
Adoption of Abstract Power-Management

Specification to FPGA-Based Design

D. Macko

Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia

dominik.macko@stuba.sk

Abstract—Modern system-on-chip designs are characterized

by their high complexity. It results in an increased number

of transistors in a single chip, size of which is continuously

decreasing due to market requirements. These issues have

negative impact on reliability of the system, mainly because

of the overheating of the device due to its power

requirements. The result is that designers have to

implement power-management techniques to reduce power.

Due to high complexity of the systems, the modern trend is

to specify power management at the high abstraction levels.

However, the existing low-power design methodologies

mostly target the application-specific integrated circuit

(ASIC) devices, because they offer more flexibility in

adoption of various power-reduction techniques. In this

paper, we target field-programmable gate array (FPGA)

designs. We adopt the previously developed low-power

systems design methodology to FPGA platforms, enabling

power management at early design stages. A high degree of

automation is involved in the adopted methodology, which

ensures fast development of FPGA-based low-power

systems. The utilized abstraction and automation is suitable

especially for novice designers, such as students; therefore,

the proposed methodology is useful in education. The

experiments illustrate power-management overhead of the

offered methodology as well as its usefulness for modern

designs.

Keywords—design; FPGA; low power; power management;

power reduction; system level

I. INTRODUCTION

The growing interest in the Internet of Things (IoT)
causes common devices surrounding our everyday life to
process information and to communicate. The field-
programmable gate arrays (FPGAs) are adopted as IoT
devices [1] due to their low manufacturing costs and low
time-to-market of the implemented systems. However,
many IoT applications require battery-operated devices or
some sort of power harvesting. This is where FPGAs are
not very efficient [2]. They have been primarily developed
to increase offered functionality. Their low-power
operation is targeted only in recent years. Over time, the
FPGA devices have become highly integrated complex
circuits, programmability of which comes at a cost of high
area overhead [3]. It essentially contradicts with low-
power operation.

Hardware designers have developed many power-
reduction techniques to overcome the power-density
problem and to prolong operation time on battery [4]. The
most popular of these techniques include clock gating,
power gating, scaling of voltages and operating
frequencies. Some low-power FPGAs are available today,

which use low-power techniques [2], [3]. However, the
system that will be implemented (programmed) in this
FPGA must be also designed to be low power. There are
recommendations available for design or synthesis and
place-and-route settings in [5], [6]. However, the power
management is not utilized in the application design. The
problem in FPGA-based design is that the designer is
limited by the FPGA device itself. Therefore, the power-
reduction techniques (such as power gating) must be
enabled in the selected device. The designer should
explore capabilities of the used FPGA device and
implement a power management in the design which
utilizes these capabilities.

A. Standard Power Management

Power management enables to control power
requirements of system hardware components by
switching them into various power states. Some
components can be powered down, while other
components can temporarily increase their performance.
According to the low-power integrated circuits design and
verification standard called UPF (Unified Power Format)
[7], the power state corresponds to the supply voltage
level at which the component operates. Many power-
reduction techniques are adjusting the operation frequency
of the component in addition to the supply voltage.
Therefore, the power state is represented by a voltage-
frequency pair in more general view. For more efficient
power management, UPF utilizes the concept of power
domains. A power domain contains the system
components which always operate in the same power
state. The power-management unit (i.e. the system
component handling switching between power states) then
controls the power states of the whole domains, not the
individual components. Most of the modern low-power
systems design methodologies are based on the UPF
standard.

B. System-Level Approach

The UPF-based low-power design starts at the Register-
Transfer Level (RTL). The RTL is no longer feasible as a
design starting point, because of the system complexity.
The international technology roadmap for semiconductors
(ITRS) suggests adoption of the system level of
abstraction (ESL) in the design to efficiently specify,
implement, and verify the systems [8]. An FPGA is often
used as a prototype platform for expensive custom
hardware designs. Rapid prototyping in FPGA is based on
high-level synthesis, which enables description of the
system in highly abstract programming languages (e.g. C,
C++, SystemC) and its automated low-level
implementation (it corresponds to the ITRS suggestion).

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

This is an accepted version of the published paper:

D. Macko, "Adoption of abstract power-management specification to FPGA-based design," 2016 International Conference on

Emerging eLearning Technologies and Applications (ICETA), Vysoke Tatry, 2016, pp. 199-204.

doi: 10.1109/ICETA.2016.7802073

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7802073&isnumber=7802034

The designed system is functionally verified in an FPGA
before it is implemented as an application-specific
integrated circuit (ASIC). However, many low-power
design methodologies target ASIC technology [9]-[15],
and they are simply not usable in FPGA due to used
modelling approaches and physical limitations of the
devices. The low-power ASIC design cannot be then
properly verified in FPGA, which contradicts it primary
usage.

C. Paper Overview

This paper describes an adoption of the existing system-
level low-power design methodology [15] to the FPGA-
based designs. It uses an abstract power-management
specification, which is restricted by the target FPGA
device capabilities. It can be then automatically
synthesized to FPGA design, as well as a custom ASIC
design. It enables to easily explore various power-
management architectures and select the most suitable
one, resulting in the lowest power consumption. Such a
methodology also enables FPGA prototyping of low-
power systems, which is essential to speed-up
development time of ASIC-based systems.

The paper is organized as follows. The next section
briefly introduces the selected design methodology. The
modification, enabling its adoption in FPGA technology,
is described in Section IV. Experimental results in Section
V support usefulness of the adopted methodology. The
paper is concluded with the discussion on the further work
in this research area.

II. OVERVIEW OF ABSTRACT POWER MANAGEMENT

Design of modern complex digital systems starts at the
system level in order to deal with the system complexity
and to increase the efficiency of system development. On
the other hand, to avoid power problems in the system and
to reduce energy consumption of battery-operated devices,
the implementation of power management is unavoidable
in the complex systems. The low-power systems design
based on the UPF standard starts at the RTL, which is not
suitable for complex systems for reasons stated above.
And to start system design at the ESL and implement
power management at the RTL results in even more
problems. ESL power estimations become highly
inaccurate and such an intrusion into the design at later
stage implies a need for complex verification, which takes
too much time.

Designers have developed multiple methods to
implement power management from the beginning at the
ESL, such as [9]-[14]. The existing methods have had
many drawbacks, such as insufficient abstraction, missing
automation, or inadequate verification. Therefore, we have
developed a new method of abstract power-management
specification and integrated it to the novel low-power
systems design methodology [15]. The cornerstone of the
methodology is the automation based on high-level
synthesis [16], which is increasingly used in FPGA-based
design. Thus, this methodology has potential for adoption
in FPGA-based design process.

A. Methodology Overview

The described methodology is built around the design
flow, shown in Fig. 1. The key idea lies in selecting
several UPF concepts, which are suitable for system level

of abstraction. These include power domains, power states
and their combinations in power domains (power modes),
system components assignment to power domains, and
switching between power states. The selected concepts are
directly integrated into the ESL specification model in an
abstract manner. Thus, the designer is able to specify both,
the functionality and power management, in a single
model. This is useful at the ESL, since the power
management impacts the functionality – i.e. these aspects
need to work together. The specification model is then
refined during so-called abstraction-refinement process,
which adds required details to the model. This process is
complemented by various verification processes ensuring
correct functionality and power-management
specification.

When the model is sufficiently refined, it is
automatically transformed into the RTL model during the
high-level synthesis process. It extracts power-
management information from the functional model and
uses it to synthesize the power intent in UPF standard
specification and also to synthesize the corresponding
power-management unit (PMU) for generation of control
signals for power-management elements (e.g. power
switches, isolation and retention logic) in the synthesized
UPF specification. Power-management high-level
synthesis also generates corresponding assertions useable
for functional verification of the synthesized PMU and for
coverage measurement. The developed power-
management equivalence checking ensures that the
synthesized UPF specification at the RTL corresponds to
the abstract power management at the ESL. At the RTL,
the existing widely-used tools are used to analyze the
design and to provide the trustworthy power information.
This information is then used (if needed) for modification
of abstract power management in order to obtain
alternative power architecture. Thus, the designer can
explore various power-management architectures and
selects the suitable one, taking into account tradeoff
between performance, power, and area of the system.
After the RTL stage, the design flow continues according
to the UPF standard. Thus, the existing methods and tools
can be used later in the design process as it is nowadays.

B. Abstract Power Management

The UPF concepts imply that the system is split into
multiple power domains, which group the components
that always operate in the same power state. The abstract
power-management specification is based on five
predefined power states, which represent an intention to

Figure 1. Overview of the low-power systems design flow

use specific power-reduction techniques in the design after
high-level synthesis. These states include:

• Hold – operation of the components is stopped. It
represents implementation of clock gating and
operand isolation power-reduction techniques.

• Off – power supply of the components is cut off. It
corresponds to the power-gating technique.

• Off_ret – state of the components is saved before
the power supply is cut off. It represents power
gating with state retention.

• Diff_level – the components operate at the voltage
or frequency level different from the basic level of
the system. This state represents voltage scaling,
frequency scaling, or multiple voltages and
frequencies in the system.

• Normal – the components operate at the basic
voltage and frequency level of the system. No
explicit architectural power-reduction technique is
used when this state is active.

The power state of the whole system is represented by
the power mode in which the system operates. A power
mode represents a specific combination of power states in
power domains. The dynamic nature of power
management is implemented by switching between
various power modes. The switching itself is specified in
the functional part of the system specification, because it
directly influences functionality of the system.

Based on the specified information, the high level
synthesis is able to generate power-management elements,
which actually change the states of the components. Also
power supply ports and power nets are not explicitly
specified in the abstract power management. This
information is implicitly given by the power domains
relations and architectural dependencies of the
components. This is the main reason why the abstract
power-management specification is multiple times simpler
than the standard UPF specification. Experimental results
in [15] showed that SystemC-based abstract power
management specification is approximately five times less
complex than UPF specification, in terms of the number
of characters.

III. ADOPTION TO FPGA-BASED DESIGN

The selected methodology has been designed for
extension of the current low-power design flow based on
the UPF standard. Therefore, it is essentially coupled with
the ASIC technology. However, some of the methods used
in the methodology can also be used in FPGA-based
designs. Since the current FPGA flows do not work with
UPF specification, the power-management aspects
resulting in UPF are not usable. They mostly involve
multiple voltages in the system. However, the PMU
generated by the power-management synthesis process is
fully usable in FPGA technology. Therefore, this
methodology can simplify the adoption of architectural
clock gating, operand isolation, or multiple clock domains
in the system. The designer is thus restricted to the
normal, hold, and diff_level power states in the abstract
power-management specification. However, the isolation
cells are not automatically implemented (UPF flow is not
used), and therefore the designer needs to design the
clock-gating and isolation elements manually. The use of
other power-management techniques depends on the

FPGA device – whether it supports the power-gating
technique and how many voltages it offers. The control
signals are correctly generated by the PMU; however, the
designer has to use them to control specific FPGA
elements. For the simulation purpose, the assertions can
be used as well. Thus, the usage in the FPGA design flows
is oriented towards simplifying the power-management
strategy algorithm specification and automated generation
of the PMU, not to the automated implementation of
power-management supporting logic and nets.

The design flow resulting from the modified low-power
systems design methodology is illustrated in Fig. 2. We
propose that the system design starts from a crude
specification at the ESL, similarly to [15]. The power-
management concepts (such as power domains, power
states, and power modes) are integrated into the functional
specification model; thus, the designers use one language
and one specification style. During the functional
specification, the designer should split the system
architecture into power domains in an empirical way. The
next step is to assign to these domains some power states
and create the most basic power modes (e.g. for a normal
operation and for a power-saving operation). The
functional specification represents the system
functionality; thus, a dependency between the components
can be deduced. The components that will probably be
used at the same time should be in the same power
domain. On the other hand, a component that will be used
only occasionally should have its own domain.

The abstract power-management specification does not
influence the system functionality, i.e. the designer does
not need to worry that the system function is disrupted
because of the wrong power-management specification.
Moreover, the designer should use the proposed power-
management static analysis to create a structurally correct
and consistent specification.

At first, the designer should restrict abstract
specification to the normal, hold, and diff_level states
representing different frequency levels. The specification
(both the functionality and power management) then goes
through abstraction-refinement process. When the refined
system-level model is executable, the best way to refine
abstract power management is to simulate the design.
Based on the simulation results, the designer can observe
which components are active at the same time, how long
some components are inactive, and so on. During the
simulation, the preliminary power-mode changes can be
observed, and thus the designer can notice what would be
the state of the components. For example, if the power

Figure 2. The proposed FPGA-based low-power systems design

flow

mode informs that the state of some power domain is
normal and the designer observes that the components in
this domain are inactive, the designer should add some
power-saving state (either hold or a lower-frequency
diff_level state) to that power domain for such operation
time.

At this stage, the designer should decide for a target
FPGA device and analyze its capabilities. According to
the available voltages, the performance levels (voltage-
frequency pairs) should be specified and the diff_level
states adjusted. Based on the availability of power-gating
elements, the designer should analyze the possibility of
usage of the off and off_ret abstract power states, which
could replace the hold state in domains, components of
which are inactive for longer periods of time. The reason
is that the hold power state saves only dynamic power,
while the off states also reduce the static power
consumption (but produces higher delays).

After the system-level functional verification, the high-
level synthesis usually takes place. During this process,
the designer should firstly use the proposed power-
management high-level synthesis, which extracts the
power-management specification from the system-level
model – in order to be synthesizable by a usual high-level
synthesis tool (e.g. Vivado [17]). The power-management
high-level synthesis process generates an RTL description
of the PMU and informs the designer where the power-
management supporting logic should be located (such as
clock-gating, power-gating, or isolation elements).
However, this supporting logic needs to be manually
implemented by the designer, or if available, the existing
elements in the FPGA device should be used and
connected appropriately. During high-level synthesis, the
automated static-analysis verification process informs the
designer if some important aspects are missing in the
abstract specification. The designer should then integrate
the generated PMU into the top-level functional
description of the system. The power-mode signal is
driven by the power-mode register, generated by the
functional high-level synthesizer. The clock signal is
usually the basic clock in the system – it depends on the
designer how fast the power-mode changes should be
processed.

The next step is usually the RTL functional verification.
To help alleviate the preparation overhead, the power-
management high-level synthesis generates the assertions,
monitoring the power-management control signals. Also,
the designer should use the generated coverage assertions
for a coverage-measurement purpose, and thus verify the
design more robustly. After this step, the synthesis and
implementation (including place and route process) take
place. When the design is mapped to the FPGA device,
the power can be analyzed with high accuracy. The usual
FPGA synthesis tools directly offer this feature.

After the power analysis, the designer can modify the
system-level specification and repeat the high-level
synthesis. The designer can either modify both
functionality and power management, or the power
management only. The power-management high-level
synthesis is much faster than the functional synthesis;
therefore, it makes sense to explore various power
architectures upon the synthesized system architecture.
However, if the power-management strategy algorithm
(power-modes changes in the functional design) or the
power modes themselves are modified, the corresponding

functional components have to be also resynthesized. In
this way, the power-architecture exploration is achieved
and the most suitable architecture should be used for the
final device programming. The designer should carefully
consider a trade-off between power, performance, and
area.

IV. EXPERIMENTAL RESULTS

Firstly, we show illustration of usage of the proposed
methodology in a form of case study. Then, the area
overhead of the adopted power management is estimated.

A. Case Study

To illustrate simple usage of the offered methodology,
we use it on a case-study system. It represents a simple
system-on-chip, consisting of one microprocessor mu0
and two memories ram0 (RTL description available in
[18]). They are connected through a memory controller,
which selects the memory with which the microprocessor
will communicate based on the address at the address bus.
We have described this system in SystemC code in order
to mimic top-down design and to use the power-
management high-level synthesis process. An abstract
architecture view of this system is provided in Fig. 3.

Obvious thing, regarding the power management, is to
set a low-power state to the memory that is not currently
used by the microprocessor. Unfortunately, this is not
something the existing synthesis tools could do
automatically. Such an architectural power management
needs to be created by the designer. For this purpose, we
have used the proposed abstract power-management
specification. We have divided the system into four power
domains, one for each major component. Two power
states have been assigned to each of these power domains,
the active (normal) and inactive (hold) power state. We
have specified two power modes, one for M1 to be active
and M2 inactive, and the other one for vice versa
activation. Power-mode switching is driven by the MCU
decision about which memory is currently used. The early
validation of the power management specification using
the static analysis reported that the power domains for
CPU and MCU are not necessary, because their states do
not change in time (they are always in the normal power
state). Therefore, only two explicit power domains
remained in the specification, PD_M1 and PD_M2. The
resulted abstract power-management specification has
taken only 237 characters.

The power-management high-level synthesis has
generated the PMU, code-size of which has taken 2905
characters. For illustration, the synthesized power-
management architecture of the system is provided in
Fig. 4. In addition, the high-level synthesis has generated
10 coverage assertions controlling that each power mode,
each power state and each transition between power states

Figure 3. The case-study system architecture

is exercised during RTL simulation. These assertions have
taken 1172 characters of source code.

This case study has shown that even for such a simple
power management (2 power domains, each with 2 power
states and 1 component instance, 2 power modes), the
proposed methodology simplifies the specification 17
times (237 vs. 4077 characters). However, the designer
has to implement power-management elements, such as
isolation logic, to proceed with RTL functional
verification. Thus, the process is not yet fully automated.

For the area and power estimation, the tools integrated
in the Xilinx ISE Design Suite 14.7 environment [19]
have been used with default synthesis and implementation
settings. As a target device, Spartan 3 xc3s1500l (target
package fg320) has been selected, since we have this
device available and the synthesized designs could be
tested on the real device.

The estimation results are provided in Table 1.
Interesting thing is that the area overhead is not high –
utilization of some FPGA resources is even lower. Overall
utilization seems to be more efficient in the power-
managed design. Only the number of slice registers and
the number of BUFGMUXs is higher. The power
consumption is slightly reduced in the power managed
design. Higher reduction is probable in more complex
designs and in FPGAs in which power gating can be used.

B. PMU Self-Management Area Overhead

The utilized power-management high-level synthesis
uses self-management of the PMU, which we have
proposed in [20]. In this experiment, we have used FPGA
synthesis to estimate area overhead of the integrated self-
management of the synthesized PMU. Specifically, we
target determination of the area overhead introduced by
the modification of the power-state machine inside the
PMU (introduction of additional elements to manage its
own power consumption). It takes into account the area

(utilization of FPGA resources), introduced by the
comparison unit and the clock-gating logic.

We have pseudorandomly generated 15 samples of
abstract power-management specification in SystemC,
which have been then synthesized into the RTL form in
order to get PMU designs. The parameters of these
designs are provided in Table 2. The first column
represents the identification number of the sample. The
APM column represents the number of power modes in
the abstract power-management specification. The Power
Domains column represents the number of explicit power
domains that are controlled by the PMU. The next two
columns (Power States and Instances) contain average
numbers of power states and instances in power domains.
PMU represents the complexity of the generated PMU (in
terms of the number of characters that are required for its
description). The GPM column represents the number of
power modes in the PMU (including the generated
internal power modes). The number of control signals,
driven by the PMU, is given in the last column (Control
Signals). The samples are ordered according to the PMU
column – it should correspond to the ascending order of
PMU complexity, which scales from three thousand to
half million characters; thus, these PMUs can be
considered a representative set.

For easy comparison of the designs, we have used the
equivalent-gates-count parameter offered by the Xilinx
ISE Webpack 9.2i tool. In Table 3, the estimated area
requirements for the PMU design without (Basic PMU
design) and with (Self-Managed PMU design) the internal
power management are provided. The results show that
the area overhead can be as high as 50 % for simple PMU
designs. However, for more complex PMU designs, the
overhead is very small, even under 1 %. The area
requirement of the self-management depends on the
number of control signals, since they represent inputs of
the comparison unit. The overhead is then indirectly
proportional to the number of power modes, because it
represents the complexity of the state and transition logic
in the PMU design.

This experiment has shown that the proposed self-
management inside very-complex power-management
units has negligible area overhead. In small PMUs, a
designer should carefully consider whether the gained
power savings are worthy of the additional area
requirements. However, as we have shown in the previous

Figure 4. The case-study system power-management

architecture

TABLE II.
THE ESTIMATED POWER AND AREA DATA

Parameter
Original

Design

Power-

Managed

Design

Difference

Number of Slice Flip Flops 50 53 6 %

Number of Slice Latches 0 2 200 %

Number of 4 input LUTs 260 230 -11.5 %

Number of occpied Slices 148 137 -7.5 %

Number of bonded IOBs 36 36 0 %

Number of BUFGMUXs 1 2 100 %

Average Fanout of Non-

Clock Nets
4.22 4.22 0 %

Total power [mW] 150 148 -1.5 %

TABLE I.
THE PARAMETERS FOR AREA-OVERHEAD EVALUATION

APM
Power

Domains

Power

States
Instances PMU GPM

Control

Signals

1 2 1 2 3 3300 4 3

2 3 2 2 2.5 4452 5 4

3 3 3 1.67 3 4619 5 3

4 3 4 2.25 3 7017 8 10

5 3 4 1.75 3 8658 12 7

6 3 4 2.25 3 10094 14 10

7 5 3 4 2 35205 46 13

8 10 3 3 2 63304 49 10

9 3 10 2.2 2 67691 65 21

10 5 5 3 5 107068 117 17

11 7 5 3 2 131478 101 17

12 7 4 3.5 2 142992 114 16

13 10 5 2.4 2 199866 106 13

14 5 10 2.1 3 214122 132 19

15 10 4 4 2 586303 346 18

experiment, additional design elements could even result
in more efficient utilization of FPGA resources. Thus, the
designer should evaluate the power-area tradeoff on a
case-by-case basis.

V. CONCLUSIONS AND FURTHER WORK

This paper is devoted to the adoption of the existing
low-power systems design methodology to the FPGA
platforms. It is oriented towards simplified adoption of
power management in the system implemented in FPGA.
The resulted methodology is useful for rapid design
prototyping, utilizing a high degree of automation through
so-called high-level synthesis. The adopted aspects of the
methodology are usable for exploration of various power-
management strategy algorithms, various power
architectures, and corresponding power-management
units. The experiments have shown the usefulness of the
proposed methodology.

The further work can be oriented towards automated
implementation of power-management logic, such as
isolation elements and clock-gating logic. Then, the
developed power-intent equivalence checking can be
modified for the needs of the adopted design flow to
verify synthesized RTL power management against ESL
specification. Also, the adopted high abstraction of power-
management specification enables further enhancement in
the area of automated selection of abstract power states
and modes of the system, as well as the automated
segmentation of the system into power domains.

ACKNOWLEDGMENT

This paper was created with the support of the Ministry
of Education, Science, Research and Sport of the Slovak
Republic within the Research and Development
Operational Programme for the project “University
Science Park of STU Bratislava”, ITMS 26240220084,
co-funded by the European Regional Development Fund.
This work was also partially supported by the Slovak
Scientific Grant Agency (VEGA 1/0616/14 and
1/0836/16) and the Slovak Research and Development
Agency (APVV-15-0789).

REFERENCES

[1] W. Wong, “Low Power FPGA Targets Wearable Applications,”
Electronic Design, 2015, [online]. Available: http://
electronicdesign.com/fpgas/low-power-fpga-targets-wearable-
applications. [Accessed 24 December 2015].

[2] J. Lamoureux and W. Luk, “An overview of low-power
techniques for field-programmable gate arrays,” in NASA/ESA
Conference on Adaptive Hardware and Systems, IEEE, 2008, pp.
338-345.

[3] P. Singh and S.K. Vishvakarma, “Device/circuit/architectural
techniques for ultra-low power FPGA design,” Microelectronics
and Solid State Electronics, vol. 2, no. A, pp. 1-15, 2013.

[4] Power Forward Initiative, A practical guide to low power design:
User experience with CPF. Power Forward, 2012.

[5] G. Sutter and E. Boemo, “Experiments in low power FPGA
design,” Latin American applied research, vol. 37, no. 1, pp. 99-
104, 2007.

[6] H. Belhadj, V. Aggrawal, A. Pradhan, and A. Zerrouki, Power-
aware FPGA design. Actel, 2009. White paper.

[7] IEEE standard for design and verification of low power integrated
circuits. IEEE, 2013. IEEE Std 1801-2013.

[8] The international technology roadmap for semiconductors:
Design. ITRS, 2011 edition, 2011.

[9] O. Mbarek, A. Pegatoquet, and M. Auguin, “Using unified power
format standard concepts for power-aware design and verification
of systems-on-chip at transaction level,” IET Circuits, Devices &
Systems, vol. 6, no. 5, pp. 287-296, 2012.

[10] J. Karmann and W. Ecker, “The semantic of the power intent
format UPF: Consistent power modeling from system level to
implementation,” in 2013 23rd international workshop on power
and timing modeling, optimization and simulation (PATMOS),
2013, pp. 45-50.

[11] F. Mischkalla and W. Mueller, “Advanced SoC virtual prototyping
for system-level power planning and validation,” in 2014 24th
International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS), pp. 112-119.

[12] Y. Xu, R. Rosales, B. Wang, M. Streubühr, R. Hasholzner, C.
Haubelt, and J. Teich, “A very fast and quasi-accurate power-
state-based system-level power modeling methodology,” in
ARCS'12 Proceedings of the 25th international conference on
architecture of computing systems, 2012, pp. 37-49.

[13] H. Lebreton and P. Vivet, “Power modeling in SystemC at
transaction level, Application to a DVFS architecture,” in IEEE
Computer society annual symposium on VLSI, 2008, pp. 463-466.

[14] T. Bouhadiba, M. Moy, and F. Maraninchi, “System-level
modeling of energy in TLM for early validation of power and
thermal management,” in DATE '13 Proceedings of the conference
on design, automation and test in Europe, 2013, pp. 1609-1614.

[15] D. Macko, K. Jelemenská, and P. i ák, “Power-management
specification in SystemC,” in 2015 IEEE 18th International
Symposium on Design and Diagnostics of Electronic Circuits and
Systems, 2015, pp. 259-262.

[16] D. Macko, K. Jelemenská, and P. i ák, “Power-management
high-level synthesis,” in The 23rd IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), 2015,
pp. 63-68.

[17] Xilinx Inc., Vivado Design Suite, [online]. Available: http://www.
xilinx.com/products/design-tools/vivado.html. [Accessed 21
January 2016].

[18] A. Rogers, “Designing a Simple System-on-a-Chip in Under 60
Minutes with the mu0 Microprocessor and Xilinx Tools,” 2003,
[online]. Tutorial. Available: http://www.ece.uah.edu/~lacasa/
tutorials/mu0/mu0tutorial.html. [Accessed 7 May 2015].

[19] Xilinx Inc, ISE WebPACK Design Software, [online]. Available:
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-
webpack.html. [Accessed 27 March 2015].

[20] D. Macko and K. Jelemenská, “Self-managing power management
unit,” in Proceedings of the 2014 IEEE 17th International
Symposium on Design and Diagnostics of Electronic Circuits and
Systems, 2014, pp. 159-162.

TABLE III.
SELF-MANAGEMENT AREA-OVERHEAD ESTIMATION

Basic

PMU

Design

Self-Managed

PMU Design
Area Overhead

1 57 76 33.33 %

2 116 153 31.90 %

3 57 85 49.12 %

4 284 342 20.42 %

5 631 702 11.25 %

6 944 1002 6.14 %

7 4167 4277 2.64 %

8 4693 4784 1.94 %

9 6346 6461 1.81 %

10 9896 9993 0.98 %

11 9866 9981 1.17 %

12 7550 7656 1.40 %

13 4740 4878 2.91 %

14 7271 7407 1.87 %

15 37501 37646 0.39 %

