
VHDL Structural Model Visualization

Dominik Macko, Katarína Jelemenská

Slovak University of Technology

Faculty of Informatics and Information Technologies

Bratislava, Slovakia

dikemdm@gmail.com; jelemenska@fiit.stuba.sk

Abstract— Nowadays the digital systems design is almost

exclusively realized using hardware description languages

(HDL). In Europe, the VHDL (Very-High-Speed Integrated

Circuits HDL) is the most widely used HDL. Although HDLs

brought a lot of advantages into the design process, the HDL

structural models, especially on register transfer and lower

layers, are harder to read than the previously used schematic

representations. That is why a lot of commercial EDA (Electronic

Design Automation) systems include some kind of visualization

tool enabling to represent a model structure in a graphical form.

However, these systems are usually too complex and expensive

for the education purpose. In this case simple, easy to use

visualization tool would be more appropriate. The paper deals

with the problem of the structural models visualization as well as

with the design and implementation of the visualization tool

devoted to the VHDL structural models visualization. The

presented tool offers the possibility to display the schematic view

corresponding to the input VHDL model, edit the schematic

layout, print it or export it to an image file. The tool preserves the

model hierarchy and enables to easily switch among the

respective levels. It represents an useful tool in the process of the

VHDL structural model verification and debugging as well as for

documentation purposes.

Keywords- VHDL; structural models; visualization;

I. INTRODUCTION

The VHDL (VHSIC Hardware Description Language)
standardization in 1987 has started the massive use of the
language itself as well as the massive development of EDA
(Electronic Design Automation) tools supporting it. The digital
system design based on HDL brought several advantages
compared to the previously used manual design style – clearer
designs with less mistakes, possibility to verify the design in
early stages, technology-independence, and high productivity
increase thanks to the available EDA tools. On the other hand,
HDL design is less illustrative for a human being, especially in
case it represents the digital system structure. In general it is
easier to follow the circuit structure in a graphical form than in
a textual one, therefore easier to detect the possible mistakes in
a design (e.g. caused by an incorrect interconnection). The
VHDL model visualization is useful not only for verification
purposes, but also for design documentation. Adding the
graphical representation of the designed model allows other
designers to understand the design structure easier and faster.
Finally, it can also be useful when teaching the VHDL
modeling techniques, where the model visualization can help
the students to imagine, how the VHDL model works.

II. RELATED WORK

Nowadays, a lot of professional automatic design tools
provide several ways to describe digital system behavior and
structure together with its optimization. They support various
types of graphical and textual editors e.g. to enter the state
diagrams, truth tables, logic diagrams or simply to describe the
circuit in HDL. However, most of the EDA tools supporting
structure visualization are the commercial ones. We can
mention for example HDL Author, Visual Elite, or Active-
HDL [1-3].

HDL Author is the product of Mentor Graphics [1] that
replaced the previously supported HDL Detective. The HDL
code visualization is just one of its many functions and enables
HDL code conversion into a Block Diagram, IBD, State
Diagram or Flow Chart. The objects layout, color, style, and
font can be modified in a way that will not influence the
original code in any way. However, HDL Author is a robust
application, which is very complex and quite expensive.

Visual Elite was originally developed by Summit Design
and later bought by Mentor Graphics [2]. This is another
complex and general application that offers a variety of HDLs
and other design entry methods including block diagrams, state
diagrams and connectivity tables. The automatic mapping of
source code into its graphical representation is also provided.
The quality of code visualization is not that high compared to
the HDL Author, however, the user interface is easier to
manage by new users.

Another complex design system supporting HDL code
visualization is Aldec’s Active-HDL [3]. It is a suite of many
tools covering all phases of FPGA design and verification. The
Code2Graphics tool enables the HDL code conversion into its
graphical representation that can be further edited. Unlike in
HDL Author or Visual Elite, the modifications can alter the
model itself and the graphical representation can then be
converted back to the HDL using the Graphics2Code tool.
Moreover, Active-HDL also supports the visualization of
simulation. During the simulation an actual state of every
module in the block diagram is visualized and the values of all
variables are visible in the waveforms. In many other ways
Active-HDL is comparable to Visual Elite.

All the mentioned tools and systems are the commercial
ones. They all provide many functions (including visualization)
and support several HDLs. The main issue is their excessive
complexity and the price which is often not affordable for

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:

D. Macko and K. Jelemenská, "VHDL structural model visualization," 2011 IEEE EUROCON - International Conference on

Computer as a Tool, Lisbon, 2011, pp. 686-689.

doi: 10.1109/EUROCON.2011.5929348

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5929348&isnumber=5929030

beginners and students – the type of users that need the
structure visualization the most. This was the reason why we
decided to dedicate our effort to the development of simple and
easy to use tools for HDL structural description visualization.
Several solutions have been developed at the Faculty of
Informatics and Information Technologies, Slovak University
of Technology (FIIT STU) in Bratislava, most of them in the
frame of diploma theses [4 - 6]. The work presented in this
paper belongs to this number.

III. VHDL MODEL VISUALIZATION REQUIREMENTS

To visualize the VHDL model it has to be syntactically
analyzed first. The context-free parser is then necessary to
transform the VHDL description into a transient format. The
designed transient format should be able to represent also the
visualization information (e.g. location or size). We have to
consider all the elements that should be displayed in the
graphical representation. The entity instance will be
represented by a shape, holding the instance name and the ports
that will be connected to the ports of other instances. The
signals will be displayed as the connection lines, joining the
corresponding ports. The signals visualization should be
designed in such a way that the minimum number of
intersections is reached. It is also useful to preserve the model
hierarchy in the graphical representation.

The visualization tool should offer the following features:

• Loading the VHDL model from a file and its
transformation to the schematic representation.

• Separated view of individual levels of hierarchy.

• Objects layout modifications at the selected level of
hierarchy – the original interconnections have to be
preserved.

• Export of the currently displayed hierarchical level into
an image format.

• Saving the modified layout into a file for further usage.

• Simple user interface –intuitive, easy to use etc.

IV. VISUALIZATION TOOL DESIGN

To analyze the VHDL model the parser generator ANTLR
v3 [7 - 9] is one of the possible solutions. Based on the input
grammar the parser generator generates a group of C# classes
(another programming language can also be chosen)
performing the VHDL code analysis. The VHDL grammar
description preparation as well as the parser classes generation
are one-time steps which will be repeated only in case the
grammar has been modified.

For further use of the analyzed VHDL description it is
suitable to create an object model that will keep the
hierarchical structure of the VHDL model. The information
necessary for the model visualization (e.g. location or size of
the individual objects) will also be included in the object
model. The model contains only the data directly necessary for
the visualization purpose. It does not include information
present in VHDL model that is not necessary for this purpose.

A. Transient Representation of VHDL Model

The model, created in this way can be saved to a transient
representation, suitable for visualization. An XML
representation does have the appropriate properties for this
purpose since it can preserve the hierarchical structure. It is
widely used which means there is a lot of classes and libraries
available to work with the XML file format. The similar
solutions were used in [10]. In terms of visualization, there are
3 types of objects defined in the XML file: Entity instance,
Port, and Connection.

1) Entity instance
The entity instance is the only object in visualization that

can have its own structure. In case it has the internal structure
defined, it is described by means of other objects – other entity
instances, which are described in the lower level of hierarchy.
For each entity instance, the following parameters are extracted
from the VHDL description: Entity instance name, Entity
declaration name, Architecture name, and Ports list.

2) Port
Every entity instance keeps its ports list. Unlike in the

VHDL description, the ports just illustrate the interfaces, by
means of which the instance in the real design communicates
with the other ports. Each port has the following parameters:
Port name, Port mode, and Port type.

3) Connection
The connection joins two ports and presents their ability to

communicate to each other by means of sending signals. Each
entity instance keeps its own connections list. If it is the entity
instance on hierarchical level n, its connections list describes
the connections between the ports of the entity instances on the
level n-1, describing thus the structure of the given entity
instance on the lower level. The connections list includes also
the interconnections among the given entity instance ports (on
level n) and its lower level structure (ports on level n-1). Each
connection has the following main parameters: Connection
name, Source port name and entity instance name, Destination
port name and entity instance name, Source port range name,
and Destination port range name.

To preserve the hierarchical structure of the original VHDL
description it is sufficient to keep the information about the
architectures in the VHDL description, along with their ports,
connections and the entity instances inside. Based on this
information we can create the hierarchical structure of the
VHDL model for visualization purpose. In the design of XML
schema 4 types of nodes have been defined: Architecture, Port,
Entity instance, and Connection. Using this transient XML
representation it is possible to visualize the structural VHDL
model.

B. Visualization of XML Representation

Since the XML representation preserves the hierarchical
structure of the VHDL model, it is not difficult to visualize the
schematics of the respective levels of hierarchy. The
architecture in the XML file represents one hierarchical level.
In fact, it is an entity instance at the upper hierarchical level. Its
description includes the ports of the given entity instance
(upper level ports), the entity instances of the given level, their

Figure 3. The representation of a) connection, b) branching, c) splitting,

and d) joining.

ports, and the interconnections among the ports. So it is
necessary to design the graphical representation of each object
of this architecture.

The port can have different modes (in, out, inout, buffer,
linkage). According to the port mode, the shape of port is
drawn (see Fig. 1). The direction of the port shape (arrow)
symbolizes the direction of the data flow. The ports can belong
directly to an entity instance. In that case, they allow the entity
instance to communicate with other instances. If the port does
not belong to any instance, it represents input to or output from
the upper level of hierarchy. It is also necessary to consider the
special ports, which can represent the constant value sources or
the globally defined signals.

The entity instance is visualized as so called “black box”,
which functionality we do not know. So it is represented by a
rectangle (see Fig. 2), displaying the entity input and output
ports, the entity name, and the name of the respective instance.

The connection is represented as a broken line, which
connects two ports (see Fig. 3). If the connection interconnects
the ports of the internal instances, the connection contain also
the signal name (Fig. 3a). However, the connections can pass
from one port to several ports or vice-versa. So it is necessary
to define, which connections can overlap or how the
connections relations should be represented. The schematic
representation of the VHDL model should satisfy the standard
notation. Therefore the branching and splitting of the
connection has to be defined as well. The connection branching
is the case, when the same signal passes to several ports (Fig.
3b). The connection splitting/joining is the case, when the
multi-bit signal splits into several one-bit signals (Fig. 3c), or
several one-bit signals join into one multi-bit signal (Fig. 3d).
Next to the multi-bit ports there is the number of bits displayed.

C. Objects Layout Algorithm

The algorithm used for model visualization locates the
entities in two rows. In the upper row, the odd entities and in
the lower row the even ones are displayed. The entities are
numbered according to their sequence in the VHDL model.
The width of the entities is constant, and the height is
automatically calculated based on the number of ports. The row
distance from the top of the display surface is also constant.

So is the distance from the left border. The entities are drawn

gradually up down and left to right. Even the horizontal
distance between the entities is constant. The vertical distance
between the entities is calculated according to the number of
connections and the upper row height, which is given by the
highest entity in the row.

In the displayed hierarchical level, the ports are divided into
external and internal. The internal ports are those, which are
situated inside the entity instances of the given hierarchical
level. The external ports belong to the upper level entity. The
ports have the constant width and height. The internal ports are
automatically aligned to the borders of the given entity. The
input ports are on the left hand side, the others on the right
hand side. The vertical distance between the ports is constant
too. The external ports are displayed near the left and right
border of the display surface. The distance from the border is
constant as well. The ports are aligned to the connections
position.

There is a virtual bus located between the entities rows. The
distances between the connections in the virtual bus are
constant. Each inter-ports connection has its own part of virtual
bus reserved. This ensures that the different connections will
not overlap in the horizontal direction and it is no longer
necessary to check this fact (algorithm speed-up). The vertical
parts of the connections are checked, not to overlap one with
another. If there is an overlap, the connection is shifted. The
connections can overlap only in case they are connected to the
same pin of the same port.

All the constant values used by this algorithm can be preset
by user.

D. User Interface of the Visualization Tool

The user interface should be user-friendly. That means, is
should be simple, intuitive, comfortable and offering the
possibilities to access all the application features, to fulfill the
requirements.

Figure 1. The port graphical representation dependent on the port mode.

Figure 2. The graphical representation of an entity instance.

V. ILLUSTRATING EXAMPLE

To illustrate the features of the implemented visualization
tool a simple example will be presented here. In the code given
in Fig. 4, there is a fragment of simple VHDL model
describing the structure of 3 bit shift register.

Figure 4. VHDL model of three bit shift register.

This VHDL code, used as an input of visualization tool, is
then analyzed and transformed using an object model into the
XML representation. An example of XML representation of
entity instance dff1 is given in the code fragment displayed in
Fig. 5. The resulting visualization of the representation is
shown in Fig. 6.

Figure 5. Fragment of VHDL model XML representation.

VI. CONCLUSIONS AND FURTHER WORK

The paper is devoted to the problem of visualization of
structural digital system models described in VHDL. The core
of the paper forms the design and implementation of the new
VHDL visualization tool. The tool is especially suitable for the

beginners in VHDL design and for educational purpose. It
helps to understand the VHDL structural model development
and is useful in the process of digital system design
documentation. For a human being the graphical representation
of the structural model, generated by this tool, is better to
understand and easier and faster to detect the mistakes made
during the VHDL structural model creation.

The visualization tool is prepared for the extension by
VHDL model simulation and visualization of this simulation.
After this extension the tool would become also a strong
verification tool, valuable in digital systems design.

ACKNOWLEDGMENT

This work was partially supported by Slovak Science Grant
Agency (VEGA 1/0649/09 “Security and reliability in
distributed computer systems and mobile computer networks“).

REFERENCES

[1] Mentor Graphics, “Manage design data and flows - HDL Author,”
Mentor Graphics's products, Online, May 2009, 1-800-547-3000.

http://www.mentor.com/products/fpga/hdl_design/hdl_author/

[2] Mentor Graphics, “Continuous design flow from TLM to RTL - Visual
Elite HDL,” Mentor Graphics's products, Online, May 2009, 1-800-547-
3000. http://www.mentor.com/products/fpga/hdl_design/visual-elite-hdl/

[3] Aldec, Inc., “Active-HDL,” Aldec's products, Online, May 2009.

http://www.aldec.com/ActiveHDL/

[4] J. Petráš, “VHDL model visualization”, master theses, FIIT STU
Bratislava, 2008, 85 p.

[5] M. Zubal, “VHDL model visualization”, master theses, FIIT STU
Bratislava, 2008, 80 p.

[6] J. Turo , K. Jelemenská, “Contribution to graphical representation of
SystemC structural model simulation,” in Proc. of the 7th FPGAword
Conference, L. Lindh, V.J. Mooney, S. de Pablo, J. Öberg, Eds.
Copenhagen (Denmark), September 2010, pp. 42–48.

[7] T. Parr, “Implementing parsers and state machines in Java” in Java VM
Language Summit 2009, University of San Francisco.

[8] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific
Languages. The Pragmatic Bookshelf, 2007.

[9] R. M. Volkmann, “ANTLR 3,” Online, October 2010.
http://jnb.ociweb.com/jnb/jnbJun2008.html

[10] M. H. Reshadi, B. Goji-Ara, Z. Navabi,”HDML: compiled VHDL in
XML” in VHDL International Users Forum Fall Workshop. Teheran
Univ., 2000, pp. 69-74.

<EntityInstance x="670" y="50" width="250" height="60">
 <InstanceName>dff1</InstanceName>
 <EntityName PackageName="" LibraryName="">dff</EntityName>
 <ArchitectureName PackageName="" LibraryName="">beh</ArchitectureName>
 <VHDLPorts>
 <Port anchor="left" x="670" y="60" width="20" height="10">
 <PortName>d</PortName>
 <PortMode>IN</PortMode>
 <PortType>bit</PortType>
 </Port>
 <Port anchor="left" x="670" y="80" width="20" height="10">
 <PortName>clk</PortName>
 <PortMode>IN</PortMode>
 <PortType>bit</PortType>
 </Port>
 <Port anchor="right" x="900" y="60" width="20" height="10">
 <PortName>q</PortName>
 <PortMode>OUT</PortMode>
 <PortType>bit</PortType>
 </Port>
 </VHDLPorts>
</EntityInstance>

entity DFF is
 port (D,Clk:in bit;Q:out bit);
end DFF;

architecture Beh of DFF is
begin
 Q <= D when Clk'event and Clk = '1';
end Beh;

entity Shift3bitReg is
 port (In1,Clk:in bit;Out1:out bit);
end Shift3bitReg;

architecture Struct of Shift3bitReg is
 component DFF is
 port (D,Clk:in bit;Q:out bit);
 end component;
 signal s1,s2:bit;
begin
 dff1:DFF port map (s2,Clk,Out1);
 dff2:DFF port map (s1,Clk,s2);
 dff3:DFF port map (In1,Clk,s1);
end Struct;

Figure 6. Visualization of a simple VHDL model.

