
Power-Efficient Power-Management Logic

Dominik Macko, Katarína Jelemenská, Pavel �i�ák

Faculty of Informatics and Information Technologies

Slovak University of Technology

Bratislava, Slovakia

dominik.macko@stuba.sk, katarina.jelemenska@stuba.sk, pavel.cicak@stuba.sk

Abstract—Since the power consumption has become the key

aspect in almost every digital-system design, many advanced

power-reduction techniques have been developed to minimize

power. The most popular strategy to apply these techniques is

adoption of so-called power management. The control signals for

the power-management elements are generated by power-

management logic. When centralized in one system block, it is

referred to as power-management unit (PMU). PMU should also

be targeted by power-efficient design techniques. This paper

shows the value of power-management inside the PMU, reducing

the overall system power consumption. We show that the power-

state machines in the PMU can be designed in such a way that

only necessary components stay active in the sleep mode.

Experimental results illustrate that approximately 30% of

power-state machines power can be saved.

Keywords—low power; power control; power management;

power reduction; power-state machine

I. INTRODUCTION

Generally, the power in CMOS (Complementary Metal-
Oxide Semiconductor) technology consists of two components,
a leakage and dynamic power. The first one depends on the
supply voltage, the switching threshold voltage, and the
transistor size. The dynamic power depends on the switching
activity, clock frequency, capacitance, supply voltage, and
short-circuit current [1].

The power consumption is one of the key concerns in
modern digital system designs. Whether the hardware
designers want to maximize the battery life of the mobile
devices or to minimize the system operating cost, they need to
make power-efficient products. Therefore, the use of power
management in modern hardware designs is a common
practice.

With emerging market of so-called Internet of Things (IoT)
[2], battery-operated ultra-low-power electronic devices
surround our everyday life. IoT connects devices in our
intelligent households (e.g. security wireless sensors), our
wearable electronics (e.g. smartwatches or smartglasses), or
even human-body-implanted healthcare devices. It is not rare
in such devices that they spend most of their lifetime in a sleep
mode, just waiting for some event to occur. Thus, the power
consumption is converging towards the sleep-mode power.
Important aspect concerning the power-management unit
(PMU) is that it stays active even in the sleep mode, thus
consuming significant power.

This paper is focused towards the evaluation of novel
power-management design strategy, proposed in [3]. The paper
is organized as follows. In Section II, the background
information regarding the power management is given.
Section III describes the related work done in this area. Next
section introduces novel power-management logic architecture.
And before conclusion, the experimental results are shown.

II. POWER MANAGEMENT

Power consumption has been an issue in hardware design
for a long time. Therefore, many power-management
techniques have already been developed, such as clock-gating
for a dynamic power reduction, or power-gating for a leakage
power reduction (see Table I).

TABLE I. POWER-MANAGEMENT TECHNIQUES

Technique Description

Clock gating
Disables clock tree part not in use. Synchronous block

stops its operation.

Operand isolation Prevents switching of inactive datapath element.

Substrate biasing

Dynamically bias the substrate or the appropriate well in

order to raise transistor voltage threshold in inactive

mode, thereby reduce leakage.

Dynamic voltage

scaling

Different blocks are operated at variable supply voltages.
Uses look-up tables to adjust voltage on-the-fly to satisfy

varying performance requirements.

Adaptive voltage

scaling

Different blocks are operated at variable supply voltages.
The block voltage is automatically adjusted on-the-fly

based on performance requirements.

Frequency scaling
Frequency of the block is dynamically adjusted. Works
alongside with voltage scaling.

Power gating

Turns off supply voltage to blocks not in use.

Significantly reduces the leakage. Block outputs float

and need to be isolated when connected to active block.

State retention
power gating

Stores the system state prior to power-down. Avoids

complete reset at power-up, which reduces delay and

power consumption.

Some of these techniques are straightforward (e.g. clock
gating or operand isolation), others are difficult to adopt. To
alleviate this difficulty, the standard for design and verification
of low-power integrated circuits was developed (commonly
known as UPF – Unified Power Format) [4]. This standard
simplifies the adoption of power-management strategy in the
design process. It contains the constructs to specify power-
management elements (e.g. power switches, isolation cells,
level shifters) at the early stage of the design process, when
mostly the HDL (Hardware Description Language) modeling is

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:

D. Macko, K. Jelemenská and P. Cicák, "Power-efficient power-management logic," 2014 24th International Workshop on Power

and Timing Modeling, Optimization and Simulation (PATMOS), Palma de Mallorca, 2014, pp. 105-111.

doi: 10.1109/PATMOS.2014.6951881

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6951881&isnumber=6951857

used. In such way, the functional HDL model along with the
UPF power management can be verified.

Fig. 1 shows a typical flow of the low-power design when
using UPF. In the figure, the HDL (RTL) item represents a
HDL functional model at the register-transfer level. Verilog
(netlist) represents a model after synthesis and after place-and-
route process. As the figure shows, power-management in UPF
is separated from the main functional model. UPF is preserved
throughout the whole design flow and is participating in the
verification process (simulation or equivalence checking) –
EDA (Electronic Design Automation) tools load HDL files
along with UPF files and verify them together.

The key UPF concept is to provide the means for dividing
the system into so-called power domains. Power domain is a
collection of blocks that always operate at the same supply
voltage level. UPF allows the designer to specify which blocks
are grouped into power domain, what voltage levels the power
domain can operate at, what the power-down condition for
each power domain is, where the isolation cells and level
shifters should be used, and so on.

A. Power-management unit

UPF assumes the control signals for the power-
management elements to be generated by the functional model.
Usually, this power-management logic is grouped into
separated system block, called power-management unit (PMU).
It is responsible for determination of the suitable system power
mode (combination of power states of the power domains) and
handles the transition to that power mode.

In Fig. 2, a typical architecture with PMU is shown. PMU
contains several modules, such as power-mode determination
(PMD) and power-state machines (PSMs). Based on the power
mode determined by PMD, the PSMs process the transition to
the new power states for individual power domains (PDs). We
may notice that the block 3 and block 4 are grouped together
into the power domain PD3. Thus, there is the redundant PSM
omitted.

Fig. 3 shows how the system power mode is determined.
The power-management-strategy algorithm takes available
information into account and determines the suitable power
mode. This power mode represents the combination of the
power states for individual power domains. Thus the new
power states are passed to the PSMs that handle the transitions.
Based on the current state of PSM, the control signal values for
power-management elements are generated.

III. RELATED WORK

In [5], a method for power management inside a SoC to
satisfy the corresponding application with low power
consumption is described. The software algorithm determines
the system operating mode needed for a given application. The
switch of this mode is controlled by the operating mode switch
finite state machine. The method uses the dynamic voltage and
frequency scaling technique, thus each operating mode
corresponds to a set of frequency and voltage values. The
experimental results showed a significant reduction of power
consumption. This approach does not use the power domain
concept, as offered by UPF. Thus, even the system blocks that
are always in the same power state have the dedicated power
management elements and control signals. These are driven by
additional control elements of the PMU, introducing
unnecessary overhead.

When the power domains are used (as suggested by UPF
standard), the PSMs are generated not for the system blocks,
but for the power domains. It eliminates the unnecessary
duplicates of the same state machine and sometimes reduces
even the complexity of power-management elements. Such an
approach is commonly used today, and we can find it for
example in [6, 7]. Although the number of state machines is
reduced, the unnecessary power dissipation inside the PMU
still occurs.

Another approach reducing the PMU power dissipation is
described in [8]. It is focused on increasing the power-
efficiency of the active-inactive state transitions.

In [9], the clock-gating technique was introduced into
finite-state machine design. The method uses self loop in
Moore state machine to disable the clock signal, saving the
dynamic power.

The method described in [10] combines the previous
approach with the finite-state machine decomposition. Based
on the state-transition graph, the method divides the machine
into two parts. The clock-gating technique is then used to stop
the clock in the currently-unused part of the machine.

Fig. 3. System power mode determination.

Fig. 2. Power management unit controlling the power domains.

Fig. 1. UPF-based low-power design flow.

These approaches were further extended by implementation
of power-gating technique in [11, 12]. These extensions use
locally-extracted clock-enable signals and use them as sleep
signals for the power gating.

The method combining the machine decomposition and
state-encoding alteration with power gating was reported in
[13]. This method uses genetic algorithm for the state-transition
graph decomposition into two parts. Similarly to [10], when
one part of the transition logic is not needed, it is powered-
down. Sometimes both parts have to be active for the next-state
transition, thus the power is excessively consumed. Therefore,
this method is suitable when the probability of the machine
boundary states is low (boundary state in the state-transition
graph point of view).

As stated in Section I, many IoT (Internet of Things)
devices spend most of the operation time in the sleep mode.
Thus, the power mode transition is very rare in general, and
therefore the leakage power inside the PMU is dominant. To
reduce power dissipation, we target the PSM design.

IV. POWER-STATE MACHINE DESIGN

The power-state machine (PSM) is an application-specific
kind of finite-state machine (FSM). In PSM, the inputs are the
subset of the outputs. It means that the change of the inputs
values triggers transitions through several states, each
producing different outputs values.

A finite-state machine usually consists of the transition
logic (combinational circuit), the state logic (sequential circuit),
and the output logic (combinational circuit). In general, there
are two types of FSM, the Moore and the Mealy type. Mealy-
machine output values depend on the current state of the
machine and on the input values (Fig. 4a). Since, the PSM
needs to generate a synchronous sequence of state transitions
(along with output values changes) based on one input change,
the Mealy type FSM is not usable for PSM design. The output
values of the Moore machine depend on the current state only.
This type of FSM is shown in Fig. 4b. Regarding the PSM, the
states of FSM should directly correspond to the control signals
for the power management elements, i.e. the output logic is not
present (Fig. 4c). Such a special kind of Moore FSM is called
Medvedev machine [14]. It is beneficial to have no delays
among the power-management control signals, because it
prevents the hazards. Also considering the design for
testability, direct observability and controllability of outputs
via scan-chains is welcome for PSM design.

The realization of PSM as a Medvedev machine has more
power-saving benefits. In such a manner, the flip-flops saving
the machine state can be continuously powered and thus be
able to retain the control signals. The transition logic can be
powered-down when the power state does not need to be
changed (idle time – from PSM point of view, not the system
as such). Although the transition logic is powered-down, the
isolation between transition logic and state logic is not needed
because of the integrated controlling mechanism of the flip-
flops. This mechanism states that the data input has to be active
only at the active clock edge. Moreover, the clock is stopped
during the idle time using clock-gating technique.

Even though the number of flip-flops representing the state
is sometimes not optimal using Medvedev machine, this PSM
design strategy showed itself beneficial regarding the power
consumption.

A. Idle-time determination control logic

There are several options to power some circuit part down.
When we do not want the transition logic power-up/down cycle
to be controlled by yet another state machine, we can locally
generate the control signals. The power switch sleep signal is
generated by comparing the current power state at the PSM
outputs with the target power state at the PSM inputs. When
the power states are the same, the sleep signal is activated,
powering the transition logic down. When the power state
needs to be changed (i.e. the target power state differs from the
current power state), the sleep signal is deactivated, the
transition logic powers-up and the sequence of power-state
transitions is handled in order to achieve the target state. The
comparison logic simultaneously generates the clock-gating
enable signal for the state logic – it guarantees that the state is
not changing when the transition logic is powered-down.

The proposed PSM modified architecture is shown in
Fig. 5. The power-management elements of transition logic
consist of the power switches. They allow the logic gates to be
powered-down. The power-management elements of the state
logic contain only the clock-gating logic. It allows the clock
signal to be stopped and thus the state value is not updated
during the idle time.

Depending on the realization there can be an overhead of a
few clock cycles to wake up the transition logic. It means that
the control signals for the power-management elements are
latish. When considering the long period of time between
power state changes, such an overhead is negligible.

Fig. 4. FSM components – a) Mealy machine; b) traditional Moore machine;

c) Medvedev-type Moore machine.

Fig. 5. The proposed PSM architecture.

V. EXPERIMENTAL RESULTS

The primary goal of the experiments was to estimate the
power-efficiency of the proposed self-management inside the
power-state machines.

A. Experimental design

We have processed the experiments on the single PSM
design controlling one power domain. We assume the power
domain needs to be managed for changing between the four
power states (i.e. off, low-voltage, normal, and high-voltage).
From each power state it is possible to transit to any of the
other states. In order to prevent floating signal values, the
inputs and outputs of this power domain have to be isolated
before switching-off the power. Therefore, a new state
controlling the isolation is added. However, this power state is
transparent to the power-mode determination module – i.e. it
cannot be determined as a target power state. It is just an
intermediate state in order to correctly reach some other state.
These five power states are represented by three control signals
– two for controlling the power switch (switching four supply-
voltage levels) and one for controlling the isolation.

B. Experimental setting

Since the power has also the dynamic contributing element,
the experiments consist of six test-cases for simulation, each
with different set of parameters. These parameters are the clock
frequency and the toggle-rate of the target state (PSM input).
The simulation test-cases are summarized in the Table II. The
first column refers to the test-case number. f(CLK) stands for
the frequency of clock signal. Simulation time reports the
actual runtime of the simulation test-case. TRTS represents the
toggle-rate of the target state signal and is expressed by the
number of target-state changes (toggles) per clock period
(clock cycle). Pseudorandom constraint reflects the intended
value set in the test-bench. The column Generated represents
the average toggle-rate of the target state for particular test-case
as was randomly generated. Since the generator has randomly
selected the target state from the set of four, there was one
quarter chance to select the current power state. Therefore
actual target-state changes are slightly different, shown in the
last column.

TABLE II. SIMULATION TEST-CASES DESCRIPTION

Test-

case #

f(CLK)

[MHz]

Simulation

time

TRTS [toggles/TCLK]

Pseudorandom

constraint
Generated Actual

1 50 5 µs 0.4 0.408 0.288

2 50 5 µs 0.133 0.148 0.116

3 50 5 µs 0.04 0.048 0.04

4 0.05 10 s 0.000004 0.000012 0.00001

5 500 5 µs 0.04 0.0408 0.0296

6 5 5 µs 4 4.08 3.2

The first three test-cases have the same clock frequency,
but the toggle rate is decreasing respectively. These test-cases
are used for illustration of the dependency of PSM power
consumption on the number of power-state changes. The fourth
test-case reflect the situation, when the toggle-rate per clock-
period is very low – there were 5 actual toggles of the target

state input during 10 seconds simulation runtime. Moreover,
the clock frequency was lowered to 50 kHz in order to simulate
more realistic situation (the real PMUs operate commonly at
the real-time clocks – usually 32.768 kHz). This test-case is
used for determination of the self-management impact on the
PSM power consumption in the systems with very rare power-
state changes. The last two test-cases represent the simulations
with the same number of target state changes as the first one,
but with the different clock frequency. These three test-cases
(1, 5, and 6) are used for illustration of the dependency of PSM
power consumption on the PSM clock frequency.

The power-aware simulation along with the estimation of
power consumption was realized in the professional
commercial EDA tools. We have used free-available 45 nm
technology library NangateOpenCellLibrary revision 1.0 [15].

C. Experiment 1: Self-management power impact

This section describes the experimental results for
determination of the impact of modified PSM on the power
consumption. In the experiment, we compare the estimated
power consumption of the original PSM architecture (without
the integrated power management; referred to as basic PSM) to
the modified PSM architecture (with the integrated power
management; referred to as self-managed PSM). The PSM in
this experiment was realized as the Medvedev-type machine.

In Table III, the power estimations for basic and for self-
managed Medvedev-type PSMs are compared. We determine
the benefit of the self-management integration into the PSM by
comparing the leakage, dynamic and total power for individual
test-cases.

TABLE III. SELF-MANAGEMENT POWER-IMPACT OF MEDVEDEV PSM

Test-

case #

Basic PSM Self-managed PSM
Power

saving
Leakage

[nW]

Dynamic

[nW]

Total

[nW]

Leakage

[nW]

Dynamic

[nW]

Total

[nW]

1 792.22 1884.32 2676.54 571.16 2030.11 2601.27 3%

2 789.05 1145.03 1934.09 354.78 1013.16 1367.94 29%

3 778.92 1008.08 1787 282.83 749.28 1032.11 42%

4 798.96 0.73 799.7 222.25 345.75 567.99 29%

5 793.06 8876.35 9669.41 259.88 3688.89 3948.77 59%

6 790.62 779.52 1570.13 1056.84 1664.94 2721.78 -73%

We may notice that the power saving of the modified PSM
scales from 3 to 59 %, and in the sixth test-case the power
consumption was actually significantly increased (by 73%).
This is actually an expected fact, because the sixth test-case
was unrealistic one, when there was 3.2 target state changes per
clock cycle in average (see TRTS in Table II). In this case the
PSM was almost always active, thus it could not benefit from
integrated power-gating to save the leakage power. The power
saving increases with decreasing TRTS parameter and starts to
decrease with very rare target state changes (test-case 4). In the
fourth test-case the added components start to consume
significant portion of power compared to the rest of PSM (even
then there is a power saving of 29 %).

More illustrating comparison is given in Fig. 6. The huge
difference in power consumption between test-case 4 and 5 is
mostly due to the clock frequency. In the fifth test-case there is

10000 times higher frequency then in the fourth, as is shown in
Table II. The relative comparison between basic and self-
managed PSM is given in Fig. 7. The values represent the
power reduction of self-managed PSM compared to the basic
PSM.

The most power reduction was determined for high-
frequency test-cases. The dependency of the PSM power
consumption on the clock frequency is shown in Fig. 8. It is
based on the results obtained for the sixth, first, and fifth test-
cases (the same number of toggles, only the frequency is
scaling). As the figure shows, the PSM power consumption
increases with the increasing clock frequency. The basic PSM
is more dependent on clock-frequency than the self-managed
PSM – the power consumption grows much faster. Therefore,
the use of self-management has more power-saving benefit for
high-frequency PSMs. The main reason is the use of clock-
gating technique that stops the machine to update its state when
it is not necessary (the same next state). The power increase
introduced by the self-management in the sixth test-case
(5 MHz in the figure) was clarified before.

Fig. 9 shows the dependency of the PSM power
consumption on the number of target-state toggles. The first
three test-cases from Table II were used in the figure (the same
clock frequency, the number of toggles decreases). The results
show that with the decreasing number of toggles the power
consumption decreases. Moreover, as the figure shows, the
power consumption of the self-managed PSM is decreasing
faster than the basic PSM power consumption, thus the power-
saving increases.

The power-reduction in the first test-case (3 %) is very low
and for such case it would not be worthy of additional area
requirements. This test-case can be considered boundary case,
for which the modified PSM architecture is beneficial
regarding the power consumption. In Table II, the TRTS for the
first test-case is shown to be 0.288. It means that the target
state changes approximately each third clock cycle. The
transition logic is activated for one or more clock cycles,
depending on the sequence needed to correctly reach the target
state from the current power state. Therefore we may assume,
that in this case the PSM was active (transition logic powered-
up) more than 30 % of the simulation time.

1) Experiment summary and outcomes
The experiment was successful. It has proven the

undeniable benefits of the modified PSM architecture that can
manage its own power consumption. The power consumption
of PSM was reduced for 5 test-cases (32 % power reduction in
average); only the unrealistic test-case showed the power
increase. We showed that for systems with very rare power
state changes (many IoT devices) it can save approximately
30 % of power, and for high-frequency PSM even more.
Therefore, the self-management integration into the PSM
architecture significantly reduces the PSM power consumption.

The results showed that the self-management power-
efficiency grows with decreasing number of target-state
changes and with increasing clock frequency. As the boundary
case for the self-managed PSM to reduce power we have
determined the situation when the power state needs to be
changed 30 % of the time. It means that the PSM has to be at
least 70 % of the time inactive.

D. Experiment 2: Self-managed Moore-type PSM evaluation

This section describes the experimental results for
determination of the power impact of self-management in the
traditional Moore-type PSM. The goal is to show that the self-

Fig. 6. Power consumption of basic and self-managed Medvedev-type PSM.

Fig. 7. Power-reduction of self-managed Medvedev-type PSM.

Fig. 8. PSM power consumption dependency on the clock frequency.

Fig. 9. PSM power consumption dependency on the number of target-state

changes.

management benefits (regarding the power consumption) are
not limited to the Medvedev-type power-state machines. We
also compare these two PSM types to see which one is more
power-efficient for this experimental design (described in
Subsection A).

In Table IV the power estimations for basic and for self-
managed Moore PSMs are compared. The same comparison is
shown as in the previous experiment.

TABLE IV. SELF-MANAGEMENT POWER-IMPACT OF TRADITIONAL

MOORE-TYPE PSM

Test-

case #

Basic PSM Self-managed PSM
Power

saving
Leakage

[nW]

Dynamic

[nW]

Total

[nW]

Leakage

[nW]

Dynamic

[nW]

Total

[nW]

1 1385.84 3448.23 4834.07 721.36 2608.49 3329.85 31%

2 1367.19 1887.56 3254.74 606.16 1575.49 2181.69 33%

3 1372.22 1248.85 2621.07 546.31 964.07 1510.38 42%

4 1287.37 1.03 1288.4 469.9 158.19 628.09 51%

5 1381.02 11148.74 12529.76 536.31 4718.18 5254.49 58%

6 1389.25 1458.71 2847.95 1313.34 1105.25 2418.6 15%

The reported power saving is scaling from 15 to 58 %. The
lowest power saving is in the sixth test-case, when the PSM
machine was almost always active. The transition logic is quite
complex in this design using the Moore FSM type, and
therefore even the short periods of idle time reduce the power
consumption. The highest power saving is shown in the fifth
test-case, with the highest clock frequency.

More illustrating comparison is given in Fig. 10 (absolute
values) and Fig. 11 (relative comparison). This comparison
clearly shows the benefits of using the self-management inside
the designed PSM realized even as the Moore machine.

The results of power-consumption comparison between
Medvedev-type and traditional Moore-type PSM are shown in
Fig. 12. We have compared the basic architectures and the
self-managed PSM architectures. The comparison results show
that Medvedev-type machine is more power-efficient for this
experimental PSM design than the traditional Moore machine
(with the output logic).

The relative power comparison between these two types of
machines is clearly shown in Fig. 13. The figure shows the
power reduction when using Medvedev-type PSM relatively to
the traditional Moore-type PSM. When using Medvedev
machine, the power consumption is reduced in average by
37 % for basic PSM architecture and by 19 % for self-managed
PSM. Only in the sixth test-case for self-managed PSM, the
traditional Moore-type machine is more power-efficient. As
stated before, this is an unrealistic test-case in which the target
state toggles more often than clock signal (see Table II).

In Fig. 14, the power reduction of self-managed Medvedev-
type PSM is compared to the basic traditional Moore-type
PSM. The results can show us the power-reduction benefit of
changing the machine type from traditional Moore to
Medvedev and followed by the integration of self-management.
The results show that the power consumption was reduced by
more than 40 % for all test-cases besides the last one. In the
sixth test-case, the power was reduced only by 4 %. In Fig. 7
we have shown that for this test-case the self-managed
Medvedev-type PSM increases the power consumption. For
this test-case, the most power-efficient architecture is the basic
Medvedev-type PSM, as shown in Fig. 12.

Fig. 10. Power consumption of basic and self-managed Moore-type PSM.

Fig. 11. Power-reduction of self-managed Moore-type PSM.

Fig. 12. Power consumption comparison of Medvedev-type and traditional

Moore-type PSM.

Fig. 13. Total power reduction of Medvedev-type PSM in comparison to

traditional Moore-type PSM.

1) Experiment summary and outcomes
This experiment showed that self-management integration

into the traditional Moore PSM reduces the power consumption
even in the case, when the target state changes 3.2 times per
clock cycle in average. It means that the power-reduction
achieved during the short idle time periods compensates the
additional control circuitry (comparator, clock and power
gating logic) power consumption. The self-management inside
the traditional Moore FSM for this experimental PSM design
saves 38 % of the power in average (including the sixth test-
case). It supports the conclusion from the previous experiment
that the self-management integration into PSM architecture has
a significant positive impact on the power reduction.

The comparison of the results obtained for Medvedev and
traditional Moore PSMs showed that for the selected
experimental PSM design the self-managed Medvedev-type
PSM has the lowest power consumption. The usage of
Medvedev-type PSM instead of Moore-type resulted in
significant power reduction. However, the used PSM switches
between 5 power states, meaning that there have to be at least 3
flip-flops to save the machine state. Therefore, the Moore-type
machine could not benefit from the state-elements reduction.
Thus, for other PSM designs, the Moore-type machine with
simple output logic might be more power-efficient. Therefore,
to obtain more illustrating results comparing these two FSM
types, the more-complex PSM should be designed.

VI. CONCLUSIONS

Power-state machines (PSMs) of the power-management
unit are handling the transitions to determined power states.
These power states represent the values of control signals for
the power-management elements (e.g. isolation cells, retention
cells, or power switches) in the advanced power-reduction
techniques (e.g. power gating or dynamic voltage scaling). We
have proposed and evaluated novel self-managed PSM
architecture allowing the management of its own power
consumption. We have used the Medvedev machine to avoid
timing hazards of the control signals and integrated both the
clock and power gating power-management techniques for the
power reduction. In the experiments we have shown that the
self-management integration into the PSM can reduce up to
58 % of the PSM power consumption. In case the hazards
would not be an issue, we compared this architecture to the
self-managed traditional Moore machine (with the output
logic). The results showed that for the selected PSM design the

Medvedev machine was more power efficient (by 19 % in
average). However, the Moore machine could not benefit from
the state-elements reduction in the selected experimental
design. Therefore, the further work will include the
experiments for more complicated PSM design.

The self-management inside the PSM has undeniable
benefits, but to be worthy the additional area requirements, the
PSM has to be at least 70 % of the time inactive. It means that
the power mode of the device cannot be changed very often.
Moreover, considering the whole system power, the power of
the PSM is negligible. Thus the proposed architecture is
suitable for the systems in which the power consumption is
converging towards the sleep-mode power (many Internet of
Things devices). The experiments showed that for such
systems, the novel PSM architecture can save approximately
30 % of the total power (leakage + dynamic power).

ACKNOWLEDGMENT

This work was partially supported by the Slovak Science
Grant Agency (VEGA 1/1008/12 and VEGA 1/0616/14),
Slovak University of Technology (“ANSNS) and COST Action
IC 1103 MEDIAN.

REFERENCES

[1] Cadence Design Systems, A practical guide to low power design: User
experience with CPF, 2012. http://www.si2.org/?page=1061

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] D. Macko and K. Jelemenská, “Self-Managing Power Management
Unit,” in DDECS, IEEE, 2014, pp. 159-162.

[4] IEEE Standard for Design and Verification of Low Power Integrated
Circuits, IEEE, 2013, (IEEE Std 1801-2013).

[5] D. Sun, S. Xu, W. Sun, S. Lu, and L. Shi, “Low power design for SoC
with power management unit,” in ASICON, IEEE, 2011, pp. 719-722.

[6] T. Coulot, T. Souvignet, S. Trochut et al., “Fully integrated power
management unit (PMU) using NMOS Low Dropout regulators,” in
EUROCON, IEEE, 2013, pp. 1445-1452.

[7] H. Unterassinger, M. Dielacher, M. Flatscher et al., “A power
management unit for ultra-low power wireless sensor networks,” in
AFRICON, IEEE, 2011.

[8] M. Alioto, E. Consoli, and J.M. Rabaey, “’EChO’ Reconfigurable Power
Management Unit for Energy Reduction in Sleep-Active Transitions,”
IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1921-1932,
2013.

[9] L. Benini, P. Siegel, and G. De Micheli, “Automatic Synthesis of Low-
Power Gated-Clock Finite-State Machines,” IEEE Transactions on
Computer-Aided Design, vol. 15, no. 6, 630–643, 1996.

[10] J.C. Monteiro and A.L. Oliveira, “Finite State Machine Decomposition
For Low Power,” in DAC, IEEE, 1998, pp. 758–763.

[11] K. Usami and H. Yoshioka, "A Scheme to Reduce Active Leakage
Power by Detecting State Transitions," in MWSCAS, IEEE, 2004, pp. I-
493-I-496.

[12] K. Usami and N. Ohkubo, “A Design Approach for Fine-grained Run-
Time Power Gating using Locally Extracted Sleep Signals,” in ICCD,
IEEE, 2006, pp. 155-161.

[13] S.N. Pradhan, M.T. Kumar, and S. Chattopadhyay, “Low power finite
state machine synthesis using power-gating,” Integration, the VLSI
Journal, vol. 44, no. 3, pp. 175-184, 2011.

[14] H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures
to CMOS fabrication. Cambridge University Press, 2008.

[15] Nangate, “Open Cell Library,” Online, January 2014.
http://www.nangate.com/?page_id=22

Fig. 14. Total power reduction of self-managed Medvedev-type PSM in

comparison to basic traditional Moore-type PSM.

