
Rapid Estimation of Power-Management Unit

Overhead from System-Level Specification

Dominik Macko

Faculty of Informatics and Information Technologies

Slovak University of Technology

Bratislava, Slovakia

E-mail: dominik.macko@stuba.sk

Abstract—Power management becomes an integral part of
hardware-systems design. In modern complex systems, the power-
management design is not a simple task and it is quite difficult
to evaluate whether the designed strategy is the best. In this
paper, we propose a new method for overhead estimation of the
required power-management unit, based on system-level abstract
specification. It enables a designer to explore various power-
management strategies in a short time and select the most
suitable one. It is especially useful for ultra low-power systems,
in which the power-management unit is a significant power
consumer. The proposed method is simpler and faster than the
existing approaches, and thus it speeds-up the low-power systems
development process.

I. INTRODUCTION

The power of highly integrated systems-on-chips (SoCs) has

been a problem for some time. The concern is the overheating

of the chip, caused by a high power density. This problem is

dealt with by utilization of various power-reduction techniques

during the system design. The most well-known techniques

include clock gating, power gating (also known as power shut-

off), multi-voltage design, or voltage and frequency scaling

[1]. In complex systems, these techniques are usually applied

using the so-called power management [2]. It enables to

use various power states of the system components and to

dynamically change these states. The goal is to redirect the

power to more demanding components and to reduce the

overall energy consumption.

To increase design productivity, the ITRS 2.0 [3] has

identified as one of the challenges the system-level design

automation. It also affects the power management. There are

several new methods to model power management at the

system level (ESL – electronic system level), such as [4]–

[8]. However, the used abstraction is either too low, resulting

in inefficient design exploration at the ESL, or it is too high to

properly determine power and area overhead of the introduced

power management. It is more crucial in the coming era of

Internet of things (IoT), since these devices (mostly power-

constrained) are especially sensitive to power overhead of a

controller, strictly managing power of other chip components.

We focus in this paper on fast and simple determination

of power-management controller overhead based on a spec-

ification in SystemC/PMS [9]. Based on our experiences in

power-management high-level synthesis [8], we propose a

new system-level method to predict power requirements of

the controller at lower design-abstraction levels. This method

can help to make proper decisions regarding the power-

management strategy by shortening the time for determination

of power-management controller overhead to a minimum. In

the next section, the state-of-the-art in this area is analysed.

Section III introduces power-management concepts, on which

the proposed method is based. The new method itself is

proposed in Section IV and supported by experimental results

in Section V.

II. RELATED WORK

Most of the existing system-level methods exploring power

management are based on power-per-state model or power-per-

transaction model [2], [6], [10]–[13]. Although they enable

power estimation of system components under some power

management policy at the ESL, these approaches require

power characterization of the components from the lower-level

power estimations (which take time). The power controller

overhead is not taken into account in these approaches. This

is also a downside of the COMPLEX [4] framework. It enables

to generate an power-aware executable SystemC model based

on a formal specification, which significantly contributes to

design-automation area. There are other approaches that enable

to model power controller, although manually [5], [7], [14].

Thus, its overhead can be taken into account while estimating

power. However, in case of a change in power-management

strategy, the controller must be remodelled and the simulation

rerun, which takes time.

Based on the identified weaknesses of existing approaches

(i.e. missing power-controller overhead and lack of automa-

tion), we have proposed a new method to eliminate them.

As far as we know, none of the existing approaches takes

automatically into account (or estimates) power overhead of

the power controller itself at the ESL. In our method, we

avoid its modelling at the ESL (which saves time), but predict

its requirements for implementation. As we have mentioned

in Section I, there are applications (e.g. IoT sensor devices)

in which the power controller is a significant consumer of

power (e.g. in standby mode). Thus, it is important to predict

its power/area requirements for a certain power-management

strategy.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:
D. Macko, "Rapid Estimation of Power-Management Unit Overhead from System-Level Specification," 2017 Euromicro Conference on
Digital System Design (DSD), Vienna, 2017, pp. 9-13.
doi: 10.1109/DSD.2017.19
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8049761&isnumber=8049708



System

Block1

ON

Block2

ON

Block3

ON

Block4

ON

System

Block1

ON

Block2

OFF

Block3

OFF

Block4

OFF

Fig. 1. Power-mode switching example.

III. BACKGROUND

The power management enables to switch between various

power modes of the system. A power mode is a combination

of power states of all system blocks. A power state usually cor-

responds to supply voltage of the component and its operation

frequency (thus, it can be also seen as a performance level).

An example of switching between power modes is illustrated

in Fig. 1. The left part contains a high-performance mode (i.e.

all system blocks are operating) and the right part represents a

low-power mode (i.e. three blocks are powered-down to save

power).

At the RTL (register-transfer level), the power management

is usually modelled using the UPF (Unified power format) [2]

or CPF (Common power format) [15] specification alongside

the HDL (hardware description language) functional model.

Both power formats provide similar features; therefore, we

further discuss only the standardized UPF. The UPF specifi-

cation captures division of the system into so-called power

domains. A single power domain contains multiple system

blocks that operate in the same power state (it enables more

efficient control). The UPF also enables to specify supply ports

and nets and to connect them to power domains. There is also

a special circuitry specified enabling to switch voltages and

distribute them through supply nets - we call this circuitry

the power-management elements. It includes power switches

(enabling to cut-off supply voltage or to switch supply net),

isolation logic (for isolation of signals entering or leaving

the power domain), level shifters (adjusting voltage level of

inter-domain logic signals), or retention cells (enabling to save

the logic value during a power-down period). Therefore, the

power state at the RTL is defined as a specific combination of

values of signals, controlling the power-management elements

in UPF. These signals are driven by a power controller in

complex systems (i.e. PMU – power-management unit).

An example of a system with a dedicated PMU, controlling

power of the blocks divided into power domains, is illustrated

in Fig. 2. The PMU controls each power domain separately –

i.e. the control signals for a domain are based on the power

states, in which the blocks of the domain can operate. The

number of control signals, as well as their type (isolation

control, power switch control, retention control), varies for

each domain. For example, the PD1 power domain has three

control signals (one for isolation and two for switching among

three voltage levels), but the PD2 power domain requires only

two control signals (one for isolation and one to power down

the Block2 component).

PD3

PD1PD2

Block2

Block3 Block4

Block1PMU

PD1 CTRL

PD2 CTRL

PD3 CTRL

System Bus

Fig. 2. A system view with a power-management unit.

The PMS library [9] simplifies the ESL power-management

specification by abstracting away the low-level power-

management details (e.g. supply nets, power-management el-

ements). The introduced specification method also uses the

already described concepts of power domains and power

modes. However, since the power-management elements are

not present in the SystemC/PMS-based specification, the

power state cannot be defined by their control signals. The

PMS uses five predefined power states, which imply appli-

cation of various power-reduction techniques. The NORMAL

power state represent basic operation of the system block with

no power-reduction technique applied. The HOLD power state

stops operation of the block, which will be implemented by

clock gating and operand isolation. The DIFF LEVEL power

state adjusts voltage and frequency level of the block (there can

be multiple such states specified, differentiated by a number

appended in the identifier, e.g. DIFF LEVEL(5)). Thus, it

implies voltage and/or frequency scaling (also multi-voltage

or multi-clock designs). The OFF power state powers-down

the block; thus, the power-gating technique is implied. And

finally, the OFF RET power state also powers-down the block

but its state is retained – i.e. power gating with state retention

is implied. The clock-gating, operand-isolation and power-

gating techniques require isolation of input/output signals of

the block. The multiple voltages in the design imply a power

switch and the multiple operation frequencies of a block imply

a clock switch. Power gating also requires a power switch

(switching between active and off voltage levels). Besides,

power gating with state retention requires retention cells to

be used inside the block. These implications are the basis of

the new method, proposed in the next section.

IV. THE PROPOSED METHOD

There is no PMU in the ESL power-management speci-

fication using SystemC/PMS [9]. Power-mode switching is

specified directly in the functional model. However, it is

important to estimate the future PMU complexity, because

it can influence a designer’s selection of power-management

strategy. One way of doing so is a high-level synthesis (HLS)

of PMU (either manual or automated), as illustrated in Fig. 3.

It generates an RTL model of the PMU corresponding to the

ESL power management. Such a PMU model can be then



ESL specification

PMU overhead 

evaluation

Power-strategy 

modification

PMU exceeds

the limit

Power-management

high-level synthesis

RTL design flow

Fig. 3. PMU overhead determination using the high-level synthesis.

ESL specification

PMU overhead 

estimation

Power-strategy 

modification

PMU exceeds

the limit

HLS design flow

Fig. 4. PMU overhead determination using the proposed method.

synthesized to the gate level and its power and area can be

estimated using the professional tools (e.g. Synopsys Power

Compiler). However, this process is not very suitable for

determination of PMU complexity, since it requires too many

steps and uses too many tools. Exploration of various power-

management strategies is thus complicated.

The proposed method (illustrated in Fig. 4) is based on a

modified PMU high-level synthesis algorithm [8]. It analyses

the ESL power-management specification and estimates the

complexity of PMU that would be synthesized. The core

is to evaluate the abstract power states in power domains,

correlation between power domains (communication between

their components), and power-states setting in power modes.

The algorithm estimates which power-management elements

are required (e.g. isolation logic, power switches, etc.), and

thus how many control signals are required. It also estimates

which intermediate power modes are required in order the

power management to function correctly (e.g. the isolation

must be activated before powering a component down).

The PMU is basically an application-specific finite-state

machine. The power-state encoding corresponds to the con-

trol signals for power-management elements specified in

UPF/CPF. The number of control signals is dependent on

the abstract power states specified for each power domain in

SystemC/PMS specification and their implication discussed in

Section III. Two power domains can share the control signals

if they are always activated/deactivated at the same time (i.e.

they are simultaneously entering and leaving the same abstract

power state). Otherwise, each power domain must have its

own control signals. There are four types of required control

signals:

• Clock-switch control – the number of such signals de-

pends on a number of frequencies the domain can operate

at (deduced based on the NORMAL and DIFF LEVEL

states).

• Power-switch control – the number of such signals de-

pends on a number of voltage levels the domain can

operate at, including cut-off voltage (deduced based on

NORMAL, DIFF LEVEL, OFF and OFF RET).

• Isolation control – a single signal for a domain that can

operate in at least one of the HOLD, OFF, and OFF RET

power states.

• Retention control – a single signal for a domain that can

operate in the OFF RET power state.

The number of required intermediate power modes is de-

duced based on the abstract power modes and allowed switch-

ing among them. For each power domain, it is analysed from

which to which abstract power state it can be switched. If such

a state change is not functionally correct at the RTL, a transient

state is required. Then, each new unique combination of power

states (including transient) in power domains represent an

intermediate power mode.

Based on the estimated number of all control signals (for

all power domains), we can predict a number of flip-flops to

keep the PMU state and a number of input/output ports of the

PMU. On the other hand, based on the estimated number of all

power modes (including intermediate modes), we can predict

a number of PMU states (representing power modes) and also

a number of branches in the transition logics of the PMU.

This information directly corresponds to the size of the PMU.

Thus, the estimated parameters (the number of control signals

and the number of all power modes) are used to determine the

PMU complexity.

In order to derive some power estimation form this PMU

complexity, the impact of the two parameters must be

weighted. We have defined the estimated power (PPMU ) to

be

PPMU = x.CS + y.PM (1)

where x is a weight representing impact of the number of

control signals (CS) and y is a weight representing impact

of the total number of required power modes (PM ), includ-

ing intermediate modes. Since the actual power consumption

is highly dependent on the implementation technology, the

weights of the parameters varies and must be calibrated before

the estimation can be relevant.

The proposed method uses a really fast estimation algo-

rithm, because it just uses static analysis of the ESL power

management. Compared to the previous way of obtaining

the power/area estimation, it provides significant speed-up.

Using a single algorithm, we can obtain the PMU overhead

estimation in few seconds directly form the ESL specification.

V. EXPERIMENTAL RESULTS

For evaluation reasons, we have used Synopsys Power

Compiler tool [16] to compute the power (Power in Table I)



TABLE I
ACHIEVED POWER ESTIMATION RESULTS

CS PM PMU VHDL Power [µW] Estimation ∆ [%]

3 5 4619 96,6 110,3 14

3 4 3300 114 107,8 -5

4 5 4452 167 142,9 -14

7 12 8658 260 258,2 -1

10 14 10094 355 361 2

10 8 7017 379 346 -9

10 49 63304 537 448,5 -16

13 46 35205 562 538,8 -4

13 106 199866 594 688,8 16

16 114 142992 705 806,6 14

19 132 214122 815 949,4 16

17 117 107068 873 846,7 -3

17 101 131478 891 806,7 -9

21 65 67691 961 847,1 -12

18 346 586303 1398 1451,8 4

of the experimental PMUs. The NanGate 15nm OCL [17]

technology library has been used in the experiments. The re-

sults are provided in Table I. The first two columns represents

the estimated numbers of control signals (CS) and power

modes (PM ), based on the analysed system-level power-

management specification. The next column (PMU VHDL)

represents the number of characters required for description

of the synthesized PMU model in VHDL. It is synthesized

using the high-level synthesis method presented in [8]. It can

help to imagine the complexity of the actual PMUs at the

RTL. Estimation represents the estimated power values. For

the estimation, we have stated x = 32.6 and y = 2.5 of (1).

The last column reports a difference between the estimated

and computed power values.

The results show that the selected parameters (the number

of control signals and the number of power modes) can be

indeed used for representation of the PMU complexity. Also,

we can see that the estimated power roughly corresponds to the

power reported by Power Compiler (inaccuracy up to 16%).

It must be noted that the PMU is not present in the system-

level power-management specification. There are no power-

management control signals and the number of abstract power

modes at the ESL is much lower than the eventual number of

power modes at the RTL (since they also include intermediate

power modes). Only relations among power domains and

structural dependencies among the SystemC modules are used

in the estimation. Thus, the proposed method is usable for

estimation of future PMU power requirements and it represents

a significant improvement in this area.

VI. CONCLUSION

The existing system-level power-management exploration

methods lacks the automation required to quickly evaluate

overhead of the specified power management, especially the

power-management unit (PMU). We have proposed such a

method, which uses SystemC/PMS specification [9] and is

based on a modified power-management high-level synthesis

algorithm. It is able to predict complexity of the PMU (it

is not present in the specification), based on estimation of a

number of required intermediate power modes and a number

of required control signals for power-management elements

implementing power management at lower abstraction levels.

The proposed method is especially useful for fast explo-

ration of various power-management strategies at the system

level. It complements the methods that can estimate power

of system components under power management, but do not

take into account the introduced PMU overhead. Furthermore,

it can be used instead of methods that require high-level

synthesis for this purpose, since it is much faster.

ACKNOWLEDGMENT

This paper was created with the support of the Ministry

of Education, Science, Research and Sport of the Slovak

Republic within the Research and Development Operational

Programme for the project ”University Science Park of STU

Bratislava”, ITMS 26240220084, co-funded by the European

Regional Development Fund. This work was also supported by

the Slovak Scientific Grant Agency (VEGA 1/0836/16) and the

Slovak Research and Development Agency (APVV-15-0789).

REFERENCES

[1] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power

Methodology Manual: For System-on-Chip Design. Springer, 2007.
[2] IEEE Standard for Design and Verification of Low-Power, Energy-Aware

Electronic Systems. IEEE, 2015, IEEE Std 1801-2015.
[3] “International technology roadmap for semiconductors 2.0,”

2015. [Online]. Available: www.semiconductors.org/main/2015
international technology roadmap for semiconductors itrs/

[4] K. Grüttner, P. A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, F. Her-
rera, E. Villar, C. Brandolese, W. Fornaciari, G. Palermo et al., “The
COMPLEX reference framework for HW/SW co-design and power
management supporting platform-based design-space exploration,” Mi-

croprocessors and Microsystems, vol. 37, no. 8, pp. 966–980, 2013.
[5] H. Affes, A. B. Ameur, M. Auguin, F. Verdier, and C. Barnes, “An ESL

framework for low power architecture design space exploration,” in 2016

IEEE 27th International Conference on Application-specific Systems,

Architectures and Processors (ASAP). IEEE, 2016, pp. 227–228.
[6] K. Gagarski, M. Petrov, M. Moiseev, and I. Klotchkov, “Power specifi-

cation, simulation and verification of SystemC designs,” in 2016 IEEE

East-West Design & Test Symposium (EWDTS). IEEE, 2016, pp. 1–4.
[7] A. Qamar, F. B. Muslim, J. Iqbal, and L. Lavagno, “LP-HLS: Auto-

matic power-intent generation for high-level synthesis based hardware
implementation flow,” Microprocessors and Microsystems, vol. 50, pp.
26–38, 2017.

[8] D. Macko, K. Jelemenská, and P. Čičák, “Power-management high-level
synthesis,” in The 23rd IFIP/IEEE International Conference on Very

Large Scale Integration (VLSI-SoC). IEEE, 2015, pp. 63–68.
[9] ——, “Power-management specification in SystemC,” in Proceedings of

the 2015 IEEE 18th International Symposium on Design and Diagnostics

of Electronic Circuits & Systems. IEEE, 2015, pp. 259–262.
[10] D. Greaves and M. Yasin, “TLM POWER3: Power estimation methodol-

ogy for SystemC TLM 2.0,” in Models, Methods, and Tools for Complex

Chip Design: Selected Contributions from FDL 2012, ser. Lecture
Notes in Electrical Engineering, J. Haase, Ed. Springer International
Publishing, 2014, vol. 265, pp. 53–68.

[11] T. Bouhadiba, M. Moy, and F. Maraninchi, “System-level modeling of
energy in TLM for early validation of power and thermal management,”
in DATE ’13 Proceedings of the Conference on Design, Automation and

Test in Europe. San Jose, CA: EDA Consortium, 2013, pp. 1609–1614.
[12] J. Karmann and W. Ecker, “The semantic of the power intent format

UPF: Consistent power modeling from system level to implementation,”
in 2013 23rd International Workshop on Power and Timing Modeling,

Optimization and Simulation (PATMOS). IEEE, 2013, pp. 45–50.



[13] F. Mischkalla and W. Mueller, “Advanced SoC virtual prototyping for
system-level power planning and validation,” in 2014 24th International

Workshop on Power and Timing Modeling, Optimization and Simulation

(PATMOS). IEEE, 2014, pp. 112–119.
[14] Y. Xu, R. Rosales, B. Wang, M. Streubűhr, R. Hasholzner, C. Haubelt,

and J. Teich, “A very fast and quasi-accurate power-state-based system-
level power modeling methodology,” in ARCS’12 Proceedings of the

25th International Conference on Architecture of Computing Systems,
Berlin Heidelberg, 2012, pp. 37–49.

[15] A Practical Guide to Low Power Design: User Experience

with CPF. Cadence Design Systems, 2012. [Online]. Available:
www.si2.org/?page=1061

[16] Synopsys, “Power Compiler: Power optimization in Design
Compiler,” 2017. [Online]. Available: www.synopsys.com/implemen
tation-and-signoff/rtl-synthesis-test/power-compiler.html

[17] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech,
and J. Michelsen, “Open cell library in 15nm FreePDK technology,”
in Proceedings of the 2015 Symposium on International Symposium on

Physical Design (ISPD ’15). New York, NY, USA: ACM, 2015, pp.
171–178.


