
Contribution to Automated Generating of System

Power-Management Specification

Dominik Macko

Faculty of Informatics and Information Technologies

Slovak University of Technology

Bratislava, Slovakia

dominik.macko@stuba.sk

Abstract—Nowadays, the electronic system design is

constrained by several factors. One of them is the system power

consumption, since many devices have limited energy source (e.g.

Internet of Things sensor devices) – they run on batteries or are

powered by energy harvesting from environment. The so-called

power management is usually adopted during system design to

minimize power consumption of the system under development,

which enables to apply very popular power-reduction techniques,

such as clock gating, power gating, or voltage and frequency

scaling. The specification of power management is not an easy

task, and therefore in our previous work, we have proposed a

simplification method by increasing abstraction and automation

of the design process. In this paper, we are taking the design

automation one more step forward by proposal of a method that

enables automated specification of system power management

using the system architecture and abstract simulation results.

The automatically generated power management can reduce the

power by tens of percent as showed by the experiments.

Keywords—design automation; hardware design; low power;

power management; specification

I. INTRODUCTION

The continuously increasing power density in modern
complex Systems-on-Chips (SoCs) causes packaging and
cooling problems and can potentially damage the device [1].
Therefore, the power reduction is one of the key issues during
the system development. Another point of view is that many
mobile devices (e.g. smart phones, laptops, or wearable
electronics) and Internet-of-Things (IoT) sensor devices [2]
(e.g. video camera, or humidity and temperature monitoring
device) are powered by batteries or by limited amount of
energy harvested from the system environment. For such
devices, energy efficiency is very important and reduction of
energy consumption can prolong lifetime of the device, reduce
maintenance costs, or can enable new features and more
functions of the device.

Therefore, in any modern electronic system, the power
must be properly managed. The power management as a
concept enables to switch the system operating modes
according to current needs – i.e. not used components are
powered down, or at least switched to some low-power state to
save the available energy. This is accomplished by application
of the power-reduction techniques, such as clock gating, power

gating, or voltage and frequency scaling [1]. The supporting
logics and structures behind these techniques and their
introduction to the system design are rather complicated, which
prolongs the development time. Therefore, the design-
automation techniques are evolving also in this sphere.

The International technology roadmap for semiconductors
[3] suggested the adoption of an abstract electronic system
level (ESL) in the design process to cope with the increasing
design complexity and to improve the design productivity. The
ESL slowly becomes the design starting point in the industry
and there are methods developed to raise the abstraction level
for adoption of power management into the design. In our
previous work, we have also proposed such a method in [4],
which was targeted to system-level specification of abstract
power management for a SoC design. We have also integrated
automated power-management high-level synthesis [5] to the
design process to speed-up the system development. And
finally, we have enhanced power-management verification at
early design stages [6], which also contributes to development
process speed-up.

In this paper, we are going one more step forward in
automated power-management specification. We have
proposed a method that takes a system-level functional model
(i.e. a SystemC algorithmic model) as an input and
automatically provides the abstract power-management
specification for this model (in SystemC/PMS). It is especially
useful for designers who are not familiar with power-reduction
techniques to design an energy-efficient low-power system.

The paper is organized as follows. In the next section, the
existing works related to this problem area are analyzed. The
Section 3 is focused on description of the proposed automation
method for power-management introduction. We provide
experimental results in Section 4, and Section 5 concludes the
paper.

II. RELATED WORKS

There exist several works automating the transformation
from a more abstract specification of power intent to a more
detailed implementation. For example, professional tools (e.g.
Power Compiler [7] or Genus Synthesis Solution [8])
commonly accept a power-intent specification in the
standardized UPF (Unified Power Format) [9] or widely spread

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:

D. Macko, "Contribution to automated generating of system power-management specification," in 2018 IEEE 21th International

Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2018, pp. 27-32.

doi: 10.1109/DDECS.2018.00012

URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8410501

CPF (Common Power Format) [10] at the RTL (Register-
Transfer Level) abstraction, and automate its transition to lower
levels. However, the specification of power intent at RTL is
complex and it must itself be automated to increase
productivity.

Using a system-level specification and automated UPF/CPF
synthesis is obvious way to deal with the complexity. Such an
approach was used in [11]. It proposed a SCPower extension
for SystemC modelling, which enables to specify power intent
directly in SystemC design, perform power-aware verification,
and generate the corresponding UPF file. However, it uses the
RTL power-intent abstraction level, and is focused more on
enabling power-aware verification of SystemC designs.
Therefore, from a specification perspective it represents just
another way of annotating the required information. Thus, the
supported UPF generation represents rewriting of that
information from one form to another. Another approach [12]
proposed a LP-HLS methodology. It enables to specify power
intent regarding the usage of power gating technique in
SystemC model and generates the corresponding CPF
specification at RTL. It offers a simplified specification with
respect to [11], but it enables a limited number of power-
reduction techniques (power gating, and perhaps operand
isolation). The used abstraction is also not very suitable for
system level. The methodology requires also specification of
used cells and isolation rules, or specification of isolation
activating and power-gating activating signals. Thus, it also
seems more like a rewriting procedure than high-level
synthesis of CPF specification. In our previous work [5], we
have incorporated even more abstraction, in which all the
control signals and power-management low-level elements are
synthesized automatically. The proposed PMHLS method not
only synthesizes specification in UPF, but also description of
the corresponding power-management unit in RTL functional
model. Beside the power-gating and isolation techniques, it
supports also voltage and frequency scaling, clock gating, and
multi-voltage designs.

Based on the current state-of-the-art, we focused our work,
presented in this paper, to automate the power-management
specification even more. The goal is to automatically specify as
much power-related information as possible to alleviate design
aspects on which a designer must focus at early design stages.

III. A NEW POWER-MANAGEMENT SPECIFICATION

AUTOMATION METHOD

In order to understand what aspects can be automatically
specified for proper introduction of power management into the
system design, we firstly present the underlying specification
model. If we selected the standard power intent specification in
UPF, the automation would be very complicated. The reason is
that it was primarily developed for RTL and lower abstraction
levels. The result is that a designer must specify low-level
details regarding the power management, such as power supply
networks, power switches, or isolation and retention cells. Such
information is unsuitable for early design stages, where the
designer must primarily focus on system functional aspects.
And introduction of the power management at later design
stages makes the system verification unbearable. Therefore, we
have chosen the abstract power-management specification

model, proposed in our previous work [4]. This model is
briefly described in the following subsection.

A. The Underlying Specification Model

The abstract power-management specification model is
based on five key aspects: power domains with power states,
power modes, component assignments, performance levels,
and policy.

1) Power domains
A power domain is a collection of system components that

operate in the identical power states during the system lifetime.
The specification of a power domain includes its identifier and
a set of power states, in which the domain components can
operate. There are five predefined abstract power states,
summarized in Table 1.

2) Power modes
A power mode of the system is a specific combination of

power states in power domains (i.e. one power state per
domain). The specification of a system power mode consists of
its identifier and a sequence of power states. The order of
specified power states is important, because the first power
state is the state of the firstly specified power domain, the
second state relates to the second domain, and so on. The
number of states in a power-mode specification has to match
the number of power domains in the system.

3) Component assignments
The system components must be explicitly assigned to the

specified power domains in order the system be split into parts
that can be powered separately (i.e. operate in different power
states). The specification connects identifier of a power domain
with an identifier of a component. There can be multiple
components in a power domain, but one component cannot be
assigned to multiple domains.

4) Performance levels
A performance level represents a specific combination of

voltage and frequency values. It must be explicitly specified for
active power states (NORMAL and DIFF_LEVEL), since it

TABLE I. THE PREDEFINED ABSTRACT POWER STATES

Power State Overview

OFF,

OFF_RET

A component is not powered in order to save energy.

In case of OFF_RET, the state of memory elements of

the component is retained. These power states
represent application of the power-gating technique.

HOLD

A component is powered, but it stops operation in

order to reduce dynamic power consumption. It

represents application of the clock gating and operand
isolation techniques.

DIFF_LEVEL

A component operates at the performance level higher

or lower than the basic performance level of the
system (i.e. either the voltage or operation frequency

differs). Such a power state enables to use multiple

fixed voltages or frequencies in the system. It also
enables application of dynamic voltage and frequency

scaling power-reduction techniques.

NORMAL

A component operate at the basic performance level

of the system (i.e. it uses the primary voltage and
clock supplies). Meaning that no power-reduction

technique is explicitly applied in this power state.

cannot be deduced. HOLD has the frequency nulled and the
voltage is the lowest voltage level specified in the domain.
OFF and OFF_RET have both parameters nulled. The
specification includes the power state, the voltage value and the
frequency value.

5) Power-managment policy
The power-management policy represents the specification

of a control function, which defines how and when the power
mode of the system is switched. It is the key aspect, which
enables dynamic power management during the system
runtime. It can switch the system into some energy-saving
power mode or it can redirect the power from currently
unneeded components to others, what can speed-up the
operation. Since the power-management policy is part of the
functional specification, there is no predefined way of
specification of this aspect – i.e. usual software or hardware
functional design can be used.

B. The Specification-Automation Method Requirements

Based on the analysis of related works and using of the
previously described underlying specification model, we have
stated the following requirements for the method.

• Analysis of the system model – the method must be
able to parse the functional specification of the
modelled system and analyze structural dependencies
among the components.

• Analysis of the simulation results – in order to make
proper decisions regarding the power-management
specification, the method must be able to analyze the
runtime behavior of the system.

• Partitioning of the system into power domains – based
on analysis of the components activity, the method
should group the components that are active during the
same time periods into the same power domains.

• Selection of power states for power domains – based on
the analysis of the system behavior, the method must
specify suitable power states, in which the components
can operate.

• Selection of allowed power modes – the method must
be able to provide a list of actually required power
modes, in order to minimize the generation of unneeded
power-management elements at later design stages.

• Generation of the power-management specification –
the method must automatically generate the source code
specifying the mentioned aspects.

• Integration into the system model – the method should
integrate the generated specification directly into the
system functional model.

• Verification of the generated specification – the method
should provide means to check whether the
specification is complete and consistent with the
functional model.

The proposed method fulfilling these requirements is more
closely described in the following subsection.

C. The Proposed Method

As one can notice from the stated requirements for the
method, it consists from multiple parts: analysis part,
specification part, generation part, and verification part. The
method overview is illustrated in Fig. 1.

1) System analysis
This part of the method is focused on the first two

requirements regarding analysis of the system model and
system-level simulation results. An input of the analysis part is
a SystemC model of the system and simulation results in the
VCD (Value Change Dump) form. The goal is to parse the
model source files and to obtain a hierarchy of SystemC
modules (representing system components definitions), their
identifiers, input/output and state variables, identify clock
variables for each component, identify a top module
(representing the whole system), and identify vector-variables
representing interconnections among the components. The next
step is to analyze the VCD file and to obtain time intervals, in
which the system components are active and in which they are
just waiting. A component is considered active, if its variables
are switching values during that time interval. All the analyzed
objects and data are then filled into the prepared structures and
passed to the specification part of the proposed method.

2) Power-related specification
This part covers the next three requirements regarding

specification of power domains, power states, and power
modes. Using the analyzed information about time intervals of
components activity, the components that are active in the

Fig. 1. The proposed method overview.

same time intervals and inactive in the others are assigned into
the same power domain. The result is that these components
are managed together, and therefore the power management is
more efficient.

Then, the power states are specified for power domains. For
inactive periods, a power domain must contain some passive
power state (HOLD, OFF, OFF_RET). Which of the passive
states is the most suitable depends on length of time intervals.
Since both off power states represent the power-gating
technique application, it takes time to power down and power
up the components. Therefore, there is a threshold value
representing a limit, above which it is beneficial to power
down the domain and under which the HOLD power state is
used (just isolating the input variables is quick enough). This
limit depends on the implementation technology, thus must be
set by a designer. If the components of a power domain contain
state variables (i.e. memory elements), the OFF_RET state is
used instead of OFF. Usually, there are multiple inactive time
intervals with various lengths. Thus, both HOLD and OFF (or
OFF_RET) power states can be specified for a power domain.

Then, a decision has to be made about using NORMAL or
some DIFF_LEVEL power state for active time intervals. A
default active state is NORMAL. The DIFF_LEVEL is a group
of power states, where each of them operates at a different
voltage and/or frequency level. The number of these states has
to be provided by a designer, along with their voltage and
frequency parameters (depending on what voltages and
frequencies the implementation technology will support). For
selections of a DIFF_LEVEL power state, inter-domain
communications are analyzed. When a situation is found that
some domain is active and another connected domain is
waiting for its computation to finish, the power of the first
domain can be increased to shorten the operation time. On the
other hand, the power of the waiting domain can be lowered to
reduce power consumption. In such cases, DIFF_LEVEL
power states are specified for these power domains.

When the allowed power states are specified for all power
domains, the power modes can be specified. Such a
specification includes all occurring combinations of power
states in power domains during the simulation time. These
represent the allowed power modes of the system, and the
system cannot reach other modes.

3) Generation of the specification
The generation part of the proposed method is focused on

generation and integration requirements. The goal is to
incorporate the power-related specification source code into the
original SystemC model in a compatible way. As an output, we
have proposed using the SystemC/PMS library [4]. The power
domains and power modes are instantiated in the declaration
part of the identified top SystemC module. The power states of
the power domains, the components assignment, the
performance-level definitions, and the power-modes
specification are included in the constructor of this module.
The only part of the abstract power-management specification
that was not automatically generated is the power-management
policy. It is dependent on the system function and a designer
must design that. Thus, the proposed automation includes the
underlying support for system power management, but the

switching between power modes is not automated. For
illustration, an example of a part of system description in
SystemC, which is an input to the proposed method, is
provided in Fig. 2a. A part of the enriched system model with a
generated power-management specification is illustrated in
Fig. 2b (the highlighted text represents the added power-related
specification aspects).

4) Power-management verification
This part includes the last requirement stated for the

proposed method. The verification is focused on the enriched
system model that includes functional specification of the
system as well as the power-management specification. To
check consistency of the power-management specification with
the functional aspects, we propose to use the previously
developed power-management static analysis [6]. It formally
verifies the consistency and also the completeness of the
abstract power management specified by SystemC/PMS. Thus,
a designer is ensured that the specification is correct and can
proceed with the high-level synthesis process.

a)

SC_MODULE(system1){

 ... //omitted source code

 mu0 CPU;
 ram0 MEM1, MEM2;

 ... //omitted source code

 SC_CTOR(system0): CPU("CPU"), MEM1("MEM1"),
MEM2("MEM2")

 {

 CPU(clk,Abus,Dbus,reset,MEMrq,Rnw);
 MEM1(clk,Rnw,MEMrq1,Abus,Dbus);

 MEM2(clk,Rnw,MEMrq2,Abus,Dbus);

 SC_METHOD(select);
 sensitive << Abus;

 }

};

b)

SC_MODULE(system1){

 PowerDomain PD1, PD2;

 PowerMode PM1, PM2, PM3;
 ... //omitted source code

 mu0 CPU;

 ram0 MEM1, MEM2;
 ... //omitted source code

 SC_CTOR(system0): CPU("CPU"), MEM1("MEM1"),

MEM2("MEM2")
 {

 CPU(clk,Abus,Dbus,reset,MEMrq,Rnw);

 MEM1(clk,Rnw,MEMrq1,Abus,Dbus);
 MEM2(clk,Rnw,MEMrq2,Abus,Dbus);

 PD1 = PD(NORMAL);

 PD2 = PD(HOLD, NORMAL, DIFF_LEVEL(1));
 PD1.AddComponent("CPU");

 PD2.AddComponent("MEM1");

 PD2.AddComponent("MEM2");
 PM1 = PM(NORMAL, HOLD);

 PM2 = PM(NORMAL, NORMAL);

 PM3 = PM(NORMAL, DIFF_LEVEL(1));
 POWER_MODE = PM1;

 SetLevel(NORMAL, 0.8V, 50MHz);

 SetLevel(DIFF_LEVEL(1), 0.72V, 30.0MHz);
 SC_METHOD(select);

 sensitive << Abus;
 }

};

Fig. 2. An example of partial input (a) and output (b) SystemC files.

IV. EXPERIMENTAL RESULTS

Two experiments were conducted. The first one was
oriented towards synthesis of the enriched ESL system model
to the RTL model and estimation of its power consumption
using a professional tool. We have used two simple models: a
system consisting of one microprocessor communicating with
two memories (System1), and a system consisting of one
microprocessor and one memory (System2). The verified
SystemC/PMS models were synthesized using the power-
management high-level synthesis method, proposed in [5],
which generated UPF power-intent specification equivalent to
the abstract specification compatible with functional RTL
model of the system. For estimation purpose, we have used
Synopsys Power Compiler [7] and the NanGate_15nm_OCL
[13] technology library. Since the power-mode switching is not
automatically generated using the proposed method, default
switching activity was used by the tool. The results of the
experiment, provided in Table 2 (the values represent average
total power consumption reported by Power Compiler), show
that the automatically generated power-management
specification is beneficial regarding reduction of the system
power consumption.

Since the power-management switching was not modelled
in the first experiment and the results might be misleading, we
have conducted another one. Just for the experimental purpose,
we have automatically generated also power-mode switching
for System2 design by using time points from the analysis of
ESL simulation results. We have functionally described
switching of the power modes using the typical if-else
language construct. If the current simulation time reached a
specific time point, the power mode was switched to another
one based on information that was used for selection of power
states. The syntactical and semantical correctness of the
enriched model was also verified by functional simulation in
Modelsim. It was however difficult to synthesize an RTL
model form such a specification; therefore, we have used ESL
power estimation using the PESL [14] tool instead. This tool
estimates the dynamic energy consumption of a power-
managed system in SystemC/PMS using a modified Hamming-
distance computation. For static power comparison, we have
used the tool proposed by [15]. It estimates the component size
using its SystemC description, which roughly represents its
static power, and uses the power-state-based coefficients to
compute static energy of the power-managed system. Because
of the abstraction, these two tools cannot be used for estimation
of absolute values for energy consumption, but they can be
used for a relative comparison of two alternative ESL designs.

In our case, we have used these tools to compare energy
consumption of a system without and with automatically
generated power-management specification. The results are
provided in Table 3. The values in the table are without units
(due to abstract computation they cannot refer to Watts or
Joules). The values for dynamic energy represent summed
Hamming distances of variables bit-vectors during the
simulation time, taking into account the specified power states
for specific time intervals. Similarly, the values for static
energy represent summed static energy consumptions during
time intervals adjusted according to specified power states in
those intervals. In this experiment, both tools confirmed that
the automatically generated power-management specification
indeed reduces the power consumption.

Just for clarification, the proposed automated generation of
power-management specification is based on static analysis of
system model and simulation results. Therefore, there is only
very small time-overhead of using the proposed method. In our
experiments, it took few seconds to analyze the model and
generate the appropriate power-management specification.
However, it depends on the size of the model and the size of
simulation results (which could be very long). But compared to
manual specification of power management, which could be
erroneous and require debugging (hours or even days of effort),
the proposed method provides undeniable benefits.

V. CONCLUSIONS

In this paper, we have proposed a method for automation of
power-management specification. The input of the method is a
system functional model in SystemC and ESL simulation
results in VCD. The output is an enriched system model, which
includes the power-management specification using
SystemC/PMS. The method minimizes designer’s input
regarding power aspects, while all the decisions are made
automatically (such as division of the system into power
domains, selection of suitable power states for power domains,
and selection of allowed power modes of the system). The
experimental results supported benefits of the proposed
method. The automatically generated power-management
specification reduced the power significantly.

The proposed method is usable for automated application of
power-reduction techniques by implementing power
management. Although the specified power management might
not be optimal, it is especially beneficial for designers not
familiar with low-power systems design. They do not even
need to possess knowledge of aspects required for power-
management specification (in UPF or SystemC/PMS). It is also
useful for designers to automatically obtain the first power-
management alternative, which can be manually modified to
further optimize the power management.

Limitation of the proposed method lies in dependency on
ESL simulation results. The simulation must be representative
in order to obtain well-balanced power management. Thus, it is
currently suitable especially for systems that execute the same
function during their lifetime. Such a method is not suitable for
general-purpose devices, which function is not known
beforehand. This opens space for further enhancement of the
proposed method in future work.

TABLE II. RTL POWER-COMPARISON OF ORIGINAL AND POWER-
MANAGED SYSTEM USING POWER COMPILER

Design Original Power managed Difference

System1 27.001mW 2.085mW -92.28%

System2 63µW 46.5µW -26.19%

TABLE III. ESL POWER-COMPARISON OF ORIGINAL AND POWER-
MANAGED SYSTEM

System2 design Original Power managed Difference

Dynamic energy 80314 57380 -28.56%

Static energy 1015.8 969.3 -4.58%

ACKNOWLEDGMENT

This paper was created with the support of the Ministry of
Education, Science, Research and Sport of the Slovak Republic
within the Research and Development Operational Programme
for the project “University Science Park of STU Bratislava”,
ITMS 26240220084, co-funded by the European Regional
Development Fund. This work was also supported by the
Slovak Scientific Grant Agency (VEGA 1/0836/16), the Slovak
Research and Development Agency (APVV-15-0789), and the
Slovak Cultural and Educational Grant Agency (KEGA
011STU-4/2017).

REFERENCES

[1] M. Keating, D. Flynn, R. Aitken, A. Gibbons and K. Shi, Low Power

Methodology Manual: For System-on-Chip Design, Springer, 2007.

[2] Z. Sheng, H. Wang, C. Yin, X. Hu, S. Yang and V. C. M. Leung,

“Lightweight management of resource-constrained sensor devices in

Internet of Things,” IEEE Internet of Things Journal, vol. 2, no. 5, pp.
402-411, Oct. 2015.

[3] ITRS 2.0, “International technology roadmap for semiconductors 2.0,”

2015. [Online]. Available: www.semiconductors.org/main/2015_
international_technology_roadmap_for_semiconductors_itrs/

[4] D. Macko, K. Jelemenská and P. i ák, “Power-management
specification in SystemC,” in 2015 IEEE 18th International Symposium

on Design and Diagnostics of Electronic Circuits and Systems, 2015, pp.

259-262.

[5] D. Macko, K. Jelemenská and P. i ák, “Power-management high-level

synthesis,” in The 23rd IFIP/IEEE International Conference on Very

Large Scale Integration (VLSI-SoC), 2015, pp. 63-68.

[6] D. Macko, K. Jelemenská and P. i ák, “Verification of power-

management specification at early stages of power-constrained systems

design,” Journal of Circuits, Systems, and Computers, vol. 26, no. 8,

1740002, Aug. 2017.

[7] Synopsys, “Power Compiler: Power optimization in Design Compiler,”

2014. [Online]. Available: www.synopsys.com/implementation-and-
signoff/rtl-synthesis-test/power-compiler.html

[8] Cadence Design Systems, “Genus Synthesis Solution: Massively parallel

RTL synthesis and physical synthesis,” 2015. [Online]. Available:
https://www.cadence.com/content/dam/cadence-www/global/en_US/

documents/tools/digital-design-signoff/genus-synthesis-solution-ds.pdf

[9] IEEE Standard for Design and Verification of Low-Power, Energy-

Aware Electronic Systems, IEEE Standard 1801-2015, Dec. 2015.

[10] S. Carver, A. Mathur, L. Sharma, P. Subbarao, S. Urish and Q. Wang,
“Low-power design using the Si2 common power format,” IEEE Design

& Test of Computers, vol. 29, no. 2, pp. 62-70, April 2012.

[11] K. Gagarski, M. Petrov, M. Moiseev, and I. Klotchkov, “Power

specification, simulation and verification of SystemC designs,” in 2016

IEEE East-West Design & Test Symposium (EWDTS), 2016, pp. 1–4.

[12] A. Qamar, F. B. Muslim, J. Iqbal, and L. Lavagno, “LP-HLS: Automatic

power-intent generation for high-level synthesis based hardware

implementation flow,” Microprocessors and Microsystems, vol. 50, pp.
26–38, 2017.

[13] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech,
and J. Michelsen, “Open cell library in 15nm FreePDK technology,” in

Proceedings of the 2015 International Symposium on Physical Design

(ISPD ’15), ACM, 2015, pp. 171–178.

[14] J. Erdelyi, “Estimation of power-management effect on dynamic power

consumption,” in Proceedings of the 13th Student Research Conference
in Informatics and Information Technologies, 2017, pp. 218-221.

[15] T. Rychvalský, Estimation of Power-Management Effect on Static

Power Consumption, FIIT STU Bratislava, 2017. Master thesis.

