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Nowadays, power is a dominant factor that constrains highly integrated hardware-systems designs. 

The implied problems of high power density, causing chip overheating, or limited power source in 

modern Internet-of-Things devices are most commonly dealt with the use of the dynamic power 

management. This method enables to use power-reduction techniques, such as clock gating, power 

gating, or voltage and frequency scaling. Since the adoption of power management is quite difficult 

in modern complex systems, there are new approaches evolving intended to simplify power-

constrained systems design. We have also proposed such an approach, utilizing the system level of 

design abstraction and increased automation in the design process. In this paper, the proposed hybrid 

verification approach is described that represents an integral part of the suggested design 

methodology. It consists of formal and informal techniques, enabling the verification process to 

begin at the very early specification stage of the system development. Our approach helps a designer 

to create correct and consistent power-management specification and verifies whether the specified 

power intent is preserved after design refinement. The continuous automated verification steps can 

quickly find errors at early design stages and thus reduce the amount of design re-spins, which 

speeds-up the overall development process. 

Keywords: Computer-aided design; energy efficient; hardware design; low power; power 

management; specification; verification. 

1.   Introduction 

Low-power systems design is currently based on advanced power-reduction techniques 

that are typically applied on the functional design using a dedicated specification format, 

for example UPF (Unified Power Format).1 UPF was intended for RTL (Register-

Transfer Level) and lower-level modeling and enables to introduce power-management 

aspects to the functional design, usually modelled in HDL (Hardware Description 

Language). Although UPF has substantially simplified the low-power systems 
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development, it is not suitable for higher abstraction levels like ESL (Electronic System 

Level), where the modern design processes typically start nowadays. It can still be 

introduced into the design process at the RTL; however, the current complex systems are 

rapidly becoming manually unmanageable at this level. Therefore, new methods and 

methodologies have been developed to extend low-power design to the ESL, such as 

Refs. 2–13. Analyzing the strengths and weaknesses of the available current methods, we 

have proposed a novel methodology for low-power systems design that is solving some 

of the issues of current low-power systems design process e.g. insufficient abstraction, 

missing automation, or separated specifications. The methodology is based on the 

specification of an abstract power management at the ESL, as well as on the application 

of high-level synthesis to obtain the UPF-based RTL power-management model.14–16 

In this paper, we have focused on the verification of the introduced power-

management aspects at early stages of the design. The existing approaches related to this 

research area are analyzed in Sec. 2. In Sec. 3, the basics of the developed power 

management design strategy are summarized. The contributions of this paper regarding 

the proposed verification approach are explained in Sec. 4. The experiments, supporting 

the benefits of the contributions, are described in Sec. 5. Section 6 concludes the paper, 

summarizes the advantages of the proposed verification approach and indicates the 

possible future work in this research area. 

2.   Related Work 

Currently, most of the available methods and methodologies, aimed at higher abstraction 

levels, target power-management abstraction and its introduction into the system-level 

design. Only some of them are also targeting the verification issues accompanying the 

power-management specification. In this section, the verification methods and 

approaches used in the available solutions are briefly analyzed. 

The methodology proposed in Ref. 2 is aimed at the abstraction of several UPF 

concepts to the transaction level in order to enable power-architecture exploration at the 

system level. However, the power information must be manually annotated into the 

model. In this case, the verification of the power-management concept is based on 

automated generation of assume and guarantee assertions, that enable to report errors 

during the model simulation. Although the assertions generation process is hidden from 

the designer, the designer has to manually annotate the power information into the model. 

Another issue lies in the fact that this kind of verification does not check the power-

management specification completeness, it only checks the correctness of interaction 

among components. In addition, the simulation-based verification is also time 

consuming. A very similar approach has been used in Ref. 3 targeting the clock 

management. 

Several other methods4–11 rely also solely on simulation-based verification. Although 

the offered virtual prototyping speeds-up the simulation compared to the RTL functional 

verification, there are other aspects (like specification completeness, its consistency with 

functional model etc.) that should also be verified; therefore, some additional verification 
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approaches are needed. The verification methodology proposed in Ref. 12 is also based 

on simulation. In this case, a semi-formal specification of use cases, power constraints 

and power states is used and the verification environment is then automatically generated 

based on this specification. Such automation speeds-up verification preparation. 

However, it also has the disadvantages mentioned before, namely the power-management 

specification completeness and its consistency with the functional model is not addressed. 

The authors in Ref. 13 do not use system-level power management verification. Instead, 

they analyze power based on the system-level simulation traces along with the functional 

model verification only at the RTL. In modern complex systems, the designers cannot 

rely solely on simulation to properly verify the design. The simulation-based verification 

must be combined with the formal methods to address the aspects that are not verifiable 

by simulation (e.g. completeness). 

A more formal approach has been published in Ref. 17. The control-signals sequences 

represented by lower-level inter-domain assertions are automatically converted into the 

form usable in the abstract architectural properties of the system. The properties can then 

be formally proved. A similar approach is used in Ref. 18, which combines hardware and 

software power-management strategies. Although these approaches are definitely very 

helpful, they do not address the comprehensive verification of the introduced power-

management aspects. 

Analyzing the strengths and weaknesses of the available power-aware verification 

approaches, we have decided to address the verification completeness at early stages and 

the verification step, missing in the existing approaches, when refining the design 

between abstraction levels. We have suggested and integrated multiple verification steps 

into the proposed low-power design flow (this paper is an extended version of Ref. 19 

describing more closely the proposed methods). The suggested power-aware verification 

methodology is based on a combination of formal and informal approaches and it relies 

on the following three key methods, representing our key contribution. 

 

· Power-management static analysis — it is a unique method designed to verify the 

ESL consistency between the power-management and functional specifications. 

Additionally, the specification completeness is verified as well, thus leading the 

designer to the correct power management at the early stages of the design. 

· Power-intent equivalence checking — this is an original method developed to verify 

that the power intent is preserved by the automated high-level synthesis process. The 

equivalence between the ESL and RTL specifications is checked formally and the 

process is fully automated. Thanks to that fact, this verification step is very fast. 

· Automated synthesis of power-control assertions — inspired by the existing work2,17, 

we have developed and integrated into the proposed power-management high-level 

synthesis a unique form of this method. The generated assertions are dedicated to 

functional correctness monitoring of the synthesized power-management unit. The 

assertions are synthesized based solely on the ESL power-management specification; 

therefore, no additional information need be provided by the designer (contrary to 

the existing methods). 
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3.   Abstract Power Management in ESL Specification 

In order to understand the proposed abstract power-management specification14,15, three 

basic terms have to be clarified: power mode, power domain, and power state. Power 

state is an operation state of a system component that is defined by an operating 

frequency and a supply voltage. A collection of the system components that are always in 

the same power state can be grouped together into the same power domain. That means, 

there are typically several power domains in the system and each system component 

belongs to exactly one power domain. Finally, the system power mode is defined by a 

combination of power states of the respective power domains. The system power 

management basic principle lies in the possibility to dynamically switch among the 

system power modes based on the current power requirements. The ultimate goal is to 

reduce energy consumption, while successfully completing the given task. 

The power states usable at the system level are predefined (referred to as the abstract 

power states). A brief description of these states is provided in Tab. 1. The table also 

contains information about activation of specific power-reduction techniques in each 

abstract power state. 

Table 1.  The abstract power states overview. 

Abstract power 

state 

Brief description 

normal 

An operation state, in which no explicit power-reduction technique is activated. The components 

operating in this state are powered by the primary supply of the system and the operation 

frequency is the basic frequency of the system. 

hold 

This power state represents an activation of clock gating combined with operand isolation power-

reduction techniques. All input signals (including the clock signal) of a component in this state 

are isolated, which prevents unnecessary switching activity in the component. 

off, off_ret 

These power states represent an application of power gating technique without and with the state 

retention, respectively. The power supply of a component in this state is cut off — i.e. the 

component is powered down (the values in memory elements of the component are saved in case 

of the off_ret state). 

diff_level# 

A group of abstract power states, where # represents a number to differentiate the states. Such a 

state enables to scale voltage and frequency levels of a component or to use multiple (fixed) 

voltages in the system. Each diff_level state represents a unique combination of voltage-frequency 

values. 

 

The ESL power management is specified directly in the functional specification of the 

system, which simplifies the early specification (single specification language and style, 

in contrast to the HDL and UPF design at the RTL). The abstract power-management 

specification includes the following parts. 

 

· Component assignments — The system components are assigned to specific power 

domains using their identifiers. The components always operating in the same power 

states are assigned to the same power domain. 
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· Power domains — An identifier for each domain is specified, along with a nonempty 

set of power states, in which the assigned components can operate. 

· Performance levels — A unique voltage-frequency pair is specified for each active 

power state (normal or diff_level). 

· Power modes — An identifier for each power mode is specified, along with a 

sequence of power states (one power state for each power domain, in the same order 

as they have been specified). 

· Power-management policy — The switching among power modes is specified 

directly in the system function. It defines how and when the switching occurs. 

 

To illustrate the usage of the abstract power-management specification, we specify one 

case of power management in a simple SoC, called system0. This system has four 

components, one instance of microprocessor mu0 (component instance is called CPU) 

and three instances of memory ram0, called M1, M2, and M3 (VHDL descriptions of 

these components are available in Ref. 20). These components are interconnected via the 

memory controller (MCU) that selects a memory component based on the value in the 

address bus. The abstract power-managed architecture of this case-study system is 

illustrated in Fig. 1. 

 

Fig. 1.  The case-study system abstract power-managed architecture. 

We have described this system in SystemC in order to mimic top-down design and to 

use the developed power-management specification. In our case, let us assume that the 

power consumption of these components can be managed separately (i.e. each component 

is assigned to the dedicated power domain: PD_CPU, PD_M1, PD_M2, and PD_M3, 

respectively). Let the system operate in five power modes — PM1, PM2, and PM3 for 

full-speed communication between CPU and individual memories, PM4 for low-power 

operation of CPU and M1 (slower), and PM5 for the standby mode of the whole system. 

It is supposed that the MCU behavior is specified in a SystemC process of system0, not 

as a separated component. Therefore, MCU is surrounded by a dashed line in the figure. 

At the system level of abstraction, the power is controlled in the functional specification, 

in the MCU process in this case. The specification code fragment in SystemC-based 

power management is provided below. 
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SC_MODULE(system0){ 

 //system components 

 mu0 CPU; 

 ram0 M1, M2, M3; 

 

 //power-management declarations 

 PowerDomain PD_CPU,PD_M1,PD_M2,PD_M3; 

 PowerMode PM1,PM2,PM3,PM4,PM5; 

 

 ...//part of the design omitted 

 

 SC_CTOR(system0): CPU("CPU"), M1("M1"), M2("M2"), M3("M3") 

 { 

 ...//port mapping and processes omitted 

 

 //components to power domains assignments 

 PD_CPU.AddComponent("CPU"); 

 PD_M1.AddComponent("M1"); 

 PD_M2.AddComponent("M2"); 

 PD_M3.AddComponent("M3"); 

 

 //power-domains states specification 

 PD_CPU = PD(NORMAL,DIFF_LEVEL(1),OFF); 

 PD_M1 = PD(NORMAL,HOLD); 

 PD_M2 = PD(NORMAL,HOLD,OFF_RET); 

 PD_M3 = PD(NORMAL,HOLD,OFF_RET); 

 

 //power-modes specification 

 PM1 = PM(NORMAL,NORMAL,HOLD,HOLD); 

 PM2 = PM(NORMAL,HOLD,NORMAL,HOLD); 

 PM3 = PM(NORMAL,HOLD,HOLD,NORMAL); 

 PM4 = PM(DIFF_LEVEL(1),NORMAL,OFF_RET,OFF_RET); 

 PM5 = PM(OFF,HOLD,OFF_RET,OFF_RET); 

 

 //initial power mode selection 

 POWER_MODE = PM1; 

 

 //performance-levels specification 

 SetLevel(NORMAL,1V,50MHz); 

 SetLevel(DIFF_LEVEL(1),0.9V,5MHz); 

 } 

}; 
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In this example, CPU can operate in three power states (normal, diff_level1 and off). 

It operates in normal state in the PM1, PM2, and PM3 system modes, its voltage and 

frequency are scaled down in PM4 to save power and it is completely powered-down in 

the standby mode (PM5). The M1 memory is selected in the PM1 and PM4 modes, in 

which it operates in normal power state. In the standby mode, it is put into the hold 

power state to save at least dynamic power. The memories M2 and M3 are each selected 

in PM2 and PM3 respectively (the normal state when selected and hold when not), and 

they are powered-down in PM4 and PM5 with the state retention activated. We may 

notice that PM1 is the default system power mode, since it is assigned to the 

POWER_MODE variable in the SystemC module constructor. The switching between 

power modes is then specified in the functional part of the design (i.e. some SystemC 

process) by assignment of other specified power mode to the POWER_MODE variable. 

The abstract power-management specification, integrated with functional ESL 

specification, represents the basis of the proposed methodology for low-power systems 

design, which extends the traditional UPF-based design flow to the ESL. The proposed 

low-power design flow is illustrated in Fig. 2. 

 

Fig. 2.  The proposed low-power systems design flow. 

The design starts by the specification at the system level of abstraction (ESL mode). 

The initial specification contains functional design as well as power-management aspects 

in the same specification model. The abstraction-refinement process is then used to 

develop the specification to the abstraction level, where the high-level synthesis tools can 

generate the RTL model of the specified system. The RTL model consists actually of two 

parts: the system functional model in an HDL and the power intent specification in UPF. 

The functional model is supposed to be generated by a commonly used synthesis tool, 

supporting the ESL modelling (e.g. Stratus21, Catapult22, or Synphony C Compiler23). The 

UPF specification at the RTL is generated using the proposed power-management high-

level synthesis process16 (see Fig. 3). Along with the UPF specification, the power-

management unit (PMU), which will be driving control signals for power-management 

elements in the UPF, is automatically synthesized into the functional model in HDL. 

Thus, the complex RTL power management is designed much faster using the proposed 

method. 
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Fig. 3.  The extended high-level synthesis process. 

At this stage, the currently used design-automation tools can be used for design 

analysis and further system development as supported by the standard UPF-based low-

power design flow. The verification steps in the extended part of the design flow 

represent its crucial part and they will be discussed in more detail in the following 

section. 

4.   The Proposed Verification Approach 

The specified power management has to be verified for functional and structural 

correctness and completeness.24 For a designer, it is most beneficial to accomplish this 

verification step as soon as possible in order to avoid design re-spins. However, the 

model might not be executable at the specification stage; therefore, a formal approach is 

suitable for such verification and validation. We combine the compilers functionality, 

which is able to check syntactical correctness of the specification, and the power-

management static analysis detecting functional and structural inconsistencies in the 

abstract power-management specification at the ESL. 

Afterwards, it is important to verify the correct functionality of the power-managed 

system, usually verified by functional simulation. In the developed low-power design 

flow, this verification step has to be done after the high-level synthesis, because the 

abstract power-management specification does not model the effects on functionality. For 

this purpose, an existing professional power-aware tool, such as Modelsim, can be used 

to simulate the functional HDL model along with the synthesized power intent in UPF. 

As mentioned in Ref. 25, the power-management elements (specified in UPF) are often a 

rich error-source, and therefore should be verified for all operating modes. Due to the 

high-level synthesis automation offered by the proposed methodology, we are able to 

avoid potential human errors in the power-management insertion at the RTL. The low-

level power-management logic (such as power switches, isolation, retention, or level 

shifters) is completely abstracted for a designer — it is automatically (i.e. correctly) 

added to the specification during the power-management high-level synthesis. 

However, to assure that the power intent is the same after the high-level synthesis, the 

equivalence between the synthesized UPF specification at the RTL and the abstract 
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power-management specification at the ESL should be checked (this is known as the 

equivalence checking verification technique). The functional description of the 

synthesized PMU is ideal for the assertion-based verification approach (ABV). The 

automatically generated assertions can verify the control-signals sequences driven by the 

PMU, but they can also be used for the functional-coverage measurement. 

An overview of the proposed verification processes is provided in Fig. 4. We propose 

to use a combination of verification techniques (the dark-grey color) at various design 

stages, which enables to verify the low-level power-related logic based only on the ESL 

specification. The proposed abstraction and automation simplifies the complex 

verification process (especially the preparation and debugging steps), and thus can save a 

lot of time. 

 

Fig. 4.  The verification process overview. 

4.1.   Syntax checking 

An automated verification of the power-management specification syntax is done by 

compilers at the compilation time (before the ESL simulation starts). The specification 

syntax consists of the predefined keywords, which drive a designer to specify power 

management correctly, using valid statements. In addition to pure syntax checking, in 

HSSL14 (Hardware-Software Specification Language), the syntactical rules also assure 

that at least one power domain has to be specified if the power-domains section is present 

in the specification. In addition, each power domain is required to have at least one power 

state. The syntactical rules ensure that only the predefined abstract power states are valid, 

because they are defined as the language keywords. In addition, it is also assured that at 

least one power mode is specified. In all these cases, the HSSL compiler detects an error 

and does not compile the specification. 

This kind of syntax checking is not supported in the SystemC/PMS15 specification. 

The power management is specified using the macros defined in the PMS extension 

library. If the designer uses these macros, the compiler then ensures the correct 

specification. The C++ modelling, which is integrated in the PMS library, ensures that 

only the previously specified power mode is selected as the current power mode, and that 

the component instances can be assigned only to the previously specified power domains. 

These issues cannot be detected in HSSL syntax checking. Because the specification 

must be verified thoroughly, the issues that cannot be revealed in this verification step (in 

both the HSSL and SystemC) must be verified by another approach — during an 

execution time or by the static analysis. 
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4.2.   Run-time checking 

In SystemC/PMS specification, the run-time checks (during the ESL simulation) are used 

to detect some errors that could not be detected by a compiler. The run-time checking 

implements the conditional statements that notify the designer, if an error is detected, 

what part of the power management is incorrectly specified. The implemented run-time 

checking verifies whether the valid abstract power states are assigned to the power 

domains and to the power modes. As long as the predefined power-state macros are used, 

this condition cannot be violated. However, the designer has a choice to use or not to use 

the macros; therefore, it must be verified. The run-time checking also detects an error if 

the designer specifies some power state multiple times in some power domain. Although, 

these errors can be detected by the static analysis described in the next section, it requires 

an additional verification tool. The proposed run-time checks increase verification 

detection capabilities without any additional tool (it requires only a common compiler 

and execution of the model). 

4.3.   Power-management static analysis 

The static analysis verification form is mainly focused on the power-management 

inconsistencies that could not be revealed in the previous verification steps. It formally 

analyses the specified constructs (e.g. identifiers, assignments), especially those related to 

the power management. The static analysis can be used from the beginning of the system 

specification, notifying the designer about the inconsistencies. However, it is also 

integrated into the high-level synthesis process, which cannot proceed unless the power-

management specification is complete. 

To be more specific, the proposed static analysis is able to verify formal requirements 

regarding the abstract power management. To provide an example, it verifies that all 

power modes have the correct number of power states — it has to correspond to the 

number of specified power domains in the system. As another example, the static analysis 

notifies the designer if some power domain contains no active power state or if some 

component instance is assigned to several power domains. It notifies the designer about 

the location of redundant specification constructs, such as unused power states, unused 

power modes, or multiple power modes with the same sequence of power states. The 

proposed power-management static analysis is very helpful in early versions of the 

specification, because it drives the designer to create a correct and complete specification, 

which can significantly shorten the debugging time. 

The power-management specification in the case study in Sec. 3 is correct. However, 

to illustrate the detection capabilities of the proposed static analysis, we can modify the 

specification according to the code fragment below. 

 

PD_CPU.AddComponent("CPU"); 

PD_M1.AddComponent("M1"); 

PD_M2.AddComponent("M2"); 
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PD_M3.AddComponent("M3"); 

PD_CPU = PD(NORMAL,DIFF_LEVEL(1),OFF); 

PD_M1 = PD(NORMAL,DIFF_LEVEL(1),HOLD); 

PD_M2 = PD(NORMAL,HOLD,OFF_RET); 

PD_M3 = PD(NORMAL,HOLD,OFF_RET); 

PM1 = PM(NORMAL,NORMAL,HOLD,HOLD,NORMAL); 

PM2 = PM(NORMAL,HOLD,NORMAL,HOLD); 

PM3 = PM(NORMAL,HOLD,HOLD,NORMAL); 

PM4 = PM(DIFF_LEVEL(1),NORMAL,OFF_RET,OFF_RET); 

PM5 = PM(OFF,HOLD,OFF_RET,OFF_RET); 

POWER_MODE = PM1; 

SetLevel(DIFF_LEVEL(1),0.9V,5MHz); 

 

The highlighted text represents the detected problems. The static analysis would 

detect that the diff_level1 power state of the power domain PD_M1 is not used in any 

specified power mode (the power state of PD_M1 corresponds to the second position of 

states in a power mode). The designer would be notified that the performance level for 

the normal state is not assigned. An error would be reported regarding the incorrect 

number of power states in PM1. Let’s say that the mode PM4 is never assigned to the 

POWER_MODE variable in the functional part of the specification (i.e. the module 

constructor or some process). The static analysis would detect that this mode is 

redundant. Because of that, the notification would be generated that the diff_level1 power 

state of PD_CPU is not used. 

4.4.   Power-management equivalence checking 

An overview of the proposed equivalence-checking process is illustrated in Fig. 5. 

 

Fig. 5.  The equivalence-checking process. 

This verification step takes place after the RTL power management in UPF form has 

been synthesized using the proposed power-management high-level synthesis16. It 
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verifies the equivalency between the RTL power intent extracted from the UPF 

specification and the original ESL power-management specification. However, since 

these specifications use different level of abstraction (i.e. they contain different amount of 

details), a common representation has to be used for the comparison. That means, both 

specifications are translated into this common representation, in which the power states 

are represented by the corresponding voltage levels. The reason is that the UPF 

specification does not contain frequency aspects, because they are contained in the 

functional HDL model. We have formally defined the common representation (CR) as a 

tuple 

 ( )PMPDSPDICR ,,= , (1) 

where PDI is a nonempty finite set of pairs (IDd, I), where I is a nonempty finite set of 

component instances assigned to the power domain represented by an identifier IDd; PDS 

is a nonempty finite set of pairs (IDd, VS), where VS is a nonempty finite set of voltage 

states (i.e. voltages) enabled in the power domain represented by an identifier IDd; and 

PM is a nonempty finite set of pairs (IDm, S), where S is a nonempty finite sequence of 

voltage states corresponding to the power states of power domains that represent the 

power mode with an identifier IDm. 

The proposed method is checking two equivalence aspects, namely the power-

management structural equivalence and the power-intent equivalence. The first one 

actually verifies that all power-management constructs, specified at the ESL, have been 

synthesized into the UPF specification. The second one verifies that the power intent is 

the same in both specifications. It means that the unused power-management constructs 

do not need to match, only the resulting impact is important. 

The equivalence-checking process is starting by analysis of both specifications during 

which their common representations are generated. The common representation CR_ESL 

is extracted from the ESL power management quite easily, the power states are simply 

translated to the corresponding voltage states based on the performance-level assignments 

and the lists representing VS and S are filled in. For the power-intent equivalence 

checking, the common representation is extracted from the optimized ESL specification. 

It means that the redundant parts of the abstract specification are removed based on the 

optimization decisions of the high-level synthesis. 

The CR_ESL extraction can be explained using the case-study ESL description in 

Sec. 3. The power mode PM1 specifies that CPU and M1 operate at the supply voltage of 

1 V. Also, the M2 and M3 components are supplied by 1 V, because the hold state uses 

the lowest voltage ever used in the domain. Similarly, PM4 specifies that CPU operate at 

the supply voltage of 0.9 V, M1 at the supply voltage of 1 V, and M2 and M3 are 

powered-off (i.e. the voltage of 0 V). Analogously, the voltage states can be deduced for 

the other specified power modes. This translation of power states in power modes to 

voltage states in the CR_ESL is illustrated in Tab. 2. The power domains with instances 

and voltage states are extracted into the common representation analogously. 



Verification of Power-Management Specification at Early Design Stages     13 

 

Table 2.  Power states translation to voltage states for power modes in the common representation. 

Abstract power- modes specification Voltage states in common representation 

PM1 = PM(NORMAL,NORMAL,HOLD,HOLD); PM1, (1.0, 1.0, 1.0, 1.0) 

PM2 = PM(NORMAL,HOLD,NORMAL,HOLD); PM2, (1.0, 1.0, 1.0, 1.0) 

PM3 = PM(NORMAL,HOLD,HOLD,NORMAL); PM3, (1.0, 1.0, 1.0, 1.0) 

PM4 = PM(DIFF_LEVEL(1),NORMAL,OFF_RET,OFF_RET); PM4, (0.9, 1.0, 0, 0) 

PM5 = PM(OFF,HOLD,OFF_RET,OFF_RET); PM5, (0, 1.0, 0, 0) 

 

The common representation extraction from the UPF power-intent specification 

(referred to as CR_RTL) is more challenging, it uses a quasi-reverse process to the high-

level synthesis. The supply voltage for the normal power state is deduced from the 

specified state of the supply port that is connected to the primary supply net of the 

implicitly synthesized top power domain, called PD_top. Other supply ports with 

specified states (such as VDD_0_9_port) imply that multiple voltages are used in the 

design, and thus that some diff_level state has been used in the abstract specification. The 

specified states of the power-switch output port (e.g. PD_CPU_SW/vout) are used to 

determine other possible power states of the corresponding power domain (i.e. the power-

switch output port is connected to the primary net of that domain). The power modes in 

the UPF power-state table specify the states of the supply ports, which are used to 

determine the voltages for individual power domains in these power modes. An example 

of the extraction of a voltage state from the synthesized UPF specification, equivalent to 

the case study in Sec. 3, is provided in Tab. 3. The highlighted text represents the 

important parts of the UPF specification used for the voltage-state determination. 

Table 3.  A voltage state deduction from the UPF specification. 

Fragments of the UPF specification Deduction 

set_domain_supply_net PD_CPU\ 

  -primary_power_net VDD_PD_CPU_net ... 

The PD_CPU power domain is powered by the power-

supply net of VDD_PD_CPU_net. 

connect_supply_net VDD_1_0_net\ 

  -ports { VDD_1_0_port } 

It is checked if the supply net is connected to a top-level 

supply port. 

create_power_switch PD_CPU_SW\ 

  -domain PD_CPU\ 

  -output_supply_port\ 

  { vout VDD_PD_CPU_net }... 

Otherwise, it is checked if the supply net is connected to the 

output port of a power switch in that domain. It is connected 

to the PD_CPU_SW/vout port. 

create_pst PST –supplies\ 

  { VDD_1_0_port VDD_0_9_port\ 

  VSS_0_0_port PD_CPU_SW/vout\ 

  PD_M2_SW/vout PD_M3_SW/vout } 

The PD_CPU_SW/vout port has the fourth position in the 

power-state table. 

add_pst_state PM4 -pst PST –state\ 

  { state_1_0 state_0_9 state_0_0\ 

  state_0_9 state_0_0 state_0_0 } 

For the PM4 power mode, the port state of state_0_9 is 

located in the fourth position. 

add_port_state PD_CPU_SW/vout\ 

  -state { state_0_9 0.9 } 

The state_0_9 state of the PD_CPU_SW/vout port 

corresponds to 0.9 V. 
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For simplicity, many commands are omitted from the UPF specification in the 

provided code fragments. The UPF files can be pretty large in length. The example just 

provides a simple insight into the complex CR_RTL extraction process. 

After the common representations are created, the lists of power domains are 

compared first. CR_ESL has to contain each power domain in CR_RTL (identifiers are 

used for comparison), except for the top domain (implicitly added by the high-level 

synthesis). CR_RTL also has to contain each power domain in CR_ESL. In addition, the 

corresponding lists of assigned component instances and voltage states have to coincide. 

Next, the power modes with specific voltage-states sequences are compared analogously 

to the power domains. It is common that the UPF specification contains many 

intermediate modes, representing intermediate states added for correct switching among 

power states. However, these must comply with some specified power mode — there 

cannot be any new combination of voltage states. Therefore, the combinations of voltage 

states are checked and the redundant intermediate modes are not added to CR_RTL. 

The result of this verification step is a comprehensive report, containing equivalence 

status along with error messages and information about the source of an error, which can 

speed-up the debugging process. 

4.5.   Assertion-based verification 

The abstract power-management specification provides sufficient amount of details to 

automatically synthesize the assertions about RTL power management control-signals 

sequences generated by the PMU. As the first step, we synthesize the sequence 

statements that encode each power state of each power domain using the control signals 

for the power-management elements synthesized in UPF. The control signals for a power 

domain depend on the used supply voltages in the domain, the used clock frequencies, 

and the need for isolation and retention. An example of the synthesized sequence 

statement is provided below using the SystemVerilog Assertion language. In this 

example, the off power state is defined by the combination of control signals, in which 

the clock-control signal is false, the two power-switch control signals are true and true, 

and the isolation-control signal is true. 

 

sequence PD_CPU_off; 

 !DUT.PMU.PD_CPU_CLK_c1 && DUT.PMU.PD_CPU_SW_c1 && 

 DUT.PMU.PD_CPU_SW_c2 && DUT.PMU.PD_CPU_ISO_c; 

endsequence 

 

Secondly, we synthesize the sequence statements that control the correct power-state 

transitions. Besides the specified power states, these sequences also include the 

intermediate power states, through which the components must be switched to function 

correctly (e.g. isolation or retention states). These power-state transition sequences are 

determined based on the ESL power-mode specification. An example of such a sequence 

is provided below. When the PD_CPU power domain is transitioning from the normal 
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power state (1 V, 50 MHz) to the diff_level1 power state (0.9 V, 5 MHz), it goes through 

an intermediate state, in which the frequency is lowered but the voltage remains the same 

as in normal state (1 V, 5 MHz). The operator ##1 means that in the next clock cycle the 

following value becomes true. 

 

sequence PD_CPU_normal_diff_level1; 

 PD_CPU_normal ##1 PD_CPU_inter_1_0_5_0 ##1 

 PD_CPU_diff_level1; 

endsequence 

 

In addition, the power-state encoding sequences are used for definition of the power-

mode sequences, because it is easier for a designer to monitor the system power modes. 

An example of such a sequence statement is provided below. 

 

sequence mode_normal_normal_iso_iso; 

 PD_CPU_normal and PD_M1_normal and PD_M2_iso and 

 PD_M3_iso; 

endsequence 

 

The synthesized sequence statements (encoding as well as transitioning) are then used to 

measure the coverage of the generated power management during the RTL functional 

verification. An example of the explicit coverage directive is provided below. 

 

c_PD_CPU_off: cover property (@(posedge clk)PD_CPU_off); 

 

A simulator supporting assertions counts if and how many times a property, represented 

by a sequence, has become true. In this way, the designer can track the verification 

progress during the simulation or can even modify the test-bench to cover unverified 

power modes. 

Besides the mentioned coverage assertions, we synthesize assertions monitoring an 

incorrect behavior of the PMU. The possible illegal sequences of control signal values are 

divided into seven classes — five classes reflect Ref. 17 and two more have been added 

(third and fourth) to cover the illegal sequences completely. Since these sequences are 

illegal (i.e. they should not occur), the properties representing these sequences are 

asserted in the opposite way. If such a property evaluates to true, it represents an 

erroneous behavior. These classes are briefly described below. 

 

(1) Illegal restoration before power-on — the values cannot be restored before the 

domain is powered-on. An example of such a property is shown below. The system 

function $fell() returns true if the argument value changes from true to false, the 

operator |-> represents the implication, throughout means that the previous Boolean 

value needs to hold true until the following sequence becomes true, and the operator 

##[1:$] means that the following value will eventually become true. 
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property PD_M2_i_restore_on; 

 @(posedge clk) 

 $fell(DUT.PMU.PD_M2_RET_c) |-> !DUT.PMU.PD_M2_RET_c 

 throughout DUT.PMU.PD_M2_SW_c1) ##[1:$] 

 $fell(DUT.PMU.PD_M2_SW_c1); 

endproperty 

a_PD_M2_i_restore_on: assert property (PD_M2_i_restore_on) 

 $error("Restored before powering on!"); else; 

 

(2) Illegal power-off before retention — for the domains in which the state should be 

retained, the power cannot be turned off before the retention is activated. 

(3) Illegal de-isolation before power-on — the isolation should not be disabled before 

the power is turned on. 

(4) Illegal power-off before isolation — before the power is turned off, the isolation at 

the domain boundary should be activated. 

(5) Illegal retention before isolation — if the retention is needed, it cannot precede the 

isolation procedure. 

(6) Illegal de-isolation before restoration — the isolation should not be disabled before 

the state values are restored. 

(7) Illegal performance-level transition — when a voltage-frequency pair is changed by 

some power-state transition, the frequency can be raised only after the voltage is 

raised and the voltage can be lowered only after the frequency is lowered. 

 

In addition to the assertions checking the illegal sequences, we define another three 

classes of control-signals assertions. The first class monitors whether isolation is enabled 

during retention period, the second one controls that the isolation is enabled while the 

components are powered-down, and the third class verifies whether the retention is 

activated during the power-down period (if it should be). These are generated in the 

following way (the system function $rose() returns true if the argument value changes 

from false to true). 

 

property PD_M2_iso_while_ret; 

 @(posedge clk) 

 $rose(DUT.PMU.PD_M2_RET_c) |-> DUT.PMU.PD_M2_ISO_c 

 throughout ##[0:$] $fell(DUT.PMU.PD_M2_RET_c); 

endproperty 

a_PD_M2_iso_while_ret:assert property (PD_M2_iso_while_ret) 

 else $error("Isolation disabled while retained!"); 

 

Although we have used these assertions only during simulation, based on the work of 

Ref. 17, such assertions can also be used in formal property verification of the PMU. 
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5.   Experimental Evaluation 

In order to validate the proposed verification approach, several experiments had to be 

carried out. For this purpose, a generator was developed to generate samples of ESL 

power-management specification. It generated samples of various complexities — the 

numbers of power modes, power domains, as well as power states in the power domains 

were scaled (from two to ten). The samples were either randomly generated, i.e. 

including also erroneous samples, or rules-controlled when only correct samples were 

generated. The experiments were divided into several stages. First, the application testing 

was selected to validate the verification capabilities of the implemented methods. The 

following artificial scenarios were adopted: 

 

· various parts of the abstract specification were incorrectly specified (syntax errors 

injected) to validate the syntax checking and run-time checking detection 

capabilities, 

· some parts of the abstract power-management specification were intentionally 

omitted to validate completeness-detection capabilities of the proposed static 

analysis method, 

· inconsistent ESL power management was intentionally specified to validate the 

consistency-detection capabilities of the static analysis. 

 

The application testing was carried out mostly manually covering all the possible types of 

faults that the designer can make in an ESL power-management specification. Then, the 

verification methods were applied to the random samples. In case an error was detected, 

the result was inspected manually to check its correctness. 

In the next stage, the synthesized RTL power management was tested for correctness. 

These tests were focused on checking whether the proposed verification approach 

detected all the errors which are detectable at the RTL using the conventional methods 

and tools. In the evaluation, the power-aware static analysis offered by Modelsim SE 

10.2c was utilized. This professional EDA (Electronic Design Automation) tool is able to 

detect errors in UPF specification, such as incorrectly connected power switch, missing 

isolation or level shifters. For this purpose, the rules-controlled generator was used to 

generate 15 samples of the abstract power-management specification in SystemC. The 

generated samples went through the respective verification steps, they were then 

synthesized into the UPF format using the proposed high-level synthesis process, and 

finally, the correctness of the RTL power-management specification was verified in 

Modelsim. All the synthesized samples were successfully validated in Modelsim. As a 

result, we can deduce that the proposed verification steps, especially the developed 

power-management static analysis, indeed drive a designer to the correct ESL power-

management specification. 

In this experiment, the developed power-management equivalence checking was also 

tested. First, the equivalence checking was used to compare the synthesized UPF 

specifications to the original ESL power management. For all the samples, the 
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corresponding specifications were equivalent. Then, one of the two specifications was 

intentionally modified (i.e. either some part of the specification was omitted or changed) 

and the equivalence was checked again. In this case, the equivalence checking process 

reported errors in all the test cases. Consequently, the results were inspected manually 

and they were correct in all the test cases. 

In the last stage the synthesized PMUs were verified using functional verification. For 

this purpose, the power-aware simulation capabilities offered by Modelsim were used. 

The simulation was driven by the automatically generated test-benches, in which the 

power supplies specified in UPF were activated, the switching between various power 

modes was defined using a pseudorandom approach, and the synthesized assertions were 

used to verify the control-signals sequences generated by the PMU and to measure the 

functional-coverage. In this way, the communication between the PMU and the power-

management elements in UPF was verified. The experiment has also proved that the 

synthesized assertions are helpful in RTL power management verification. 

It is expected that one of the key benefits that the proposed low-power design flow 

will bring is the substantial reduction in specification as well as verification effort. To 

demonstrate the merits, the specification complexity of the generated samples (used in 

the previous experiment) was measured in the number of characters, as well as the 

number of commands. Although the second parameter is more commonly used to 

measure complexity of a source code, UPF is based on the TCL (Tool Command 

Language), which uses long inline commands with many command options. Therefore, 

comparison of the numbers of commands in the specifications only would not be quite 

adequate. However, the UPF is also significantly influenced by the synthesized identifiers 

impacting the number of characters; therefore, both complexity parameters were used. 

The experimental results are summarized in Tab. 4. 

Table 4.  Power-management verification evaluation samples. 

# ESL nESL UPF nUPF PMU nPM Assert nProp nDirect Coverage 

1 313 11 1680 26 3300 4 3863 9 10 100 % 

2 500 16 2706 42 4452 5 4749 5 17 100 % 

3 642 20 2850 47 4619 5 3194 2 15 100 % 

4 643 23 6035 74 35205 46 25912 18 103 98 % 

5 751 23 4658 65 8658 12 9488 14 29 100 % 

6 760 24 4854 65 7017 8 10340 11 34 100 % 

7 813 18 5678 74 10094 14 13433 14 41 97.5 % 

8 862 24 5557 72 63304 49 17779 11 81 100 % 

9 953 38 8778 99 142992 114 52330 25 175 81.1 % 

10 1051 40 9399 105 131478 101 45150 28 156 96.1 % 

11 1090 27 11605 124 586303 346 100721 37 421 85.5 % 

12 1275 24 7443 92 199866 106 48111 21 146 89 % 

13 1324 30 9039 102 107068 117 43833 25 172 91.2 % 

14 1402 50 13397 147 67691 65 50911 36 126 99.2 % 

15 1939 27 12232 140 214122 132 91620 25 188 82.4 % 

Case Study 515 18 5612 70 35216 44 20940 23 79 100 % 
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The first column in the table represents the sample reference number (marked #). The 

ESL and nESL columns represent the number of characters and the number of commands 

respectively, required for the abstract ESL power-management specifications. Similarly, 

the UPF and nUPF columns represent the number of characters and the number of 

commands of the synthesized UPF specifications, respectively. The PMU column refers 

to the number of characters generated automatically to synthesize the power-management 

unit functional description. The difference between values in UPF and ESL columns, 

together with the PMU value, can be interpreted as the specification effort reduction. The 

Assert column denotes the number of characters required to describe the assertion 

statements, which can be perceived as part of the verification effort reduction. The 

column nPM, representing the number of power modes (including intermediate power 

modes) in the synthesized PMU, provides a perception of the respective sample 

complexity.  The nProp and nDirect columns represent the number of properties and the 

number of explicit coverage directives in the generated assertions, respectively. Finally, 

the directive coverage, reported by Modelsim after the simulation, is provided in the 

Coverage column. 

In all the cases, the coverage report is above 80 %. Although this might seem like not 

a very good result, the goal of this experiment was not to fully verify the PMUs, but to 

show that the generated assertions can be directly used for PMU verification and for 

coverage measurement. This has been proven. As it was mentioned earlier, the simulation 

was driven by the automatically generated test-benches, using a pseudorandom stimuli-

generation approach, and the simulation time was rather short – 100 ms. Therefore, 

higher coverage can be easily reached using a different stimuli-generation approach, for 

example directed testing. Since the number of assertion statements can be really high (up 

to 37 properties and 421 coverage directives for the generated samples), their automated 

synthesis spares a great amount of time required otherwise for the manual verification 

preparation (i.e. manual creation of the assertions as well as possible debugging effort 

due to human errors). The developed verification processes – the power-management 

static analysis and the equivalence checking have taken only few seconds (up to 1.4 s for 

the considered samples), hence the experiments have also shown that the proposed 

methods are scalable. When compared to the manual effort regarding the assertion 

creation and possible debugging, the proposed automated method can save days, or even 

weeks, of development time. 

To be able to compare the complexity of the tested artificial samples to our case-study 

system in Secs. 3 and 4, the data for the case study is provided in the last row of the table. 

Based on these data, one can deduce a need to also measure the specification complexity 

in the number of characters, because while the number of commands in UPF is only 3.89 

times higher, the number of characters is 10.9 times higher. A manual description of the 

case-study PMU, which has taken 35216 characters, would take time and human errors 

could be introduced to the description during the manual process, which would prolong 

verification time. Therefore, the automated synthesis contributes by itself to the 
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verification speed-up. The assertions, used for verification of the PMU function, have 

taken 20940 characters, representing more space for possible human-error introduction if 

described manually. 

6.   Conclusions 

This paper is dedicated to the verification approach that forms an integral part of the low-

power systems design methodology published in our previous work14–16. The proposed 

design methodology is based on the abstract power-management specification and high-

level synthesis methods that by themselves bring certain verification benefits. The 

abstraction from error-prone low-level details (e.g. power switches, isolation or retention) 

results in a very concise and intuitive specification, avoiding many common power-

management errors. The integrated automated verification means, discussed in this paper, 

serve as a guide for a designer to build a correct and complete abstract specification. The 

verification means take several forms, namely the syntactical checks during the 

compilation, the run-time checks during the system-level simulation, and the proposed 

static analysis during the specification development and power-management synthesis. 

Furthermore, a novel equivalence checking approach has been proposed to verify the 

equivalence between the generated UPF specification and the original abstract power-

management specification after the synthesis process took place. In addition to these 

verification steps, the controlling and coverage assertions are automatically generated 

during the power-management synthesis process, enabling to verify the correct operation 

of the power-management unit as well as to track the verification progress of power 

modes. 

Compared to the available related work, analyzed in Sec. 2, the proposed power-

management verification approach is the most robust. The means for early verification 

drive the designer to develop a complete and consistent system-level power-management 

specification and the continuous verification steps during the design flow ensure the 

power intent preservation throughout the whole design process. Most of the verification 

steps are automated; therefore, the preparation and debugging verification processes are 

significantly shortened. 

A prototype tool has already been developed, implementing the proposed verification 

methods. The tool has been used in the experiments and thus tested the corresponding 

algorithms. These algorithms can be now used in development of standalone verification 

tools usable by designers. The proposed syntax checking and run-time checking is 

supported by any C++ compiler — i.e. they do not require any additional verification 

tool. When the other methods will be implemented as command line tools, these methods 

can be used from any commonly used development environment supporting ESL 

modelling and high-level synthesis, such as Stratus, Catapult, or Synphony C compiler. 

The proposed power-management static analysis as well as the equivalence checking 

could be thus used directly. Although the power-management assertions can be also 

generated by a standalone tool, they would require a designer to insert them into a test-
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bench manually. Therefore, it would be better to integrate the power-management high-

level synthesis and synthesis of the assertions into the existing high-level synthesis tools. 

Further work in this research area can be oriented towards automated creation of 

directed power-mode switching in the synthesized test-benches. This could help to 

increase the coverage during the functional verification of the synthesized power 

management at the RTL. A possible next challenge is to deal with asynchronous systems. 

The power management already uses some asynchronous behavior (e.g. acknowledgment 

of the power domain powering up). The method of Ref. 26 could help the power 

management to be more adaptive to the environment, specifically to determine when the 

power mode can be switched. The problem is that the synthesized assertions are strongly 

clock-based; therefore, the functional verification of such a power management would be 

difficult. 
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