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Abstract—Modern system-on-chip designs are characterized 

by their high complexity. It results in an increased number 

of transistors in a single chip, size of which is continuously 

decreasing due to market requirements. These issues have 

negative impact on reliability of the system, mainly because 

of the overheating of the device due to its power 

requirements. The result is that designers have to 

implement power-management techniques to reduce power. 

Due to high complexity of the systems, the modern trend is 

to specify power management at the high abstraction levels. 

However, the existing low-power design methodologies 

mostly target the application-specific integrated circuit 

(ASIC) devices, because they offer more flexibility in 

adoption of various power-reduction techniques. In this 

paper, we target field-programmable gate array (FPGA) 

designs. We adopt the previously developed low-power 

systems design methodology to FPGA platforms, enabling 

power management at early design stages. A high degree of 

automation is involved in the adopted methodology, which 

ensures fast development of FPGA-based low-power 

systems. The utilized abstraction and automation is suitable 

especially for novice designers, such as students; therefore, 

the proposed methodology is useful in education. The 

experiments illustrate power-management overhead of the 

offered methodology as well as its usefulness for modern 

designs. 

Keywords—design; FPGA; low power; power management; 

power reduction; system level 

I. INTRODUCTION 

The growing interest in the Internet of Things (IoT) 
causes common devices surrounding our everyday life to 
process information and to communicate. The field-
programmable gate arrays (FPGAs) are adopted as IoT 
devices [1] due to their low manufacturing costs and low 
time-to-market of the implemented systems. However, 
many IoT applications require battery-operated devices or 
some sort of power harvesting. This is where FPGAs are 
not very efficient [2]. They have been primarily developed 
to increase offered functionality. Their low-power 
operation is targeted only in recent years. Over time, the 
FPGA devices have become highly integrated complex 
circuits, programmability of which comes at a cost of high 
area overhead [3]. It essentially contradicts with low-
power operation. 

Hardware designers have developed many power-
reduction techniques to overcome the power-density 
problem and to prolong operation time on battery [4]. The 
most popular of these techniques include clock gating, 
power gating, scaling of voltages and operating 
frequencies. Some low-power FPGAs are available today, 

which use low-power techniques [2], [3]. However, the 
system that will be implemented (programmed) in this 
FPGA must be also designed to be low power. There are 
recommendations available for design or synthesis and 
place-and-route settings in [5], [6]. However, the power 
management is not utilized in the application design. The 
problem in FPGA-based design is that the designer is 
limited by the FPGA device itself. Therefore, the power-
reduction techniques (such as power gating) must be 
enabled in the selected device. The designer should 
explore capabilities of the used FPGA device and 
implement a power management in the design which 
utilizes these capabilities. 

A. Standard Power Management 

Power management enables to control power 
requirements of system hardware components by 
switching them into various power states. Some 
components can be powered down, while other 
components can temporarily increase their performance. 
According to the low-power integrated circuits design and 
verification standard called UPF (Unified Power Format) 
[7], the power state corresponds to the supply voltage 
level at which the component operates. Many power-
reduction techniques are adjusting the operation frequency 
of the component in addition to the supply voltage. 
Therefore, the power state is represented by a voltage-
frequency pair in more general view. For more efficient 
power management, UPF utilizes the concept of power 
domains. A power domain contains the system 
components which always operate in the same power 
state. The power-management unit (i.e. the system 
component handling switching between power states) then 
controls the power states of the whole domains, not the 
individual components. Most of the modern low-power 
systems design methodologies are based on the UPF 
standard. 

B. System-Level Approach 

The UPF-based low-power design starts at the Register-
Transfer Level (RTL). The RTL is no longer feasible as a 
design starting point, because of the system complexity. 
The international technology roadmap for semiconductors 
(ITRS) suggests adoption of the system level of 
abstraction (ESL) in the design to efficiently specify, 
implement, and verify the systems [8]. An FPGA is often 
used as a prototype platform for expensive custom 
hardware designs. Rapid prototyping in FPGA is based on 
high-level synthesis, which enables description of the 
system in highly abstract programming languages (e.g. C, 
C++, SystemC) and its automated low-level 
implementation (it corresponds to the ITRS suggestion). 
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The designed system is functionally verified in an FPGA 
before it is implemented as an application-specific 
integrated circuit (ASIC). However, many low-power 
design methodologies target ASIC technology [9]-[15], 
and they are simply not usable in FPGA due to used 
modelling approaches and physical limitations of the 
devices. The low-power ASIC design cannot be then 
properly verified in FPGA, which contradicts it primary 
usage. 

C. Paper Overview 

This paper describes an adoption of the existing system-
level low-power design methodology [15] to the FPGA-
based designs. It uses an abstract power-management 
specification, which is restricted by the target FPGA 
device capabilities. It can be then automatically 
synthesized to FPGA design, as well as a custom ASIC 
design. It enables to easily explore various power-
management architectures and select the most suitable 
one, resulting in the lowest power consumption. Such a 
methodology also enables FPGA prototyping of low-
power systems, which is essential to speed-up 
development time of ASIC-based systems. 

The paper is organized as follows. The next section 
briefly introduces the selected design methodology. The 
modification, enabling its adoption in FPGA technology, 
is described in Section IV. Experimental results in Section 
V support usefulness of the adopted methodology. The 
paper is concluded with the discussion on the further work 
in this research area. 

II. OVERVIEW OF ABSTRACT POWER MANAGEMENT 

Design of modern complex digital systems starts at the 
system level in order to deal with the system complexity 
and to increase the efficiency of system development. On 
the other hand, to avoid power problems in the system and 
to reduce energy consumption of battery-operated devices, 
the implementation of power management is unavoidable 
in the complex systems. The low-power systems design 
based on the UPF standard starts at the RTL, which is not 
suitable for complex systems for reasons stated above. 
And to start system design at the ESL and implement 
power management at the RTL results in even more 
problems. ESL power estimations become highly 
inaccurate and such an intrusion into the design at later 
stage implies a need for complex verification, which takes 
too much time. 

Designers have developed multiple methods to 
implement power management from the beginning at the 
ESL, such as [9]-[14]. The existing methods have had 
many drawbacks, such as insufficient abstraction, missing 
automation, or inadequate verification. Therefore, we have 
developed a new method of abstract power-management 
specification and integrated it to the novel low-power 
systems design methodology [15]. The cornerstone of the 
methodology is the automation based on high-level 
synthesis [16], which is increasingly used in FPGA-based 
design. Thus, this methodology has potential for adoption 
in FPGA-based design process. 

A. Methodology Overview 

The described methodology is built around the design 
flow, shown in Fig. 1. The key idea lies in selecting 
several UPF concepts, which are suitable for system level 

of abstraction. These include power domains, power states 
and their combinations in power domains (power modes), 
system components assignment to power domains, and 
switching between power states. The selected concepts are 
directly integrated into the ESL specification model in an 
abstract manner. Thus, the designer is able to specify both, 
the functionality and power management, in a single 
model. This is useful at the ESL, since the power 
management impacts the functionality – i.e. these aspects 
need to work together. The specification model is then 
refined during so-called abstraction-refinement process, 
which adds required details to the model. This process is 
complemented by various verification processes ensuring 
correct functionality and power-management 
specification. 

When the model is sufficiently refined, it is 
automatically transformed into the RTL model during the 
high-level synthesis process. It extracts power-
management information from the functional model and 
uses it to synthesize the power intent in UPF standard 
specification and also to synthesize the corresponding 
power-management unit (PMU) for generation of control 
signals for power-management elements (e.g. power 
switches, isolation and retention logic) in the synthesized 
UPF specification. Power-management high-level 
synthesis also generates corresponding assertions useable 
for functional verification of the synthesized PMU and for 
coverage measurement. The developed power-
management equivalence checking ensures that the 
synthesized UPF specification at the RTL corresponds to 
the abstract power management at the ESL. At the RTL, 
the existing widely-used tools are used to analyze the 
design and to provide the trustworthy power information. 
This information is then used (if needed) for modification 
of abstract power management in order to obtain 
alternative power architecture. Thus, the designer can 
explore various power-management architectures and 
selects the suitable one, taking into account tradeoff 
between performance, power, and area of the system. 
After the RTL stage, the design flow continues according 
to the UPF standard. Thus, the existing methods and tools 
can be used later in the design process as it is nowadays. 

B. Abstract Power Management 

The UPF concepts imply that the system is split into 
multiple power domains, which group the components 
that always operate in the same power state. The abstract 
power-management specification is based on five 
predefined power states, which represent an intention to 

 

Figure 1. Overview of the low-power systems design flow 



use specific power-reduction techniques in the design after 
high-level synthesis. These states include: 

• Hold – operation of the components is stopped. It 
represents implementation of clock gating and 
operand isolation power-reduction techniques. 

• Off – power supply of the components is cut off. It 
corresponds to the power-gating technique. 

• Off_ret – state of the components is saved before 
the power supply is cut off. It represents power 
gating with state retention. 

• Diff_level – the components operate at the voltage 
or frequency level different from the basic level of 
the system. This state represents voltage scaling, 
frequency scaling, or multiple voltages and 
frequencies in the system. 

• Normal – the components operate at the basic 
voltage and frequency level of the system. No 
explicit architectural power-reduction technique is 
used when this state is active. 

The power state of the whole system is represented by 
the power mode in which the system operates. A power 
mode represents a specific combination of power states in 
power domains. The dynamic nature of power 
management is implemented by switching between 
various power modes. The switching itself is specified in 
the functional part of the system specification, because it 
directly influences functionality of the system. 

Based on the specified information, the high level 
synthesis is able to generate power-management elements, 
which actually change the states of the components. Also 
power supply ports and power nets are not explicitly 
specified in the abstract power management. This 
information is implicitly given by the power domains 
relations and architectural dependencies of the 
components. This is the main reason why the abstract 
power-management specification is multiple times simpler 
than the standard UPF specification. Experimental results 
in [15] showed that SystemC-based abstract power 
management specification is approximately five times less 
complex than UPF specification, in terms of the number 
of characters. 

III. ADOPTION TO FPGA-BASED DESIGN 

The selected methodology has been designed for 
extension of the current low-power design flow based on 
the UPF standard. Therefore, it is essentially coupled with 
the ASIC technology. However, some of the methods used 
in the methodology can also be used in FPGA-based 
designs. Since the current FPGA flows do not work with 
UPF specification, the power-management aspects 
resulting in UPF are not usable. They mostly involve 
multiple voltages in the system. However, the PMU 
generated by the power-management synthesis process is 
fully usable in FPGA technology. Therefore, this 
methodology can simplify the adoption of architectural 
clock gating, operand isolation, or multiple clock domains 
in the system. The designer is thus restricted to the 
normal, hold, and diff_level power states in the abstract 
power-management specification. However, the isolation 
cells are not automatically implemented (UPF flow is not 
used), and therefore the designer needs to design the 
clock-gating and isolation elements manually. The use of 
other power-management techniques depends on the 

FPGA device – whether it supports the power-gating 
technique and how many voltages it offers. The control 
signals are correctly generated by the PMU; however, the 
designer has to use them to control specific FPGA 
elements. For the simulation purpose, the assertions can 
be used as well. Thus, the usage in the FPGA design flows 
is oriented towards simplifying the power-management 
strategy algorithm specification and automated generation 
of the PMU, not to the automated implementation of 
power-management supporting logic and nets. 

The design flow resulting from the modified low-power 
systems design methodology is illustrated in Fig. 2. We 
propose that the system design starts from a crude 
specification at the ESL, similarly to [15]. The power-
management concepts (such as power domains, power 
states, and power modes) are integrated into the functional 
specification model; thus, the designers use one language 
and one specification style. During the functional 
specification, the designer should split the system 
architecture into power domains in an empirical way. The 
next step is to assign to these domains some power states 
and create the most basic power modes (e.g. for a normal 
operation and for a power-saving operation). The 
functional specification represents the system 
functionality; thus, a dependency between the components 
can be deduced. The components that will probably be 
used at the same time should be in the same power 
domain. On the other hand, a component that will be used 
only occasionally should have its own domain. 

The abstract power-management specification does not 
influence the system functionality, i.e. the designer does 
not need to worry that the system function is disrupted 
because of the wrong power-management specification. 
Moreover, the designer should use the proposed power-
management static analysis to create a structurally correct 
and consistent specification. 

At first, the designer should restrict abstract 
specification to the normal, hold, and diff_level states 
representing different frequency levels. The specification 
(both the functionality and power management) then goes 
through abstraction-refinement process. When the refined 
system-level model is executable, the best way to refine 
abstract power management is to simulate the design. 
Based on the simulation results, the designer can observe 
which components are active at the same time, how long 
some components are inactive, and so on. During the 
simulation, the preliminary power-mode changes can be 
observed, and thus the designer can notice what would be 
the state of the components. For example, if the power 
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mode informs that the state of some power domain is 
normal and the designer observes that the components in 
this domain are inactive, the designer should add some 
power-saving state (either hold or a lower-frequency 
diff_level state) to that power domain for such operation 
time. 

At this stage, the designer should decide for a target 
FPGA device and analyze its capabilities. According to 
the available voltages, the performance levels (voltage-
frequency pairs) should be specified and the diff_level 
states adjusted. Based on the availability of power-gating 
elements, the designer should analyze the possibility of 
usage of the off and off_ret abstract power states, which 
could replace the hold state in domains, components of 
which are inactive for longer periods of time. The reason 
is that the hold power state saves only dynamic power, 
while the off states also reduce the static power 
consumption (but produces higher delays). 

After the system-level functional verification, the high-
level synthesis usually takes place. During this process, 
the designer should firstly use the proposed power-
management high-level synthesis, which extracts the 
power-management specification from the system-level 
model – in order to be synthesizable by a usual high-level 
synthesis tool (e.g. Vivado [17]). The power-management 
high-level synthesis process generates an RTL description 
of the PMU and informs the designer where the power-
management supporting logic should be located (such as 
clock-gating, power-gating, or isolation elements). 
However, this supporting logic needs to be manually 
implemented by the designer, or if available, the existing 
elements in the FPGA device should be used and 
connected appropriately. During high-level synthesis, the 
automated static-analysis verification process informs the 
designer if some important aspects are missing in the 
abstract specification. The designer should then integrate 
the generated PMU into the top-level functional 
description of the system. The power-mode signal is 
driven by the power-mode register, generated by the 
functional high-level synthesizer. The clock signal is 
usually the basic clock in the system – it depends on the 
designer how fast the power-mode changes should be 
processed. 

The next step is usually the RTL functional verification. 
To help alleviate the preparation overhead, the power-
management high-level synthesis generates the assertions, 
monitoring the power-management control signals. Also, 
the designer should use the generated coverage assertions 
for a coverage-measurement purpose, and thus verify the 
design more robustly. After this step, the synthesis and 
implementation (including place and route process) take 
place. When the design is mapped to the FPGA device, 
the power can be analyzed with high accuracy. The usual 
FPGA synthesis tools directly offer this feature. 

After the power analysis, the designer can modify the 
system-level specification and repeat the high-level 
synthesis. The designer can either modify both 
functionality and power management, or the power 
management only. The power-management high-level 
synthesis is much faster than the functional synthesis; 
therefore, it makes sense to explore various power 
architectures upon the synthesized system architecture. 
However, if the power-management strategy algorithm 
(power-modes changes in the functional design) or the 
power modes themselves are modified, the corresponding 

functional components have to be also resynthesized. In 
this way, the power-architecture exploration is achieved 
and the most suitable architecture should be used for the 
final device programming. The designer should carefully 
consider a trade-off between power, performance, and 
area. 

IV. EXPERIMENTAL RESULTS 

Firstly, we show illustration of usage of the proposed 
methodology in a form of case study. Then, the area 
overhead of the adopted power management is estimated. 

A. Case Study 

To illustrate simple usage of the offered methodology, 
we use it on a case-study system. It represents a simple 
system-on-chip, consisting of one microprocessor mu0 
and two memories ram0 (RTL description available in 
[18]). They are connected through a memory controller, 
which selects the memory with which the microprocessor 
will communicate based on the address at the address bus. 
We have described this system in SystemC code in order 
to mimic top-down design and to use the power-
management high-level synthesis process. An abstract 
architecture view of this system is provided in Fig. 3. 

Obvious thing, regarding the power management, is to 
set a low-power state to the memory that is not currently 
used by the microprocessor. Unfortunately, this is not 
something the existing synthesis tools could do 
automatically. Such an architectural power management 
needs to be created by the designer. For this purpose, we 
have used the proposed abstract power-management 
specification. We have divided the system into four power 
domains, one for each major component. Two power 
states have been assigned to each of these power domains, 
the active (normal) and inactive (hold) power state. We 
have specified two power modes, one for M1 to be active 
and M2 inactive, and the other one for vice versa 
activation. Power-mode switching is driven by the MCU 
decision about which memory is currently used. The early 
validation of the power management specification using 
the static analysis reported that the power domains for 
CPU and MCU are not necessary, because their states do 
not change in time (they are always in the normal power 
state). Therefore, only two explicit power domains 
remained in the specification, PD_M1 and PD_M2. The 
resulted abstract power-management specification has 
taken only 237 characters. 

The power-management high-level synthesis has 
generated the PMU, code-size of which has taken 2905 
characters. For illustration, the synthesized power-
management architecture of the system is provided in 
Fig. 4. In addition, the high-level synthesis has generated 
10 coverage assertions controlling that each power mode, 
each power state and each transition between power states 
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is exercised during RTL simulation. These assertions have 
taken 1172 characters of source code. 

This case study has shown that even for such a simple 
power management (2 power domains, each with 2 power 
states and 1 component instance, 2 power modes), the 
proposed methodology simplifies the specification 17 
times (237 vs. 4077 characters). However, the designer 
has to implement power-management elements, such as 
isolation logic, to proceed with RTL functional 
verification. Thus, the process is not yet fully automated. 

For the area and power estimation, the tools integrated 
in the Xilinx ISE Design Suite 14.7 environment [19] 
have been used with default synthesis and implementation 
settings. As a target device, Spartan 3 xc3s1500l (target 
package fg320) has been selected, since we have this 
device available and the synthesized designs could be 
tested on the real device.  

The estimation results are provided in Table 1. 
Interesting thing is that the area overhead is not high – 
utilization of some FPGA resources is even lower. Overall 
utilization seems to be more efficient in the power-
managed design. Only the number of slice registers and 
the number of BUFGMUXs is higher. The power 
consumption is slightly reduced in the power managed 
design. Higher reduction is probable in more complex 
designs and in FPGAs in which power gating can be used. 

B. PMU Self-Management Area Overhead 

The utilized power-management high-level synthesis 
uses self-management of the PMU, which we have 
proposed in [20]. In this experiment, we have used FPGA 
synthesis to estimate area overhead of the integrated self-
management of the synthesized PMU. Specifically, we 
target determination of the area overhead introduced by 
the modification of the power-state machine inside the 
PMU (introduction of additional elements to manage its 
own power consumption). It takes into account the area 

(utilization of FPGA resources), introduced by the 
comparison unit and the clock-gating logic. 

We have pseudorandomly generated 15 samples of 
abstract power-management specification in SystemC, 
which have been then synthesized into the RTL form in 
order to get PMU designs. The parameters of these 
designs are provided in Table 2. The first column 
represents the identification number of the sample. The 
APM column represents the number of power modes in 
the abstract power-management specification. The Power 
Domains column represents the number of explicit power 
domains that are controlled by the PMU. The next two 
columns (Power States and Instances) contain average 
numbers of power states and instances in power domains. 
PMU represents the complexity of the generated PMU (in 
terms of the number of characters that are required for its 
description). The GPM column represents the number of 
power modes in the PMU (including the generated 
internal power modes). The number of control signals, 
driven by the PMU, is given in the last column (Control 
Signals). The samples are ordered according to the PMU 
column – it should correspond to the ascending order of 
PMU complexity, which scales from three thousand to 
half million characters; thus, these PMUs can be 
considered a representative set. 

For easy comparison of the designs, we have used the 
equivalent-gates-count parameter offered by the Xilinx 
ISE Webpack 9.2i tool. In Table 3, the estimated area 
requirements for the PMU design without (Basic PMU 
design) and with (Self-Managed PMU design) the internal 
power management are provided. The results show that 
the area overhead can be as high as 50 % for simple PMU 
designs. However, for more complex PMU designs, the 
overhead is very small, even under 1 %. The area 
requirement of the self-management depends on the 
number of control signals, since they represent inputs of 
the comparison unit. The overhead is then indirectly 
proportional to the number of power modes, because it 
represents the complexity of the state and transition logic 
in the PMU design. 

This experiment has shown that the proposed self-
management inside very-complex power-management 
units has negligible area overhead. In small PMUs, a 
designer should carefully consider whether the gained 
power savings are worthy of the additional area 
requirements. However, as we have shown in the previous 
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TABLE II.   
THE ESTIMATED POWER AND AREA DATA 

Parameter 
Original 

Design 

Power- 

Managed 

Design 

Difference

Number of Slice Flip Flops 50 53 6 % 

Number of Slice Latches 0 2 200 % 

Number of 4 input LUTs 260 230 -11.5 % 

Number of occpied Slices 148 137 -7.5 % 

Number of bonded IOBs 36 36 0 % 

Number of BUFGMUXs 1 2 100 % 

Average Fanout of Non-

Clock Nets 
4.22 4.22 0 % 

Total power [mW] 150 148 -1.5 % 

TABLE I.   
THE PARAMETERS FOR AREA-OVERHEAD EVALUATION 

# APM
Power 

Domains

Power

States
Instances PMU GPM

Control 

Signals

1 2 1 2 3 3300 4 3 

2 3 2 2 2.5 4452 5 4 

3 3 3 1.67 3 4619 5 3 

4 3 4 2.25 3 7017 8 10 

5 3 4 1.75 3 8658 12 7 

6 3 4 2.25 3 10094 14 10 

7 5 3 4 2 35205 46 13 

8 10 3 3 2 63304 49 10 

9 3 10 2.2 2 67691 65 21 

10 5 5 3 5 107068 117 17 

11 7 5 3 2 131478 101 17 

12 7 4 3.5 2 142992 114 16 

13 10 5 2.4 2 199866 106 13 

14 5 10 2.1 3 214122 132 19 

15 10 4 4 2 586303 346 18 



experiment, additional design elements could even result 
in more efficient utilization of FPGA resources. Thus, the 
designer should evaluate the power-area tradeoff on a 
case-by-case basis. 

V. CONCLUSIONS AND FURTHER WORK 

This paper is devoted to the adoption of the existing 
low-power systems design methodology to the FPGA 
platforms. It is oriented towards simplified adoption of 
power management in the system implemented in FPGA. 
The resulted methodology is useful for rapid design 
prototyping, utilizing a high degree of automation through 
so-called high-level synthesis. The adopted aspects of the 
methodology are usable for exploration of various power-
management strategy algorithms, various power 
architectures, and corresponding power-management 
units. The experiments have shown the usefulness of the 
proposed methodology. 

The further work can be oriented towards automated 
implementation of power-management logic, such as 
isolation elements and clock-gating logic. Then, the 
developed power-intent equivalence checking can be 
modified for the needs of the adopted design flow to 
verify synthesized RTL power management against ESL 
specification. Also, the adopted high abstraction of power-
management specification enables further enhancement in 
the area of automated selection of abstract power states 
and modes of the system, as well as the automated 
segmentation of the system into power domains. 
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TABLE III.  
SELF-MANAGEMENT AREA-OVERHEAD ESTIMATION 

# 

Basic 

PMU 

Design 

Self-Managed 

PMU Design 
Area Overhead 

1 57 76 33.33 % 

2 116 153 31.90 % 

3 57 85 49.12 % 

4 284 342 20.42 % 

5 631 702 11.25 % 

6 944 1002 6.14 % 

7 4167 4277 2.64 % 

8 4693 4784 1.94 % 

9 6346 6461 1.81 % 

10 9896 9993 0.98 % 

11 9866 9981 1.17 % 

12 7550 7656 1.40 % 

13 4740 4878 2.91 % 

14 7271 7407 1.87 % 

15 37501 37646 0.39 % 

 


