
Rapid Power-Management Exploration Using Post-

Processing of the System-Level Simulation Results

Dominik Macko

Faculty of Informatics and Information Technologies

Slovak University of Technology

Bratislava, Slovakia

dominik.macko@stuba.sk

Abstract—Managing the power in highly-integrated systems

on chips becomes inevitable in modern designs. Complex systems

require complex power management, and it is always difficult to

determine whether the designed power management is the most

efficient. In our previous work, we have proposed a simplified

power-management specification method at the system level of

abstraction. In this paper, we propose a system-level power-

management evaluation approach that enables a designer to

explore various power-management designs in a short time and

select the best. The proposed exploration method is easy-to-use

and can be used to speed-up the low-power systems development.

Keywords—design exploration; hardware design; low power;

power management; specification

I. INTRODUCTION

One of the challenges in electronic-systems design is to
increasingly use the system-level abstraction (ESL – Electronic
System Level) and more automation to improve design
productivity [1]. It is especially important in the design process
of low-power systems, such as Internet of Things (IoT)
devices, which become more and more complex. A dynamic
power management is usually used to apply various power-
reduction techniques, such as voltage and frequency scaling,
power and clock gating, or voltage and clock islands [2]. From
a system point of view, power management enables to switch
among several power modes of the system, according to the
current needs to efficiently perform a task.

There are many works addressing the system power
estimation under a specific power-management scheme at the
ESL, such as [3-13]. However, the used abstraction is either
insufficient, making the ESL specification unnecessarily
complicated. Or the used power-management modelling
approach is not based on the standard concepts (see Section 2)
used at lower abstraction levels, which makes checking of the
equivalence between higher and lower level models difficult
and automated transition between these levels is quite
impossible. Moreover, the existing methods usually rely on
power data based on design reuse, which is not usable for a
top-down design of custom hardware. Strictly power-managed
IoT devices are especially sensitive to overhead of the
introduced power controller (managing power of other
components of the system). This overhead is rarely taken into
account in existing methods, and if it is, its modelling is mostly
manual.

Therefore, there is a need for an approach that simplifies
the ESL specification of power management and quickly
estimates its impact on the system power consumption. This is
what we address in this paper. We propose a new ESL power-
estimation method that takes into account the specified power
management. To increase the estimation accuracy, the method
automatically predicts power overhead of the required power
controller, which is not modelled at the ESL. The method does
not influence simulation performance and, in some cases, it
does not even need re-simulation of the modified model. This,
along with the automation of the method itself, makes the
exploration of various power-management schemes fast.

The rest of the paper is organized as follows. Section II
introduces standard basics of power management and related
works in the area of ESL power-management exploration. The
new method is proposed in Section III, followed by
experimental evaluation in Section IV, and Section V
concludes the paper.

II. BACKGROUND AND RELATED WORK

The standard way to model and verify power management
is to use UPF (Unified Power Format) [9] or CPF (Common
Power Format) [14] specification alongside the traditional
HDL (Hardware Description Language) functional design at
the RTL (Register-Transfer Level) and lower abstraction
levels. UPF enables to capture power intent, specifying power-
supply nets and supply ports, connecting them to power
domains (grouping multiple components for more efficient
power management). These domains can also contain so-called
power-management elements, such as power switches,
isolation and retention logic, or level shifters. Thus, the power
state of a power domain in UPF context is defined as a
combination of control signals activating and deactivating
power-management elements assigned to the power domain. In
more complex systems, these control signals are driven by a
dedicated unit representing power controller (referred to as
PMU – Power Management Unit). A power mode of the
system (set by the PMU) is then a combination of power states
of all power domains (one state per domain).

Modification of power intent in UPF is not an easy task. A
designer must keep the system context in mind and change
precise portions of the specification. For example, in order to
give some component ability to power it down, a designer has
to assign it to a power domain (new or an existing one), modify

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:
D. Macko, "Rapid power-management exploration using post-processing of the system-level simulation results," 2017 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), Thessaloniki, 2017, pp. 108-113.
doi: 10.1109/PATMOS.2017.8106965
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8106965&isnumber=8106944

the primary supply net of the domain (if necessary), add a
power switch to the domain or add an off state to the existing
power switch in the domain, modify the control signals of the
switch (if necessary), set isolation at the domain boundaries,
and so on. Moreover, the PMU design has to be modified to
incorporate the new power state of the power domain. Another
downside of RTL modelling is that clock signals (i.e. operation
frequency of the components) are modelled in HDL. Thus,
some power-reduction techniques are applied using UPF and
some using functional modelling in HDL, what increases the
complexity.

Due to these reasons, RTL modelling is not convenient for
power-management exploration and more abstraction must be
used in the process. We have analyzed several ESL-based
approaches targeting this issue [3-13]. All of the analyzed
methods require too much manual effort for exploration of
various power-management strategies at the system level. To
obtain power data of the components, these methods usually
depends on design-reuse concept, which is not suitable for top-
down design approach addressed in this paper. Moreover, there
exist low-power systems in which the power-management unit
(PMU) represents a significant area/power overhead, because
other components of the system are powered down (many IoT
devices). Therefore, the PMU (i.e. power controller) overhead
must be taken into account when exploring power-management
alternatives. Based on the downsides of the existing methods,
we have formulated requirements for a new power-
management exploration method, which also represent our key
contributions summarized below.

• Easy modification of power-management strategy – by
using a sufficiently abstract power-management
specification method, we have made the modification of
power management clear, simple, and intuitive.

• Minimizing simulation-performance overhead – since
the power-management effect is not modelled at the
system level, ESL simulation performance remains
intact.

• Fast estimation of system energy consumption – due to
using simulation post-processing for power evaluation,
this method benefits from high degree of possible
parallelism.

• Evaluation of PMU overhead – although the power
controller is not specified at the system level due to the
abstraction, we have proposed a method to estimate its
overhead at the ESL.

III. POWER-MANAGEMENT EXPLORATION

The proposed power-management exploration method
works as illustrated in Fig. 1. We assume that a designer has
already specified the system function in SystemC and that the
specification is executable. The designer then empirically
specifies the first power-management alternative using the
SystemC/PMS library [15]. Afterwards, the ESL simulation is
performed, which not only verifies the system function, but
also monitors the switching among power modes of the system.
The switching activity of the system is saved into a VCD
(Value Change Dump) file. Then, the post-processing of the
VCD data is performed. The post-processing includes an

estimation of energy consumption of the system, while taking
into account the specified power management. By the analysis
of the ESL power management, the power/area requirements of
the corresponding PMU are also estimated (PMU will be
included in the RTL model). The designer then modifies the
power-management specification and executes the simulation
again if necessary (i.e. a number of power modes has changed
or power-mode switching has been modified). The simulation
post-processing estimates the power consumption of the system
with modified power management and estimates the
requirements of the new PMU.

This procedure can be repeated as many times as the time
allows. The designer then compares the estimated results and
selects the most suitable power-management alternative for the
designed system. In the following subsections, individual parts
of the proposed power-management exploration method will
be described in more details.

A. ESL Power-Management Specification

The specification of power management at the ESL is
really simple. There are only few things that need to be
specified: assignments of power states and system components
to power domains, power states of each power domain in
individual power modes, definition of voltage and frequency
values for each active power state, and switching among power
modes.

The power states that can be assigned to a power domain
can be divided into the following two groups.

• Active – the components in the domain are operating.
o Normal – basic voltage and frequency levels.
o Diff_level – alternative voltage and

frequency levels.

• Passive – operation of the components in the domain is
stopped.

o Hold – the components remain powered.
o Off – the components are powered down.
o Off_ret – values of memory elements in the

components are saved while the components
are powered down.

Using the SystemC/PMS specification, an example of
specification of power states for a power domain is illustrated

Fig. 1. The proposed power-management exploration method overview.

below. Power_domain1 is a name of the power domain, PD is
a PMS macro to create an instance of power domain, and the
power states Normal and Off can be used in the power domain.

 Power_domain1 = PD(NORMAL, OFF);

The components are assigned to a power domain using the
AddComponent PMS method, in which the only argument
represents an instance name of the component. An example is
provided below.

 Power_domain1.AddComponent(”CPU”);

Since Normal is an active power state, the voltage and
frequency values have to be defined (we say that a
performance level is assigned to this state). A code example is
shown below, where Set_Level is a PMS macro in which the
first argument represents a power state, the second argument
represents its supply voltage, and the last argument refers to the
operation frequency.

 Set_Level(NORMAL, 1V, 50MHz);

A power mode is specified as a combination of power
states in individual power domains (i.e. the number of power
states must correspond to the number of power domains in the
system). The specification code example is provided below.

Power_mode1 = PM(NORMAL, HOLD, NORMAL);

Where Power_mode1 is a name of the power mode, PM is
a PMS macro to instantiate the power mode, and the states
correspond to power domains according to the order in the
specification. It means that the first state belongs to the firstly
specified power domain, the Hold state belongs to the second
domain, and the last power state corresponds to the third power
domain specified in the system.

Such a specification is very intuitive and quite
understandable not only for a hardware designer, but also for a
system architect or an embedded-software developer. Since
this specification is really simple, it is easy to modify it (even
several times), and thus explore multiple alternatives.

B. Estimation of Energy Consumption

The proposed specification does not model effects of power
management on the system. It has both advantages and
disadvantages. One advantage is that the simulation
performance is not affected – simulation performance is one of
the key benefits of the system-level abstraction. The other
advantage is that a designer does not need to worry about the
system function when specifying power management.
However, the problem lies in estimating the impact of the
specified power management.

Our energy-estimation method is based on power factors,
which are specific for the wide-spread CMOS (Complementary
Metal-Oxide Semiconductor) technology. The factors
influencing power are divided into two groups: static and
dynamic. The static factor represents power required for a
component to be powered. The dynamic factor represents
power required to switch internal state of the component. At

the ESL abstraction, these factors can be roughly interpreted as
the size of the component and the activity of the component.
An overview of the proposed estimation method is illustrated
in Fig. 2. Explanation of individual parts of the method, along
with formal expressions for computation, follows.

The accurate size of a system/component cannot be
determined without the technology to be used for
implementation and without the synthesis. However, to explore
multiple power-management alternatives, we do not need
highly accurate numbers. We use a fast analysis of the
SystemC model and estimate the size (i.e. static power factor)
based on the description of modules. We take into account a
number of characters required for description combined with a
number of lines of each SystemC module (Eq. 1).

 rrccS NwNwCP .. += (1)

In Eq. 1, CPS is static power of a component representing
description size, computed as weighted values of the number of
characters (wc.Nc) and the number of rows (wr.Nr) of the
description.

Since this estimation cannot ensure accurate values (due to
wide variety of coding styles and the fact that a larger
description not always implies a larger circuit), these data can
be set by a designer. They are usually obtained from previous
implementations of the used components. However, what we
have accomplished in contrast to the existing methods is that
we use this static power characterization in combination with
the analyzed power management and estimate the system static
energy consumption under specific power-management
strategy. The method determines power-mode switching from
the VCD file, where the time and power-mode number are
monitored. Based on the analysis of power management, the
static power value of the component is multiplied by the time
operating in a specific power state and a coefficient
corresponding to that power state. We thus obtain the static
energy consumed by the component during the simulated time
as a sum of these values for each power state. Formally, it is
expressed by

Fig. 2. An overview of the proposed energy-estimation method.

 ∆=
PS

PSPSSS tscCPCE).(. (2)

where CES is static energy consumed by a component, CPS is
its static power (description size, or the value inserted by a
designer), scPS is a coefficient influencing static power
consumption in the power state PS and tPS is a time interval in
which the component operated in the power state PS.

Activity of the component is saved in the VCD file,
resulted from the system simulation. In order to use it for
determination of dynamic power, usually the Hamming
distance is used. It refers to a number of different bit values
between two vectors. In our case, it can be used as a number of
bits (of SystemC module variables) that have changed between
two subsequent simulation times in VCD. Since different types
of variables have different impact on dynamic power, their
contribution is weighted based on the type (input/output port,
signal, internal variable). A sum of the weighted contributions
(i.e. a number of bit-changes) of all variables between two time
points represents the activity of the component during that time
interval. The time intervals are created based on the time
points, in which the power mode of the system was switched.
For each interval, the dynamic energy consumption is
computed by a function of the component activity,
corresponding to the power state in that interval. For example,
in the Hold power state, the activity is not taken into account;
on the other hand, in the Off power state, only the activity
required to power down and up the component is reflected.
Formally, the dynamic energy consumption of a component
(CED) is expressed by

∆

=
t i

iPSiD afwCE)](.[(3)

where wi is a weight of variable i based on its type, fPS is a
function that modifies the activity contribution ai of variable i
based on the power state in time interval t.

The static energy ES consumed by the system is a sum of
consumptions of all its components j (Eq. 4). Similarly, a sum
of dynamic energy consumptions of all components j during
whole simulation time represents the dynamic energy
consumed by the system ED (Eq. 5).

 =
j

SS j
CEE (4)

 =
j

DD j
CEE (5)

It is recommended to use the proposed estimations of static
and dynamic energy consumption separately, because there is
no direct correlation between the obtained values. However, if
a designer needs to use only one number to compare it to
another design, we have introduced weights of static and
dynamic factors to differentiate impact of these factors on total
energy consumption (also usable for various implementation
technologies). The total energy consumption (E) is then

 tCwEwEwE PMUPMUDDSS ++= (6)

where wS is a weight of the static factor and wD of the dynamic
factor, wPMU is a weight of PMU overhead CPMU (explained in
the next subsection) and t is the simulation time.

What is interesting and important regarding the proposed
method is that the computation does not always need to be
performed completely. The method is oriented towards fast
exploration of multiple power-management alternatives, what
enabled its high speed. If the power-mode switching is not
modified, the simulation does not need to be rerun. The
consumed energy is recomputed based on the new power states
in the power modes. Therefore, it is recommended to explore
partitioning of the system to power domains and various power
states before modification of the power-mode switching or
changing the number of power modes. Obtaining the energy
consumption of new power-management strategy without new
simulation is something not found in any existing method.

C. Estimation of PMU Overhead

In the used SystemC/PMS specification of the system, the
PMU is not specified (i.e. it is abstracted away at the ESL).
Switching of power modes is part of the functional
specification. As we have already mentioned, the PMU can
become a significant power consumer in some ultra-low-power
systems. Since the required PMU can influence the selection of
a power-management alternative, it is important to
predict/estimate its complexity. For a higher accuracy, the
high-level synthesis of PMU can be used [16]. Such a synthesis
process automatically generates an RTL model of the PMU
that corresponds to the ESL specification of power
management. Based on the synthesized RTL model, the
professional tools, such as Power Compiler [17] or Joules RTL
Power Solution [18], can estimate its power and area
requirements. Although such estimation is quite accurate, this
process is not very suitable for power-management
exploration. To obtain the requirements of each PMU
alternative, a designer needs to always synthesize the power
management, perform the design analysis, and report back the
obtained data. When we take into account also preparation
time, this process is just too long (minutes, or even hours).

For a complexity comparison of two alternative PMU
designs, we do not need precise power values. The estimation
can be achieved in matter of seconds directly from the ESL
model. In the proposed method, we have used a modified PMU
high-level synthesis algorithm, which analyzes the ESL power-
management specification and estimates the PMU complexity
(which would be otherwise synthesized). The method statically
analyzes the ESL power states that can be used in power
domains, structural dependencies among the components in
different power domains, and setting of power states of the
domains in each power mode. Based on the analyzed data, the
method then estimates the required power-management
elements, and thus we can determine the number of required
control signals. Moreover, the required intermediate power
modes for the functionally correct power management are
determined. For example, if a power domain can operate in the
Normal and Off power states, an intermediate state is needed to

activate the isolation prior to powering the domain down.
These are not explicitly specified at the ESL.

The PMU is an application-specific Medvedev-type finite-
state machine, in which the state encoding directly corresponds
to the control signals (in order to avoid synchronization issues).
Based on the estimated information, we can predict a number
of states in the PMU, a number of flip-flops to keep the state, a
number of input/output ports, and also a number of branches in
the transition logics of the PMU. Such information directly
corresponds to the size of the PMU, and thus we use the
number of control signals and the number of power modes to
estimate its complexity. Since the actual area/power
requirements depend on the implementation technology, we
use weights of the used parameters to calibrate the estimation.
Thus, the estimated PMU complexity CPMU is expressed as

 PMwCSwC PMCSPMU .. += (7)

where wCS is a weight influencing impact of the number of
power-management control signals CS and wPM is a weight of
the number of power modes PM.

The proposed method uses a single algorithm to predict
PMU overhead directly from ESL model. Although it is less
accurate than the approach using high-level synthesis and RTL
estimation, it is easy to use, faster (results in few seconds), and
does not require any preparation steps.

IV. EXPERIMENTAL RESULTS

We have divided the experimental results into three groups.
In the first part, we show the power-management exploration
capabilities of the proposed method. The second part focuses
on the accuracy of the estimated data, compared to an RTL
method. The last part shows that the proposed estimation
method for PMU overhead is relevant and useful.

A. ESL Power-Management Exploration

The exploration capabilities of the proposed method are
illustrated on a simple system design. This system consists of
one microprocessor component and two memories. We have
estimated energy of such a system without power management.
Then, we have specified five power-management alternatives
(various combinations of power states in the system power
modes) and estimated the energy consumed by this system
under specific power management during the same simulation
task. The results of this experiment are provided in Table I.
The first column represents a power-management alternative
upon the same system design (alternative A is without the
power management). The next columns represent the estimated
static energy, dynamic energy, PMU complexity, and energy of

the whole system. The last column represents a comparison of
energy values of the alternatives, compared to the alternative A
(i.e. without power management).

The results show, that the alternative C is the most energy-
efficient. This experiment has proved that the proposed method
can be used to evaluate various power-management
alternatives and select the most efficient one. However, the
estimated values can be used only for comparison reasons, not
for verification of the power budget (too high abstraction is
used for such a case).

B. Comparison of ESL and RTL Energy Estimation

Since the estimated energy values are not provided in
Joules (or Watts), it is difficult to compare them to the values
obtained from a professional tool. Therefore, we have
compared the accuracy of a ratio between the estimated energy
of a design with power management and without power
management. This ratio is compared to a ratio of the RTL
estimations (with and without power management) computed
by Synopsys Power Compiler using the NanGate_15nm_OCL
technology library. Two different designs have been used for
comparison. The results are provided in Table II. The first
column represents a factor, ratio of which was compared. The
ESL columns represent ratios based on the ESL estimations
(the proposed method was used). Based on the statistical
analyzes (i.e. calibration), the weights of the factors were set to
wS=6.5, wD=0.013, and wPMU=1000. The RTL1 and RTL2
columns represent ratios based on the RTL estimations. The
columns represent difference between ESL and RTL ratios.

The results show that the proposed ESL energy-estimation
method is accurate enough (inaccuracy up to 22%) regarding
the comparison of multiple design alternatives with different
power management strategies. It cannot be used to estimate
absolute values of energy consumption, but it is useful for
power-management exploration.

C. Evaluation of PMU Overhead Estimation

To evaluate the PMU requirements estimation capabilities
of the proposed method, we have specified 15 different power-
management alternatives in SystemC/PMS. The proposed
algorithm then computed CS and PM parameters of these
alternatives to predict the number of control signals and the
number of power modes. The experimental data are provided
in Table III. The first column represents just an index of a
power-management alternative. The next two columns
represent the estimated parameters. Based on the calibration,
the weights of the parameters have been set to wCS=32.6 and
wPM=2.5. The estimated complexity CPMU was afterwards
compared to the synthesized and estimated power of the PMU
at the RTL (Power Compiler and NanGate_15nm_OCL
technology have been used). This comparison is illustrated in
the last column of the table (). TABLE II. THE POWER-MANAGEMENT EXPLORATION RESULTS

Alternative ES ED CPMU E E/EA

A 37824 818963 0 256502,5 100,0%

B 35263 522641 233.1 242996,8 94,7%

C 30788 522641 355.8 217590,3 84,8%

D 45725 522641 107.8 307240,8 119,8%

E 42278 534308 107.8 284987,0 111,1%

F 34083 675620 215.6 236790,6 92,3%

TABLE I. A COMPARISON OF ESL AND RTL ESTIMATION RESULTS

Factor ESL1 RTL1 ESL2 RTL2

static 1.08 1.1 -1.8% 0.68 0.87 -21.8%

dynamic 0.067 0.06 +11.7% 0.083 0.09 -7.8%

total 0.87 0.82 +6% 0.57 0.68 -16.7%

The results indicate that the estimated number of control
signals and the number of power modes can be indeed used to
represent PMU complexity at the ESL, since the estimated
complexity corresponds to obtained power values from the
RTL analysis with inaccuracy of 16% and lower. This is an
improvement in this area, because the proposed method can be
used to estimate future requirements of the PMU not specified
at the ESL.

V. CONCLUSION

We have proposed a new power-management exploration
approach that enables easy “what-if” analysis of multiple
alternatives. Really easy and intuitive modification of ESL
power-management specification makes it usable not only for
hardware designers, but also for system architects and
embedded software developers. The fast energy-estimation
method does not influence simulation performance and, in
some cases, it does not even require re-simulation of the
system with an alternative power management. A unique
method for prediction of future power-management unit
requirements makes the exploration more accurate, especially
for systems in which the power controller is a significant
power consumer (e.g. some ultra-low-power systems spending
most of the lifetime in a sleep mode).

The experiments showed that the proposed methods are
useful for power-management exploration. We have not
properly evaluated time, which the proposed exploration
approach can save, because it is subjective, dependent on
designer’s experience. We can estimate that the modification of
power management is faster, because of the high abstraction
used for specification. ESL simulation is faster than using the
existing methods that affect its performance. The energy-
estimation itself is perfect for parallel computation; thus, the
results are obtained in seconds.

ACKNOWLEDGMENT

This work was partially supported by the Ministry of
Education, Science, Research and Sport of the Slovak Republic
(ITMS 26240220084), the Slovak Scientific Grant Agency
(VEGA 1/0836/16), and the Slovak Research and Development
Agency (APVV-15-0789).

REFERENCES

[1] ITRS 2.0, “International technology roadmap for semiconductors 2.0,”
2015. [Online]. Available: www.semiconductors.org/main/2015_
international_technology_roadmap_for_semiconductors_itrs/

[2] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power
Methodology Manual: For System-on-Chip Design. Springer, 2007.

[3] K. Grüttner et al., “COMPLEX: Codesign and power management in
platform-based design space exploration,” in 2012 15th Euromicro
Conference on Digital System Design, 2012, pp. 349–358.

[4] Y. Xu et al., “A very fast and quasi-accurate power-state-based system-
level power modeling methodology,” in ARCS'12 Proceedings of the
25th international conference on Architecture of Computing Systems,
2012, pp. 37–49.

[5] D. Greaves and M. Yasin, “TLM POWER3: Power estimation
methodology for SystemC TLM 2.0,” Models, Methods, and Tools for
Complex Chip Design, LNEE, vol. 265, pp. 53–68, 2014.

[6] T. Bouhadiba, M. Moy and F. Maraninchi, “System-level modeling of
energy in TLM for early validation of power and thermal management,”
in DATE '13 Proceedings of the Conference on Design, Automation and
Test in Europe, 2013, pp. 1609–1614.

[7] J. Karmann and W. Ecker, “The semantic of the power intent format
UPF: Consistent power modeling from system level to implementation,”
in 2013 23rd International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS), 2013, pp. 45–50.

[8] F. Mischkalla and W. Mueller, “Advanced SoC virtual prototyping for
system-level power planning and validation,” in 2014 24th International
Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS), 2014, pp. 112–119.

[9] IEEE Standard for Design and Verification of Low-Power, Energy-
Aware Electronic Systems, IEEE Standard 1801-2015, Dec. 2015.

[10] T. Cahayag, Ed., “Synopsys Platform Architect MCO Delivers
Industry's First Power-Aware Architecture Analysis Tool Supporting
IEEE 1801-2015 UPF 3.0,” Synopsys, Jan. 2016. [Online]. Available:
http://news.synopsys.com/2016-01-25-Synopsys-Platform-Architect-
MCO-Delivers-Industrys-First-Power-Aware-Architecture-Analysis-
Tool-Supporting-IEEE-1801-2015-UPF-3-0

[11] O. Mbarek, A. Pegatoquet, and M. Auguin, “Using unified power format
standard concepts for power-aware design and verification of systems-
on-chip at transaction level,” IET Circ. Device. Syst., vol. 6, pp. 287–
296, Sept. 2012.

[12] H. Affes, M. Auguin, F. Verdier, and A. Pegatoquet, “A methodology
for inserting clock-management strategies in transaction-level models of
system-on-chips,” in 2015 Forum on Specification and Design
Languages (FDL) , 2015, pp. 1–7.

[13] H. Affes, A.B. Ameur, M. Auguin, F. Verdier, and C. Barnes, “An ESL
framework for low power architecture design space exploration,” in
2016 IEEE 27th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2016, pp. 227–228.

[14] A Practical Guide to Low Power Design: User Experience with CPF.
Cadence Design Systems, 2012. [Online]. Available:
www.si2.org/?page=1061

[15] D. Macko, K. Jelemenská and P. i ák, “Power-management
specification in SystemC,” in 2015 IEEE 18th International Symposium
on Design and Diagnostics of Electronic Circuits and Systems, 2015, pp.
259-262.

[16] D. Macko, K. Jelemenská and P. i ák, “Power-management high-level
synthesis,” in The 23rd IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), 2015, pp. 63-68.

[17] Power Compiler: Power Optimization in Design Compiler. Synopsys,
2014. [Online]. Available: https://www.synopsys.com/content/dam/
synopsys/implementation&signoff/datasheets/power-compiler-ds.pdf

[18] Joules RTL Power Solution: Unified power calculator for accurate RTL
power and signoff-quality gate power. Cadence Design Systems, 2016.
[Online]. Available: https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/tools/digital-design-signoff/joules-rtl-
power-solution-ds.pdf

TABLE III. PMU OVERHEAD EVALUATION DATA

CS PM CPMU RTL power [uW]

1 3 5 110,3 96,6 +14%

2 3 4 107,8 114 -5%

3 4 5 142,9 167 -14%

4 7 12 258,2 260 -1%

5 10 14 361 355 +2%

6 10 8 346 379 -9%

7 10 49 448,5 537 -16%

8 13 46 538,8 562 -4%

9 13 106 688,8 594 +16%

10 16 114 806,6 705 +14%

11 19 132 949,4 815 +16%

12 17 117 846,7 873 -3%

13 17 101 806,7 891 -9%

14 21 65 847,1 961 -12%

15 18 346 1451,8 1398 4%

