
Automated Formal Verification of the Refined

Specification of Digital Systems in HSSL

L. Maron and D. Macko

Faculty of Informatics and Information Technologies,

Slovak University of Technology,

Bratislava, Slovakia

lubomir.maron@stuba.sk, dominik.macko@stuba.sk

 Abstract—Design of modern hardware systems becomes

difficult because of the increasing complexity. As a result,

more abstraction is used in the design process. However, an

error made at a higher abstraction level is transferred to

lower levels. It becomes costly to correct such an error at

later design stages, and therefore it must be revealed as soon

as possible. The specification language HSSL provides

techniques that can help to minimize the possibility of

human error at the specification stages. HSSL is intended

for formal behavioral specification of hardware and

software and it enables formal verification of refined

specifications. In this paper, a tool is described that is

intended for automated formal equivalence checking of

specifications at respective refinement stages. The tool is

able to apply refinement rules and to prove that the two

specifications describe the same system function. The

automation of this process unburdens the designer from

time-consuming manual effort. It is especially useful for

inexperienced designers, in the education process, which

would like to quickly verify their refined specifications.

Index Terms—Computer-aided design, design automation,

formal specifications, formal verification, verification

automation.

I. INTRODUCTION

For students and other beginning designers, it is almost
impossible to design a hardware system that is completely
without errors [1]. Functional verification by simulation of
a design may not reveal some corner-case errors, which
may be masked, and their subsequent correction (i.e.
debugging) is difficult – it takes money and time.

The development of a non-trivial hardware/software
system starts by the specification, which can be formal or
informal. Formal specification is a mathematical
expression of software or hardware that is used in their
development and implementation [2]. Formal expression
helps to identify and express requirements of a system
under development, and also helps to verify the system
functionality. Formal specification can describe different
aspects of the system, such as behavior (Petri nets, finite
state machines), data structures (abstract data types,
object-oriented languages), or system properties (using
various logics – e.g. the First order logic).

Verification is a complex process of checking whether
the system is correct. Formal verification proves or
disproves its correctness based on the formal specification.
Formal verification can have many forms that are based
on the three basic formal approaches – equivalence

checking, model checking, and theorem proving. A form
of equivalence checking is also used in [3], where the
verification process is carried out over two specifications,
one of which is a refinement of the other. The refinement
process can be described as adding more details to the
original specification (such as a communication protocol
with the system environment). The refined parts of the
specification describe the system in lower abstraction – it
is closer to the actual system. The first stage of the
specification contains the most abstract view of the
system, and through the refinement process it reveals the
details about the system functionality. The usual
hardware-system design process is illustrated in Fig. 1. It
starts from an ESL model (Electronic System Level),
which is refined to an RTL model (Register-Transfer
Level) usually described in some HDL (Hardware
Description Language), which is then synthesized into a
physical model that can be manufactured.

The refinement process at the specification stages
(ESL) is very useful in education. The students would just
not understand a detailed complex specification of some
system. Instead, they must deal with a simple abstract
specification, which is easily understandable, and they use
the predefined refinement steps to obtain the detailed
specification. To prevent a complete redesign of the
system in case of an error, they use formal equivalence
checking at the respective refinement stages to verify that
the system specification is still correct (i.e. equivalent to
the original specification). However, the manual
equivalence-checking process is quite difficult, it takes
time and errors can be made. Its automation would help
the students to quickly verify their designs and also to
evaluate the results by a teacher.

Figure 1. Overview of the usual design flow

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:

L. Maron and D. Macko, "Automated formal verification of the refined specification of digital systems in HSSL," 2016 International

Conference on Emerging eLearning Technologies and Applications (ICETA), Vysoke Tatry, 2016, pp. 205-210.

doi: 10.1109/ICETA.2016.7802074

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7802074&isnumber=7802034

Therefore, the goal of this work is to simplify and
automate the process of formal verification. It is achieved
by the implementation of a tool called HSSL Verification
Tool. It is intended to serve mainly for the educational
process; however, it can be also used in professional
system development.

This paper is organized as follows. In Section II, related
work is described, which is focused on HSSL-related
design-automation tools and other existing methods of
formal-verification automation. A brief introduction to the
HSSL refinement process is given in Section III. In
Section IV, the development of HSSL Verification Tool is
described – the specified requirements, the used methods,
and the implemented environment. Before the conclusion,
a simple example is provided.

II. RELATED WORK

The main development of Hardware/Software
Specification Language (HSSL) [1] has been centered at
the Slovak University of Technology in Bratislava.
Multiple researchers have continuously participated in
HSSL improvement by extending its features or by
implementing design-automation tools. For example, the
latest HSSL extension is the support of power-
management specification for development of power-
efficient digital systems [4]. The design-automation tools
developed for HSSL include, for example, a functional
simulator of HSSL model [5] or a high-level synthesis tool
for transformation of the HSSL specification into a VHDL
model using Petri nets [6]. Our work supplements the
existing tools and provides an alternative to the HSSL-
model verification based on time-consuming functional
simulation. Especially at the early stages, when the
simulation is not possible due to insufficient amount of
details.

A simple approach to automate formal verification in
VDM++ specification language has been published in [7].
The approach is based on an extension of the language,
which enables annotation of relationships between
specifications. It then uses an automated translation of
such an extended model to a formal language, which has
already been supported by a verification system. In our
case, we utilize the features the language already has;
therefore, our approach minimizes manual overhead.

A different automated approach is used in [8]. It
transforms AADL (Architecture Analysis and Design
Language) specification to constructs in timed automata,
which serve as an input of the existing model checker.
This approach is dependent on a third-party tool, and thus
only a subset of AADL constructs is verified. Also, in
case of [9], the specification is transformed to an algebraic
model, on which the existing model checker proves the
properties. We avoid transformation to another
language/model that is supported by a third-party tool
(with its own limitations). We use only the HSSL model,
and thus we are constrained only by the support of its
constructs in the developed tool.

There is an automated simulation-based verification of
formal specification refinement proposed in [10]. The
disadvantage of this verification approach is that it is
essentially not complete, due to informal verification, and
therefore some errors may not be revealed. Our approach
is based on formal verification; thus, it provides higher
assurance of the result.

III. ABSTRACTION REFINEMENT IN HSSL

HSSL [1] is intended for ESL behavioral specification
and modeling of reactive systems. It supports behavioral
specification concepts, such as hierarchical
decomposition, refinement, reuse, timing, exception
handling, concurrency, and synchronization.

The top-level structure in HSSL is a system, which has
input and output variables (representing an interface with
the system environment), the state variables (representing
an internal state), and the sets of agents and processes
specifying the system behavior. An agent describes the
communication of the system with the environment
between two states. Such a communication is specified by
a communication formula defined by a set of actions. A
single action specifies the state of the system inputs and
outputs in a specific time stated by an event. A process
represents an execution order of multiple agents, which
enables sequential or concurrent composition of agents,
loops, interrupts, and conditions.

The refinement process enabled in HSSL is defined in
[11]. In this process, the refined specification is
understood as an implementation of the previous
specification. It can contain multiple stages (i.e. partial
refinements), which always include a creative
transformation leading to the refined specification and the
verification step checking whether the refined
specification corresponds to the previous more-abstract
specification. The refinement continues until the
specification contains a sufficient amount of details and
the high-level synthesis can proceed (see Fig. 1).

There are two kinds of refinement defined in HSSL:

1. Agent to process refinement – The complex agent
is replaced by a process that composites multiple
less complex agents. Each of these agents
specifies a simpler partial behavior. The
introduction of a new process implies new state
transitions between new control states, which can
be represented by some additional state variables.

2. Communication refinement – The input/output
variables and the communication sets are replaced
by more detailed constructs. This kind of
refinement is mostly used when a new
communication protocol is introduced to
communicate with the system environment.
Usually, new input/output variables are added to
the specification.

The functional verification using formal equivalence
checking depends on the used kind of refinement. In case
of the first kind (i.e. agent to process), the introduced
process is transformed to a single agent that combines the
partial behaviors specified by the agents in the process.
The equivalence from the side of environment is checked
by comparing of the communication sets and the final
states of the two agents (the original agent before the
refinement step and the agent representing the process
after the refinement). In case of the second kind of
refinement (i.e. communication), a proper mapping
between the old and the new input/output variables in the
agent must be found, which impacts the communication
set as well as the final state of the agent. A so-called

reduction function [11] is applied to the refined agent and
then the equivalence to its previous version is verified.

IV. HSSL VERIFICATION TOOL

HSSL Verification Tool is a tool for verification of
whether the refined system specification in HSSL is
equivalent to the original one. Thus, it is verified whether
the refinement procedure was correctly processed.

The requirements for the tool have been stated as
follows.

• Loading and understanding of HSSL
specification.

• Transformation of specification into a suitable
internal format.

• Checking the equivalence between two loaded
and transformed specifications.

• Clear visualization of HSSL source code.

• User-friendly graphical user interface.

The first requirement is fulfilled by implementation of a
HSSL parser that can analyze HSSL source code, in which
a system is described. A suitable object-based internal
format is developed for easier manipulation with the
specification. The equivalence checking is the key feature
offered by the tool. It compares the two transformed
specification models, while it takes into account specific
rules of the refinement process. The tool can also serve as
a development environment, in which the source code can
be written. For a clear visualization, two separated side-
by-side windows for the two specifications are suitable.
And finally, a list of language constructs and their
hierarchy based on the specified digital system is provided
for the designer’s convenience.

A. Verification Tool Design

When designing a software product it is important to
determine what functionality it should contain. Since a
HSSL specification is the input to the tool, there needs to
be one part of the tool focused on HSSL analysis. It is
necessary to develop a method for translation of the
written text constructs of HSSL to data objects in
programming language in order the developed tool to
handle them. The most important part of the tool
functionality is the ability to formally verify the HSSL
specification. From the implementation perspective, the
tool is divided into three parts – analyzing part, storage
part, and comparison part. Message exchanges between
these parts are driven by user interface. These parts
represent the key independent components of the tool, as
illustrated in Fig. 2.

User Interface enables interaction between the designer
and the underlying verification functionality of the tool. It
provides capability to load two files with HSSL
specifications and clearly displays the verification result.

HSSL Analyzer provides analysis of the HSSL
specification. It is a difficult task; therefore, it is divided

into three internal specialized modules – lexer, parser, and
compiler.

HSSL Structures contains multiple classes that represent
the HSSL constructs. The source-code text is transformed
into objects of these classes for easier manipulation during
the comparison. These classes include the following.

• HSSL System – this is a representation of the
overall system model specified in HSSL.

• Agent – is a fundamental building block of HSSL
specification, representing finite partial behavior.

• Action – describes the communication of the agent
with the environment during its execution.

• Process – describes the composition of multiple
agents to execute sequentially or in parallel.

• Communication instance – contains all the
possible components of a communication set.

Comparator is used to actually verify the specification.
It takes into account the rules of the abstraction-
refinement process developed for HSSL specification
[11].

The HSSL analysis has to recognize not only the text
(syntax) but also the semantics. A commonly used
procedure for such analysis capabilities is parsing. It is a
lexical-syntactic analysis of the text, during which the text
is analyzed and the sequences of keywords create symbols
(tokens). To meet the requirements, the proposed tool uses
techniques very similar to parsing. The text analysis is
conducted in the following way.

1. Finding the specific keywords.

2. Based on the found keywords, objects are created
in the programming language.

3. Individual objects are linked by logical
connections in the text.

After the analysis of the specification is complete, the
tool will have a hierarchy of objects usable for the
processing. We have used the object-oriented
implementation language C#, which makes object
manipulation easier than manipulation of the text alone.

Figure 2. The proposed verification tool architecture

The proposed actions and communications between the
modules of HSSL Analyzer (lexer, parser, and compiler)
are illustrated in Fig. 3.

After the necessary objects are created based on the
lexical analysis, these objects are passed to the verification
part of the tool (Comparator) and the automated
verification process begins. The proposed verification
process consists of four basic steps, which verify the
interfaces, the organizational structures, the
communication, and the functionality.

1) Comparison of inputs and outputs
In this step the tool verifies whether the input and

output variables (representing system interfaces) are
equivalent in both specifications and whether the types of
variables (i.e. value domain) do not contradict each other.

2) Pairing of agents and processes
This verification step checks whether each process or

agent in one specification has the corresponding form in
the other specification. An unpaired process or agent
means that the specifications are not equivalent – i.e. one
of the specifications contains the functionality not
specified in the other one.

3) Comparison of communication sets
The communication sets of the agents are concatenated

into the final communication set based on the predefined
rules [11]. This set is then compared to the paired
agent/process in the refined specification. If some
communication word is not equivalent in the compared
specifications, the entire specification is declared to be
non-equivalent.

4) Comparison of final states
The final states of the processes are deduced based on

the sequences of the concatenated agents. The final state
represents a logical result of the system partial
functionality. This verification step actually involves
checking whether the final states of the paired processes
are equivalent.

The proposed automated verification method does not
verify actual values (like in case of the simulation), but
instead, it is based on static analysis and uses formal logic
of process algebra to prove or disprove equivalence. Thus,
the verification is very fast and the eventual result is
complete.

B. Tool Restrictions

We have developed HSSL Verification Tool as a
prototype to prove that the used verification process can
be automated. Therefore, there are some restrictions that
can be eliminated in a further version of the tool. These
restrictions represent some coding style rules, which
enable faster code analysis and pairing of HSSL
constructs.

• Writing of “if-else” constructs must be used in a
form with parentheses. Example:

if (condition) (Agent1) else (Agent2.Agent3)

• This restriction also applies to the other branching
and cyclic constructs, such as “while”, “do-
while”, “switch” and “loop”.

• Processes that describe the same behavior must
have the same identifier. If an agent in the original
specification is refined, the extended process must
retain his identifier. Example:

Agent = ProcAgent

• Input and output variables must have the same
identifier and type (i.e. domain) in both
specifications. The order of variables specification
is significant.

Keeping in mind these restrictions, the designer can
utilize the verification capabilities which this tool offers.
Because of these coding-style restrictions, the tool is
especially suitable for verification of the refined
specification against its original form.

V. EXPERIMENTAL TESTING

The application testing has been performed upon the
exemplar specifications, into which artificial errors were
inserted. If the developed tool detects an error, it stops the
verification process and shows the error. Each error is
identified by the error code and the error object (if
possible). HSSL Verification Tool can detect the errors
described in Table 1.

We provide an example of one specific error detection
testing in the following text. It is aimed towards a missing
variable kind of an error. The used HSSL specifications
describe a simple processor in the coarse (original) form
and the refined form.

The user interface, provided in Fig. 4, illustrates the
original specification on the left which contains an input
variable that is not present in the refined specification on
the right.

The developed tool has loaded and analyzed both
specifications correctly. After starting the verification, the
tool has displayed the error code 71 with the message “In
original specification is unpaired input”. It has also
identified that the erroneous object is the input variable

Figure 3. The proposed analyzer modules and actions

TABLE I.
DESCRIPTION OF ERRORS ACCORDING TO ERROR CODES

Error

Code

Error Description

21 A different number of communication sets.

22 An unpaired communication word.

23 An unpaired communication word in the original

specification.

24 An unpaired communication word in the refined

specification.

31 The final states are not equivalent.

32 An unpaired state in the original specification.

33 A missing state in the refined specification.

51 An unidentifiable object found during compilation.

71 An unpaired input in the original specification.

72 An unpaired variable in the original specification.

73 An unpaired output in the original specification.

81 An unpaired agent in the original specification.

82 An unpaired agent in the refined specification.

90 An unknown error.

“D”. An illustration of the verification result notification
is provided in Fig. 5.

The tool has correctly identified all the tested errors and
the verification result was correct in all test cases.

VI. CONCLUSION

In this paper, we have proposed a verification tool for
refined specification in HSSL. This tool is unique in
providing automated formal-verification capabilities to the
system development process involving HSSL modelling.

 We have described the requirements for the tool and
we have proposed a solution fulfilling these requirements.
The developed verification tool compares two
specifications in HSSL, where one is the refined form of
the other. The proposed verification process is based on
the lexical analysis of the specifications, the creation of
objects and their logical linking into a tree, and checking
the equivalence between the two object-tree
representations corresponding to the two specification
stages. Using experimental evaluation, we have carefully
tested the detection capabilities for specific errors. The
detected error in the specification along with the erroneous
object is clearly identified.

The proposed HSSL Verification Tool enables the
designer to quickly correct the issue and to keep
specification equivalent during the abstraction-refinement
process. It is especially suitable for novice designers (such
as students), for which the manual formal verification

process is too complicated and error-prone, or just takes
too much time. Therefore, it is valuable support in the
education process. It can be also used by a teacher to
quickly evaluate high amount of students’ assignments.
This tool supplements the set of existing design-
automation tools supporting the HSSL modelling. The
modular design of the tool enables easy extensibility and
makes it suitable to be used as a part of a more complex
development environment.

Functionality of the tool could be extended in several
ways, such as checking of the HSSL syntax or
involvement of new HSSL features during verification
(e.g. power-management specification [4]). These
extensions possibilities represent potential focus of our
further work in this area.

ACKNOWLEDGMENT

This paper was created with the support of the Ministry
of Education, Science, Research and Sport of the Slovak
Republic within the Research and Development
Operational Programme for the project “University
Science Park of STU Bratislava”, ITMS 26240220084,
co-funded by the European Regional Development Fund.
This work was also partially supported by the Slovak
Scientific Grant Agency (VEGA 1/0616/14 and
1/0836/16) and the Slovak Research and Development
Agency (APVV-15-0789).

REFERENCES

[1] N. Fristacky, J. Kacerik, T. Bartos, and M. Kardos, “Behavioral
specification model and language for digital systems,” Tech. Rep.,
Slovak University of Technology, 2000.

[2] N. Fristacky, J. Kacerik, and T. Bartos, “A mixed event-value
based specification model for reactive systems,” in SoC
Methodologies and design Languages, Springer US, 2001, pp.
193-204.

[3] P. Majtáz, “Formálna špecifikácia vstupného system,” Master
thesis, University of Zilina, 2001.

[4] D. Macko and K. Jelemenská, "Managing digital-system power at
the system level," in IEEE Africon 2013 Sustainable Engineering
for a Better Future, 2013, pp. 179-183.

Figure 4. Graphical user interface

Figure 5. The verification result notification

[5] S. Sidor, “Simulation of digital system specification in HSSL”.
Master thesis, Slovak University of Technology in Bratislava,
2013.

[6] K. Jelemenská, M. Kardoš, and P. i ák, “HSSL specification
high-level synthesis,” in 2015 13th International Conference on
Emerging eLearning Technologies and Applications (ICETA),
2015, pp. 171-176.

[7] Y. Kawamata, C. Sommer, F. Ishikawa, and S. Honiden,
“Specifying and Checking Refinement Relationships in VDM++,”
in 2009 Seventh IEEE International Conference on Software
Engineering and Formal Methods, 2009, pp. 220-227.

[8] A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat,
“Automated Verification of AADL-Specifications Using

UPPAAL,” in 2012 IEEE 14th International Symposium on High-
Assurance Systems Engineering (HASE), 2012, pp. 130-138.

[9] T. Peng and G. Ding, “Formal Specification and Automated
Verification of UML2.0 Sequence Diagrams,” in 2012 IEEE
International Conference on Granular Computing (GrC), 2012,
pp. 370-375.

[10] S. Yamada, A. Keijiro, S. Kusakabe, and Y. Omori, “Validation of
stepwise refinement with test cases generated from formal
specification,” in TENCON 2010 - 2010 IEEE Region 10
Conference, 2010, pp. 2449-2453.

[11] J. Ka erík, “Behavioral specification refinement in HSSL
language environment,” in Proceedings Sig-VHDL & ECSI of
“Forum on Design Languages” FDL'2000, 2000, pp. 329-336.

