
IP Networks Diagnostic Communication 

Generator 
 

M. Procházka, D. Macko and K. Jelemenská 

Faculty of Informatics and Information Technologies  

Slovak University of Technology 

Bratislava, Slovakia 

dominik.macko@stuba.sk 

 

 
Abstract—Generation of diagnostic communication (GDC) 

is an important task in the area of computer networks that 

is used in various circumstances. For example, it is used for 

the purpose of testing networking hardware, such as routers 

or switches, for analyzing and benchmarking of networking 

systems or web services. Although there are various 

solutions using GDC, typically, they are specialized for 

generation of either general network traffic, network 

communication for diagnosis of anomalies in the network, 

or aimed on analysis of the captured network packets. 

Therefore, these solutions are not suitable for functional 

verification of network devices. In this work, we concentrate 

our research on the functional verification of software 

routers. We introduce the GDC diagnostic tool for IP 

networks that is dedicated to validation of software routers’ 

functional correctness. This tool is based on GDC, driven by 

a configuration file and it provides also the response 

communication capturing and evaluation of the executed 

tests in a visual form. Although it was mainly intended to 

simplify the basic functionality validation of the software 

routers implemented by students during the coursework, it 

can also be useful to verify the functionality of the real 

network devises.  

Keywords—ARP; diagnostic communication generation; 

IP networks; software routers functional verification; RIP 

I. INTRODUCTION 

At the Faculty of Informatics and Information 
Technology, there are many courses in which one or more 
hands-on assignments are required to complete for 
students to get the necessary knowledge and practical 
experience. The work of the teachers in these courses is to 
check the correctness of these assignments, which is often 
very demanding, especially in terms of time. Also, 
students do not have an easy access to the hardware 
devices and therefore cannot adequately verify the 
functionality of their solutions outside the laboratory. 

WAN technologies course is no exception. One of the 
hands-on assignments in this course is the design and 
implementation of a software router that is able to create 
an ARP (Address Resolution Protocol) table and a routing 
table, it can perform static paths routing, as well as routing 
using RIP (Routing Information Protocol). Testing for the 
correctness of the assignment solution therefore consists 
of several activities or scenarios for each of these 
functions, which need to be evaluated. 

The aim of our research is to speed up and streamline 
the process of evaluating these tasks and to develop a tool 
that will automate this testing. Based on the scenarios to 

be performed, the instrument should carry out tests, gain 
and then display the results of the tests that demonstrate 
the success of these tests. 

However, active networking devices, such as routers or 
switches, represent essential elements of almost every 
computer network. With the expansion of the Internet, the 
demands of network hardware market were substantially 
increased and the new vendors came along. Some of these 
vendors are focused on modular networking hardware 
development. It means, the networking hardware is 
composed of a generic motherboard with several network 
interfaces and the required functionalities of this 
networking hardware are obtained by a suitable software 
solution installed on the motherboard. 

This configuration of the networking hardware enabled 
to create several open source projects, such as DD-WRT, 
Tomato, OpenWRT, M0n0wall, PfSense, Vyatta [1] etc. 
The main focus of the mentioned projects is to allow a 
user to adjust the networking hardware to user-specific, 
most detailed requirements.  

A great amount of testing comes with the adjusting or 
creating of the new software for this networking hardware. 
Therefore, in order to support this emerging configurable 
networking hardware, the proposed tool should also be 
utilizable for testing real hardware routers. When 
changing configuration parameters or minor changing of 
the implementation, the tool should also be used to test 
other network elements (e.g. switches). 

As a result, we are introducing a tool for generation of 
diagnostic communication (GDC), which allows an 
automatization of validation of the router’s functionality. 
This tool will be also available for students, who are 
implementing the software router. 

The paper is organized as follows. In Section 2, the 
existing GDC methods and tools are summarized. The 
proposed new automatization tool is introduced in 
Section 3. The proposed solution verification and testing 
is discussed in Section 4. Finally, the results are 
summarized and the plans for future work are provided in 
the concluding section. 

II. RELATED WORK 

Concerning network traffic there are plenty of solutions 
available [2] that are able either to generate network 
traffic or to capture and analyze the network 
communication. Some of them represent open-source 
solutions (e.g. [3] or [4]), the others are either closed or 
commercial tools (e.g. [5]). Five of the available tools 
were selected and they are shortly summarized in Table 1. 

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper: 

M. Procházka, D. Macko and K. Jelemenská, "IP networks diagnostic communication generator," 2017 15th International 

Conference on Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, 2017, pp. 371-376. 

doi: 10.1109/ICETA.2017.8102520 

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8102520&isnumber=8102457



These were used as an inspiration and they helped us to 
specify the requirements for the novel GDC tool that 
would be suitable for the intended usage. 

The most interesting features of Harpoon [3] are the 
client-server architecture and the configuration file, which 
provides scenarios for the traffic generation process. 
Another interesting feature is its self-configure function, 
which means the TCP (Transmission Control Protocol) 
communication generation can be configured 
automatically based on the captured traffic analysis. 
However, for the intended usage, this feature would not be 
very useful. In multiplatform commercial tool called 
OSTINATO [4], the Protocol Builder is internally used 
along with exclusive Ethernet port privileges, which 
enables to check the whole data flow through the ports. 
On the other hand, only the basic statistics about the 
network ports traffic are implemented in this tool, which is 
not sufficient for our purpose. In terms of modularity, 
NetScanTools ® Pro [5] consist of modules, which can be 
also modified. It is an interesting solution where a module 
represents the type of scenario and a configuration file 
represents the scenario set-up. Analysis tools (Wireshark 
[7], KaTaLyzer [6], and a part of NetScanTools® Pro) 
have the most relevant features concerning visualization, 
filtering, and a graphical user interface. 

Despite of all the interesting features of these tools, 
they have not been designed for the network devices 
validation purpose. Therefore, it will still be difficult to 
adopt them for this purpose. In addition, the available 
tools are typically quite robust and complicated, and thus 
less suitable for education purpose. These were the 
reasons why we have concentrated our work on novel 
GDC tool development that will be focused mainly on 
parts with the most significant asset for the intended 
usage. However, the analyzed and tested solutions 
inspired some of the features of the newly proposed tool, 
concerning architecture, language selection, user interface 
and other aspects. For better understanding of GDC, it was 
appropriate to divide the whole problem into two sub-
problems, namely network traffic generation and network 
traffic analysis. 

III. THE NOVEL GDC TOOL DESIGN 

This section summarizes the novel GDC tool design, 
specified requirements for the tool, its architecture, and 
the graphical user interface. 

A. Requirements specification  

Based on the analysis of available solutions and 
consequent testing of selected subset of them, the 
following requirements for the novel GDC tool 
development have been specified. They are divided into 
two groups:  functional and non-functional requirements. 
These requirements have to be met during the tool 
development process for correct functionality of the 
proposed solution.  

Functional requirements for the GDC tool include: 

· handling the configuration file,  

· generating packets based on the configuration file, 

· selection of the two network interfaces, 

· generating of and replying to ICMP (Internet 
Control Message Protocol) messages, 

· generating of and replying to ARP requests, 

· generating of RIP messages, 

· visualizing the traffic statistics, captured packets, 
and passed tests. 

Non-functional requirements for the GDC tool include: 

· simplicity, 

· effectiveness, 

· modularity, and 

· usability. 

B. Architecture 

The proposed architecture of the new GDC tool consists 
of two main modules: client and server. These modules 
operate on the same machine (e.g. a personal computer) 
with two Ethernet interfaces as shown in Fig. 1. 

The server side, representing the generation part (GP), 
is mainly in charge of handling configuration files and 
creating packet streams. Packets are sent through one of 
the interfaces afterwards. 

The client side, representing the analysis part (AP), 
receives packets (going through the network including 

 
 

Figure 1. The adopted testing scheme  

TABLE I.   
EXISTING NETWORK TRAFFIC GENERATORS AND ANALYZERS 

Tool Description 
Harpoon [3] Flow-level traffic generator. Harpoon can 

be used to generate representative 

background traffic for application or 
protocol testing, or for testing network 

switching hardware. 

KaTaLyzer [6] Network traffic analyzer for Linux based 

operating systems (routers, servers and 
desktops). It supports widely used 

protocols (Ethernet, IP, TCP, UDP, 

HTTP, SSH, SIP, etc.). 

NetScanTools ® Pro 
[5] 

Tool for generating TCP, UDP, ICMP, 

ARP and RAW protocols packets with 

option of modifying headers. 

OSTINATO [4] Open-source, cross-platform network 

packet crafter/traffic generator and 

analyzer with a friendly GUI. It crafts 
and sends packets of several streams with 

different protocols at different rates. 

Wireshark [7] Wireshark is the world’s foremost and 

widely-used network protocol analyzer.  

 



device under test) on the second interface of the machine, 
analyses the received packets, and evaluates the results of 
testing. 

Both parts consist of several modules. The module that 
covers both GP and AP is a graphical user interface (GUI) 
that displays information from individual modules and 
contains tool controls. The co-operation of the individual 
tool modules is summarized in Fig. 2. 

The solution of a single-machine client-server 
application has been selected in order to simplify the 
diagnostic access. The user does not need to dispose with 
several machines; instead, he/she can operate with both 
parts easily. However, client and server use separated 
network interfaces that are dedicated and strictly 
controlled by one of them. The modular solution meets the 
criterion listed in the non-functional requirements, which 
is the modularity of the tool and also its simple 
extensibility. Let us introduce the two parts modules in 
more detail. 

GP modules:  

· Configurator – enables creating, editing and 
deleting configuration files, and performing the 
tests listed in a specific configuration file. This 
module is also sending the test data to the 
analyzer so that it can evaluate the tests within the 
tool.  

· Generator – its task is to create the frames, based 
on the configuration file, using the PacketBuilder 
for this purpose. Generator is also sending the 
generated traffic into the network. 

AP modules:  

· Receiver – this module receives the frames on the 
other side of the topology, transfers the frames to 
the user interface for viewing and also responds to 
the traffic.  

· Analyzer – its task is to evaluate the received 
frames and to check if the received traffic is in the 
accordance with the test scenarios.  

· Response Checker – this module is checking the 
response based on the type of protocol, used for 
testing, and it provides the results to the AP. 

C. Configuration file 

 The scenarios for testing the networking hardware are 
represented by a configuration file (CF) loaded to the tool 
and then executed. The server side is building the packets 
stream according to the CF and the client side validates 
the traffic, incoming from the other side of the topology, 
based on the CF. 

The CF is represented as an XML (eXtensible Markup 
Language) file with a custom suffix (e.g. gdct – GDC 
tool) for simple recognition by the tool. The XML form is 
used due to simplicity and modularity. XML files are easy 
to edit with various tools. A very simple example of CF is 
shown in Fig. 3. 

The example illustrates the CF format. Each scenario 
has a name and contains several tests, distinguished by a 
description that represents the test type (i.e. targeted 
functionality). Inside the test hierarchical level of the 
XML structure, there are the actual test options. In the 

<scenario name = "sc1">  

  <test description = "arp"> 

    <sip>10.10.10.2</sip> 

    <dip>10.10.10.1</dip> 

    <wait>200</wait> 

  </test> 

  <test description = "ICMP"> 

    <dmac>c2:00:25:f0:00:00</dmac> 

    <sip>10.10.10.2</sip> 

    <dip>20.20.20.2</dip> 

    <count>4</count> 

    <inttl>128</inttl> 

    <outttl>127</outttl> 

    <routing>true</routing> 

    <wait>200</wait> 

  </test> 

</scenario> 

Figure 3. Configuration file example 

Figure 2. The System Architecture 



example of arp test, there are specified the source IP 
(Internet Protocol) address (sip), the destination IP address 
(dip), and how much time the tool will wait for the 
response (wait). There are even more options for the 
ICMP test. 

D. Graphical User Interface 

The usability requirement of our solution is 
accomplished by the use of GUI. Fig. 4 illustrates the 
main window of the GUI with the Generator screen 
displayed. 

The Generator screen contains the CF control elements 
with the available CFs displayed on the left-hand side and 
the content of the loaded CF displayed on the right-hand 
side text field. Based on loaded CF the tests can be 
initiated using the Execute button. However, prior to this 
the devices to be tested have to be selected and switched 
on. The connected devices can be accessed by means of 
Menu, available in the upper part of the main window. 
The pop-up window is invoked, illustrated in Fig. 5, 
enabling to display and select the devices. 

After the tests initiation the main window is 
automatically switched to the Analyzer screen, illustrated 

in Fig. 6, displaying the actual state of the initiated tests. 
The results of tests are also saved into a text file.  

The list of filtered received packets can be tracked in 
the receiver window of Analyzer, illustrated in Fig. 7 
(available by means of Menu). The filter area extracts the 
protocol type and the exact IP address to the packet list.  

IV. THE SOLUTION VERIFICATION AND TESTING  

As a development environment, Microsoft Visual 
Studio Enterprise 2015 and Visual C# 2015 were used to 
implement the proposed tool. The C# language was 
extended by Pcap.net library [8], which is taking care of 
communication with network interfaces and it is capable 
to access frames and network interfaces at the higher 
level. The Pcap.net library supports all the protocols 
needed to implement this tool except for the RIP protocol 
that had to be implemented manually. 

The proposed and implemented tool was verified in two 
phases. The first phase was the continuous testing during 
the design and implementation of the individual solution 
modules. The next phase was the overall testing of the 
whole solution. 

Figure 4. The GDC tool – the main window of the graphical user interface with Generator screen displayed 

Figure 5. The GDC tool – connected devices selection 



For the frames capturing and displaying, Wireshark 
version 2.2.5 was used, which also captures the network 
traffic in promiscuous mode. For test purposes, the GNS3 
in version 0.8.7 was also used, in which the virtual router 
implementation tool was attached. 

Different methods were used to verify the accuracy of 
the test during the continuous testing. Their form differed 
from module to module. 

The configuration module was tested during each 
function implementation using the debugging mode in the 
development environment. For this module 
implementation the functions directly implemented in 
Visual C# libraries have been used, therefore their testing 
was not crucial. However, it was always checked whether 
the implemented feature provided the desired result. 
During these tests, several possible erroneous inputs, 
which could have occurred, were always been treated. 

The generator was tested using Wireshark. Firstly, a 
frame was generated according to the requirements, and 
then, it was compared to the captured frames on the 
interface. The frame fields’ validity was also checked. 
Thus, the functionality of the frame creation functions was 
also tested. 

When testing the receiver, again the Wireshark was 
used, this time to compare the received and displayed 
frames in both tools. The receiver was tested using the 
already implemented generator. 

For verification of the implemented analyzer, the 
already verified generator and receiver modules were 
used. The input argument for this test was the 
configuration file from which the generator generated and 
sent the frames, the receiver received them, and the 
analyzer output was the information displayed in the GUI. 
This result was checked based on the changes in the CF 
and changes in the test topology. 

The overall solution testing was performed when all the 
modules were already implemented and verified 
separately. Firstly, the overall solution was tested using 
GNS3 with a router attached to each network interface. 
The router was connected using the Microsoft Loopback 
virtual network interfaces. The tests were performed using 
fully functional router, as well as the software router 
implemented by a student. During the overall solution 
testing the compliance with the specified requirements 
was also verified. 

Figure 6. The GDC tool – the Analyzer screen of the main window  

Figure 7. The GDC tool – Analyzer receiver window 



V. CONCLUSIONS AND FURTHER WORK  

In this paper, we have proposed a tool for generation of 
a diagnostic communication. The analyzed existing tools 
are primarily focused on general diagnostics of a network 
traffic (e.g. as a prevention of attacks) and it is too 
difficult to use them to test a specific functionality of a 
network element. The proposed tool can generate a 
network traffic based on the specified test scenario in the 
configuration file, it captures responses of the devices in 
the tested network, and evaluates the test. This way, the 
proposed tool can be used to verify the functional aspects 
of the connected network devices in the tested network. 

Although it was mainly intended for students to verify 
their implementations of software routers (i.e. a 
coursework assignment during the university study) 
during development, it can be also used by teachers to 
quickly evaluate the correctness of the final implemented 
solutions. Moreover, it can be used to test the functionality 
of real hardware network devices. 

The implemented prototype of the proposed tool was 
verified on the selected testing scenarios. These tests 
showed that the tool is useful and it speeds up the 
checking of correct functionality of the tested network 
device. The tool has its limitations regarding general 
usage (e.g. support of the limited number of network 
protocols); however, due to its modular architecture, it can 
be easily extended and the limitations eliminated. 

ACKNOWLEDGMENT 

This work was mainly supported by the Slovak Cultural 
and Educational Grant Agency (KEGA 011STU-4/2017) 

of the Ministry of Education, Science, Research and Sport 
of the Slovak Republic. It was also partially supported by 
the Slovak Scientific Grant Agency (VEGA 1/0836/16) 
and the Slovak Research and Development Agency 
(APVV-15-0789). 

REFERENCES 

[1] S. Yegulalp, “Review: 6 slick open source routers,” InfoWorld, 
2012. [Online; accessed September 2017]. Available: 

http://www.infoworld.com/article/2615872/networking/networkin

g-review-6-slick-open-source-routers.html. 

[2] S. Floyd, „Traffic Generators for Internet Traffic,“ National 

Science Foundation, September 2010. [Online; accessed October 
2017]. Available: http://www.icir.org/models/trafficgenerators 

.html. 

[3] J. Sommers, “Harpoon – A flow-level traffic generator,” 2005. 

[Online; accessed September 2017]. Available: 

http://cs.colgate.edu/~jsommers/harpoon/. 

[4] P. Srivats, “OSTINATO: Network Traffic Generator and 

Analyzer,” 2017. [Online; accessed September 2017]. Available: 
http://ostinato.org. 

[5] Northwest Performance Software, Inc., “NetScanTools Pro: 
Packet Generator Tool,” 2017. [Online; accessed September 

2017]. Available: http://www.netscantools.com/nstpro_packet 
_generator.html. 

[6] T. Kovacik, I. Kotuliak, and P. Podhradsky, “Real-time traffic 
analysis in Ethernet,” in 15th International Conference on 

Systems, Signals and Image Processing (IWSSIP 2008), 2008, pp. 

69-72. 

[7] U. Lamping, R. Sharpe, and E. Warnicke, “Wireshark User’s 

Guide: For Wireshark 2.1”, 2014. [Online; accessed September 
2017]. Available: https://www.wireshark.org/download/docs/user-

guide-us.pdf. 

[8] B. Brickner, „Pcap.Net,“ GitHub, 2017. [Online; accessed October 

2017]. Available: https://github.com/PcapDotNet/Pcap.Net. 

 


