing a limit, above which it is beneficial to power 
down the domain and under which the HOLD power state is 
used (just isolating the input variables is quick enough). This 
limit depends on the implementation technology, thus must be 
set by a designer. If the components of a power domain contain 
state variables (i.e. memory elements), the OFF_RET state is 
used instead of OFF. Usually, there are multiple inactive time 
intervals with various lengths. Thus, both HOLD and OFF (or 
OFF_RET) power states can be specified for a power domain. 

Then, a decision has to be made about using NORMAL or 
some DIFF_LEVEL power state for active time intervals. A 
default active state is NORMAL. The DIFF_LEVEL is a group 
of power states, where each of them operates at a different 
voltage and/or frequency level. The number of these states has 
to be provided by a designer, along with their voltage and 
frequency parameters (depending on what voltages and 
frequencies the implementation technology will support). For 
selections of a DIFF_LEVEL power state, inter-domain 
communications are analyzed. When a situation is found that 
some domain is active and another connected domain is 
waiting for its computation to finish, the power of the first 
domain can be increased to shorten the operation time. On the 
other hand, the power of the waiting domain can be lowered to 
reduce power consumption. In such cases, DIFF_LEVEL 
power states are specified for these power domains. 

When the allowed power states are specified for all power 
domains, the power modes can be specified. Such a 
specification includes all occurring combinations of power 
states in power domains during the simulation time. These 
represent the allowed power modes of the system, and the 
system cannot reach other modes. 

3) Generation of the specification 
The generation part of the proposed method is focused on 

generation and integration requirements. The goal is to 
incorporate the power-related specification source code into the 
original SystemC model in a compatible way. As an output, we 
have proposed using the SystemC/PMS library [4]. The power 
domains and power modes are instantiated in the declaration 
part of the identified top SystemC module. The power states of 
the power domains, the components assignment, the 
performance-level definitions, and the power-modes 
specification are included in the constructor of this module. 
The only part of the abstract power-management specification 
that was not automatically generated is the power-management 
policy. It is dependent on the system function and a designer 
must design that. Thus, the proposed automation includes the 
underlying support for system power management, but the 

switching between power modes is not automated. For 
illustration, an example of a part of system description in 
SystemC, which is an input to the proposed method, is 
provided in Fig. 2a. A part of the enriched system model with a 
generated power-management specification is illustrated in 
Fig. 2b (the highlighted text represents the added power-related 
specification aspects). 

4) Power-management verification 
This part includes the last requirement stated for the 

proposed method. The verification is focused on the enriched 
system model that includes functional specification of the 
system as well as the power-management specification. To 
check consistency of the power-management specification with 
the functional aspects, we propose to use the previously 
developed power-management static analysis [6]. It formally 
verifies the consistency and also the completeness of the 
abstract power management specified by SystemC/PMS. Thus, 
a designer is ensured that the specification is correct and can 
proceed with the high-level synthesis process. 

a) 

SC_MODULE(system1){ 

  ... //omitted source code 

  mu0 CPU; 
  ram0 MEM1, MEM2; 

  ... //omitted source code 

  SC_CTOR(system0): CPU("CPU"), MEM1("MEM1"), 
MEM2("MEM2") 

    { 

      CPU(clk,Abus,Dbus,reset,MEMrq,Rnw); 
      MEM1(clk,Rnw,MEMrq1,Abus,Dbus); 

      MEM2(clk,Rnw,MEMrq2,Abus,Dbus); 

      SC_METHOD(select); 
        sensitive << Abus; 

    } 

}; 

b) 

SC_MODULE(system1){ 

  PowerDomain PD1, PD2; 

  PowerMode PM1, PM2, PM3; 
  ... //omitted source code 

  mu0 CPU; 

  ram0 MEM1, MEM2; 
  ... //omitted source code 

  SC_CTOR(system0): CPU("CPU"), MEM1("MEM1"), 

MEM2("MEM2") 
    { 

      CPU(clk,Abus,Dbus,reset,MEMrq,Rnw); 

      MEM1(clk,Rnw,MEMrq1,Abus,Dbus); 
      MEM2(clk,Rnw,MEMrq2,Abus,Dbus); 

      PD1 = PD(NORMAL); 

      PD2 = PD(HOLD, NORMAL, DIFF_LEVEL(1)); 
      PD1.AddComponent("CPU"); 

      PD2.AddComponent("MEM1"); 

      PD2.AddComponent("MEM2"); 
      PM1 = PM(NORMAL, HOLD); 

      PM2 = PM(NORMAL, NORMAL); 

      PM3 = PM(NORMAL, DIFF_LEVEL(1)); 
      POWER_MODE = PM1; 

      SetLevel(NORMAL, 0.8V, 50MHz); 

      SetLevel(DIFF_LEVEL(1), 0.72V, 30.0MHz); 
      SC_METHOD(select); 

        sensitive << Abus; 
    } 

}; 

Fig. 2. An example of partial input (a) and output (b) SystemC files. 



IV. EXPERIMENTAL RESULTS 

Two experiments were conducted. The first one was 
oriented towards synthesis of the enriched ESL system model 
to the RTL model and estimation of its power consumption 
using a professional tool. We have used two simple models: a 
system consisting of one microprocessor communicating with 
two memories (System1), and a system consisting of one 
microprocessor and one memory (System2). The verified 
SystemC/PMS models were synthesized using the power-
management high-level synthesis method, proposed in [5], 
which generated UPF power-intent specification equivalent to 
the abstract specification compatible with functional RTL 
model of the system. For estimation purpose, we have used 
Synopsys Power Compiler [7] and the NanGate_15nm_OCL 
[13] technology library. Since the power-mode switching is not 
automatically generated using the proposed method, default 
switching activity was used by the tool. The results of the 
experiment, provided in Table 2 (the values represent average 
total power consumption reported by Power Compiler), show 
that the automatically generated power-management 
specification is beneficial regarding reduction of the system 
power consumption. 

Since the power-management switching was not modelled 
in the first experiment and the results might be misleading, we 
have conducted another one. Just for the experimental purpose, 
we have automatically generated also power-mode switching 
for System2 design by using time points from the analysis of 
ESL simulation results. We have functionally described 
switching of the power modes using the typical if-else 
language construct. If the current simulation time reached a 
specific time point, the power mode was switched to another 
one based on information that was used for selection of power 
states. The syntactical and semantical correctness of the 
enriched model was also verified by functional simulation in 
Modelsim. It was however difficult to synthesize an RTL 
model form such a specification; therefore, we have used ESL 
power estimation using the PESL [14] tool instead. This tool 
estimates the dynamic energy consumption of a power-
managed system in SystemC/PMS using a modified Hamming-
distance computation. For static power comparison, we have 
used the tool proposed by [15]. It estimates the component size 
using its SystemC description, which roughly represents its 
static power, and uses the power-state-based coefficients to 
compute static energy of the power-managed system. Because 
of the abstraction, these two tools cannot be used for estimation 
of absolute values for energy consumption, but they can be 
used for a relative comparison of two alternative ESL designs. 

In our case, we have used these tools to compare energy 
consumption of a system without and with automatically 
generated power-management specification. The results are 
provided in Table 3. The values in the table are without units 
(due to abstract computation they cannot refer to Watts or 
Joules). The values for dynamic energy represent summed 
Hamming distances of variables bit-vectors during the 
simulation time, taking into account the specified power states 
for specific time intervals. Similarly, the values for static 
energy represent summed static energy consumptions during 
time intervals adjusted according to specified power states in 
those intervals. In this experiment, both tools confirmed that 
the automatically generated power-management specification 
indeed reduces the power consumption. 

Just for clarification, the proposed automated generation of 
power-management specification is based on static analysis of 
system model and simulation results. Therefore, there is only 
very small time-overhead of using the proposed method. In our 
experiments, it took few seconds to analyze the model and 
generate the appropriate power-management specification. 
However, it depends on the size of the model and the size of 
simulation results (which could be very long). But compared to 
manual specification of power management, which could be 
erroneous and require debugging (hours or even days of effort), 
the proposed method provides undeniable benefits. 

V. CONCLUSIONS 

In this paper, we have proposed a method for automation of 
power-management specification. The input of the method is a 
system functional model in SystemC and ESL simulation 
results in VCD. The output is an enriched system model, which 
includes the power-management specification using 
SystemC/PMS. The method minimizes designer’s input 
regarding power aspects, while all the decisions are made 
automatically (such as division of the system into power 
domains, selection of suitable power states for power domains, 
and selection of allowed power modes of the system). The 
experimental results supported benefits of the proposed 
method. The automatically generated power-management 
specification reduced the power significantly. 

The proposed method is usable for automated application of 
power-reduction techniques by implementing power 
management. Although the specified power management might 
not be optimal, it is especially beneficial for designers not 
familiar with low-power systems design. They do not even 
need to possess knowledge of aspects required for power-
management specification (in UPF or SystemC/PMS). It is also 
useful for designers to automatically obtain the first power-
management alternative, which can be manually modified to 
further optimize the power management. 

Limitation of the proposed method lies in dependency on 
ESL simulation results. The simulation must be representative 
in order to obtain well-balanced power management. Thus, it is 
currently suitable especially for systems that execute the same 
function during their lifetime. Such a method is not suitable for 
general-purpose devices, which function is not known 
beforehand. This opens space for further enhancement of the 
proposed method in future work. 

TABLE II.  RTL POWER-COMPARISON OF ORIGINAL AND POWER-
MANAGED SYSTEM USING POWER COMPILER 

Design Original Power managed Difference 

System1 27.001mW 2.085mW -92.28% 

System2 63µW 46.5µW -26.19% 

TABLE III.  ESL POWER-COMPARISON OF ORIGINAL AND POWER-
MANAGED SYSTEM 

System2 design Original Power managed Difference 

Dynamic energy 80314 57380 -28.56% 

Static energy 1015.8 969.3 -4.58% 
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