
Network Tester: A Generation and Evaluation of

Diagnostic Communication in IP Networks

J. Pullmann and D. Macko

Faculty of Informatics and Information Technologies

Slovak University of Technology

Bratislava, Slovakia

dominik.macko@stuba.sk

Abstract—There are many active intermediary devices in

computer networks. The network has to be verified whether

it functions as it should – i.e. whether some intermediary

device in not misconfigured. It is a difficult task, because

various scenarios must be tested, which takes time.

Fortunately, there are tools that help to automate this

process. However, the existing tools are mostly oriented

towards generation of specific periodic traffic for network

performance analysis, and it is difficult to use them for

functional verification of the network. Therefore, we

propose in this paper a new method, along with the

corresponding tool, which is targeted towards generation of

certain traffic and analysis of the network response to verify

its function. The primary focus of the method is for testing

of local area networks, which usually consists of switch

devices. The experimental results proved that the proposed

tool is usable to verify specific functional aspects of the

switched networks. The tool can be used in education to

verify students-configured local networks or to test software

switches implemented by students.

I. INTRODUCTION

The modern computer networks (based on IP – Internet
Protocol) usually consist of many intermediary devices,
such as switches, routers, firewalls, load balancers, etc.
These devices can be manageable, meaning that they can
be configured to adjust their function to some user
requirements. Study of the network devices configuration
is a specific area in education. Students configure network
devices to perform some function and a teacher must
check whether they configure them correctly. This is quite
time-consuming task.

Moreover, as there is a high focus on network
virtualization nowadays, many functions of intermediary
devices are done in software. Therefore, students often are
tasked to develop software programs that perform specific
functions of some hardware device (e.g. switch function).
Students must connect their software implementation to a
real network to verify the function, and they do not always
have manageable network devices available at home,
which limits their flexibility to debug their solutions. Also,
verification of such implementations by a teacher takes
just too much time and there is a need to automate this
process.

This work is therefore focused on development of a
method and corresponding tool that will be able to quickly
verify some function of a network device, or a portion of a
switched network. The proposed tool enables a teacher to
create test scenarios, according which the tool generates

network traffic, and the tool analyzes the response. Based
of specification of expected response, the tool is able to
determine whether the test scenario passed or failed. Such
a tool helps the students to verify configured hardware
devices or to continuously verify software
implementations of a network function during
development, and it also helps teachers to evaluate final
students’ implementations of software network functions.

The following section describes some analyzed existing
works targeting generation and analysis of network traffic.
Section 3 contains the proposed new method for
generation and evaluation of diagnostic communication in
IP networks and describes the developed tool that
implements the proposed method. In Section 4, we
mention verification of the tool and experimental results.
And in Section 5, we discuss the conclusions of our work
and give information about further work.

II. RELATED WORKS

There exist many tools that enable generation of some
testing traffic in computer networks. They differ by
several parameters, such as complexity, functionality, user
interface, operating systems support, or licensing. One can
easily find a comparison of some popular tools, such as in
[1-4]. The main goals of network-traffic generation are to
test the performance and behavior of the network. For
example, such tools can be used to test network firewall,
measurement of network bandwidth, network device
overloading, or simulation of a network virus. In this
section, we analyze some of the popular tools.

OSTINATO [5] is a tool for generation and analysis of
network traffic. It offers an easy-to-use user interface,
controlled either via a GUI (Graphical User Interface) or
via Python API (Application Programming Interface),
which enables automation of network testing. It is an
open-source free-to-use tool that supports multiple
platforms (Windows, Linux, BSD, or Mac OS X). It
enables to modify any value in any stateless network
protocol, concatenate packets in any order, and thus create
specific traffic streams. It can be used for network load
testing or functional testing. From the analyzing point, it
offers statistics and captures incoming traffic; however, it
does not differentiate generated and standard traffic in the
network. Further analysis must be done manually by the
user, or by external application. Therefore, it is hard to use
for evaluation of a network device function (hardware or
software. In Fig. 1, samples of OSTINATO graphical user
interface are provided. On the left, we can see some
obtained network statistics. On the right, a portion of

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:

J. Pullmann and D. Macko, "Network Tester: A generation and evaluation of diagnostic communication in IP networks," 2018 16th

International Conference on Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, 2018, pp. 451-456.

doi: 10.1109/ICETA.2018.8572067

URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8572067

Figure 1. OSTINATO graphical user interface [5].

Figure 2. PackETH graphical user interface [7].

editing possibilities is illustrated, where a user can select a
protocol for individual layers of the protocol stack – from
the physical layer to the transport layer. Application layer
can be simulated by a text.

Another tool, iPerf [6], offers active measurement of
maximal bandwidth in IP networks, reporting bandwidth,
loss, or other parameters for each test. A user can control
the tool via a CLI (Command Line Interface); however,
there exist a GUI extension called jPerf. Similarly to
OSTINATO, iPerf is also an open-source, free-to-use,
multiplatform tool. In comparison to previous tool, it
offers fewer options to configure the traffic stream. Except
the measured statistics, there is no analysis or evaluation
of network function offered; thus, it is unsuitable for our
purpose.

The PackETH [7] multiplatform tool offers high
configurability of generated network streams, similarly to
OSTINATO. It can be controlled by a CLI as well as a

GUI. It is primarily focused on Ethernet networks. It
enables to save the test scenario, and afterwards to load it.
The advantage is that the generated network stream is in
the pcap form, which means that the captured traffic by
another tool (such as Wireshark [8]) can be replicated. On
its own, PackETH does not support analysis of the
network traffic, thus the test cannot be automatically
evaluated. Thus, it is unsuitable for network function
verification.

GDC tool [9] is a tool for generation and evaluation of
network traffic. Its function is the closest from the existing
tools to our purpose. However, this tool was primarily
developed to test function of a router device, which means
it is very limited on type of traffic that it can generate and
analyze (ICMP, ARP, RIP). It uses a configuration file in
an XML (eXtensible Markup Language) form, which
specifies a test scenario to be generated and evaluated.
This is rather unsuitable for creation of new test scenarios,
since the tool does not offer a proper configurator

Figure 3. An overview of the physical architecture used for testing.

Figure 4. An overview of interactions between the modules.

graphical interface. However, some functions and ideas
used in this tool can be used as an inspiration for
development of a new generation and evaluation tool.

The analyzed existing tools do not fulfill requirements
of our intended usage, mentioned in Section 1. The
existing traffic generators offers high configurability;
however, they are too complex and thus complicated to
use, and they lack features on the evaluation part. They
would need to be used in conjunction with some network
analysis tool, such as Wireshark [8] or KaTaLyzer [10],
accompanied by manual evaluation. Therefore, we have
decided to propose a new traffic generation and evaluation
automation method, which is more closely described in
the following section.

III. THE PROPOSED NETWORK TESTER METHOD

In order to test specific functionality of a network
device or some portion of the network, we have stated the
following requirements for a new automation method:

· Easy configuration of the test traffic (i.e. the
diagnostic communication for a local area
network) by a user.

· A test scenario should consist of various
communication flows.

· Generation of the configured test traffic to the
network.

· Analysis of the captured communication from the
network.

· Evaluation of a test scenario after traffic
generation, capturing, and analysis.

· Providing statistics and control messages.

· Saving and loading the configured test scenarios
to and from a file.

· Simple and easy-to-use user interface of the
implemented tool.

· Modularity and extensibility of the implemented
tool.

These requirements represent a basis for our proposal,
which intends to meet all of them. The result from the
automate evaluation must be obtained in a very short time,
in order to be beneficial for students as well as teachers.

A. Method Overview

The proposed tool will operate on a single device (e.g.
personal computer, laptop, or microcomputer) with two
network interface cards (NICs). Both NICs will be
connected to the local area network to be tested (or to a
single network device to be tested). A condition is that the
NICs can communicate with each other via the local
network. One of the NICs will represent an initiator of the
diagnostic communication according to a test scenario
created by a user (a teacher). The second interface will
capture the incoming communication, and respond to the
traffic in some cases to simulate a real communication.
Since this behavior is centralized in a single device and a
single tool, it knows what the test scenario was and thus it
can evaluate the result of the test. In Fig. 3, an overview of
the physical architecture connecting the PC, running the
proposed tool, to the network under test is illustrated.

The proposed testing method consists of four modules:
task creator, scenario manager, test executor, and results

analyzer. These are illustrated in Fig. 4 and further
explained in the following text.

1) Task Creator
This module is used to create test tasks by a user, and

also to show or edit the created tasks. A test scenario can
contain multiple tasks (e.g. ARP request simulation,
loading of a web page using HTTP, and downloading a
file using FTP). The user is able to select various
parameters of the task to be executed (i.e. the
corresponding traffic is generated), such as selection of a
network protocol, modification of header contents, or
specification of a number of packets to be sent in the task.
By creation of individual tasks, the user defines a test
scenario as needed.

2) Scenario Manager
This module is used for management of a test scenario,

which enables manipulation with the scenario tasks
(adding, editing, showing, removing, duplicating, and
reordering). All of these give a user flexibility to create a
suitable scenario or to modify the existing one in a short
time. The existing test scenarios can be saved for further
usage. This module also enables to load a saved scenario
for modification or execution, and it also enables to delete
the whole scenario. This module also serves for
specification of which port is used as an initiator and
which as a responder of the test communication.

3) Test Executor
This module serves for execution of individual tasks

according to the selected test scenario. It is used for traffic
generation, receiving (capturing for further analysis), and
responding. Since the testing network traffic runs in both
directions, it is inevitable to be able to send and receive
traffic at both NICs.

4) Results Analyzer
This module analysis, evaluates, and provides results of

the test based on generated and received network
communication. Output of the module contains traffic
statistics, such as a number of sent or received packets,

Figure 5. Port Settings window.

Figure 6. Scenario Management window.

and evaluation, whether the network communication has
behaved in individual test scenarios as expected. For
example, a user wants to verify whether a network
firewall denies HTTP traffic but allows all other
communication. If the generated HTTP traffic by the
initiator NIC is received by the responder NIC, the test
scenario is evaluated as failed (unsuccessful), because it
was expected that it will be blocked by the firewall. The
user is then notified which specific task has failed in the
test scenario.

B. Network Tester Implementation

The proposed method was implemented into a tool
called Network Tester in the Java programming language.
For operations with the network interfaces, the jNetPcap
library was used. The Jackson library was used for
working with data in the JSON (JavaScript Object
Notation) format.

A user interacts with the tool using the implemented
GUI, which consists of four main windows: Port Settings,
Scenario Management, Task Creator, and Scenario
Results.

Port Settings is the first window displayed after starting
the tool (shown in Fig. 5). It serves for selection of the two
network interfaces, which will be used by the tool, from

all network interfaces the device has. In order to fully
utilize the tool, the device has to provide at least two
network interfaces. Otherwise, the tool displays a message
about minimal amount of required NICs and does not
enable the user to execute a test. Other functionality,
which does not require NICs interactions, is enabled, such
as test scenario management or task creation.

Scenario Management is the key window enabling
control of the tool. It enables user to interact with the
previously described Scenario Manager module. The main
purpose is to manage a test scenario, which is represented
by a list of test tasks in the main part of the window
(shown in Fig. 6). The top menu contains three items: File,
Settings, and Help. The File item enables to save scenario,
load a saved scenario, and erase the loaded scenario. The
Settings item enables to modify the previously selected
port settings. And the Help item enables to display the
user guide, if required. The buttons enable to control
individual functions of the Scenario Manager module.
Most of them require selection of a task in the list of the
test scenario to action with that task. The Task Details
button shows detailed parameters of the selected task. The
Create Task button opens the Task Creator window. The
Edit Task button also opens the Task Creator window;
however, the parameters of the task are filled according to
the selected task. The user can modify them and save the
changes. The Delete Task button removes the selected
task from the test scenario. The Duplicate Task button
copies the selected task and adds it at the end of the list.
The user can then modify the parameters of the new task,
which makes creation of a new task with similar
parameters to the duplicated task very fast. The Move Up
and Move Down buttons moves the selected task in the
list (reorder the tasks), which enables to adjust the test
scenario. The Run Scenario button executes the current
scenario.

Task Creator (shown in Fig. 7) is a window that
enables to create new tasks, which will be added to the
current test scenario. It contains multiple text fields for
task parameters, according to which the network traffic
will be generated. The Source Port parameter specifies the
NIC that will be the initiator for that task. The Type
parameter enables to select protocol (UDP, TCP, ICMP,

Figure 7. Task Creator window.

Figure 8. Scenario Results window.

Figure 9. An example of a task saved in a JSON file.

or ARP), for which the traffic will be generated. Count
specifies how many messages will be sent. The Expected
Result parameter specifies whether the message should or
shouldn’t be received at the responder NIC. There is also a
field for a unique short description of the task, in order the
user to know what the task intents to do. Other text fields
are used for specification of addresses and ports to be used
in the generated communication. In case some field
contains erroneous value, a message reports the issue to
the user.

Scenario Results (shown in Fig. 8) provides both
summarized and detailed information about the test
scenario results. It also shows progress of testing during
the test execution. Thus, the user is informed which task is
currently executed and what the result of finished tasks is.
The user is also informed when the test is completed (i.e.
all tasks from the test scenario are finished). In the Test
state text box, basic information is provided, such as test
progress, number and percentage of successfully
completed tasks, tasks’ ordinal numbers and tasks results
(OK or Failed). In the Results table, several basic
parameters for each task are provided along with the test
result and statistics. There is a possibility to save results to
a file in the JSON format. The Task Details button enables
to show all configured parameters of the selected task in
the table.

As already mentioned, the current test scenario can be
saved into a JSON-formatted file. The saved test scenario
contains a list of test tasks. For each task, name and value

of all of its parameters are provided, such as type, count,
description, or destination IP address. An example of a
task saved into such a file is provided in Fig. 9.

IV. EXPERIMENTAL VERIFICATION

The implemented functions in the tool have been
verified continuously during the tool development. Partial
functionalities of each module have been verified
separately, and also, the tool has been verified as a whole.

During the development, the verification was
accomplished using the network emulator GNS3. Final
version of the tool was verified with the use of real
hardware and software switch devices. During
verification, we have used the Wireshark packet analyzing
tool and checked whether the captured traffic corresponds
to the results obtained by the Network Tester tool.

Three test scenarios have been used for experimental
verification. The first one was generating small amount of
packets to verify the basic functionality of the tool. The
second one contained more complex tasks, generating
higher amount of traffic to test filtering options of a
student-implemented software multilayer switch. The
third scenario was created to test robustness of the tool,
generating a very high amount of traffic (tens of thousands
packets).

Even in the last high-load test scenario, the tool was
able to obtain the result in a couple of minutes. Thus it is
very fast, helping students and teacher to speed-up the
evaluation processes.

V. CONCLUSIONS

The work described in this paper was focused on
development of a method and the corresponding tool that
will be able to quickly verify some function of a software
or hardware switching network device, or a portion of a
switched network. The proposed tool, named Network
Tester, enables a teacher to create test scenarios, according
which the tool generates network traffic and analyzes the
response. Based of specification of expected response, the
tool is able to determine whether the test scenario passed
or failed, giving enough information to evaluate whether
the tested device or network functions properly.

Such a tool can be used by students to verify configured
hardware devices or to continuously verify their software
implementations of a network function during
development. The tool also helps the teachers to quickly
evaluate students’ final implementations of software
network functions, assigned as a semestral works.

The proposed evaluation automation method and tool
has been verified using real student’s works and it serves
its purpose well. It can be further extended for support
other protocols to verify other network functions, such as
the basic function of a routing device.

ACKNOWLEDGMENT

This work was mainly supported by the Slovak Cultural
and Educational Grant Agency (KEGA 011STU-4/2017 –
“Update of computer networks curricula based on needs
of practise”) of the Ministry of Education, Science,
Research and Sport of the Slovak Republic. It was also
partially supported by the Slovak Scientific Grant Agency
(VEGA 1/0836/16) and the Slovak Research and
Development Agency (APVV-15-0789).

REFERENCES

[1] A. G. Patil, A. R. Surve, A. K. Gupta, A. Sharma, and S.

Anmulwar, “Survey of synthetic traffic generators,” in 2016
International Conference on Inventive Computation Technologies

(ICICT), 2016, pp. 1–3. doi: 10.1109/INVENTIVE.2016.7823282

[2] S. Mishra, S. Sonavane, and A. Gupta, “Study of traffic generation

tools,” International Journal of Advanced Research in Computer

and Communication Engineering, vol. 4, no. 6, pp. 4–7, 2015.

[3] S. S. Kolahi, S. Narayan, D. D. T. Nguyen, and Y. Sunarto,

“Performance monitoring of various network traffic generators,”
in 2011 UkSim 13th International Conference on Computer

Modelling and Simulation, 2011, pp. 501–506. doi:

10.1109/UKSIM.2011.102

[4] S. M. Wong, An Evaluation of Software-Based Traffic Generators
using Docker. Stockholm, Sweden: School of Computer Science

and Communication, KTH, 2018. Master thesis.

[5] P. Srivats, “OSTINATO: Network Traffic Generator and

Analyzer,” 2017. [Online]. Available: http://ostinato.org.

[6] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”

2016. [Online]. Available: https://iperf.fr/.

[7] “PackETH,” 2017. [Online]. Available: http://packeth.sourceforge.

net/packeth/Home.html

[8] U. Lamping, R. Sharpe, and E. Warnicke, “Wireshark User’s

Guide: For Wireshark 2.1”, 2014. [Online]. Available:

https://www.wireshark.org/download/docs/user-guide-us.pdf.

[9] M. Procházka, D. Macko, and K. Jelemenská, “IP networks

diagnostic communication generator,” in 2017 15th International
Conference on Emerging eLearning Technologies and

Applications (ICETA), 2017, pp. 1–6. doi:

10.1109/ICETA.2017.8102520

[10] T. Kovacik, I. Kotuliak, and P. Podhradsky, “Real-time traffic

analysis in Ethernet,” in 15th International Conference on

Systems, Signals and Image Processing (IWSSIP 2008), 2008, pp.

69–72. doi: 10.1109/IWSSIP.2008.4604369

