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Abstract—Managing the power in highly-integrated systems 

on chips becomes inevitable in modern designs. Complex systems 

require complex power management, and it is always difficult to 

determine whether the designed power management is the most 

efficient. In our previous work, we have proposed a simplified 

power-management specification method at the system level of 

abstraction. In this paper, we propose a system-level power-

management evaluation approach that enables a designer to 

explore various power-management designs in a short time and 

select the best. The proposed exploration method is easy-to-use 

and can be used to speed-up the low-power systems development. 

Keywords—design exploration; hardware design; low power; 

power management; specification 

I. INTRODUCTION 

One of the challenges in electronic-systems design is to 
increasingly use the system-level abstraction (ESL – Electronic 
System Level) and more automation to improve design 
productivity [1]. It is especially important in the design process 
of low-power systems, such as Internet of Things (IoT) 
devices, which become more and more complex. A dynamic 
power management is usually used to apply various power-
reduction techniques, such as voltage and frequency scaling, 
power and clock gating, or voltage and clock islands [2]. From 
a system point of view, power management enables to switch 
among several power modes of the system, according to the 
current needs to efficiently perform a task. 

There are many works addressing the system power 
estimation under a specific power-management scheme at the 
ESL, such as [3-13]. However, the used abstraction is either 
insufficient, making the ESL specification unnecessarily 
complicated. Or the used power-management modelling 
approach is not based on the standard concepts (see Section 2) 
used at lower abstraction levels, which makes checking of the 
equivalence between higher and lower level models difficult 
and automated transition between these levels is quite 
impossible. Moreover, the existing methods usually rely on 
power data based on design reuse, which is not usable for a 
top-down design of custom hardware. Strictly power-managed 
IoT devices are especially sensitive to overhead of the 
introduced power controller (managing power of other 
components of the system). This overhead is rarely taken into 
account in existing methods, and if it is, its modelling is mostly 
manual. 

Therefore, there is a need for an approach that simplifies 
the ESL specification of power management and quickly 
estimates its impact on the system power consumption. This is 
what we address in this paper. We propose a new ESL power-
estimation method that takes into account the specified power 
management. To increase the estimation accuracy, the method 
automatically predicts power overhead of the required power 
controller, which is not modelled at the ESL. The method does 
not influence simulation performance and, in some cases, it 
does not even need re-simulation of the modified model. This, 
along with the automation of the method itself, makes the 
exploration of various power-management schemes fast. 

The rest of the paper is organized as follows. Section II 
introduces standard basics of power management and related 
works in the area of ESL power-management exploration. The 
new method is proposed in Section III, followed by 
experimental evaluation in Section IV, and Section V 
concludes the paper. 

II. BACKGROUND AND RELATED WORK 

The standard way to model and verify power management 
is to use UPF (Unified Power Format) [9] or CPF (Common 
Power Format) [14] specification alongside the traditional 
HDL (Hardware Description Language) functional design at 
the RTL (Register-Transfer Level) and lower abstraction 
levels. UPF enables to capture power intent, specifying power-
supply nets and supply ports, connecting them to power 
domains (grouping multiple components for more efficient 
power management). These domains can also contain so-called 
power-management elements, such as power switches, 
isolation and retention logic, or level shifters. Thus, the power 
state of a power domain in UPF context is defined as a 
combination of control signals activating and deactivating 
power-management elements assigned to the power domain. In 
more complex systems, these control signals are driven by a 
dedicated unit representing power controller (referred to as 
PMU – Power Management Unit). A power mode of the 
system (set by the PMU) is then a combination of power states 
of all power domains (one state per domain). 

Modification of power intent in UPF is not an easy task. A 
designer must keep the system context in mind and change 
precise portions of the specification. For example, in order to 
give some component ability to power it down, a designer has 
to assign it to a power domain (new or an existing one), modify 

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is an accepted version of the published paper:
D. Macko, "Rapid power-management exploration using post-processing of the system-level simulation results," 2017 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), Thessaloniki, 2017, pp. 108-113.
doi: 10.1109/PATMOS.2017.8106965
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8106965&isnumber=8106944



the primary supply net of the domain (if necessary), add a 
power switch to the domain or add an off state to the existing 
power switch in the domain, modify the control signals of the 
switch (if necessary), set isolation at the domain boundaries, 
and so on. Moreover, the PMU design has to be modified to 
incorporate the new power state of the power domain. Another 
downside of RTL modelling is that clock signals (i.e. operation 
frequency of the components) are modelled in HDL. Thus, 
some power-reduction techniques are applied using UPF and 
some using functional modelling in HDL, what increases the 
complexity. 

Due to these reasons, RTL modelling is not convenient for 
power-management exploration and more abstraction must be 
used in the process. We have analyzed several ESL-based 
approaches targeting this issue [3-13]. All of the analyzed 
methods require too much manual effort for exploration of 
various power-management strategies at the system level. To 
obtain power data of the components, these methods usually 
depends on design-reuse concept, which is not suitable for top-
down design approach addressed in this paper. Moreover, there 
exist low-power systems in which the power-management unit 
(PMU) represents a significant area/power overhead, because 
other components of the system are powered down (many IoT 
devices). Therefore, the PMU (i.e. power controller) overhead 
must be taken into account when exploring power-management 
alternatives. Based on the downsides of the existing methods, 
we have formulated requirements for a new power-
management exploration method, which also represent our key 
contributions summarized below. 

• Easy modification of power-management strategy – by 
using a sufficiently abstract power-management 
specification method, we have made the modification of 
power management clear, simple, and intuitive. 

• Minimizing simulation-performance overhead – since 
the power-management effect is not modelled at the 
system level, ESL simulation performance remains 
intact. 

• Fast estimation of system energy consumption – due to 
using simulation post-processing for power evaluation, 
this method benefits from high degree of possible 
parallelism. 

• Evaluation of PMU overhead – although the power 
controller is not specified at the system level due to the 
abstraction, we have proposed a method to estimate its 
overhead at the ESL. 

III. POWER-MANAGEMENT EXPLORATION 

The proposed power-management exploration method 
works as illustrated in Fig. 1. We assume that a designer has 
already specified the system function in SystemC and that the 
specification is executable. The designer then empirically 
specifies the first power-management alternative using the 
SystemC/PMS library [15]. Afterwards, the ESL simulation is 
performed, which not only verifies the system function, but 
also monitors the switching among power modes of the system. 
The switching activity of the system is saved into a VCD 
(Value Change Dump) file. Then, the post-processing of the 
VCD data is performed. The post-processing includes an 

estimation of energy consumption of the system, while taking 
into account the specified power management. By the analysis 
of the ESL power management, the power/area requirements of 
the corresponding PMU are also estimated (PMU will be 
included in the RTL model). The designer then modifies the 
power-management specification and executes the simulation 
again if necessary (i.e. a number of power modes has changed 
or power-mode switching has been modified). The simulation 
post-processing estimates the power consumption of the system 
with modified power management and estimates the 
requirements of the new PMU. 

This procedure can be repeated as many times as the time 
allows. The designer then compares the estimated results and 
selects the most suitable power-management alternative for the 
designed system. In the following subsections, individual parts 
of the proposed power-management exploration method will 
be described in more details. 

A. ESL Power-Management Specification 

The specification of power management at the ESL is 
really simple. There are only few things that need to be 
specified: assignments of power states and system components 
to power domains, power states of each power domain in 
individual power modes, definition of voltage and frequency 
values for each active power state, and switching among power 
modes. 

The power states that can be assigned to a power domain 
can be divided into the following two groups. 

• Active – the components in the domain are operating. 
o Normal – basic voltage and frequency levels. 
o Diff_level – alternative voltage and 

frequency levels. 

• Passive – operation of the components in the domain is 
stopped. 

o Hold – the components remain powered. 
o Off – the components are powered down. 
o Off_ret – values of memory elements in the 

components are saved while the components 
are powered down. 

Using the SystemC/PMS specification, an example of 
specification of power states for a power domain is illustrated 

 
Fig. 1. The proposed power-management exploration method overview. 



below. Power_domain1 is a name of the power domain, PD is 
a PMS macro to create an instance of power domain, and the 
power states Normal and Off can be used in the power domain. 

 Power_domain1 = PD(NORMAL, OFF); 

The components are assigned to a power domain using the 
AddComponent PMS method, in which the only argument 
represents an instance name of the component. An example is 
provided below. 

 Power_domain1.AddComponent(”CPU”); 

Since Normal is an active power state, the voltage and 
frequency values have to be defined (we say that a 
performance level is assigned to this state). A code example is 
shown below, where Set_Level is a PMS macro in which the 
first argument represents a power state, the second argument 
represents its supply voltage, and the last argument refers to the 
operation frequency. 

 Set_Level(NORMAL, 1V, 50MHz); 

A power mode is specified as a combination of power 
states in individual power domains (i.e. the number of power 
states must correspond to the number of power domains in the 
system). The specification code example is provided below. 

Power_mode1 = PM(NORMAL, HOLD, NORMAL); 

Where Power_mode1 is a name of the power mode, PM is 
a PMS macro to instantiate the power mode, and the states 
correspond to power domains according to the order in the 
specification. It means that the first state belongs to the firstly 
specified power domain, the Hold state belongs to the second 
domain, and the last power state corresponds to the third power 
domain specified in the system. 

Such a specification is very intuitive and quite 
understandable not only for a hardware designer, but also for a 
system architect or an embedded-software developer. Since 
this specification is really simple, it is easy to modify it (even 
several times), and thus explore multiple alternatives. 

B. Estimation of Energy Consumption 

The proposed specification does not model effects of power 
management on the system. It has both advantages and 
disadvantages. One advantage is that the simulation 
performance is not affected – simulation performance is one of 
the key benefits of the system-level abstraction. The other 
advantage is that a designer does not need to worry about the 
system function when specifying power management. 
However, the problem lies in estimating the impact of the 
specified power management. 

Our energy-estimation method is based on power factors, 
which are specific for the wide-spread CMOS (Complementary 
Metal-Oxide Semiconductor) technology. The factors 
influencing power are divided into two groups: static and 
dynamic. The static factor represents power required for a 
component to be powered. The dynamic factor represents 
power required to switch internal state of the component. At 

the ESL abstraction, these factors can be roughly interpreted as 
the size of the component and the activity of the component. 
An overview of the proposed estimation method is illustrated 
in Fig. 2. Explanation of individual parts of the method, along 
with formal expressions for computation, follows. 

The accurate size of a system/component cannot be 
determined without the technology to be used for 
implementation and without the synthesis. However, to explore 
multiple power-management alternatives, we do not need 
highly accurate numbers. We use a fast analysis of the 
SystemC model and estimate the size (i.e. static power factor) 
based on the description of modules. We take into account a 
number of characters required for description combined with a 
number of lines of each SystemC module (Eq. 1). 

 rrccS NwNwCP .. +=  (1) 

In Eq. 1, CPS is static power of a component representing 
description size, computed as weighted values of the number of 
characters (wc.Nc) and the number of rows (wr.Nr) of the 
description. 

Since this estimation cannot ensure accurate values (due to 
wide variety of coding styles and the fact that a larger 
description not always implies a larger circuit), these data can 
be set by a designer. They are usually obtained from previous 
implementations of the used components. However, what we 
have accomplished in contrast to the existing methods is that 
we use this static power characterization in combination with 
the analyzed power management and estimate the system static 
energy consumption under specific power-management 
strategy. The method determines power-mode switching from 
the VCD file, where the time and power-mode number are 
monitored. Based on the analysis of power management, the 
static power value of the component is multiplied by the time 
operating in a specific power state and a coefficient 
corresponding to that power state. We thus obtain the static 
energy consumed by the component during the simulated time 
as a sum of these values for each power state. Formally, it is 
expressed by 

Fig. 2. An overview of the proposed energy-estimation method. 
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where CES is static energy consumed by a component, CPS is 
its static power (description size, or the value inserted by a 
designer), scPS is a coefficient influencing static power 
consumption in the power state PS and tPS is a time interval in 
which the component operated in the power state PS. 

Activity of the component is saved in the VCD file, 
resulted from the system simulation. In order to use it for 
determination of dynamic power, usually the Hamming 
distance is used. It refers to a number of different bit values 
between two vectors. In our case, it can be used as a number of 
bits (of SystemC module variables) that have changed between 
two subsequent simulation times in VCD. Since different types 
of variables have different impact on dynamic power, their 
contribution is weighted based on the type (input/output port, 
signal, internal variable). A sum of the weighted contributions 
(i.e. a number of bit-changes) of all variables between two time 
points represents the activity of the component during that time 
interval. The time intervals are created based on the time 
points, in which the power mode of the system was switched. 
For each interval, the dynamic energy consumption is 
computed by a function of the component activity, 
corresponding to the power state in that interval. For example, 
in the Hold power state, the activity is not taken into account; 
on the other hand, in the Off power state, only the activity 
required to power down and up the component is reflected. 
Formally, the dynamic energy consumption of a component 
(CED) is expressed by 

 

∆
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where wi is a weight of variable i based on its type, fPS is a 
function that modifies the activity contribution ai of variable i 
based on the power state in time interval t. 

The static energy ES consumed by the system is a sum of 
consumptions of all its components j (Eq. 4). Similarly, a sum 
of dynamic energy consumptions of all components j during 
whole simulation time represents the dynamic energy 
consumed by the system ED (Eq. 5). 

 =
j

SS j
CEE  (4) 
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j

DD j
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It is recommended to use the proposed estimations of static 
and dynamic energy consumption separately, because there is 
no direct correlation between the obtained values. However, if 
a designer needs to use only one number to compare it to 
another design, we have introduced weights of static and 
dynamic factors to differentiate impact of these factors on total 
energy consumption (also usable for various implementation 
technologies). The total energy consumption (E) is then 

 tCwEwEwE PMUPMUDDSS .... ++=  (6) 

where wS is a weight of the static factor and wD of the dynamic 
factor, wPMU is a weight of PMU overhead CPMU (explained in 
the next subsection) and t is the simulation time. 

What is interesting and important regarding the proposed 
method is that the computation does not always need to be 
performed completely. The method is oriented towards fast 
exploration of multiple power-management alternatives, what 
enabled its high speed. If the power-mode switching is not 
modified, the simulation does not need to be rerun. The 
consumed energy is recomputed based on the new power states 
in the power modes. Therefore, it is recommended to explore 
partitioning of the system to power domains and various power 
states before modification of the power-mode switching or 
changing the number of power modes. Obtaining the energy 
consumption of new power-management strategy without new 
simulation is something not found in any existing method. 

C. Estimation of PMU Overhead 

In the used SystemC/PMS specification of the system, the 
PMU is not specified (i.e. it is abstracted away at the ESL). 
Switching of power modes is part of the functional 
specification. As we have already mentioned, the PMU can 
become a significant power consumer in some ultra-low-power 
systems. Since the required PMU can influence the selection of 
a power-management alternative, it is important to 
predict/estimate its complexity. For a higher accuracy, the 
high-level synthesis of PMU can be used [16]. Such a synthesis 
process automatically generates an RTL model of the PMU 
that corresponds to the ESL specification of power 
management. Based on the synthesized RTL model, the 
professional tools, such as Power Compiler [17] or Joules RTL 
Power Solution [18], can estimate its power and area 
requirements. Although such estimation is quite accurate, this 
process is not very suitable for power-management 
exploration. To obtain the requirements of each PMU 
alternative, a designer needs to always synthesize the power 
management, perform the design analysis, and report back the 
obtained data. When we take into account also preparation 
time, this process is just too long (minutes, or even hours). 

For a complexity comparison of two alternative PMU 
designs, we do not need precise power values. The estimation 
can be achieved in matter of seconds directly from the ESL 
model. In the proposed method, we have used a modified PMU 
high-level synthesis algorithm, which analyzes the ESL power-
management specification and estimates the PMU complexity 
(which would be otherwise synthesized). The method statically 
analyzes the ESL power states that can be used in power 
domains, structural dependencies among the components in 
different power domains, and setting of power states of the 
domains in each power mode. Based on the analyzed data, the 
method then estimates the required power-management 
elements, and thus we can determine the number of required 
control signals. Moreover, the required intermediate power 
modes for the functionally correct power management are 
determined. For example, if a power domain can operate in the 
Normal and Off power states, an intermediate state is needed to 



activate the isolation prior to powering the domain down. 
These are not explicitly specified at the ESL. 

The PMU is an application-specific Medvedev-type finite-
state machine, in which the state encoding directly corresponds 
to the control signals (in order to avoid synchronization issues). 
Based on the estimated information, we can predict a number 
of states in the PMU, a number of flip-flops to keep the state, a 
number of input/output ports, and also a number of branches in 
the transition logics of the PMU. Such information directly 
corresponds to the size of the PMU, and thus we use the 
number of control signals and the number of power modes to 
estimate its complexity. Since the actual area/power 
requirements depend on the implementation technology, we 
use weights of the used parameters to calibrate the estimation. 
Thus, the estimated PMU complexity CPMU is expressed as 

 PMwCSwC PMCSPMU .. +=  (7) 

where wCS is a weight influencing impact of the number of 
power-management control signals CS and wPM is a weight of 
the number of power modes PM. 

The proposed method uses a single algorithm to predict 
PMU overhead directly from ESL model. Although it is less 
accurate than the approach using high-level synthesis and RTL 
estimation, it is easy to use, faster (results in few seconds), and 
does not require any preparation steps. 

IV. EXPERIMENTAL RESULTS 

We have divided the experimental results into three groups. 
In the first part, we show the power-management exploration 
capabilities of the proposed method. The second part focuses 
on the accuracy of the estimated data, compared to an RTL 
method. The last part shows that the proposed estimation 
method for PMU overhead is relevant and useful. 

A. ESL Power-Management Exploration 

The exploration capabilities of the proposed method are 
illustrated on a simple system design. This system consists of 
one microprocessor component and two memories. We have 
estimated energy of such a system without power management. 
Then, we have specified five power-management alternatives 
(various combinations of power states in the system power 
modes) and estimated the energy consumed by this system 
under specific power management during the same simulation 
task. The results of this experiment are provided in Table I. 
The first column represents a power-management alternative 
upon the same system design (alternative A is without the 
power management). The next columns represent the estimated 
static energy, dynamic energy, PMU complexity, and energy of 

the whole system. The last column represents a comparison of 
energy values of the alternatives, compared to the alternative A 
(i.e. without power management). 

The results show, that the alternative C is the most energy-
efficient. This experiment has proved that the proposed method 
can be used to evaluate various power-management 
alternatives and select the most efficient one. However, the 
estimated values can be used only for comparison reasons, not 
for verification of the power budget (too high abstraction is 
used for such a case). 

B. Comparison of ESL and RTL Energy Estimation 

Since the estimated energy values are not provided in 
Joules (or Watts), it is difficult to compare them to the values 
obtained from a professional tool. Therefore, we have 
compared the accuracy of a ratio between the estimated energy 
of a design with power management and without power 
management. This ratio is compared to a ratio of the RTL 
estimations (with and without power management) computed 
by Synopsys Power Compiler using the NanGate_15nm_OCL 
technology library. Two different designs have been used for 
comparison. The results are provided in Table II. The first 
column represents a factor, ratio of which was compared. The 
ESL columns represent ratios based on the ESL estimations 
(the proposed method was used). Based on the statistical 
analyzes (i.e. calibration), the weights of the factors were set to 
wS=6.5, wD=0.013, and wPMU=1000. The RTL1 and RTL2 
columns represent ratios based on the RTL estimations. The  
columns represent difference between ESL and RTL ratios. 

The results show that the proposed ESL energy-estimation 
method is accurate enough (inaccuracy up to 22%) regarding 
the comparison of multiple design alternatives with different 
power management strategies. It cannot be used to estimate 
absolute values of energy consumption, but it is useful for 
power-management exploration. 

C. Evaluation of PMU Overhead Estimation 

To evaluate the PMU requirements estimation capabilities 
of the proposed method, we have specified 15 different power-
management alternatives in SystemC/PMS. The proposed 
algorithm then computed CS and PM parameters of these 
alternatives to predict the number of control signals and the 
number of power modes. The experimental data are provided 
in Table III. The first column represents just an index of a 
power-management alternative. The next two columns 
represent the estimated parameters. Based on the calibration, 
the weights of the parameters have been set to wCS=32.6 and 
wPM=2.5. The estimated complexity CPMU was afterwards 
compared to the synthesized and estimated power of the PMU 
at the RTL (Power Compiler and NanGate_15nm_OCL 
technology have been used). This comparison is illustrated in 
the last column of the table ( ). TABLE II.  THE POWER-MANAGEMENT EXPLORATION RESULTS 

Alternative ES ED CPMU E E/EA 

A 37824 818963 0 256502,5 100,0% 

B 35263 522641 233.1 242996,8 94,7% 

C 30788 522641 355.8 217590,3 84,8% 

D 45725 522641 107.8 307240,8 119,8% 

E 42278 534308 107.8 284987,0 111,1% 

F 34083 675620 215.6 236790,6 92,3% 

TABLE I.  A COMPARISON OF ESL AND RTL ESTIMATION RESULTS 

Factor ESL1 RTL1  ESL2 RTL2  

static 1.08 1.1 -1.8% 0.68 0.87 -21.8% 

dynamic 0.067 0.06 +11.7% 0.083 0.09 -7.8% 

total 0.87 0.82 +6% 0.57 0.68 -16.7% 



The results indicate that the estimated number of control 
signals and the number of power modes can be indeed used to 
represent PMU complexity at the ESL, since the estimated 
complexity corresponds to obtained power values from the 
RTL analysis with inaccuracy of 16% and lower. This is an 
improvement in this area, because the proposed method can be 
used to estimate future requirements of the PMU not specified 
at the ESL. 

V. CONCLUSION 

We have proposed a new power-management exploration 
approach that enables easy “what-if” analysis of multiple 
alternatives. Really easy and intuitive modification of ESL 
power-management specification makes it usable not only for 
hardware designers, but also for system architects and 
embedded software developers. The fast energy-estimation 
method does not influence simulation performance and, in 
some cases, it does not even require re-simulation of the 
system with an alternative power management. A unique 
method for prediction of future power-management unit 
requirements makes the exploration more accurate, especially 
for systems in which the power controller is a significant 
power consumer (e.g. some ultra-low-power systems spending 
most of the lifetime in a sleep mode). 

The experiments showed that the proposed methods are 
useful for power-management exploration. We have not 
properly evaluated time, which the proposed exploration 
approach can save, because it is subjective, dependent on 
designer’s experience. We can estimate that the modification of 
power management is faster, because of the high abstraction 
used for specification. ESL simulation is faster than using the 
existing methods that affect its performance. The energy-
estimation itself is perfect for parallel computation; thus, the 
results are obtained in seconds. 
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TABLE III.  PMU OVERHEAD EVALUATION DATA

# CS PM CPMU RTL power [uW]  

1 3 5 110,3 96,6 +14% 

2 3 4 107,8 114 -5% 

3 4 5 142,9 167 -14% 

4 7 12 258,2 260 -1% 

5 10 14 361 355 +2% 

6 10 8 346 379 -9% 

7 10 49 448,5 537 -16% 

8 13 46 538,8 562 -4% 

9 13 106 688,8 594 +16% 

10 16 114 806,6 705 +14% 

11 19 132 949,4 815 +16% 

12 17 117 846,7 873 -3% 

13 17 101 806,7 891 -9% 

14 21 65 847,1 961 -12% 

15 18 346 1451,8 1398 4% 

 


