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Abstract—Wireless devices in the Internet of Things (IoT)
face a communication parameters selection problem to avoid
collisions due to inability to listen before a transmission, limited
power supply, or duty-cycle restrictions. Another problem arises
in densely populated areas, where license-free band is jammed
with many different technologies. Therefore, a network controller
does not have exact information about channel congestion and
has to determine it for each node from observations. Among
the most promising solutions for long-distance and low-power
IoT networks is LoRa. In this paper, we propose a modified
LoRa architecture using energy-wise LoRa@FIIT protocol to
optimize communication parameters selection and ensure QoS
for application in healthcare devices, where critical information
must be properly delivered and acknowledged.
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I. INTRODUCTION

IoT end devices are usually small embedded computers that

can be wearable. They have less computational power, less

memory capacity, limited power supply and less bandwidth

than conventional IP and Ethernet network devices. Those

factors should be considered during protocol or network

architecture design. Another constraint of communication in

license-free bands is a duty-cycle. It is defined as a maximum

percentage of time during which an end-device can transmit on

a selected channel [1] (1% in Europe). To meet the industrial

requirements, modern IoT networks should be scalable and

automatically respond to network changes, e.g. congestion,

duty-cycle limitations, interference from other technologies

and interference within the same technology when two or

more devices transmit at the same time using the same

communication parameters (CP), e.g. spreading factor (SF)

and power.

IoT devices have potential utilization in healthcare. The

typical scenario assumes a patient wearing a battery-supplied

device that would measure a blood pressure, a heart rate, or an

oxygen saturation. Based on collected data, recommendations

would be given, or early disease detection might be possible,

e.g. detection of heart arrhythmia using heart rate long-term

measurements.
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One of the toughest challenges in LoRa networks is a

collision-free communication in densely populated areas [2],

[3]. A lot of work has been done in the field of computing

an optimal channel selection in the network server or end

nodes [4]. Specifically, in the problem of end nodes energy

optimization [5], [6] a channel selection [7], a collision-

free communication in densely populated areas [8], or an

optimization of communication in general [3]. In [9], a re-

inforcement learning (RL) proved to be a huge advantage

even if non-stationary settings are present in the environment.

However, only the research in [10] has taken into account a

dissemination, i.e. a process of distributing gained knowledge

from the network server to the end nodes. All gateways are

bound to duty-cycle limitations, since it is the key constraint

in LoRa networks. For a real-world use case with hundreds of

nodes, a proper way and time to disseminate a network-wise

model to end nodes is an important requirement. Authors of [2]

proposed a usage of Markov Decision Process to find optimal

communication parameters from the end node perspective.

To the authors’ best knowledge, most works used computer

simulation only and did not really consider an overhead needed

for LoRa gateways to update CP on end devices. Except

for [10], none of the above mentioned have been dealing

with duty-cycle limitations and an efficient way to transfer

a control plane data from a network server to an end device

or a mathematical formula to find a proper timing when to

update end node (EN) configuration. This paper is focused

on a proposal of a reliable LoRa network architecture using

LoRa@FIIT and STIoT protocol [11] with ensured quality

of service (QoS) using an efficient distribution of adaptive

communication parameters.

II. A DESIGN OF SCALABLE AND RELIABLE IOT

NETWORK

A typical LoRa architecture consists of several end nodes

(EN), wireless access points (AP), also called gateways, and a

central point of management called a network server (NS). End

nodes are usually embedded devices with ability to measure

or evaluate certain characteristics and send them via LoRa

technology. LoRa frames are received by single or multiple

APs in the node’s surrounding. A NS controls network traffic

and is responsible for a duty-cycle computation, communica-
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tion parameters selection, and a most adequate AP selection

in case a message requires an acknowledgement and had been

received by multiple APs. For tasks like device addressing,

encryption, and a message acknowledgment, a link layer

protocol is required. The most popular and widely spread

protocol is LoRaWAN [12]. LoRaWAN encrypts messages

using AES-128 algorithm, which was not designed to be

used in IoT devices and can be difficult to implement on

memory and energy constrained nodes. To support a number

of features, a LoRaWAN header is quite complex. For 1 B

of useful information a device sends 29 B overhead [1], [12].

The protocol was also not designed with QoS in mind and

is impractical to send an emergency message. LoRaWAN

networks use Adaptive Data Rate (ADR) to update commu-

nication parameters of end nodes if required [12]. The ADR

algorithm simply compares the average RSSI value (computed

from N latest measurements) with a predefined threshold [11],

[12]. If the value is below or above this threshold, a downlink

message is scheduled and sent to the end node during the next

uplink message.

A. Overcoming Drawbacks of LoRaWAN Protocol Design

LoRa@FIIT is a link layer protocol created to overcome

drawbacks of LoRaWAN protocol stack. It was not designed

to support roaming, so we need to make sure that owner of the

network is also owner of the devices, which can be considered

a disadvantage when compared to LoRaWAN. However, not

all use cases require use of roaming and LoRa@FIIT was

designed to provide more efficient communication for such

scenarios [11].

On the other hand, LoRa@FIIT has some advantages over

LoRaWAN:

1) It uses optional acknowledgments for sent messages;

thus, it is not mandatory to open a receiving window

for an EN after message sending.

2) It uses XXTEA algorithm for encryption, which needs

smaller blocks (64-bit alignment) and was designed for

IoT devices with memory constraints in mind.

3) It offers more energy-efficient communication using

shorter headers compared to LoRaWAN, since for 1 B

of payload there is only 12 B of overhead. This leads to

approximately 42% less battery and duty-cycle usage.

4) It uses sequence numbers to achieve reliable delivery.

Also the NS can utilize this numbers to evaluate a

pseudo-link quality for a specific device.

5) It has a built-in mechanism for QoS support, called

emergency message, which must be acknowledged and

is transmitted using the maximum power.

LoRa@FIIT differentiates several message types. There are

register messages sent during initial EN registration process,

hello messages which serve as a connection keepalive and

health check mechanism, already mentioned emergency mes-

sages used for critical information transfer, and data mes-

sages used for regular data transfer. Register and emergency

messages are sent using full transmission power to ensure a

successful delivery.

LoRa@FIIT networks do not use Message Queuing Teleme-

try Transport (MQTT) message broker for communication

between APs and NS in comparison to known open-source

LoRaWAN implementations [13]. It uses STIoT (Secured TCP

for IoT) protocol [11]. Rather than using subscriber-publisher

model, it focuses on reliable and secure information exchange

between APs and the NS. This architecture is simple to deploy

as it is client-server based.

Both LoRa@FIIT and LoRaWAN are ALOHA-based pro-

tocols and do not have any collision detection or avoidance

mechanism. This responsibility is transferred from end nodes

to network server or even APs [10].

When updating a selection algorithm on an end node,

the energy efficiency must be considered. Many IoT devices

have very simple firmware implemented and adding additional

overhead, when proper SF and power must be selected and

statistical model updated, could lead to higher power consump-

tion.

B. Effective Selection of Communication Parameters

Current implementations of communication parameters se-

lection (CPS) are mostly based on ADR algorithm [13]. As a

research have proven, it performs not very well when number

of devices is increasing [10], [14]. It also strongly depends

on threshold values that has to be precalculated or updated

according to results from observations. These values are also

globally set in the current implementation of the LoRa@FIIT

network server [15].

We propose a more modern approach suitable for a dynamic

environment, which is exactly the case for LoRa devices

supporting a mobility. The network server algorithm is based

on Thompson Sampling with Switching Environments. The

algorithm was primarily developed as a RL technique to solve

a Multi-Armed Bandit Problem (MABP), well-known from

a recommendation process. It performs well in case of CP

selection according to performed computer simulations [16]

along with Upper Confidence Bound (UCB) [9].

These algorithms are suitable for a selection of CPs (combi-

nation of SF and transmission power, where lower values are

preferable) when a success of a message delivery or signal

strength are not predefined. However, we cannot let the end

nodes simply select these parameters. There are two main

reasons for this. A statistical model, which both algorithms are

based on, has to be constantly updated using RSSI, SNR or

Sequence Number values, which are not known to end nodes.

Also, energy consumption comes to mind when considering

such a solution. All the IoT devices have less memory,

computational power and have a limited power supply, and

are not ready to select parameters with limited knowledge of

a network state.

Another option is to let a NS maintain a statistical model for

EN and AP and send it only when the environment changes or

a link quality has been degraded. ENs are responsible only for

CP selection based on the updated statistical model. The main

problem of the proposed solution is maintaining this model on

ENs. The model is easily updated on NS using data from APs



(SNR, RSSI and Sequence Number). SNR and RSSI are used

to determine a channel quality and Sequence Number serves

as a mechanism for early detection of link congestion (missing

values) or signal loss for certain ENs.

MABP algorithm calculations are based on provided reward

when a certain arm (CS selection in our case) is pressed

(chosen) by a bandit (device). Due to duty-cycle limitations,

it is not possible to provide immediate feedback to ENs after

an uplink message has been sent. This is a reason, why we

need to modify and maintain statistical model for each node

and determine a moment in which it needs to be updated.

The proposed statistical model consists of spreading factor,

power and a probability of successful packet delivery when

using combination of both parameters. It is stored in the JSON

format and could be encoded to base64 string or even BSON

(Binary JSON) to minimize the size of downlink messages.

When a significant change occurs in a network, a model

intended for certain EN or AP has to be updated, a NS

schedules a downlink message with the updated model and

sends it during the next opportunity (immediately for AP, after

the next uplink message for EN). During an initial device

registration, a statistical model of AP that received the message

is sent to the device.

C. Ensuring Quality of Service

LoRa@FIIT protocol has a built-in mechanism to ensure

QoS and optional acknowledgement. There is no need for a

device to open a receiving window when no acknowledgment

from network server is expected. However, there are some

messages that require acknowledgement. Message acknowl-

edgement can vary depending of application needs. This is

also an advantage, because non-critical systems do not need

their hello messages to be acknowledged by the NS.

One example of critical communication is an emergency

message. It is sent using maximum transmission power to

make sure it is received by one or more nearby APs. This

special type of message also ensures QoS, but only on ENs

[11].

To the authors’ best knowledge, there is no implementation

of QoS on other network components, such as APs or NS. If

the message is not prioritized on each component, the QoS

is not ensured at all. Therefore, we propose a priority queue

to be implemented in the wireless access point. Its aim is to

handle messages from the priority queue prior to any other

message type, as presented in Fig. 1.

Fig. 1. Separated queues dependent on incoming messages types.

Another technique which might be considered a bad practice

for QoS is the fact that a network server waits predefined time

in seconds for another LoRa packets to arrive. The reason

behind this is a duty-cycle limitation on APs (also called

gateways or concentrators). The network server also manages a

duty-cycle of APs. It waits for replicas of the received message

to select an AP with the highest duty-cycle available, even if

it was received only by a single AP, which is unknown to

network server until the waiting timer expires. This leads to a

delay, which is not tolerated in QoS ensured environment.

We assume there will be no waiting timer for the emergency

queue, as it is of a high importance. If an emergency message

is received by the network server, it does not wait for other

packets to come. It immediately processes the message and

send it to the AP from which the message originated.

III. NETWORK EVALUATION USING LOAD TESTS

To test our proposed solution, we have designed the network

architecture presented in Fig. 2. Both physical and simulated

devices are present in this architecture. The devices have

been divided into three groups. Groups A and B consist

of simulated end nodes and access points. However, main

difference between these groups is a network delay. The fact

that LoRa messages could be decoded by every single access

point in the nodes’ range is taken into account. As a result, the

network server should wait for any other duplicate messages

to properly select an access point with the highest duty-cycle

available. A network delay is simulated by connecting to a

remote VPN server to ensure the traffic from group B will

come later than packets from Group A.

We also need physical devices to compare energy efficiency

with the currently implemented LoRa@FIIT library on end

nodes [17]. We use the nodes based on 8 MHz ATmega328P

processor, powered by 3.3 V LiSOCl2 battery. The selected

power supply is preferred for long-life (several years) ENs,

because it has a very low discharging rate, less than 1%

per year. A RFM95W LoRa communication module is also

used. To simulate a heart-rate measurement a MAX3015

particle-sensing board is used rather than heart-rate monitoring

Fig. 2. Proposed architecture for evaluation of network reliability and
scalability.



sensor MAX30101. However, it is sufficient to simulate the

measurements and drain a battery power, for the scenario to

be more realistic.

Our real-world LoRa AP in group C is based on Raspberry

Pi 3 model B and iC880A concentrator and connected to the

Internet. To test the scalability of the proposed solution, we

use a single LoRa@FIIT NS implemented in Java. We plan

to register thousands of simulated LoRa ENs and hundreds of

APs to simulate the situation which might occur during this

decade.

In a real-world scenario, there would be interference and

packet collisions. In our simulated environment, a collision

occurs on APs when two ENs transmit using the same frequen-

cy and the same SF at the same time. Interference and signal

loss during a movement of patient wearing a sensor device

are simulated by pseudo-randomly decreasing SNR values of

received packets on APs.

At the time of writing this paper, we have successfully

deployed our own LoRa@FIIT network with 10 ENs and 1

AP. We are now collecting data from stationary (not moving)

nodes. One of them has a MAX30105 [18] sensor connected.

Other nodes just simulate the process of heart-measuring by

generating pseudo-random sensor-measured values and calcu-

lations based on the heart-rate calculation algorithm currently

implemented in the library [18].

At this state, we are currently developing a console appli-

cation written in Python to simulate a daily routine of ENs.

The application is heavily inspired by the LoRa@FIIT library

[17]. It simulates the functions of both ENs and APs.

IV. CONCLUSION

One of the most promising technology for IoT devices

communicating over long distances with minimal power con-

sumption is LoRa. The potential of this technology could

be lost when not handling with care. An increasing number

of connected devices, duty-cycle limitations, and unoptimized

communication parameters selection threaten a real-world de-

ployment with thousands of connected devices.

Based on the work of other researchers in this field, we

used a network-wise statistical model for each network device

maintained by a NS using information gathered from APs.

ENs acquire this model during a registration process and use

it as a knowledge base for optimal communication parameters

selection. The model is further updated by NS when signif-

icant network changes occurs. As a channel selection based

on statistical model can be energy-consuming, we intend to

test the process of communication selection in a real-world

scenario using ATmega328P based ENs.

For evaluation purpose, we have proposed a network archi-

tecture consisting of three groups of devices. In group A, there

are only simulated devices with direct Internet connection.

Group B also consists of simulated devices; however, they use

slower VPN connection to provide higher latency than group

A. The last one, group C, consists of real ATmega328P-based

nodes powered by batteries.

In the future, we plan to implement modified Thompson

Sampling and Upper Confidence Bound on the network server

to compare the results with the currently implemented Adap-

tive Data Rate algorithm. There is also a possibility to choose

not only between Spreading Factor and transmission power,

but also using different frequencies. This can lead to higher

required maintenance for the statistical model in compensation

for higher throughput or collision-free communication.
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