
Automated Evaluation of a Network Device 

Configuration 
 

Z. Csengődy, D. Macko and K. Jelemenská 

Faculty of Informatics and Information Technologies  

Slovak University of Technology 

Bratislava, Slovakia 

dominik.macko@stuba.sk 
 

 
Abstract—Process automation increases quality of human 

everyday life and boosts work effectiveness. Such benefits 

are also achievable while testing and evaluating 

configurations of manageable network devices (e.g. routers 

or switches). This is especially crucial in education, where 

many students configure many devices and their teacher 

must check whether the configurations are correct. This 

paper is focused on such a problem. We propose a new 

method, along with a corresponding tool, that is able to load 

the configurations to be tested and compare them against 

correct configurations, provided by a teacher. It does not 

only compare the text in configuration files, but also takes 

into account structural characteristics of configuration 

commands. The proposed tool also evaluates the 

configurations in terms of percentage and obtained points, 

and thus it can be also used for student exams. 

I. INTRODUCTION 

It is undeniable that automation makes the processes 
more efficient in terms of time and costs. It also reduces 
the possibility of introduction of a human error. The 
process automation is also very important in education 
sphere. There is a need to automate as many education 
processes as possible, for a teacher to focus on more 
important aspects instead of routine activities, which 
enables the public money to be efficiently used. It is also 
important to objectively evaluate students works, thus the 
same results be valued evenly, which reduces 
discrimination. 

In this area, there are many simulation tools or testing 
frameworks used to alleviate such problems. However, 
students must also increase their working skills with real 
equipment and there is little automation involved to 
evaluate such results – i.e. whether they used the 
equipment correctly and obtained the expected results. We 
must find a way to automate also such evaluation 
processes. 

This is also the case when teaching students to 
configure manageable active network devices, such as 
routers or switches. Due to time optimization and 
difficulty for a teacher to evaluate multi-device 
configurations of many students in a study group, the 
students often work in a simulation environment, such as 
Cisco Packet Tracer simulation tool [1]. Using such a tool 
the configurations can be easily and quickly checked; 
however, students lose touch with the problems occurring 
in real devices only (e.g. console connection, cabling 
problems, wrong device, or hardware faults). 

In this paper, we deal with a problem when students 
configure real hardware network devices and the 
configuration must be checked for correctness. Usually, 
this is done manually by their teacher, which knows what 
the correct configuration should be. However, it takes 
time and makes unnecessary waiting periods during the 
class, since the teacher evaluates a single student at a time 
(i.e. students must wait for their turn). This process can be 
optimized using the proposed method for automated 
evaluation of network-devices configurations. It enables 
the teacher to beforehand prepare a golden-model 
configuration, against which the students’ configurations 
will be checked automatically. Thus, the time during class 
can be spent more efficiently. 

The paper is organized as follows. In the next section 
(Section 2), the related works are discussed, concerning 
automated evaluation of network-devices configurations. 
Section 3 is the main part of the paper, which describes 
the proposed method and the tool for automation of the 
configuration-evaluation process. In Section 4, we provide 
some results from experimental testing of the method and 
the tool, using the actual students-configured scenarios. 
And finally, we conclude the paper and discuss further 
work in this area (Section 5). 

II. RELATED WORKS 

This section is divided into two parts: the analysis of 
existing works that help to parse configuration files, and 
the analysis of existing works for comparison and 
evaluation of configuration files. 

A. Configuration Files Parsing 

Configurations of Cisco network devices operating 
under the Cisco IOS (Internetwork Operating System) are 
stored in text-based configuration files. Thus, evaluation 
of configuration files requires text parsing and analysis of 
the parsed information. A configuration file contains 
hierarchically ordered configuration commands with a 
specific structure. 

As a help to work with configuration files, one can use, 
for example, the conftodict [2] Python module. It is able to 
convert content of a configuration file to a Python 
dictionary, which is based on a key-value concept. The 
key is a parent command and the value is a list of the 
corresponding children commands (i.e. one hierarchical 
level lower than the parent, but in its context). It is then 
easier to find specific commands in specific sections of 
the configuration file; therefore, it can be also used for 
comparison of configuration files and their evaluation. 

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper: 

Z. Cseng dy, D. Macko and K. Jelemenská, "Automated evaluation of network device configuration," 2018 16th International 

Conference on Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, 2018, pp. 99-104. 

doi: 10.1109/ICETA.2018.8572175 

URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8572175



 
Figure 1. An output example of the Cisco Configuration Diff tool [4]. 

+ip subnet-zero 
+ip name-server 10.4.4.4 
+voice dnis-map 1  
 +dnis 111 
interface GigabitEthernet1/0/0 
 +no ip address 
 +shutdown 
+ip default-gateway 10.5.5.5 
+ip classless 
+access-list 110 deny ip any host 10.1.1.1 
+access-list 110 deny ip any host 10.1.1.2 
+access-list 110 deny ip any host 10.1.1.3 
+snmp-server community private RW 
-no ip subnet-zero 
interface GigabitEthernet1/0/0 
 -ip address 10.7.7.7 255.0.0.0 
-no ip classless 

-snmp-server community public RO 

Figure 2. An output example of the Contextual Configuration 

Diff Utility [5]. 

Another approach is proposed in [3], which is able to 
adapt to changes in the configuration language (i.e. 
updates), thus reducing overhead of manual modification 
of the parsers. The proposed parsing consists of two 
phases. In the first phase, command types are used to 
assigned parsed commands into syntactic structural 
categories and then grouped into a tree-like data structure. 
In the second phase, the analyzed configuration is 
transformed into the XML (eXtensible Markup Language) 
form. Unrecognized commands by the second phase are 
processed by a script, which accordingly updates the first 
phase of parsing, and thus is able to adapt to language 
changes. 

B. Configuration Files Comparison and Evaluation 

A tool called Cisco Configuration Diff [4] solves the 
false-positives problem with the usual text-comparison 
tools, when used on configuration files. Since the tool 
understands the hierarchical structure of configuration 
files, it is able to reorganize and align the corresponding 
sections of the two compared configuration files. An 
example of possible output from the tool is illustrated in 
Fig. 1. The missing or different lines are marked by the 
red color, the beginning and the end of a section with a red 
line is marked by orange color, and the blue icons mark 
the reordered lines. The tool is useful for a fast 
comparison of two configuration files; however, it is 
impractical for comparison of a higher amount of 
students’ configuration files. 

A tool Contextual Configuration Diff Utility [5] offers 
very similar capabilities of identifying differences 
between two compared configuration files and identifying 
lines with different order. However, this tool operates 
directly within Cisco integrated file system, and is thus 
useful for comparison of different versions of 
configurations in a single device. An example of the tool 
output is illustrated in Fig. 2. Marks at the beginning of a 
line represents whether the command was added in the 
second configuration file (“+“), whether the command 

available in the first configuration file is not present in the 
second configuration file (“-“), or whether some lines in 
the second configuration file have different order than in 
the first file (“!”). Lines without any mark specify context 
of subsequent commands (within the hierarchical structure 
of the configuration file). 

In comparison to the previous two tools, the Cisco 
Packet Tracer simulator [1] is able not only to compare 
the configurations of multiple devices against predefined 
ones, but also to automatically evaluate them – i.e. to 
assign points for correct commands (i.e. commands are 
the same as the predefined commands) and to compute 
progress in terms of percentage. Thus, it is usable also for 
testing purposes. This is achievable by creating a Packet 
Tracer activity using the Activity Wizard (illustrated on 
the left in Fig. 3). In the Answer Network section of the 
Activity Wizard, a teacher can select which commands 
will be valued and assign point to each command (or 
function). After a student configures devices, the Check 
Results button opens a window shown on the right side in 



      
Figure 3. Cisco Packet Tracer Activity Wizard. 

TABLE I. 
EXAMPLE OF VARIABLE CONFIGURATIONS USAGE 

Golden-model 

configuration 

Checked 

configuration 

router ospf ? router ospf 10 

line vty ? ? line vty 0 4 

network ???.???.?.0 0.0.0.0 

area 0 

network 192.168.1.0 0.0.0.0 area 

0 

mpls ldp router-id Loopback? 
? 

mpls ldp router-id Loopback0 
force 

mpls ldp router-id Loopback? 

? 
mpls ldp router-id Loopback7 

 

the figure. If allowed by the teacher, the student can scroll 
the valued commands for each device and see if they were 
configured correctly. Since Packet Tracer is a simulator, it 
supports only a subset of Cisco IOS commands. Also, it 
does not enable to evaluate a real hardware device 
configuration; therefore, another configuration-evaluation 
approach is required. 

III. AUTOMATED CONFIGURATION EVALUATION 

METHOD 

Our goal is to automate the process of checking and 
evaluation of students’ configurations of real hardware 
network devices. We have analyzed multiple existing 
tools and approaches; however, none of them fulfills all of 
our needs. Therefore, a new method is required, for which 
we have stated the following requirements: 

· Loading of the golden-model configuration files 
for multiple devices. 

· Loading of the configuration files to be checked 
and evaluated. 

· Visualization of the golden-model configuration 
commands, preserving the hierarchical structure. 

· Enabling to specify multiple alternative 
configurations of the same function in the golden 
model. 

· Assigning the points to the commands of a 
selected configuration file from the golden-model 
files. 

· Saving the settings for each golden-model 
configuration file. 

· Comparison and evaluation of the configuration 
files to be checked against the golden model and 
according to the settings. 

· Creating the evaluation report stating which 
commands were erroneous or missing in the 
checked configuration and stating the overall 
evaluation result in terms of points, percentage, 
and grade. 

In addition to these functional requirements, we focused 
on development of a clear, simple, and intuitive graphical 
user interface of the tool, without redundant information. 

Thus, a teacher should be able to use the tool without a 
need to read the user guide. 

A. The proposed method 

After the golden-model configuration files are inserted, 
they are analyzed and checked, whether they contain 
additional configuration files containing an alternative 
configuration of some function. These files are identified 
using their name, which must include a specific suffix 
“_add”. The prefix of the additional configuration files 
must correspond to the name of some of the main 
configuration files (usually the hostname of the device, to 
which it belongs). The alternative configuration is then 
appended into the corresponding main configuration, and 
it is afterwards treated as a single-file configuration. Such 
functionality is missing in all existing methods, making 
our method unique. Many functions of a network device 
can be configured using multiple ways (e.g. filtering using 
the access control lists), but the results is the same. Thus, 
students can choose the way they fulfill the task, enabling 
a teacher to prepare goal-oriented exams (not specifying 
exactly what commands the students have to use). 

We also propose to use a variable configuration in the 
golden model, which simplifies the specification of 
alternative configurations even more. This functionality is 
based on usage of a question mark (“?”) in a golden-
model configuration file, which can be interpreted as any 
string if used as a word (i.e. separated by a white-space 
character). If “?” is used inside a string, it represents a 
single variable character. Several examples of usage of the 
proposed variable configuration are provided in Table 1. 



          
Figure 4. Graphical user interface of the proposed tool. 

The first column represents the variable configuration in 
the golden model and the second column represents a 
configuration that matches the golden model. Multiple 
configuration commands can match a single command 
when variable configuration is used, as shown in the last 
two rows. 

The configuration evaluation cannot be done without 
settings of commands points. After the loading of the 
golden-model configuration files, the point-values can be 
assigned to each command for a selected configuration 
file (including alternative configuration commands). 
There is also possibility to assign a point-value for a 
hierarchical section, which means that the points will be 
counted only if all subcommands (i.e. all children 
commands of the corresponding parent command) will be 
correct. This is also a unique solution, which gives a 
teacher a flexibility and opportunity to evaluate 
configurations with different granularity. 

Before the comparison of configuration files, there is a 
verification step ensuring that the number of configuration 
files meets the number of golden-model main files. Also, 
it is verified that each configuration file to be checked has 
a pair file in the golden-model configuration (using file 
names). After the successful verification, all the 
configurations are transformed into the XML form, which 
enables to easily preserve the hierarchical structure. The 
golden-model configurations are then sequentially 
processed, and points are counted if the commands are 
found in the checked configurations, respecting the 
context (the commands are looked for in the 
corresponding section). If a golden-model command is not 
found (or is incorrect) in the checked configurations, this 
situation is reported after the processing is finished. 

B. The implemented tool 

We have implemented the proposed method into a 
simple and easy-to-use tool. The implemented graphical 
user interface is illustrated in Fig. 4. As shown, it consists 

of two windows. The initial primary window is provided 
on the left side. The configuration files are inserted into 
the tool using the drag-and-drop method. The golden-
model configuration files must be dropped in the Control 
File(s) section, the configuration files to be checked must 
be dropped in the Test file(s) section of the window. After 
the files are inserted into the tool, the points for 
commands of the golden-model configurations have to be 
assigned. 

By clicking the icon in the top-left corner, a user can 
open the settings window (shown on the right in the 
figure). Using the combo-box, the user is able to switch 
between individual configuration files of the golden 
model. After the changes are made in the point-values of 
the commands of a configuration file, the settings must be 
saved (individually for each file). Again, using the icon in 
the top-left corner, the user switches to the primary 
window of the tool. 

Using the Compare button, the user starts processing of 
the configuration files. After the configuration files to be 
checked are evaluated, the results are displayed in the 
bottom section of the primary window. 

After starting the tool, a log file is created, which 
contains all messages and possible exceptions, using the 
following syntax: 

Syntax: # Priority_Class_Method_(Index) – Exception – Line: Number 

The file reporting the results is named “results.txt” and 
it consists of sections, marked by “## 
Hostname_of_nework_device ##”. In each section, there 
are erroneous/missing configuration commands for the 
corresponding device reported. The lines reporting 
alternative configurations are marked by “-- Additional 
Configuration”. At the end of the file, there is the overall 
result reported in the form of: 

# Obtained_points/All_points – percentage # 

An example of the results file contents is provided in 
Fig. 5. 



TABLE II. 
COMPARISON OF MANUAL AND AUTOMATED STUDENT TESTS EVALUATION 

Student 
Test 1 [points] Test 2 [points] 

Manual evaluation Automated evaluation Manual evaluation Automated evaluation 

A 15 11.5 13 9.5 

B 20 16 17.5 16 

C 11.5 7.5 11.5 11 

D 7.5 4 15 8 

E 12.75 11.5 7.5 8 

Average 13.35 10.1 12.9 10.5 

Average difference 3.25 2.4 

 

## P1 ## 

 

## P2 ## 

 

## PE1 ## 

 

redistribute ospf ? vrf VPN24 metric ? -- 
Additional Configuration 

 

## PE2 ## 

 

no auto-summary 

 

neighbor 1.1.1.1 route-map Mapa out 

redistribute eigrp ? 

 

ip prefix-list List seq 5 permit 
192.168.0.0/16 le 29 

route-map Mapa permit 10 

match ip address prefix-list List 

 

no auto-summary -- Additional Configuration 

 

## 11.5/16.0 - 71% ## 

Figure 5. An example of the generated file “results.txt”. 

IV. EXPERIMENTAL RESULTS 

During and after development of the tool, we have done 
application tests to verify functionality of the tool. After 
verification of the functional aspects of the tool (and thus 
the method too), we have used the tool to evaluate 
students’ configurations, previously graded by a teacher. 
Then we have compared the obtained resulted points 
provided by the manual evaluation by a teacher and the 
automated evaluation using the proposed method. In these 
experiments, we have not used the proposed variable 
configurations, since it was neither used by the teacher 
during manual evaluation. Thus, the students’ 
configuration should match exactly the golden-model 
specification. 

The results are provided in Table 2. There were two test 
scenarios used (Test1 and Test2), and for each, 
configurations of five students were evaluated (A – E). 
The maximum points achievable in the test were 20; 
however, there were two points for speed and two points 
for filters (which could not be evaluated automatically, 

since variable configurations could not be used). Thus, the 
maximum for automated evaluation was 16 points. When 
comparing the results, we can see that the difference 
between automated and manual evaluation is within these 
four points. 

The manual evaluation has not counted some mistakes 
as errors, such as when at one place was the configuration 
command correct, but the same command was configured 
incorrectly at some other place. However, such a 
configuration was not functionally right; therefore, the 
points should not be assigned to the student. Thus, the 
proposed automated evaluation is accurate, more 
objective, and reduces discrimination – all students are 
evaluated in the same manner. 

The manual evaluation took about 5–10 minutes for 
each student. The results from automated evaluation were 
provided very fast, like in few seconds. Thus, the speed-
up is significant and very useful for a teacher. 

V. CONCLUSIONS AND FURTHER WORK 

In this paper, we have been dealing with a problem of 
evaluation automation for configurations of real hardware 
network devices. We have proposed a method and 
implemented a tool that is able to parse configuration to be 
checked and compare them against a golden-model 
configuration (a correct configuration). Comparison 
results are used to evaluate the checked configuration and 
assign points and grade; thus, it is especially useful for 
evaluation of students’ configurations in education sphere. 

By experimental verification, we have shown that the 
proposed automated evaluation provides accurate results 
and reduces the discrimination – the tool treats the 
students evenly and the evaluation is objective. The speed-
up achieved by automation of the evaluation process is 
significant. The results from the tool are obtained 
immediately; thus, a teacher can grade the students during 
the class without time problems. 

Compared to the existing methods and tools, we have 
proposed unique possibility to specify multiple correct 
configurations of the same function. Also, we have 
increased flexibility and simplified the specification of the 
golden-model configuration by the proposed variable 
configurations. 

In the future, we will focus on limitations of the 
proposed tool. It could automatically load configurations 
of multiple students and evaluate them, instead of 
inserting them manually for each student. It would also 



require modification of grading scheme. Further work in 
this area can be also oriented towards securing the golden 
model by encryption, authentication, and authorization. It 
would enable students to check their configurations 
against the provided golden model themselves; however, 
they could not see the golden-model configurations 
contents or modify points-assignments. 

ACKNOWLEDGMENT 

This work was mainly supported by the Slovak Cultural 
and Educational Grant Agency (KEGA 011STU-4/2017 – 
“Update of computer networks curricula based on needs 
of practise”) of the Ministry of Education, Science, 
Research and Sport of the Slovak Republic. It was also 
partially supported by the Slovak Scientific Grant Agency 
(VEGA 1/0836/16) and the Slovak Research and 
Development Agency (APVV-15-0789). 

REFERENCES 

[1] K. Kniewald, F. Jakab, and J. Janitor, “Visual learning tools for 

teaching/learning computer networks: Cisco Networking Academy 
and Packet Tracer,” in 2010 Sixth International Conference on 

Networking and Services (ICNS), 2010, pp. 351-355. DOI: 

10.1109/ICNS.2010.55. 

[2] B. Searle, “conftodict: Python module to convert Cisco IOS config 

to a python dictionary,” GitHub, 2016. [Online]. Available: 
https://github.com/bobthebutcher/conftodict. 

[3] D. Caldwell, S. Lee, and Y. Mandelbaum, “Adaptive parsing of 
router configuration languages,” in 2008 IEEE Internet Network 

Management Workshop (INM), 2008, pp. 1-6. doi: 

10.1109/INETMW.2008.4660333 

[4] C. Dessez, “Cisco Configuration Diff,” 2016. [Online]. Available: 
https://community.cisco.com/t5/network-architecture-documents/ 

cisco-configuration-diff/ta-p/3157684 

[5] Cisco Systems, Managing Configuration Files Configuration 

Guide, Cisco IOS Release 15M&T. San Jose, CA: Cisco Systems, 

Inc., 2015. 

 


