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Abstract—Since the power consumption has become the key 

aspect in almost every digital-system design, many advanced 

power-reduction techniques have been developed to minimize 

power. The most popular strategy to apply these techniques is 

adoption of so-called power management. The control signals for 

the power-management elements are generated by power-

management logic. When centralized in one system block, it is 

referred to as power-management unit (PMU). PMU should also 

be targeted by power-efficient design techniques. This paper 

shows the value of power-management inside the PMU, reducing 

the overall system power consumption. We show that the power-

state machines in the PMU can be designed in such a way that 

only necessary components stay active in the sleep mode. 

Experimental results illustrate that approximately 30% of 

power-state machines power can be saved. 

Keywords—low power; power control; power management; 

power reduction; power-state machine 

I. INTRODUCTION

Generally, the power in CMOS (Complementary Metal-
Oxide Semiconductor) technology consists of two components, 
a leakage and dynamic power. The first one depends on the 
supply voltage, the switching threshold voltage, and the 
transistor size. The dynamic power depends on the switching 
activity, clock frequency, capacitance, supply voltage, and 
short-circuit current [1]. 

The power consumption is one of the key concerns in 
modern digital system designs. Whether the hardware 
designers want to maximize the battery life of the mobile 
devices or to minimize the system operating cost, they need to 
make power-efficient products. Therefore, the use of power 
management in modern hardware designs is a common 
practice. 

With emerging market of so-called Internet of Things (IoT) 
[2], battery-operated ultra-low-power electronic devices 
surround our everyday life. IoT connects devices in our 
intelligent households (e.g. security wireless sensors), our 
wearable electronics (e.g. smartwatches or smartglasses), or 
even human-body-implanted healthcare devices. It is not rare 
in such devices that they spend most of their lifetime in a sleep 
mode, just waiting for some event to occur. Thus, the power 
consumption is converging towards the sleep-mode power. 
Important aspect concerning the power-management unit 
(PMU) is that it stays active even in the sleep mode, thus 
consuming significant power. 

This paper is focused towards the evaluation of novel 
power-management design strategy, proposed in [3]. The paper 
is organized as follows. In Section II, the background 
information regarding the power management is given. 
Section III describes the related work done in this area. Next 
section introduces novel power-management logic architecture. 
And before conclusion, the experimental results are shown. 

II. POWER MANAGEMENT

Power consumption has been an issue in hardware design 
for a long time. Therefore, many power-management 
techniques have already been developed, such as clock-gating 
for a dynamic power reduction, or power-gating for a leakage 
power reduction (see Table I). 

TABLE I. POWER-MANAGEMENT TECHNIQUES

Technique Description 

Clock gating 
Disables clock tree part not in use. Synchronous block 

stops its operation. 

Operand isolation Prevents switching of inactive datapath element. 

Substrate biasing 

Dynamically bias the substrate or the appropriate well in 

order to raise transistor voltage threshold in inactive 

mode, thereby reduce leakage. 

Dynamic voltage 

scaling 

Different blocks are operated at variable supply voltages. 
Uses look-up tables to adjust voltage on-the-fly to satisfy 

varying performance requirements. 

Adaptive voltage 

scaling 

Different blocks are operated at variable supply voltages. 
The block voltage is automatically adjusted on-the-fly 

based on performance requirements. 

Frequency scaling 
Frequency of the block is dynamically adjusted. Works 
alongside with voltage scaling. 

Power gating 

Turns off supply voltage to blocks not in use. 

Significantly reduces the leakage. Block outputs float 

and need to be isolated when connected to active block. 

State retention 
power gating 

Stores the system state prior to power-down. Avoids 

complete reset at power-up, which reduces delay and 

power consumption. 

Some of these techniques are straightforward (e.g. clock 
gating or operand isolation), others are difficult to adopt. To 
alleviate this difficulty, the standard for design and verification 
of low-power integrated circuits was developed (commonly 
known as UPF – Unified Power Format) [4]. This standard 
simplifies the adoption of power-management strategy in the 
design process. It contains the constructs to specify power-
management elements (e.g. power switches, isolation cells, 
level shifters) at the early stage of the design process, when 
mostly the HDL (Hardware Description Language) modeling is 
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used. In such way, the functional HDL model along with the 
UPF power management can be verified. 

Fig. 1 shows a typical flow of the low-power design when 
using UPF. In the figure, the HDL (RTL) item represents a 
HDL functional model at the register-transfer level. Verilog 
(netlist) represents a model after synthesis and after place-and-
route process. As the figure shows, power-management in UPF 
is separated from the main functional model. UPF is preserved 
throughout the whole design flow and is participating in the 
verification process (simulation or equivalence checking) – 
EDA (Electronic Design Automation) tools load HDL files 
along with UPF files and verify them together. 

The key UPF concept is to provide the means for dividing 
the system into so-called power domains. Power domain is a 
collection of blocks that always operate at the same supply 
voltage level. UPF allows the designer to specify which blocks 
are grouped into power domain, what voltage levels the power 
domain can operate at, what the power-down condition for 
each power domain is, where the isolation cells and level 
shifters should be used, and so on. 

A. Power-management unit 

UPF assumes the control signals for the power-
management elements to be generated by the functional model. 
Usually, this power-management logic is grouped into 
separated system block, called power-management unit (PMU). 
It is responsible for determination of the suitable system power 
mode (combination of power states of the power domains) and 
handles the transition to that power mode. 

In Fig. 2, a typical architecture with PMU is shown. PMU 
contains several modules, such as power-mode determination 
(PMD) and power-state machines (PSMs). Based on the power 
mode determined by PMD, the PSMs process the transition to 
the new power states for individual power domains (PDs). We 
may notice that the block 3 and block 4 are grouped together 
into the power domain PD3. Thus, there is the redundant PSM 
omitted. 

Fig. 3 shows how the system power mode is determined. 
The power-management-strategy algorithm takes available 
information into account and determines the suitable power 
mode. This power mode represents the combination of the 
power states for individual power domains. Thus the new 
power states are passed to the PSMs that handle the transitions. 
Based on the current state of PSM, the control signal values for 
power-management elements are generated. 

III. RELATED WORK

In [5], a method for power management inside a SoC to 
satisfy the corresponding application with low power 
consumption is described. The software algorithm determines 
the system operating mode needed for a given application. The 
switch of this mode is controlled by the operating mode switch 
finite state machine. The method uses the dynamic voltage and 
frequency scaling technique, thus each operating mode 
corresponds to a set of frequency and voltage values. The 
experimental results showed a significant reduction of power 
consumption. This approach does not use the power domain 
concept, as offered by UPF. Thus, even the system blocks that 
are always in the same power state have the dedicated power 
management elements and control signals. These are driven by 
additional control elements of the PMU, introducing 
unnecessary overhead. 

When the power domains are used (as suggested by UPF 
standard), the PSMs are generated not for the system blocks, 
but for the power domains. It eliminates the unnecessary 
duplicates of the same state machine and sometimes reduces 
even the complexity of power-management elements. Such an 
approach is commonly used today, and we can find it for 
example in [6, 7]. Although the number of state machines is 
reduced, the unnecessary power dissipation inside the PMU 
still occurs. 

Another approach reducing the PMU power dissipation is 
described in [8]. It is focused on increasing the power-
efficiency of the active-inactive state transitions. 

In [9], the clock-gating technique was introduced into 
finite-state machine design. The method uses self loop in 
Moore state machine to disable the clock signal, saving the 
dynamic power. 

The method described in [10] combines the previous 
approach with the finite-state machine decomposition. Based 
on the state-transition graph, the method divides the machine 
into two parts. The clock-gating technique is then used to stop 
the clock in the currently-unused part of the machine. 

Fig. 3. System power mode determination. 

Fig. 2. Power management unit controlling the power domains. 

Fig. 1. UPF-based low-power design flow. 



These approaches were further extended by implementation 
of power-gating technique in [11, 12]. These extensions use 
locally-extracted clock-enable signals and use them as sleep 
signals for the power gating. 

The method combining the machine decomposition and 
state-encoding alteration with power gating was reported in 
[13]. This method uses genetic algorithm for the state-transition 
graph decomposition into two parts. Similarly to [10], when 
one part of the transition logic is not needed, it is powered-
down. Sometimes both parts have to be active for the next-state 
transition, thus the power is excessively consumed. Therefore, 
this method is suitable when the probability of the machine 
boundary states is low (boundary state in the state-transition 
graph point of view). 

As stated in Section I, many IoT (Internet of Things) 
devices spend most of the operation time in the sleep mode. 
Thus, the power mode transition is very rare in general, and 
therefore the leakage power inside the PMU is dominant. To 
reduce power dissipation, we target the PSM design.  

IV. POWER-STATE MACHINE DESIGN

The power-state machine (PSM) is an application-specific 
kind of finite-state machine (FSM). In PSM, the inputs are the 
subset of the outputs. It means that the change of the inputs 
values triggers transitions through several states, each 
producing different outputs values. 

A finite-state machine usually consists of the transition 
logic (combinational circuit), the state logic (sequential circuit), 
and the output logic (combinational circuit). In general, there 
are two types of FSM, the Moore and the Mealy type. Mealy-
machine output values depend on the current state of the 
machine and on the input values (Fig. 4a). Since, the PSM 
needs to generate a synchronous sequence of state transitions 
(along with output values changes) based on one input change, 
the Mealy type FSM is not usable for PSM design. The output 
values of the Moore machine depend on the current state only. 
This type of FSM is shown in Fig. 4b. Regarding the PSM, the 
states of FSM should directly correspond to the control signals 
for the power management elements, i.e. the output logic is not 
present (Fig. 4c). Such a special kind of Moore FSM is called 
Medvedev machine [14]. It is beneficial to have no delays 
among the power-management control signals, because it 
prevents the hazards. Also considering the design for 
testability, direct observability and controllability of outputs 
via scan-chains is welcome for PSM design. 

The realization of PSM as a Medvedev machine has more 
power-saving benefits. In such a manner, the flip-flops saving 
the machine state can be continuously powered and thus be 
able to retain the control signals. The transition logic can be 
powered-down when the power state does not need to be 
changed (idle time – from PSM point of view, not the system 
as such). Although the transition logic is powered-down, the 
isolation between transition logic and state logic is not needed 
because of the integrated controlling mechanism of the flip-
flops. This mechanism states that the data input has to be active 
only at the active clock edge. Moreover, the clock is stopped 
during the idle time using clock-gating technique. 

Even though the number of flip-flops representing the state 
is sometimes not optimal using Medvedev machine, this PSM 
design strategy showed itself beneficial regarding the power 
consumption. 

A. Idle-time determination control logic 

There are several options to power some circuit part down. 
When we do not want the transition logic power-up/down cycle 
to be controlled by yet another state machine, we can locally 
generate the control signals. The power switch sleep signal is 
generated by comparing the current power state at the PSM 
outputs with the target power state at the PSM inputs. When 
the power states are the same, the sleep signal is activated, 
powering the transition logic down. When the power state 
needs to be changed (i.e. the target power state differs from the 
current power state), the sleep signal is deactivated, the 
transition logic powers-up and the sequence of power-state 
transitions is handled in order to achieve the target state. The 
comparison logic simultaneously generates the clock-gating 
enable signal for the state logic – it guarantees that the state is 
not changing when the transition logic is powered-down. 

The proposed PSM modified architecture is shown in 
Fig. 5. The power-management elements of transition logic 
consist of the power switches. They allow the logic gates to be 
powered-down. The power-management elements of the state 
logic contain only the clock-gating logic. It allows the clock 
signal to be stopped and thus the state value is not updated 
during the idle time. 

Depending on the realization there can be an overhead of a 
few clock cycles to wake up the transition logic. It means that 
the control signals for the power-management elements are 
latish. When considering the long period of time between 
power state changes, such an overhead is negligible. 

Fig. 4. FSM components – a) Mealy machine; b) traditional Moore machine; 

c) Medvedev-type Moore machine.

Fig. 5. The proposed PSM architecture. 



V. EXPERIMENTAL RESULTS

The primary goal of the experiments was to estimate the 
power-efficiency of the proposed self-management inside the 
power-state machines. 

A. Experimental design 

We have processed the experiments on the single PSM 
design controlling one power domain. We assume the power 
domain needs to be managed for changing between the four 
power states (i.e. off, low-voltage, normal, and high-voltage). 
From each power state it is possible to transit to any of the 
other states. In order to prevent floating signal values, the 
inputs and outputs of this power domain have to be isolated 
before switching-off the power. Therefore, a new state 
controlling the isolation is added. However, this power state is 
transparent to the power-mode determination module – i.e. it 
cannot be determined as a target power state. It is just an 
intermediate state in order to correctly reach some other state. 
These five power states are represented by three control signals 
– two for controlling the power switch (switching four supply-
voltage levels) and one for controlling the isolation. 

B. Experimental setting 

Since the power has also the dynamic contributing element, 
the experiments consist of six test-cases for simulation, each 
with different set of parameters. These parameters are the clock 
frequency and the toggle-rate of the target state (PSM input). 
The simulation test-cases are summarized in the Table II. The 
first column refers to the test-case number. f(CLK) stands for 
the frequency of clock signal. Simulation time reports the 
actual runtime of the simulation test-case. TRTS represents the 
toggle-rate of the target state signal and is expressed by the 
number of target-state changes (toggles) per clock period 
(clock cycle). Pseudorandom constraint reflects the intended 
value set in the test-bench. The column Generated represents 
the average toggle-rate of the target state for particular test-case 
as was randomly generated. Since the generator has randomly 
selected the target state from the set of four, there was one 
quarter chance to select the current power state. Therefore 
actual target-state changes are slightly different, shown in the 
last column. 

TABLE II. SIMULATION TEST-CASES DESCRIPTION

Test-

case #

f(CLK) 

[MHz] 

Simulation 

time 

TRTS [toggles/TCLK] 

Pseudorandom 

constraint 
Generated Actual 

1 50 5 µs 0.4 0.408 0.288 

2 50 5 µs 0.133 0.148 0.116 

3 50 5 µs 0.04 0.048 0.04 

4 0.05 10 s 0.000004 0.000012 0.00001 

5 500 5 µs 0.04 0.0408 0.0296 

6 5 5 µs 4 4.08 3.2 

The first three test-cases have the same clock frequency, 
but the toggle rate is decreasing respectively. These test-cases 
are used for illustration of the dependency of PSM power 
consumption on the number of power-state changes. The fourth 
test-case reflect the situation, when the toggle-rate per clock-
period is very low – there were 5 actual toggles of the target 

state input during 10 seconds simulation runtime. Moreover, 
the clock frequency was lowered to 50 kHz in order to simulate 
more realistic situation (the real PMUs operate commonly at 
the real-time clocks – usually 32.768 kHz). This test-case is 
used for determination of the self-management impact on the 
PSM power consumption in the systems with very rare power-
state changes. The last two test-cases represent the simulations 
with the same number of target state changes as the first one, 
but with the different clock frequency. These three test-cases 
(1, 5, and 6) are used for illustration of the dependency of PSM 
power consumption on the PSM clock frequency. 

The power-aware simulation along with the estimation of 
power consumption was realized in the professional 
commercial EDA tools. We have used free-available 45 nm 
technology library NangateOpenCellLibrary revision 1.0 [15]. 

C. Experiment 1: Self-management power impact 

This section describes the experimental results for 
determination of the impact of modified PSM on the power 
consumption. In the experiment, we compare the estimated 
power consumption of the original PSM architecture (without 
the integrated power management; referred to as basic PSM) to 
the modified PSM architecture (with the integrated power 
management; referred to as self-managed PSM). The PSM in 
this experiment was realized as the Medvedev-type machine. 

In Table III, the power estimations for basic and for self-
managed Medvedev-type PSMs are compared. We determine 
the benefit of the self-management integration into the PSM by 
comparing the leakage, dynamic and total power for individual 
test-cases. 

TABLE III. SELF-MANAGEMENT POWER-IMPACT OF MEDVEDEV PSM 

Test-

case #

Basic PSM Self-managed PSM 
Power 

saving 
Leakage

[nW] 

Dynamic

[nW] 

Total 

[nW] 

Leakage

[nW] 

Dynamic

[nW] 

Total 

[nW] 

1 792.22 1884.32 2676.54 571.16 2030.11 2601.27 3% 

2 789.05 1145.03 1934.09 354.78 1013.16 1367.94 29% 

3 778.92 1008.08 1787 282.83 749.28 1032.11 42% 

4 798.96 0.73 799.7 222.25 345.75 567.99 29% 

5 793.06 8876.35 9669.41 259.88 3688.89 3948.77 59% 

6 790.62 779.52 1570.13 1056.84 1664.94 2721.78 -73% 

We may notice that the power saving of the modified PSM 
scales from 3 to 59 %, and in the sixth test-case the power 
consumption was actually significantly increased (by 73%). 
This is actually an expected fact, because the sixth test-case 
was unrealistic one, when there was 3.2 target state changes per 
clock cycle in average (see TRTS in Table II). In this case the 
PSM was almost always active, thus it could not benefit from 
integrated power-gating to save the leakage power. The power 
saving increases with decreasing TRTS parameter and starts to 
decrease with very rare target state changes (test-case 4). In the 
fourth test-case the added components start to consume 
significant portion of power compared to the rest of PSM (even 
then there is a power saving of 29 %). 

More illustrating comparison is given in Fig. 6. The huge 
difference in power consumption between test-case 4 and 5 is 
mostly due to the clock frequency. In the fifth test-case there is 



10000 times higher frequency then in the fourth, as is shown in 
Table II. The relative comparison between basic and self-
managed PSM is given in Fig. 7. The values represent the 
power reduction of self-managed PSM compared to the basic 
PSM. 

The most power reduction was determined for high-
frequency test-cases. The dependency of the PSM power 
consumption on the clock frequency is shown in Fig. 8. It is 
based on the results obtained for the sixth, first, and fifth test-
cases (the same number of toggles, only the frequency is 
scaling). As the figure shows, the PSM power consumption 
increases with the increasing clock frequency. The basic PSM 
is more dependent on clock-frequency than the self-managed 
PSM – the power consumption grows much faster. Therefore, 
the use of self-management has more power-saving benefit for 
high-frequency PSMs. The main reason is the use of clock-
gating technique that stops the machine to update its state when 
it is not necessary (the same next state). The power increase 
introduced by the self-management in the sixth test-case 
(5 MHz in the figure) was clarified before. 

Fig. 9 shows the dependency of the PSM power 
consumption on the number of target-state toggles. The first 
three test-cases from Table II were used in the figure (the same 
clock frequency, the number of toggles decreases). The results 
show that with the decreasing number of toggles the power 
consumption decreases. Moreover, as the figure shows, the 
power consumption of the self-managed PSM is decreasing 
faster than the basic PSM power consumption, thus the power-
saving increases. 

The power-reduction in the first test-case (3 %) is very low 
and for such case it would not be worthy of additional area 
requirements. This test-case can be considered boundary case, 
for which the modified PSM architecture is beneficial 
regarding the power consumption. In Table II, the TRTS for the 
first test-case is shown to be 0.288. It means that the target 
state changes approximately each third clock cycle. The 
transition logic is activated for one or more clock cycles, 
depending on the sequence needed to correctly reach the target 
state from the current power state. Therefore we may assume, 
that in this case the PSM was active (transition logic powered-
up) more than 30 % of the simulation time. 

1) Experiment summary and outcomes 
The experiment was successful. It has proven the 

undeniable benefits of the modified PSM architecture that can 
manage its own power consumption. The power consumption 
of PSM was reduced for 5 test-cases (32 % power reduction in 
average); only the unrealistic test-case showed the power 
increase. We showed that for systems with very rare power 
state changes (many IoT devices) it can save approximately 
30 % of power, and for high-frequency PSM even more. 
Therefore, the self-management integration into the PSM 
architecture significantly reduces the PSM power consumption. 

The results showed that the self-management power-
efficiency grows with decreasing number of target-state 
changes and with increasing clock frequency. As the boundary 
case for the self-managed PSM to reduce power we have 
determined the situation when the power state needs to be 
changed 30 % of the time. It means that the PSM has to be at 
least 70 % of the time inactive. 

D. Experiment 2: Self-managed Moore-type PSM evaluation 

This section describes the experimental results for 
determination of the power impact of self-management in the 
traditional Moore-type PSM. The goal is to show that the self-

Fig. 6. Power consumption of basic and self-managed Medvedev-type PSM. 

Fig. 7. Power-reduction of self-managed Medvedev-type PSM. 

Fig. 8. PSM power consumption dependency on the clock frequency. 

Fig. 9. PSM power consumption dependency on the number of target-state 

changes. 



management benefits (regarding the power consumption) are 
not limited to the Medvedev-type power-state machines. We 
also compare these two PSM types to see which one is more 
power-efficient for this experimental design (described in 
Subsection A). 

In Table IV the power estimations for basic and for self-
managed Moore PSMs are compared. The same comparison is 
shown as in the previous experiment. 

TABLE IV. SELF-MANAGEMENT POWER-IMPACT OF TRADITIONAL 

MOORE-TYPE PSM 

Test-

case #

Basic PSM Self-managed PSM 
Power 

saving
Leakage

[nW] 

Dynamic

[nW] 

Total 

[nW] 

Leakage

[nW] 

Dynamic

[nW] 

Total 

[nW] 

1 1385.84 3448.23 4834.07 721.36 2608.49 3329.85 31% 

2 1367.19 1887.56 3254.74 606.16 1575.49 2181.69 33% 

3 1372.22 1248.85 2621.07 546.31 964.07 1510.38 42% 

4 1287.37 1.03 1288.4 469.9 158.19 628.09 51% 

5 1381.02 11148.74 12529.76 536.31 4718.18 5254.49 58% 

6 1389.25 1458.71 2847.95 1313.34 1105.25 2418.6 15% 

The reported power saving is scaling from 15 to 58 %. The 
lowest power saving is in the sixth test-case, when the PSM 
machine was almost always active. The transition logic is quite 
complex in this design using the Moore FSM type, and 
therefore even the short periods of idle time reduce the power 
consumption. The highest power saving is shown in the fifth 
test-case, with the highest clock frequency. 

More illustrating comparison is given in Fig. 10 (absolute 
values) and Fig. 11 (relative comparison). This comparison 
clearly shows the benefits of using the self-management inside 
the designed PSM realized even as the Moore machine.  

The results of power-consumption comparison between 
Medvedev-type and traditional Moore-type PSM are shown in 
Fig. 12.  We have compared the basic architectures and the 
self-managed PSM architectures. The comparison results show 
that Medvedev-type machine is more power-efficient for this 
experimental PSM design than the traditional Moore machine 
(with the output logic). 

The relative power comparison between these two types of 
machines is clearly shown in Fig. 13. The figure shows the 
power reduction when using Medvedev-type PSM relatively to 
the traditional Moore-type PSM. When using Medvedev 
machine, the power consumption is reduced in average by 
37 % for basic PSM architecture and by 19 % for self-managed 
PSM. Only in the sixth test-case for self-managed PSM, the 
traditional Moore-type machine is more power-efficient. As 
stated before, this is an unrealistic test-case in which the target 
state toggles more often than clock signal (see Table II). 

In Fig. 14, the power reduction of self-managed Medvedev-
type PSM is compared to the basic traditional Moore-type 
PSM. The results can show us the power-reduction benefit of 
changing the machine type from traditional Moore to 
Medvedev and followed by the integration of self-management. 
The results show that the power consumption was reduced by 
more than 40 % for all test-cases besides the last one. In the 
sixth test-case, the power was reduced only by 4 %. In Fig. 7 
we have shown that for this test-case the self-managed 
Medvedev-type PSM increases the power consumption. For 
this test-case, the most power-efficient architecture is the basic 
Medvedev-type PSM, as shown in Fig. 12. 

Fig. 10. Power consumption of basic and self-managed Moore-type PSM. 

Fig. 11. Power-reduction of self-managed Moore-type PSM. 

Fig. 12. Power consumption comparison of Medvedev-type and traditional 

Moore-type PSM. 

Fig. 13. Total power reduction of Medvedev-type PSM in comparison to 

traditional Moore-type PSM. 



1) Experiment summary and outcomes 
This experiment showed that self-management integration 

into the traditional Moore PSM reduces the power consumption 
even in the case, when the target state changes 3.2 times per 
clock cycle in average. It means that the power-reduction 
achieved during the short idle time periods compensates the 
additional control circuitry (comparator, clock and power 
gating logic) power consumption. The self-management inside 
the traditional Moore FSM for this experimental PSM design 
saves 38 % of the power in average (including the sixth test-
case). It supports the conclusion from the previous experiment 
that the self-management integration into PSM architecture has 
a significant positive impact on the power reduction. 

The comparison of the results obtained for Medvedev and 
traditional Moore PSMs showed that for the selected 
experimental PSM design the self-managed Medvedev-type 
PSM has the lowest power consumption. The usage of 
Medvedev-type PSM instead of Moore-type resulted in 
significant power reduction. However, the used PSM switches 
between 5 power states, meaning that there have to be at least 3 
flip-flops to save the machine state. Therefore, the Moore-type 
machine could not benefit from the state-elements reduction. 
Thus, for other PSM designs, the Moore-type machine with 
simple output logic might be more power-efficient. Therefore, 
to obtain more illustrating results comparing these two FSM 
types, the more-complex PSM should be designed. 

VI. CONCLUSIONS

Power-state machines (PSMs) of the power-management 
unit are handling the transitions to determined power states. 
These power states represent the values of control signals for 
the power-management elements (e.g. isolation cells, retention 
cells, or power switches) in the advanced power-reduction 
techniques (e.g. power gating or dynamic voltage scaling). We 
have proposed and evaluated novel self-managed PSM 
architecture allowing the management of its own power 
consumption. We have used the Medvedev machine to avoid 
timing hazards of the control signals and integrated both the 
clock and power gating power-management techniques for the 
power reduction. In the experiments we have shown that the 
self-management integration into the PSM can reduce up to 
58 % of the PSM power consumption. In case the hazards 
would not be an issue, we compared this architecture to the 
self-managed traditional Moore machine (with the output 
logic). The results showed that for the selected PSM design the 

Medvedev machine was more power efficient (by 19 % in 
average). However, the Moore machine could not benefit from 
the state-elements reduction in the selected experimental 
design. Therefore, the further work will include the 
experiments for more complicated PSM design. 

The self-management inside the PSM has undeniable 
benefits, but to be worthy the additional area requirements, the 
PSM has to be at least 70 % of the time inactive. It means that 
the power mode of the device cannot be changed very often. 
Moreover, considering the whole system power, the power of 
the PSM is negligible. Thus the proposed architecture is 
suitable for the systems in which the power consumption is 
converging towards the sleep-mode power (many Internet of 
Things devices). The experiments showed that for such 
systems, the novel PSM architecture can save approximately 
30 % of the total power (leakage + dynamic power). 
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