
Simplifying Low-Power SoC Top-Down Design Using

the System-Level Abstraction and the Increased

Automation

Dominik Macko∗, Kataŕına Jelemenská, Pavel Čičák

Slovak University of Technology in Bratislava, Ilkovičova 2, 84216 Bratislava, Slovakia

Abstract

Since power is the key aspect in modern systems on chips, many power-reduction
techniques are adopted in the design process, mostly applied through power
management. Its standard specification lacks the abstraction required by com-
plex designs and therefore becomes difficult and error-prone. In this work, higher
abstraction is introduced into the power-management specification and it is in-
tegrated with the functional model of the system. It simplifies the specification
approximately 16.8 times and enables the automatic generation and verification
of the equivalent standard specification. The error-prone nature of the power-
management specification is thus alleviated and the difficult verification process
is relieved.

Keywords: high-level synthesis, low power design, power management,
system-level specification, verification

1. Introduction

The power consumption is a great concern for hardware systems developers
mainly due to increasing power density in systems on chips (SoC). Therefore,
power must be dealt-with during the whole design process, usually by utilizing a
so-called power management. However, it complicates the already too complex5

design process even more, and therefore abstraction and automation must be
used to cope with the complexity (also to increase the productivity). The elec-
tronic system level (ESL) abstraction slowly becomes the design starting point
in the industry and several methods have been developed (e.g. [1, 2]) to also
raise the abstraction level for adoption of power management into the design.10

However, they are either too dependant on design reuse, use too much lower
level details for specification, or do not provide sufficient automation.

∗Corresponding author
Email address: dominik.macko@stuba.sk (Dominik Macko)

Preprint submitted to Integration, the VLSI Journal May 28, 2018

For the final version refer to: 

Dominik Macko, Katarína Jelemenská, Pavel i ák, Simplifying low-power SoC top-down design using the system-level abstraction 

and the increased automation, Integration, Volume 63, 2018, Pages 101-114, ISSN 0167-9260, 

https://doi.org/10.1016/j.vlsi.2018.06.001. 

(http://www.sciencedirect.com/science/article/pii/S0167926018300221)



This paper presents a new low power systems design methodology, which
eliminates weaknesses and builds up on the strengths of the existing methods.
It integrates the power-management specification directly into the functional15

model of the system at the ESL (in SystemC) and uses high-level synthesis to
automatically obtain the standard power-managed register-transfer level (RTL)
model of the same system. The simplified abstract specification makes the de-
signer’s input more efficient (approximately 16.8 times) and the automatically
synthesized RTL model enables more accurate design analysis. This methodol-20

ogy is enhanced by automated verification processes, which drive a designer to
the correct and complete specification.

This paper is organized as follows. The next section (Section 2) provides
a deeper background and motivation for our research. In Section 3, the state-
of-the-art in the area of ESL-based power management is described. Section 425

provides an overview of the proposed low-power SoC design methodology along
with a description of the utilized new methods of abstract power-management
specification and power-management high-level synthesis. Before the conclusion,
the experimental results (Section 5), illustrating the usefulness of the method-
ology, and comparison to related works (Section 6) are presented.30

2. Background

In order to reduce power consumption, one must understand what factors
influence the power. The total power in CMOS (Complementary Metal-Oxide
Semiconductor) technology is a function of switching activity, capacitance, volt-
age, and transistor physical properties [3]. Formally, it is expressed by35

P = PSW + PSC + PL (1)

where P is the total power, PSW is the switching power, PSC is the short-circuit
power, and PL is the leakage power. The leakage power is also called the static
power. The switching power together with the short-circuit power are referred
to as the dynamic power (PD). Components of the dynamic power are defined
in the following equations.40

PD = PSW + PSC (2)

PSW = a.f.Ceff .V
2

dd (3)

PSC = ISC .Vdd (4)

In these equations, a represents the switching activity, f is the switching fre-
quency, Ceff is the effective capacitance, Vdd is the supply voltage, and ISC

is the short-circuit current. Therefore, the dynamic power can be lowered by45

reducing switching activity and clock frequency (affecting performance), or by
reducing capacitance and supply voltage. Leakage power is a function of the

2



supply voltage, the switching threshold voltage, and the transistor size. It is
dissipated continuously, because of the leakage current, and thus design tech-
niques (such as enabling of powering-down the circuit when not used) must50

be used to reduce it [3]. All of these factors are substantially used to reduce
power in modern SoCs. Based on which power-affecting factor is targeted, vari-
ous power-reduction techniques have been developed. The following subsection
summarizes the most popular techniques and their standard application in the
design.55

2.1. Power-Reduction Techniques Application

The existing power-reduction techniques can be divided into three categories:

• Circuit-optimization techniques – This category contains techniques that
change physical parameters of the designed circuit (e.g. structure and
size), such as logic restructuring, transistor resizing, pin swapping, or60

multiple supply voltages.

• Power-management techniques – These techniques utilize a dynamic power
management. It enables the device to temporarily switch the operating
mode in order to save the energy. Some portions of the device can stop
its operation, isolate the spreading of the signals, adjust the voltage or65

frequency, or even can be powered down. These techniques include clock
gating, operand isolation, substrate biasing, voltage and frequency scaling,
and power gating.

• Architectural techniques – This category is a hybrid one containing rather
the architectural choices enabling other power-reduction techniques to be70

applied. These techniques include, for example, memory or bus segmen-
tation and hardware acceleration.

Since the system power highly depends on the used implementation technology,
it is coupled with the physical level of the design. However, hardware designs are
too complex at such a low level, and therefore the adoption of advanced power-75

reduction techniques (working with multiple voltages) would be very difficult
and error-prone. It would require full-chip functional verification, which would
be unbearable (in terms of time). In order to deal with design complexity
and to reduce the number of design re-spins the IEEE standard for design and
verification of low-power integrated circuits [4] has been developed (commonly80

known as UPF – Unified Power Format). There is another widely used standard,
known as CPF (Common Power Format) [5], which has similar capabilities to
the UPF. However, since these standards are unifying in new versions of UPF,
we focus only on this one. The UPF has offered a clear design flow utilizing
the power-management techniques and enabled RTL (Register-Transfer Level)85

power-aware verification. It contains the constructs for specification of low-level
power-related aspects during the design stage, when mostly the HDL (Hardware
Description Language) modelling is used. In such a way, the whole design (the
functional HDL model along with the UPF power management) can be verified.

3



Electronic system level

Register-transfer level

Logic gate level

Physical level

Abstraction

higher

lower

Details

less

more

Figure 1: Design process abstraction levels.

The key UPF concept is to provide the means for dividing the system into90

power domains. The power domain is a collection of design blocks that always
operate at the same supply voltage level. UPF enables the designer to specify
which blocks are grouped into the power domain, what voltage levels the power
domain can operate at, what the power-down condition for each power domain
is, where the isolation cells and level shifters should be used, and so on.95

However, the use of this standard is still rather complicated (error-prone
and time-consuming) especially in modern SoC designs that are becoming more
and more complex. To reflect the current trend of adopting more-abstract level
above the RTL [6], the so-called electronic system level (ESL), the UPF has
been updated to the version 3.0 [7]. It enables to specify power intent and100

verify it in context of IP blocks (Intellectual Properties) in the ESL model. It
standardizes the power model, in which the designer can specify power con-
sumption of an IP in various power states. The IP power characterization way
is, however, outside the scope of this standard. For accurate power analysis,
these data can be obtained from the previous implementation of the IP block,105

and therefore such a method is highly dependent on the design-reuse concept.
Although an algorithmic model can be synthesized into IP block based model
(with known power characterization) and UPF 3.0 then used for power manage-
ment, it complicates the top-down design process and limits flexibility to only
pre-designed IP blocks. Moreover, the specification of power management (e.g.110

power-supply networks, power-management elements, or power switching) does
not correspond to this abstraction level (i.e. it uses too low-level details). The
next subsection introduces the ESL-based design and problems of integrating
UPF in such a design process.

2.2. System-Level Design115

In the top-down design process utilizing the ESL, the order of abstraction
levels is illustrated in Figure 1. At the highest abstraction level, the most wide-
ly used modelling approaches are based on C or C++ languages for system
description (SystemC [8] is the most popular along with its TLM extension –
Transaction Level Modelling), because they can be used for both algorithmic120

and architectural modelling. The top-down transitions between the abstraction

4



Table 1: Overview of the Selected System-Level EDA Tools

Tool Vendor Language
Power

management
High-level
synthesis

Intel Docea Power
Simulator [9]

Intel Corporation
(DOCEA Power)

TLM Yes No

Stratus [10] Cadence Design Systems C/C++/SystemC Clock gating Yes

Catapult [11]
Mentor Graphics
(Calypto)

C/C++/SystemC Clock gating Yes

Platform
Architect [12]

Synopsys SystemC/TLM No No

Synphony C
Compiler [13]

Synopsys C/C++ Clock gating Yes

Vista [14] Mentor Graphics SystemC/TLM No No
Vivado Design
Suite [15]

Xilinx C/C++/SystemC Clock gating Yes

levels are achieved through the synthesis processes – high-level synthesis, logic
synthesis, and place and route processes. The development process is nowadays
usually accelerated by the use of various EDA (Electronic Design Automation)
tools for synthesis or verification. The RTL and lower levels, along with the125

transitions between these levels, are well-supported by such tools in all aspects.
Regarding the ESL, several EDA tools enable the system architecture defini-
tion in the SystemC/TLM form, or enable capturing the functionality in the
C/C++/SystemC algorithmic manner. Some of them support even the high-
level synthesis. The best-known of these tools are summarized in Table 1. These130

tools promote the easier use of the ESL in the design process. At first, the ESL
was adopted in the industry mainly for verification purpose (e.g. virtual proto-
typing). Higher abstraction enables faster verification of the functionality. The
verified ESL model further serves as a golden model for equivalence checking
with the more complex RTL implementation model. However, the advances in135

high-level synthesis in the modern EDA tools enable the adoption of ESL as an
implementation starting point. It means that the RTL model is automatically
generated from the ESL model, according to some predefined constraints. It
reduces the number of human errors in the design and shortens the verification
time. Moreover, the automated high-level synthesis enables to get the results140

of more accurate design analysis at the RTL sooner, and thus it enables to find
the right trade-off among multiple parameters (power, performance, area) much
faster.

As shown in Table 1, SystemC has basically become a standard for ESL
design. The analysed high-level synthesis tools do not offer much power-man-145

agement support (besides simple clock gating or memory architecture selection).
On the other hand, the power-management capabilities of Intel Docea Power
Simulator are highly dependent on design reuse; therefore, it is not suitable for
the top-down design process. The abstraction of the UPF power-intent spec-
ification is not sufficient for the ESL (i.e. it includes low-level details, such150

as power-supply networks or power-management elements) and its ESL-based
power modelling is too much dependent on design reuse (to obtain power values

5



for accurate power-analysis results). However, if the power-management speci-
fication is omitted at the ESL, its introduction in the automatically synthesized
RTL model represents an intrusion that would require enormous manual ef-155

fort, and thus getting the power architecture right would take too much time.
Moreover, a multi-parameter trade-off achieved by a high-level synthesis EDA
tool would be disrupted. Therefore, the power management should be adopted
from the beginning of the design process and thus an extension of the stan-
dard low-power design flow is needed in order to utilize the advantages of the160

ESL (concise and less error-prone specification, faster verification). An inte-
gration of the new design-automation techniques into such a flow should result
in faster low-power SoC design process with fewer errors. Some ESL-based
power-management methods have already been developed, as described in the
following section. However, they lack the required abstraction and automation.165

Therefore, we propose a new low-power SoC design methodology, extending the
standard low-power design flow to the system level, combining strengths and
eliminating weaknesses of the current methods.

3. Related Works

The ESL power management research area has gained attention in the past170

few years. Several published research approaches are focused on the extension
of the power-management specification up to the system level.

Mbarek et al. [16] have proposed a framework enabling the exploration of
different power architectures at the transaction level (a part of the system level).
It augments an existing SystemC/TLM model with abstract UPF concepts,175

which are used for ESL simulation. The augmented ESL model then serves
as a reference model for the RTL implementation, which is manual and thus
error prone. It has been further extended by Affes et al. [1] to incorporate
clock management. The proposed framework is mainly targeted towards TLM
power estimation. The power consumption of the system components has to180

be already known and its introduction into the design represents an additional
manual effort. Other disadvantages of this approach include the fact that the
architecture exploration does not take into account other important parameters,
such as area or performance. Also, the power-management is specified separately
and using the language and style different from the functional specification. At185

the system level, it would be more appropriate for designers to use the same
language for all aspects of the system specification.

Mischkalla and Mueller [2] have proposed a SystemC-based virtual prototyp-
ing approach capturing power intent at the ESL. The used specification method,
extending UPF concepts to the ESL, includes abstract specification of voltage190

relationships, operating conditions, TLM power states, and so on. The approach
is primarily focused on modelling power intent in temporal decoupled simula-
tion. The authors extended power-domain UPF concept in such a way that
they mapped each power domain to one clock domain. Thus, the components
in a power domain must always have the same supply voltage state as well as195

the same clock frequency. The COMPLEX framework, proposed by Grüttner

6



et al. [17], represents yet another virtual prototyping approach. It enables to
evaluate different power strategies at the system level. Such virtual prototyping
approaches are suitable for early power-architecture exploration in top-down de-
sign flows. However, the analysed approaches have similar drawbacks as [1] in200

terms of missing automation towards lower abstraction levels, separated specifi-
cations for functionality and power intent, and omission of the other important
design parameters besides power.

Similarly to [16], Karmann and Ecker [18] have also augmented the ESL
functional model with the power intent model and power data model for power205

estimation. The power intent model, specifying the power management, is based
on the UPF standard concepts. The power data model is created based on
the design reuse. It utilizes the data from lower level power estimations and
technology libraries. Therefore, it is not suitable for top-down design process.
Similarly, Gagarski et al. [19] have proposed SCPower extension of SystemC,210

which integrates power intent specification into SystemC model description and
enables to generate UPF automatically. The disadvantage of these approaches is
that the proposed power intent models contain the information approximately at
the same level of abstraction as the UPF standard, and thus, it is just rewritten
to the standard form. It is not convenient to specify low-level details at the215

ESL specification stage, such as supply ports, supply nets, isolation cells, or
power switches. The ESL methodology should abstract from as many details as
possible and introduce them implicitly during the synthesis of RTL model.

A different approach has been proposed by Xu et al. [20]. It is based
on annotation of components power requirements in various power states, and220

thus it makes ESL power estimation more accurate. The performance data are
analysed during simulation, and the whole system power consumption is calcu-
lated. Although the proposed approach enables to take into account dynamic
power management while estimating power, it cannot model UPF-based power-
management concepts. The automation in the transition to the RTL is missing225

and the equivalence between ESL and RTL power management is difficult to
verify. This approach is convenient for SoC architecture exploration and for
determination of the proper power-management strategy. However, power data
have to be known beforehand; therefore, it is not suitable for top-down design
process. Also, the proposed power annotation uses XML-based information,230

and thus the language and style is not consistent with the functional design,
captured in SystemC.

Similar approach is used by Lebreton and Vivet [21] and Bouhadiba et al.
[22]. The approaches also utilize the ESL power modelling, enabling faster sim-
ulation and different power-architectures exploration. In these methods, the235

components power information has to also be manually annotated in the ESL
model (either data-sheets or RTL estimations are used). The proposed power-
management modelling approaches are based on power-state models; otherwise,
they are not based on the standard UPF concepts. It complicates the verifica-
tion of the equivalence between ESL and RTL power management. In addition240

to the power-state models, Bouhadiba et al. [22] have proposed the use of traffic
models enabling to compute a more-accurate power profile of the components.

7



It is combined with the temperature-aware simulation, and thus it enables the
exploration of a power-management policy effect on chip temperature and func-
tionality. However, the traffic models provide additional overhead (manual an-245

notation) and the resulted accuracy is questionable compared to the RTL design
analysis (including the temperature). There are other ESL approaches, which
can be used to explore power architectures but are not based on the standard
UPF concepts, such as those proposed by Keiser et al. [23], Streubühr et al.
[24], and Hsieh et al. [25]. The missing automated transition and complicat-250

ed verification between ESL models and lower-level models are their greatest
drawbacks.

Ahuja et al. [26] have presented an approach, which focuses on high-level
power estimation based on statistical regression power models. At lower levels,
the proposed method uses ESL simulation traces to estimate power. The power255

reduction at the system level is focused on the clock-gating technique. However,
the use of clock gating is manually annotated in a form of macro, directly in
the C source code. Based on the C-based specification, the high-level synthe-
sis tool implements the clock gating cells in the generated RTL model. The
drawback of this approach is that a designer has to manually specify the pre-260

cise location of clock gating, which complicates the system-level specification.
Moreover, the specification method does not include other usable and effective
power-reduction techniques, such as power gating or voltage and frequency scal-
ing. A similar approach utilizing the high-level synthesis is proposed by Qamar
et al. [27]. The proposed LP-HLS methodology enables to automatically gener-265

ate CPF commands, required for power gating (referred to as power shut-off),
based on annotations in the SystemC model. The power is analysed in the syn-
thesized model at the RTL. This is a promising approach; however, the used
ESL specification method uses rather RTL perspective of power management.
For example, a designer has to specify shutoff and isolation conditions. Such270

information is then just rewritten in a CPF style. It would be better to use the
system-level perspective of what needs to be done (e.g. power-down the block),
not how (e.g. isolate the block and then activate the power switch).

Besides the ESL-based power management, there is a significant focus on
system-level power estimation in the research community, for example, Ko-275

rnaros [28], Giammarini et al. [29], Greaves and Yasin [30], or Rigo et al.
[31]. The developed power-estimation methods enable the architecture explo-
ration, which helps to select the most power-efficient system architecture. The
energy consumption of the individual monitored elements also needs to be man-
ually specified. If this information is missing, the predefined default values can280

be used in some cases. Since these methods do not contain the constructs for
power management, the ESL power-management specification is not support-
ed, i.e. different power-management policy cannot be explored. The result is
that if the power management is introduced into the design at the lower levels,
the obtained ESL power estimation does not correspond to the actual power285

consumption of the power-managed SoC.
Based on the analysis of the existing methods and approaches, we have i-

dentified their advantages and drawbacks. According to our knowledge, there

8



has not yet been published any approach targeting a combination of existing
methods to eliminate their weaknesses (e.g. insufficient abstraction, missing290

automation, insufficient verification). Therefore, we have decided to propose
such a solution. A new ESL-based design methodology combining the strengths
of the existing approaches could make the low-power SoC design process more
efficient. The standard-based abstract system-level power management can be
inspired by [7, 16, 2]. If the concepts of power management are the same at both295

abstraction levels (ESL and RTL), the equivalence is verified much easier. The
unification of power and clock management, as proposed in [1, 2], would simplify
the specification. Generation of a fully standardized (UPF) power managemen-
t at the RTL, as used in [18, 19, 9] (improved by a higher abstraction and a
complete automation), would ensure the compatibility with the existing EDA300

tools. The use of high-level synthesis in the power-architecture analysis process
(similarly to [26, 27]) should provide better trade-off (performance, power, and
area) and more accurate analysis. Such an approach, exploiting more automa-
tion, will also reduce the possibility of human errors. The RTL implementation
stage will be achieved more quickly, and therefore a more mature RTL verifi-305

cation process could start earlier. The abstract power management should be
easier to understand; thus, even the designers not familiar with the details of
power-management techniques should be able to design for low power. We have
developed such a methodology, which is described in the remaining part of this
paper.310

4. A New Methodology for Low-Power SoC Design

As a result of the analysis, we have specified the following requirements for
the new design methodology.

1. The design process should start at the system level of abstraction, in order
to deal with the complexity of modern designs.315

2. The specification at the system level should be as simple as possible, in
order to avoid specification errors, since there is no reference model against
which it could be verified.

3. The application of various power-reduction techniques into the design
should be unified, in order to simplify their adoption.320

4. The errors should be revealed as soon as possible, in order to avoid difficult,
time-consuming and costly debugging process.

5. The design analysis should be accurate, in order to be able to make the
right trade-off among multiple parameters.

6. The design and verification processes should be automated as much as325

possible, in order to shorten the development time.

7. The manual intervention in the design at later design stages should be
minimized as much as possible, in order to avoid human-errors introduc-
tion.

9



ESL model with 

abstract UPF 

concepts

High-level 

synthesis

Static analysis, 

equivalence checking, 

simulation, ...

Equivalence checking

HDL (RTL) UPF

Synthesis

Place and 

Route

Verilog 

(netlist)
UPF

Verilog 

(netlist)
UPF

Simulation, design 

analysis, logical 

equivalence checking, 

...

fe
e
d
b
a
c
k

Figure 2: The proposed low-power systems design flow.

To fulfil these requirements, the proposed low-power systems design methodol-330

ogy uses a novel design flow (Figure 2), extending the standard UPF-based flow
to the system level of abstraction. The steps of the UPF-based design flow [4]
remains intact; thus, the existing methods and tools can be used at the RTL
and lower levels.

The proposed methodology starts at the ESL, where the standard spec-335

ification model is extended by abstract power-management specification. The
ESL model traditionally goes through the abstraction refinement process, which
clarifies all the functional details. During this process, the equivalence checking
(formal or simulation-based) is usually used to verify that the key functionality
is not changed at respective refinement stages. Power-management specification340

is also participating in the refinement process, during which a designer refines
the ESL power management until it contains all the necessary details. In this
process, the proposed static analysis helps the designer to specify correct and
complete power management. After the ESL model is sufficiently refined, it
is translated to the RTL representation using the high-level synthesis process.345

The high-level synthesis generates the functional model in VHDL or Verilog
(depends on the used EDA tool) and the power-intent specification in UPF.
The proposed equivalence checking is used after the high-level synthesis to ver-
ify that the power intent was not changed during this process. At the RTL,
the existing EDA tools are used to functionally verify the RTL model and to350

analyze the design in terms of power. Based on the design analysis results, the
ESL power-management specification can be changed and the high-level syn-
thesis can be repeated. This enables to explore various power architectures of
the system and find the suitable one.

This methodology is based on the new power-intent specification method355

[32], unifying the functional and power-management design styles. The proposed

10



abstract power management incorporates multiple carefully selected power-re-
duction techniques, suitable for the system level of abstraction. The cornerstone
of the methodology is the novel power-management high-level synthesis process
[33], enabling the design automation. The methodology incorporates multiple360

new verification methods [34], ensuring the correct power-management specifi-
cation. These methods have been further refined regarding the issues rising from
their integration into a single methodology. These aspects are closely described
in the following subsections.

4.1. Power-Reduction Techniques Selection365

The considered techniques are well-known, usually implemented in the cur-
rent low-power designs. Their description can be found in many sources, such as
[3, 35, 36, 37, 38]. This subsection focuses on reasoning behind the selection of
those techniques that are incorporated into the proposed methodology. The se-
lection criteria are mostly based on suitability for the system level of abstraction370

and impact on eventual power consumption.
Clock gating has a high impact on dynamic power consumption. At the sys-

tem level of abstraction, clock signal can be represented by a clock synchroniza-
tion variable. Functionality of this technique can be seen as enabling/disabling
an operation of the whole synchronous block (IP core) of the system. Operand375

isolation prevents the switching of inactive datapath elements. From the sys-
tem level perspective, it can be also seen as enabling/disabling an operation of
the system block, but it focuses on combinational parts not currently needed.
These two techniques can be modelled at the system level by means of a specific
power state, represented by the state variable value. When the block is in this380

state it stops its operation.
Logic restructuring, pin swapping, and transistor resizing are techniques

tightly coupled with lower abstraction levels (logic or physical level). Since
at the specification stage the designer does not know how the system will be
implemented, these techniques cannot be used so early in the design process.385

Moreover, these techniques are mostly automated in the modern synthesis tools.
The substrate-biasing technique depends on the individual transistor type and
its threshold voltage. This technique can be used at the system level by means
of another specific power state – while the block is in this state, the bias is ac-
tivated, the threshold voltage is raised, and thus the leakage power is reduced.390

However, this technique loses its effectiveness in smaller technologies (below 65
nm) because of its area requirements, and thus it is omitted in our methodology.

The voltage-scaling technique switches among multiple supply-voltage levels.
At the system level, it is not suitable to specify such low-level details as the
voltage-switch elements. However, the state variable of the individual block395

can reflect also the supply-voltage level of that block. When the state variable
changes its value, the block adjusts the supply-voltage level. Similarly, the
multiple supply voltages technique can be used. The difference is that the state
variable reflecting the supply-voltage level of the block is not changing in time.
This means that the techniques working with the supply voltages can be used400

at the ESL, but in a highly abstract form. The frequency-scaling technique is

11



usually coupled with the voltage scaling. Similarly as the previous techniques,
when the block state variable, allocated to this technique, changes its value,
the operation speed of the block is adjusted. Power gating with or without the
state retention is a powerful leakage-power reduction technique that powers-405

down the currently unused blocks. Since this technique also basically works
with supply voltage, this concept can be modelled by means of the block state
variable mentioned earlier. When the block state has to be retained, different
value of the block state variable has to be used.

As mentioned in Section 2, memory or bus segmentation and hardware accel-410

eration techniques are rather micro-architectural choices for individual IP cores
enabling other power-reduction techniques to be used inside these blocks. They
imply the power management to have hierarchical nature, which enables the
local power management to be used inside the system blocks.

The proposed power-intent specification is based on the power managemen-415

t, which is abstracted from the unnecessary details. It is augmented by the
techniques that were not originally developed as power-management techniques
(clock gating, operand isolation, multiple supply voltages) but can be modelled
by the power-management constructs. Thus, the proposed system-level power-
management specification supports the clock and power gating, voltage and420

frequency scaling, operand isolation, and multiple supply voltages techniques in
a highly abstracted form.

4.2. A new Power-Intent Specification Method

For the specification purpose, the special states (power states) are assigned to
the system blocks and the switching among these states is enabled. In order the425

power management to be efficient, the concept of power domains is supported,
based on the UPF standard. It enables to group together the system blocks
that are always in the same power state. The required power states that are
allowed at the system level are provided in Table 2.

At the system level (specification stage), the designer has to split the sys-430

tem into power domains. Therefore, each system block (component) has to be
assigned to a power domain. If the block is not explicitly assigned to any power
domain, it belongs to the so-called top power domain, i.e. it always operates in
the normal power state. The power domain defines a set of power states, which
the domain (and all the internal blocks) can reach. The power mode of the435

system is then represented by a combination of power states of the individual
power domains. Since it is unlikely for the system to use all possible combina-
tions, a common way is to specify the allowed combinations and thus to reduce
the number of system power modes.

For the integration of the proposed power-management specification, we have440

chosen the widespread SystemC modelling. In order not to disrupt the support
in the existing EDA tools, we have decided to implement the SystemC extension
in a form of C++ library for the power-management constructs, which has
been named PMS (Power-Management Specification). It is intended to be used
alongside the SystemC library. The use of the library follows the rules of the C-445

12



Table 2: Possible ESL Power States
Abstract

power states
Power-state description

normal

The block (or more blocks in a single power domain) operates
at the main supply-voltage level and at the basic operation
speed (frequency). No explicit power-reduction technique is
activated in this state.

diff level#

The block operates at the voltage level different from normal
and/or at the adjusted speed. # represents the ordinal
number enabling the specification of several different levels.
These states enable voltage and/or frequency scaling and usage
of multiple fixed supply voltages in the design.

hold
The block stops its operation but remains powered. This state
implies activation of clock gating and operand isolation power-
reduction techniques.

off
The whole block is powered off. The power gating without
state retention is activated in this state.

off ret
While the block is powered off, the state is retained (state
elements remain powered). This state represents activation of
power gating with state retention.

based libraries – the header file has to be imported by the preprocessor command
include. A portion of this library is illustrated in Algorithm 1.

Firstly, the allowed power states have to be specified. In order to check the
syntax of power states at the compilation time, these are specified in a form
of predefined macros. The number identifying the actual diff level power state450

is passed to the macro as an argument, because it cannot be predefined in a
static way. Since the SystemC is based on C++ language, we can use the class
definition for modelling the power modes and power domains. Both of these
classes use vector of string literals to keep the states specified to be part of this
power mode or power domain. The power mode contains the power states for455

the individual power domains. The number of states in the power mode has to
be always the same as the number of the power domains in the system. The
order of the specified states is significant, i.e. the first state represents the state
of the first specified power domain in the system, and so on. The power domain
class contains the additional vector, called components, to keep the identifiers460

of components assigned to that power domain object. The constructors of these
classes have ”variadic” nature (i.e. they can take variable number of string
arguments, at least one) in order the specification to be scalable. The problem is
that the number of arguments is unknown, and thus this solution can easily cause
memory violation. Therefore, we check for the last argument to be NULL. This465

is the constraint the designer has to keep in mind. To alleviate this constraint,
we created additional macros that serve as constructors for these two kinds of
objects (PM and PD macros). These macros take the arguments and call the
actual constructors with additional NULL argument at the end of the argument

13



Algorithm 1: A Part of Power-Management Specification Extension
Library

#define NORMAL ”normal”
#define DIFF LEVEL(i) ”diff level”#i
#define HOLD ”hold”
#define OFF ”off”
#define OFF RET ”off ret”

#define PM(...) PowerMode( VA ARGS , NULL)
#define PD(...) PowerDomain( VA ARGS ,NULL)

#define SetLevel(state, voltage, frequency)

static PowerMode POWER MODE(NULL);

class PowerMode
{

std::vector¡std::string¿ states;
public:
PowerMode(const char* state, ...);

};

PowerMode::PowerMode(const char* state, ...)
{

va list args;
va start(args, state);
for (va start(args, state); state != NULL; state = va arg(args, const
char*))

this-¿states.push back(state);
va end(args);

}

class PowerDomain
{

std::vector¡std::string¿ states;
std::vector¡std::string¿ components;
public:
PowerDomain(const char* state, ...);
void AddComponent(std::string component);

};

list. By utilizing these macros, the designer does not have to explicitly provide470

the NULL argument. Thus, the designer has two options of object instantiation
(shown below). PowerDomain objects are instantiated in analogous way.

PowerMode power mode1(OFF,NORMAL,OFF,NULL);

PowerMode power mode2 = PM(OFF,NORMAL,OFF );

14



Note, that by using the macro, adding NULL argument is considered a valid
specification (makes no difference). This is a recommended instantiation style,475

because the designer cannot cause the memory violation (with or without the
NULL argument). Although the power modes can be specified, we need to keep
the current power mode of the system. For this purpose, the global state variable
is created with a static name POWER MODE (in order the high-level synthesis
tool to recognize it). The object in this static variable is also an instance of the480

class PowerMode. Since there are originally no explicit power domains present,
this instance has no states assigned. It is intended to be used in the functional
model to specify changes in the power mode of the system (POWER MODE =
power mode1). The method AddComponent of the PowerDomain class takes
string identifier of some component and adds it to the power domain list. This485

way, the components to power domains assignment is specified and kept. The
SetLevel macro is used for specification of a performance level (i.e. the actual
voltage and frequency values) for the normal and diff level states. The perfor-
mance levels specification is required for detection whether two power domains
operate at the same voltage or frequency levels. It is important for the high-490

level synthesis process, and therefore it has to be verified at the ESL. The actual
voltages are also used for power estimation at the RTL. The ESL specification
prevents the need to modify the synthesized UPF specification. This macro has
three arguments. The first represents the power state – its name, the second
represents the voltage value, and the last is the frequency value. The units can495

be also specified but are not required – defaults are V and MHz.
For illustration of the PMS library usage, we provide a simple case study, in

which a microprocessor (CPU ) is communicating with two memories (RAM1,
RAM2 ) via a memory-management unit (MMU ). The SystemC functional de-
scription of the microprocessor and memory modules has been based on the500

mu0 and ram0 VHDL entities available in [39]. The functionality is for such
a showcase not important; therefore, it is omitted from the example. Only
the power-management aspects are provided in the SystemC/PMS specification
fragment illustrated in Algorithm 2.

Such a specification divides the SoC system into three power domains, name-505

ly PD CPU, PD RAM1 and PD RAM2. Each domain contains one component,
corresponding to its identifier (see Figure 3). MMU is not modelled as a sepa-
rate module, but as a SystemC process of the SoC module (dashed line in the
figure). It is not assigned to any explicit power domain; therefore, it belongs to
the implicit top power domain (i.e. its power cannot be managed).510

According to the specification, the CPU component, as a part of the PD CPU
power domain, can operate in the normal and off power states. RAM1 can op-
erate in the normal state and its operation can be stopped in the hold state.
RAM2 can also operate in the normal state, but it can be also powered-down
with its state retained (off ret). There are four power modes specified: PM1515

for normal operation of each component (i.e. no power-reduction technique is
activated), PM2 for operation of CPU and RAM1 (RAM2 is powered down –
i.e. power gating with state retention is activated for this component), PM3 for
operation of CPU and RAM2 (RAM1 is in hold in this mode – i.e. the clock

15



Algorithm 2: A Case-Study System Specification Example Using the
SystemC/PMS Library

#include ”systemc.h”
#include ”pms.h”
SC MODULE(SoC){

//power-management declarations
PowerDomain PD CPU,PD RAM1,PD RAM2;
PowerMode PM1,PM2,PM3,PM4;
...//part of the system omitted
SC CTOR(SoC){

//components to power domains assignments
PD CPU.AddComponent(”CPU”);
PD RAM1.AddComponent(”RAM1”);
PD RAM2.AddComponent(”RAM2”);
//power-domains states specifications
PD CPU = PD(NORMAL,OFF);
PD RAM1 = PD(NORMAL,HOLD);
PD RAM2 = PD(NORMAL,OFF RET);
//power-modes specification
PM1 = PM(NORMAL,NORMAL,NORMAL);
PM2 = PM(NORMAL,NORMAL,OFF RET);
PM3 = PM(NORMAL,HOLD,NORMAL);
PM4 = PM(OFF,HOLD,OFF RET);
//initial power mode specification
POWER MODE = PM1;
//performance-levels specification
SetLevel(NORMAL,0.8,10);
...//port mapping and processes omitted

}
};

gating and operand isolation are activated for this component), and PM4 for520

a stand-by operation (CPU is powered down, RAM1 is stopped, and RAM2
is also powered down but the state is saved – i.e. power gating without state
retention is activated for CPU, clock gating and operand isolation are activated
for RAM1, and power gating with state retention is activated for RAM2 ). The
initial power mode of the system is set to be PM1. And finally, the normal525

power state is defined to be powered by 0.8 V with the operation frequency of
10 MHz. The actual switching among power modes is modelled in the MMU
process (not shown in Algorithm 2). When CPU is communicating with RAM1,
the PM2 power mode is assigned to the POWER MODE variable. Analogously,
PM3 is activated when RAM2 is used. And when the processing is finished,530

the system is switched into PM4.

16



PD_CPU

PD_RAM1

CPU 

microprocessor

Mu0

RAM1

memory

Ram0
MMU

memory

management

unit

PD_RAM2

RAM2

memory

Ram0

Figure 3: The abstract architecture of the case-study system.

4.3. Validation of the Specified Power Management

When the power intent is specified, it has to be verified for functional and
structural correctness. However, the proposed specification method does not
model the effect of power management on the system functionality. Therefore,535

functional correctness has to be verified at the RTL using the commonly used
verification tools. At the early specification stage, there are several automatic
verification steps to validate the structural correctness and completeness of the
intended power management. The most crucial problem is to check consistency
between various power-management constructs and consistency of power intent540

with the functional specification. The most basic verification steps comprise
the syntactic and run-time checks. The syntactic checks are achieved using a
C++ compiler, which reveals any syntactic error in the specification. During
this step, the macro-based specification shows its value, because only the prede-
fined abstract power states are valid. The run-time checks utilize the common545

programming verification approach, using conditional statements in the source
code to detect erroneous operation. For example, this step can reveal a redun-
dant assignment of the same power state to some power domain. However, the
run-time checks can be used only during execution time; thus, the ESL model
has to be executable (not always possible at early specification stage). The most550

robust verification step is the proposed power-management static analysis. It
statically analysis the specified power intent and checks whether all the required
data are present. It analyses the relations between power domains and power
modes to detect any inconsistency. For example, it detects if some component
instance is assigned to multiple power domains, if a power state used in some555

power mode is not specified for the corresponding power domain, or if some
power domain does not contain any active power state.

For illustration of the capabilities of the proposed static analysis, the case-
study system from the previous section is used. Since the provided specification
is correct, PM4 is modified according to the code below (the boldfaced text560

represents the change).

PM4 = PM(DIFF LEVEL(1), HOLD,OFF RET );

17



SystemC/PMS ESL

VHDL UPF RTL

Functional 

high-level 

synthesis

Power-

management 

high-level 

synthesis

Figure 4: High-level synthesis process.

In this case, the static analysis would reveal that the diff level1 power state
does not have a performance level assigned. It would also detect that PD CPU is
not allowed to operate in diff level1 according to the power-domain specification.565

Moreover, it would detect that the off state of PD CPU is not used in any power
mode, and therefore it would notify a designer that it is redundant.

Inconsistency errors can cause that the high-level synthesis cannot proceed;
therefore, the static analysis is essential to be run prior to the synthesis. How-
ever, it can also be used as a separate step at early specification stages to drive a570

designer to the correct power-management specification. It must be noted that
the proposed power-management static analysis is not supported by the existing
C++ compilers (in contrast to the syntactic and run-time checks), it requires
an additional verification tool implementing the proposed method. We have
used our experimental tool called PMHLS, which implements all the proposed575

methods described in this paper.

4.4. Power-Management High-Level Synthesis

The specification described in the previous section serves as a starting point
for the high-level synthesis process (manual of automated). It can be divided
into two parts: the commonly used functional high-level synthesis (there exist580

many tools for automation of this process – summarized in Table 1) and the high-
level synthesis for power management. It is clearly illustrated in Figure 4. In the
figure, SystemC/PMS represents a SystemC model with the power management
specified using the proposed PMS library. VHDL represents a functional model
at the RTL level described in VHDL language. It can be described in Verilog as585

well – most EDA tools support both of them. UPF represents the synthesized
power intent in the standard-based format.

During this process, the power-management related information is extracted
from the functional model and augmented with the power-management elements
that are implicitly required for a correct UPF specification at the RTL. The590

proposed power-management high-level synthesis also automatically generates
the power-management unit, which is integrated into functional model at the
RTL. A new entity is created that is required to be manually instantiated in the
top-level entity of the synthesized system functional model.

18



Algorithm 3: Synthesis of Power Intent in UPF

Input: Extracted power-management related information from ESL
specification.

Output: UPF specification.
(1) Power domains creation based on ESL specification.
(2) Supply ports creation based on performance-level assignments.
(3) Creation and connection of supply nets based on abstract power
states.

(4) Creation of power switches based on states influencing voltage
level.

(5) Isolation setting based on power states and power-domains
relations.

(6) Level-shifters setting based on voltage states and domains
relations.

(7) Application of state retention based on off ret state.
(8) Creation of ports states and a power-state table (PST) based
on power modes.

Thus, the power-management high-level synthesis can itself be divided into595

two processes: the UPF synthesis and the PMU synthesis. The UPF contains
the operating part of power management, i.e. the power-management executive
logic. The PMU represents the control part of power management, driving
control signals for the power-management elements. The UPF synthesis steps
are illustrated in Algorithm 3. A close explanation of these steps is provided in600

[33].
However, not all of the ESL power-management information is extracted

from the functional model. The switching between power modes has been di-
rectly integrated into functional model in SystemC; therefore, it is just mod-
ified in such a way to be recognized by a functional high-level synthesis tool.605

This modification represents the change of the POWER MODE variable type to
enumerated, with the power modes identifiers posing as its enumerators. This
ensures the support by the high-level synthesis tool (the enumerated type is
supported in SystemC as well as in VHDL and Verilog). The switching between
power modes at the RTL then actually represents the switching between un-610

signed integer values of the corresponding enumerators. The POWER MODE
value is an input of the PMU, which determines the power mode based on its
binary representation. For clarification, an overview of the synthesized power
management is provided in Figure 5. In VHDL, the original functional mod-
el contains power-management policy algorithm (PMPA) – i.e. decisions for615

switching between the power modes based on some system conditions. The
PMU, also described in VHDL, contains the power-mode determination part
(PMD) and the power-state machine (PSM ). The PMD determines the con-
trol signals based encoding for any input power mode binary representation (a
POWER MODE value). The PSM is then handling the actual transition to620

19



VHDL

PMUFunctional model

PMPA

PMD

PSM

UPF

Power management elements

Power distribution network

Power domain partitioning

Figure 5: The synthesized RTL power management.

Algorithm 4: A Part of the Synthesized Power Intent in UPF

#power switch for PD RAM2 domain
create power switch PD RAM2 SW -domain PD RAM2
-input supply port { vin 0 8 VDD 0 8 net } -output supply port
{ vout VDD PD RAM2 net } -control port { ctrl sig1
PMU/PD RAM2 SW ctrl1 } -on state { state 0 8 vin 0 8 { !
ctrl sig1 } } -off state { state 0 0 { ctrl sig1 } } -ack port { ap
PMU/PD RAM2 SW ack { ! ( ctrl sig1 ) } } -supply set
PD top.primary

#port voltage states
add port state PD RAM2 SW/vout -state { state 0 8 0.8 }
add port state PD RAM2 SW/vout -state { state 0 0 off }

#power-state table
create pst PST -supplies { VDD 0 8 port VSS 0 0 port
PD CPU SW/vout PD RAM2 SW/vout }

add pst state internal1 -pst PST -state { state 0 8 state 0 0
state 0 0 state 0 8 }

such a target power mode by generating correct control-signals sequences for
the power-management elements specified in UPF. The UPF also contains the
power-domains specification and the power-supply network.

There was a quite large UPF file synthesized for our simple case-study system
from the previous sections. However, to illustrate its complexity, we at least625

provide a part of the generated power intent (Algorithm 4). It represents only
the specification of a power switch enabling to power-down the RAM2 memory,
the specification of voltage states of the power-switch output port, and the
specification of the power-state table with one implicitly specified (transient)
power mode of the system.630

A portion of the corresponding PMU design, synthesized in VHDL, is shown
in the code fragment in Algorithm 5. It represents a single when statement
of the PMU transition logic (the trickiest part of the PMU) specifying allowed
transitions from the current power mode to a target mode via a next mode of
the system. These modes are represented by vectors consisting of control-signals635

values for the power-management elements in UPF. The comments in the code

20



Algorithm 5: A Portion of the Synthesized Power-Management Unit
in VHDL
case CurrentMode is

when ”000000” => --(normal,normal,normal)
if (TargetMode=”000000”) then

NextMode <= ”000000”; --(normal,normal,normal)
elsif (TargetMode=”010011”) then

NextMode <= ”000010”; --(normal,normal,iso)
elsif (TargetMode=”000100”) then

NextMode <= ”000100”; --(normal,iso,normal)
elsif (TargetMode=”111111”) then

NextMode <= ”001110”; --(iso,iso,iso)
end if ;

...--other when statements omitted
end case;

provide the abstract meaning of these power modes. iso represents a state in
which the isolation is activated in the domain (in case of the hold abstract power
state or a transient state). Notice that the next mode is either directly the target
mode, or an internal transient mode, generated for the power management to640

operate correctly. This is the last case, in which the target mode is PM4 and
the next mode is an internal mode activating isolation in all the domains. The
synthesized PMU contains 15 such when statements and a single wrong value
in some control signal can damage the system. Therefore, automation of this
synthesis process is really helpful.645

4.5. Post-Synthesis Power-Management Verification

The post-synthesis verification is oriented towards two aspects: satisfaction
of the specification and functional verification. The first aspect is verified by
checking whether the synthesized power management corresponds to the spec-
ification, i.e. whether the designer’s power intent is preserved. The functional650

verification checks whether the system with the integrated power management
functions as specified. It checks whether the power-management elements and
the switching between power states or modes does not cause the system not
to function properly. Since the functional aspects of power management have
not been verified at the ESL, they have to be verified after the high-level syn-655

thesis. The advantage is that commonly used methods and EDA tools can be
used at the RTL. Also, the effect of power management on the system power
consumption is estimated with higher accuracy.

For the verification of the power-intent preservation after the synthesis, we
have proposed a unique equivalence-checking method. It transforms both, the660

ESL power-management specification and the UPF power-intent specification
into a common representation and checks the equivalence. The common repre-
sentation is necessary because the UPF-based power states do not reflect the

21



PMS 

specification

Equivalent?

UPF 

specification

ESL-extracted 

common 

representation

RTL-extracted 

common 

representation

Transformation 

of power states 

to voltage states

Analysis and 

abstraction 

process

Report

Figure 6: Illustration of the proposed equivalence-checking process.

Algorithm 6: An Example of the Generated Assertion in SVA

property PD CPU iso while off;
@(posedge clk)
$rose(DUT.PMU.PD CPU SW ctrl1)
|->DUT.PMU.PD CPU ISO ctrl
throughout ##[0:$] $fell(DUT.PMU.PD CPU SW ctrl1);

endproperty
a PD CPU iso while off: assert property (PD CPU iso while off)
else

$error(”%t: Isolation disabled while powered-off!”, $realtime);

operating frequency. Therefore, the ESL power states are transformed to the
corresponding voltage states (analogously the power modes), what creates the665

ESL-extracted common representation. A quasi-reverse process to the high-
level synthesis is used on the UPF specification, what creates the RTL-extracted
common representation. These are then compared to each other to check the
equivalence. An overview of the equivalence-checking process is illustrated in
Figure 6.670

The power-aware functional verification utilizes existing EDA tools, which
statically check completeness and correctness of the generated UPF specification
as well as the functionality through simulation. To ensure the synthesized PMU
correctly generates the control-signals sequences, the PMU assertions are also
automatically synthesized during the power-management high-level synthesis.675

These assertions enable to check a violation of correct sequences as well as
the functional coverage during simulation. The reported error messages drive
a designer towards the source of an error. Moreover, the provided coverage
measurement notifies the designer what power modes have been verified and
which of them yet needs to be exercised. An example of the generated assertion680

is shown in Algorithm 6. During the simulation, this assertion checks whether
the isolation is enabled while the power domain is powered down. The code is
provided in the SystemVerilog Assertion (SVA) language.

4.6. Methodology Adoption

For designers that are already using the functional high-level synthesis, the685

methodology adoption is really straightforward. The designer should empirically

22



divide the system architecture into power domains at the functional specification
stage. Then, the power states have to be assigned to the domains and the basic
power modes should be specified. Since the abstract power-management speci-
fication does not impact the ESL model function, the designer does not need to690

worry for the functionality to be disrupted. The proposed power-management
static analysis helps to create a structurally correct and consistent specification.
A suitable way to refine the preliminary ESL power-management specification
is to simulate the design. The simulation reveals any gap in the specified power-
mode switching, since the designer can observe the components state. For exam-695

ple, when the designer notices that the state of some power domain is normal
but the internal components are inactive, a power-saving state (e.g. hold or
off ret) should be used for that power domain during such a period. During
the high-level synthesis, the power-management static analysis and equivalence
checking inform the designer if something goes wrong.700

After the synthesis, the synthesized PowerManagementUnit entity is re-
quired to be instantiated inside the top-level functional design entity and the
POWER MODE and clock signals have to be mapped to the PMU. During
functional verification at the RTL, the power analysis takes place and the power-
management effect on the system functionality is verified. This step is a part705

of the current UPF design flow, i.e. it utilizes the existing methods and tools.
After the power analysis, the designer can modify the ESL specification and
repeat the high-level synthesis. The power-management high-level synthesis is
much faster than the functional synthesis; therefore, it is a good practice to
explore various power architectures upon the synthesized system architecture.710

However, if the power-management strategy algorithm or the power modes are
modified, the corresponding functional components have to be resynthesized.
A trade-off between power, performance, and area should be used to select the
suitable system architecture with the respective power management.

5. Experimental Results715

We provide the experimental results divided into three groups. The first
group is focused on usefulness determination of the proposed abstract power-
management specification method, specifically to determine simplification of
the specification compared to the standardized UPF form. The second group
of experiments is focused on verification of the proposed power-management720

high-level synthesis process. It is achieved by verifying the correctness of the
synthesized RTL power management using the professional verification tool.
The last experiment is focused on the case-study system used in the previous
sections to illustrate the proposed methods. In this experiment, we show that
the proposed methodology is usable and that the proposed methods can be used725

for low-power design.

5.1. Simplification of Power-Management Specification

For the evaluation of the proposed methodology, we have generated over ten
thousand ESL power-management specification samples in SystemC and synthe-

23



 

1

10

100

1000

0 2000 4000 6000 8000 10000

S
im

p
li

fi
c
a
ti

o
n

 o
f 

p
o

w
e
r-

m
a
n

a
g

e
m

e
n

t 
s
p

e
c
if

ic
a
ti

o
n

 
[r

a
ti

o
] 

Generated samples 

Figure 7: Comparison of ESL and RTL power-management specification complexity.

sized the standard UPF specifications using the proposed power-management730

high-level synthesis. The goal was to compare the UPF and SystemC power-
intent specification complexity in terms of the number of characters required
for the specification. It roughly represents the time that the designer needs to
manually create the specification. Thus, such a comparison provides an illus-
tration of the simplification, achieved using the proposed power-management735

specification method. To properly determine the simplification, we have scaled
the number of power modes, the number of power domains, the average number
of power states per power domain, and the average number of instances per
power domain in the generated samples. The average values in the third and
fourth parameters were used, because it is unusual to have the same number of740

power states or instances in power domains.
The results of the comparison of SystemC and UPF power-management

specifications are illustrated in Figure 7. The ratio (the vertical axis) is pro-
vided in a logarithmic scale. It represents how many times fewer characters are
required for the ESL power-management specification when compared to the745

RTL one. Thus, it actually represents the specification simplification (complex-
ity reduction). For the generated samples, there was the simplification ratio
achieved up to 521.8 times. In average, the ESL power management is approx-
imately 16.8 times less complex than the equivalent specification in the UPF
form. The minimum of achieved simplification was approximately 2 times. The750

experiment has proven that the use of the proposed ESL power-management
specification is beneficial, because it is less complex for a designer to describe.
Because of its more-concise form, it represents fewer opportunities to introduce
a human error into the specification, and thus potentially shortens the time-
consuming debugging process. Because of the enhanced abstraction used in the755

ESL power-management specification, it is also less complex to understand and
actually use.

To determine which of the generated samples produced the highest speci-
fication simplification, we divided the samples into five groups, each with the
same amount of the samples. The samples were sorted according the report-760

24



Table 3: The Groups of the Generated Samples Based on the Simplification Ratio

Group Power modes Power domains Power states Instances
1 7.49 8.14 4.08 2.75
2 4.75 6.30 3.71 2.27
3 4.37 5.22 3.36 2.86
4 4.49 4.95 2.95 3.45
5 4.29 5.59 2.02 4.02

ed simplification ratio, and thus the first group contains the samples with the
highest ratio and the fifth group with the lowest one. Table 3 reports average
values for the monitored parameters of the samples in the individual groups.
The results show that the highest simplification is achieved when specifying
many power modes and domains, with a high amount of power states. The765

main reason is that the power states, which are specified using only the power-
states macros in SystemC, produce the power-management elements in UPF
(e.g. power switches, isolation, or level shifters). The high dependency on power
modes is observed because the ESL specification contains only the explicit pow-
er modes, whereas the RTL specification also contains the intermediate power770

modes, synthesized to correctly switch between the explicit power modes. The
conjunction with a high number of power domains produces even higher depen-
dency, due to additional power states of additional supply ports in the UPF
specification. The inconclusiveness resulted from the number of intermediate
modes in UPF. With the lowering number, the simplification ratio is dependent775

on the specification of the explicit power modes only. Because of the abstraction
from power-management elements at the ESL, the explicit modes specification
represents a significant portion of the SystemC specification, but only a small
portion of the UPF specification. The same is true regarding the power-domains
specification. The average number of instances in power domains has negative780

impact on the simplification. The main reason is that the method AddCompo-
nent assigns an individual instance to a power domain in SystemC, whereas the
list of instances is assigned to a power domain in a single statement in UPF.
Thus, it takes a higher number of characters to assign an instance to a power
domain in SystemC than in UPF. However, this parameter loses the simplifica-785

tion impact compared to the others (the instance to domain assignment is not
as much significant), when a higher number of power modes and domains are
specified.

5.2. Verification of the Synthesized Power Management

For verification of the synthesized power management, we selected fifteen790

power-management specification samples with various complexities. These sam-
ples were synthesized into the RTL form and verified in the professional verifica-
tion tool Modelsim SE 10.2c. Specifically, we have used its UPF static analysis
capabilities and its power-aware simulation option. For the simulation purpose,
we have created the test-benches for the samples and pseudo-randomly switched795

25



Table 4: The Power-Management Verification on Selected Samples

# PM PD PS/PD I/PD ESL UPF PMU Assertions Coverage[%]
1 2 1 2 3 313 1680 3300 3863 100
2 3 2 2 2.5 500 2706 4452 4749 100
3 3 3 1.67 3 642 2850 4619 3194 100
4 5 3 4 2 643 6035 35205 25912 98
5 3 4 1.75 3 751 4658 8658 9488 100
6 3 4 2.25 3 760 4854 7017 10340 100
7 3 4 2.25 3 813 5678 10094 13433 97.5
8 10 3 3 2 862 5557 63304 17779 100
9 7 4 3.5 2 953 8778 142992 52330 81.1
10 7 5 3 2 1051 9399 131478 45150 96.1
11 10 4 4 2 1090 11605 586303 100721 85.5
12 10 5 2.4 2 1275 7443 199866 48111 89
13 5 5 3 5 1324 9039 107068 43833 91.2
14 3 10 2.2 2 1402 13397 67691 50911 99.2
15 5 10 2.1 3 1939 12232 214122 91620 82.4

between the power modes during the 10 ms runtime. The experiment data are
provided in Table 4. In the left part of the table, which contains the parameters
of the samples, PM denotes the number of power modes, PD is the number
of power domains, PS/PD represents the average number of power states per
power domain, and I/PD is the average number of instances per power domain.800

The right part of the table contains the number of characters for ESL power-
management specification (ESL), UPF specification (UPF ), power-management
unit description (PMU ), and synthesized assertions (Assertions). The last col-
umn (Coverage) reports the measured directive coverage, achieved using the
generated coverage assertions for power modes, power states, and transitions.805

The ESL power-management specification is scaling from 313 to 1939 char-
acters, the UPF from 1680 to 13397 characters, and the PMU description from
3300 to 586303 characters. Thus, the samples provided sufficient specification-
complexity variation. The samples were successfully synthesized and verified
using the described approach with no error reported. It has proven the syn-810

tactical correctness and completeness of the UPF specifications, as well as the
syntactical correctness of the synthesized PMUs and their readiness for func-
tional verification. To achieve 100 % coverage, we would have to use another
stimuli-generation approach than pseudorandom generation, such as directed
tests. During the simulation, the generated assertions were also checking the815

sequences of control signals for power-management elements generated by the P-
MUs. It provides a higher assurance of the PMUs correctness. The summarized
number of characters for UPF and PMU, along with Assertions, is much higher
than the number of characters required for power-management specification at
the ESL (up to approximately 641 times). Therefore, the proposed methodology820

is even more beneficial than reported in the first experiment (comparing only
UPF, without PMU and Assertions). The potential errors, introduced during
the manual description of the PMU and the assertions preparation, are avoided;

26



Table 5: Parameters of the Case-Study System

PM PD PS/PD I/PD ESL UPF PMU Assertions Coverage[%]
4 3 2 1 402 3291 9800 8217 100

Table 6: Power and Area Estimation of the Case-Study System

Total Cell Area Total Power [µW]
without power management 2107.933 99.2
with power management 2324.103 81
Difference +10,26 % -18,35 %

therefore, even much verification time is saved.

5.3. Case-Study System Evaluation825

The usefulness of the methodology is shown using the experimental case-
study system, mentioned in Section 4. For comparison of its complexity to the
complexity of samples in Table 4, we summarize the same parameters of the
case-study system in Table 5. Based on these data, the power-management
specification simplification is quite obvious. Only 402 characters have been re-830

quired for the ESL power-management specification. On the other hand, the
RTL power management has taken 13091 characters (UPF+PMU ). Moreover,
the automatically generated assertions, used in verification, have taken anoth-
er 8217 characters. Therefore, even for such a simple case study, the power-
management specification was simplified 32 times (53 times when including835

assertions) by using the proposed methods.
To show that the proposed methodology can be indeed used for low-power

design, we provide the power-estimation data for the case-study system, gener-
ated by the Power Compiler [40] (version K-2015.06-SP4) and the technology
library NanGate 15nm OCL [41]. The results in Table 6 show that the usage of840

power management resulted in increased area of the system by 10 %; however,
the power is reduced by 18 %.

Since the modification of the ESL power management is really simple and
straightforward, a designer can easily generate another design alternative. Be-
cause of the offered automation, the designer can explore various power archi-845

tectures of the system in a short time, and thus select the most suitable design
alternative (based on a tradeoff between power, performance, and area).

6. Comparison to Related Works and Discussion

The purpose of the proposed methodology and also of the related works is
not to reduce more power than is possible in commonly used UPF/CPF at lower850

abstraction levels, but to deal with the complexity of systems and to increase
productivity. We think that all of the proposed methodologies have presented
in experiments that are usable to reduce power (as we have in the previous

27



section). It is difficult to objectively compare multiple methodologies to each
other, since they are mostly evaluated based on some supporting implemented855

libraries or tools, which are not publicly available. However, based on the anal-
ysis, we can compare various aspects (concerning productivity increase) of the
related methods and methodologies (including the proposed one) to illustrate
the strengths and weaknesses of the proposed methodology. Such a comparison
is summarized in Table 7.860

In the table, the Methodology column represents a work similar to the pro-
posed methodology. The next column (Specification abstraction) represents the
abstraction level used for power-management specification. There are three val-
ues used: high – the specification does not contain low-level detail; medium
– some aspects are specified with enough abstraction, but there are still some865

low-level details present; low – most of the specification contains low-level de-
tails, which are commonly used at RTL (in UPF/CPF). The Single style column
illustrate whether the power-management aspects are specified directly in the
system functional specification using the same specification style, or there is
another specification file, language, and style used. Supported techniques refers870

to the power-reduction techniques that are supported by the methodology. We
have used these acronyms for the techniques: CG – clock gating, OI – operand
isolation, VS – voltage scaling, MV – multiple supply voltages, FS – frequen-
cy scaling, and PG – power gating. The High-level synthesis column refers
whether the methodology supports automated transformation of the specified875

power intent into the standard form at lower abstraction levels. The next colum-
n (Power analysis) illustrates whether the power analysis is done at the system
level (faster but lower accuracy) or at lower levels (slower but higher accura-
cy). The last column (Verification) refers whether the methodology offers some
means to verify the specified power management.880

The comparison in the table shows that there are several methodologies offer-
ing sufficiently high abstraction of the power-management specification. How-
ever, it comes at a price of no systematic connection to lower abstraction levels.
The abstract specification is not based on standard concepts used at lower levels
and thus it is very difficult or even impossible to derive equivalent power intent885

at the RTL. We have overcome this limitation by proposing a highly abstract
specification that is based on UPF concepts, and thus an RTL power intent
can be automatically synthesized. Most of the specification methods are based
on separation of concerns principle. Therefore, the power intent is specified
(or modelled) in a side-file using the specification style and language different890

from the functional model. It is important for design reuse and for making
next generations of some system or its part at the RTL modelling stage (as a
way to deal with design complexity to increase productivity). However, it is
not suitable for system-level abstraction, where the abstract model should be
simple enough. The common specification style makes easier to capture both895

functional and power intent. Therefore, we have chosen the single specification
language and style for the abstract specification. The proposed methodology
supports the highest amount of power-reduction techniques. The other method-
ologies target only some subset of the techniques. On the other hand, we have

28



Table 7: Comparison of Related Methods and Methodologies

Methodology
Specification
abstraction

Single
style

Supported
techniques

High-level
synthesis

Power
analysis

Verification

The proposed
methodology

High Yes
CG, OI, VS,
MV, FS, PG

Yes RTL Yes

PwClkARCH [1] Medium No
CG, VS,
FS, PG

No ESL Yes

Ref. [2] High No VS, FS, PG No ESL Yes

COMPLEX [17] High No CG, MV, PG No ESL Yes

Ref. [18] Low No OI, MV, PG Yes ESL No

SCPower [19] Low Yes OI, MV, PG Yes ESL Yes

Ref. [26] Medium Yes CG Yes RTL No

LP-HLS [27] Medium No CG, PG Yes RTL No

Others High No
VS, FS,
MV, PG

No ESL No

targeted all the techniques that we have evaluated as suitable for system ab-900

straction level (see Section 4). Some of the analysed methodologies support
the generation of standard power-intent specification at RTL, what speeds-up
the development process. However, most of them are just rewriting the spec-
ification from some form to another because of the same amount of specified
details. Others are rather limited regarding the supported power-reduction tech-905

niques. Only the proposed methodology supports a true high-level synthesis of
power-management specification, which takes-in a highly abstract specification
and automatically deduce the necessary lower-level details required for a UPF
specification at the RTL. Moreover, the proposed method also automatically
synthesizes a functional model (in VHDL) of the corresponding application-910

specific power-management unit, which drives the control signals in UPF. As
already pointed out in Section 3, all of the analysed approaches that enable
ESL power analysis require some sort of power annotation to the system model.
It usually comes from previous implementations of the components (using the
design-reuse concept), which is unsuitable for the top-down design approach915

targeted in our work. If the power values are not available, they use rough esti-
mations, what makes the power analysis highly inaccurate. Therefore, we find
the used high-level synthesis process with subsequent RTL power estimation as
a more appropriate approach. Regarding the power-management verification
capabilities, most of the methodologies support at least some basic checks of920

power-management aspects required for ESL simulation. However, in compar-
ison to the analysed existing approaches, we have proposed the most robust
power-management verification approach. Syntactic and run-time checks, a-
long with the early static analysis, drive a designer to develop a complete and
consistent power-management specification at the system level. Static analysis925

29



during the power-management high-level synthesis ensures that all the required
information is included and the equivalence checking ensures that the synthesis
process preserves the power intent. Moreover, during the power-aware function-
al verification at the RTL (inevitable for power-architecture exploration), the
assertion-based verification is used to verify the correctness of control sequences,930

generated by the synthesized power-management unit. It also enables to mea-
sure assertion-based coverage, ensuring that all the power modes have been
exercised during the simulation. Most of these verification steps are automated;
thus, the preparation and debugging verification processes are shortened.

7. Conclusions935

This paper presents the novel methodology for low-power systems design,
utilizing the system abstraction level and the high-level synthesis for design
automation. The goal of this work was to eliminate the identified weakness-
es of the similar methodologies (discussed in the previous section). The pro-
posed methodology is directly based on the standard UPF design flow; thus,940

the existing methods and design-automation tools for verification, analysis, or
power estimation can be used at lower levels. The key benefit of the proposed
methodology is that the power-management specification is simplified, what di-
rectly corresponds to the trend of dealing with the complexity of modern designs
through abstraction. The experiments have shown that the power-management945

specification using the proposed method at the system level is approximately
16.8 times less complex (in terms of a number of characters required for the
specification) in average, compared to the UPF specification with the same
power intent. Considering the automated synthesis of the application-specific
power-management unit, which is not present in the system-level specification,950

even more complexity is reduced. The enhanced automation reduces the possi-
bility of introducing human errors to the design, what reduces the verification
burden, specifically the time-consuming debugging process. Although there is
a design stage added into the UPF-based design flow, the overall development
time is reduced by days or even weeks of manual work. Automated verifica-955

tion steps during the initial power-management specification help to create a
structurally correct and complete specification. In the experimental results, we
have shown that the proposed methodology is usable and useful in low-power
systems design.

The work presented in this paper has opened the door for further enhance-960

ments of power management efficient adoption, which were not easily accom-
plished in other existing methodologies. The future work will be oriented to-
wards a complete abstraction from power management during the system spec-
ification and its implicit automated introduction into the design. It will in-
volve the automated partitioning of the system into power domains, automat-965

ed assignment of power states to the domains, automated synchronization of
clock-domain boundaries, and automated determination of suitable power mod-
e according to the current requirements. It will simplify the specification even

30



more, what will help to design the power-efficient systems even by designers not
familiar with the power-reduction techniques.970

Acknowledgements

This work was supported by the Ministry of Education, Science, Research
and Sport of the Slovak Republic within the Research and Development Opera-
tional Programme for the project ”University Science Park of STU Bratislava”,
ITMS 26240220084, co-funded by the European Regional Development Fund.975

The work was also supported by the Slovak Scientific Grant Agency (VEGA
1/0836/16), the Slovak Research and Development Agency (APVV-15-0789),
the Slovak Cultural and Educational Grant Agency (KEGA 011STU-4/2017).

References

[1] H. Affes, A. B. Ameur, M. Auguin, F. Verdier, C. Barnes, An ESL frame-980

work for low power architecture design space exploration, in: 2016 IEEE
27th International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), IEEE, 2016, pp. 227–228. doi:10.1109/

ASAP.2016.7760801.

[2] F. Mischkalla, W. Mueller, Advanced SoC virtual prototyping for system-985

level power planning and validation, in: 2014 24th International Workshop
on Power and Timing Modeling, Optimization and Simulation (PATMOS),
IEEE, 2014, pp. 112–119. doi:10.1109/PATMOS.2014.6951882.

[3] A Practical Guide to Low Power Design: User Experience with CPF, Ca-
dence Design Systems, 2012.990

URL http://www.si2.org/?page=1061

[4] IEEE Standard for Design and Verification of Low Power Integrated Cir-
cuits, IEEE, 2013, IEEE Std 1801-2013.

[5] S. Carver, A. Mathur, L. Sharma, P. Subbarao, S. Urish, Q. Wang, Low-
power design using the Si2 common power format, IEEE Design & Test of995

Computers 29 (2) (2012) 62–70. doi:10.1109/MDT.2012.2183574.

[6] International Technology Roadmap for Semiconductors: Design, ITRS,
2011.

[7] IEEE Standard for Design and Verification of Low-Power, Energy-Aware
Electronic Systems, IEEE, 2015, IEEE Std 1801-2015.1000

[8] IEEE Standard for Standard SystemC Language Reference Manual, IEEE,
2012, IEEE Std 1666-2011.

31



[9] Intel Docea Power Simulator: A power and thermal virtual prototyping
solution (2017).
URL http://www.intel.com/content/www/us/en/1005

system-modeling-and-simulation/docea/power-simulator.html

[10] Stratus high-level synthesis: Industry’s first high-level synthesis platform
for use across your entire SoC design (2015).
URL https://www.cadence.com/content/dam/cadence-www/global/

en_US/documents/tools/digital-design-signoff/stratus-ds.pdf1010

[11] Catapult high-level synthesis (2017).
URL https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

[12] Platform Architect MCO: SoC architecture analysis and optimization for
performance and power (2017).
URL https://www.synopsys.com/verification/1015

virtual-prototyping/platform-architect.html

[13] Synphony C Compiler: High-level synthesis from C/C++ to RTL (2017).
URL http://www.synopsys.com/Tools/Implementation/

RTLSynthesis/Pages/SynphonyC-Compiler.aspx

[14] Vista Architect: System level design solution for performance and power1020

(2009).
URL https://www.mentor.com/esl/vista/upload/

vista-007d1f5d-41a7-41cd-97f4-06bb92d1a2eb

[15] Vivado design suite HLx editions - Accelerating high level design (2017).
URL https://www.xilinx.com/products/design-tools/vivado.html1025

[16] O. Mbarek, A. Pegatoquet, M. Auguin, Using Unified Power Format stan-
dard concepts for power-aware design and verification of systems-on-chip
at transaction level, IET Circuits, Devices & Systems 6 (5) (2012) 287–296.
doi:10.1049/iet-cds.2011.0352.

[17] K. Grüttner, P. A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, F. Herrera,1030

E. Villar, C. Brandolese, W. Fornaciari, G. Palermo, et al., The COMPLEX
reference framework for HW/SW co-design and power management sup-
porting platform-based design-space exploration, Microprocessors and Mi-
crosystems 37 (8) (2013) 966–980. doi:10.1016/j.micpro.2013.09.001.

[18] J. Karmann, W. Ecker, The semantic of the power intent format UPF:1035

Consistent power modeling from system level to implementation, in: 2013
23rd International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS), IEEE, 2013, pp. 45–50. doi:10.1109/PATMOS.
2013.6662154.

[19] K. Gagarski, M. Petrov, M. Moiseev, I. Klotchkov, Power specification,1040

simulation and verification of SystemC designs, in: 2016 IEEE East-West

32



Design & Test Symposium (EWDTS), IEEE, 2016, pp. 1–4. doi:10.1109/
EWDTS.2016.7807731.

[20] Y. Xu, R. Rosales, B. Wang, M. Streubűhr, R. Hasholzner, C. Haubelt,
J. Teich, A very fast and quasi-accurate power-state-based system-1045

level power modeling methodology, in: ARCS’12 Proceedings of the
25th International Conference on Architecture of Computing System-
s, Springer-Verlag, Berlin Heidelberg, 2012, pp. 37–49. doi:10.1007/

978-3-642-28293-5_4.

[21] H. Lebreton, P. Vivet, Power modeling in SystemC at transaction level,1050

Application to a DVFS architecture, in: IEEE Computer Society Annual
Symposium on VLSI, IEEE, 2008, pp. 463–466. doi:10.1109/ISVLSI.

2008.71.

[22] T. Bouhadiba, M. Moy, F. Maraninchi, System-level modeling of energy in
TLM for early validation of power and thermal management, in: DATE ’131055

Proceedings of the Conference on Design, Automation and Test in Europe,
EDA Consortium, San Jose, CA, 2013, pp. 1609–1614. doi:10.7873/DATE.
2013.327.

[23] S. Kaiser, I. Materic, R. Saade, ESL solutions for low power design, in:
Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Con-1060

ference on, IEEE, 2010, pp. 340–343. doi:10.1109/ICCAD.2010.5653615.

[24] M. Streubühr, R. Rosales, R. Hasholzner, C. Haubelt, J. Teich, ESL power
and performance estimation for heterogeneous MPSOCS using SystemC,
in: Specification and Design Languages (FDL), 2011 Forum on, IEEE,
2011, pp. 1–8.1065

[25] W.-T. Hsieh, J.-C. Yeh, S.-C. Lin, H.-C. Liu, Y.-S. Chen, System power
analysis with DVFS on ESL virtual platform, in: SoC Conference (SOC-
C), 2011 IEEE International, IEEE, 2011, pp. 93–98. doi:10.1109/SOCC.
2011.6085102.

[26] S. Ahuja, A. Lakshminarayana, S. K. Shukla, Low Power Design with High-1070

Level Power Estimation and Power-Aware Synthesis, Springer-Verlag, New
York, NY, 2012. doi:10.1007/978-1-4614-0872-7.

[27] A. Qamar, F. B. Muslim, J. Iqbal, L. Lavagno, LP-HLS: Automatic power-
intent generation for high-level synthesis based hardware implementation
flow, Microprocessors and Microsystems 50 (2017) 26–38. doi:10.1016/1075

j.micpro.2017.02.002.

[28] G. Kornaros (Ed.), Power Optimization in Multi-Core System-on-Chip.
Multi-Core Embedded Systems, CRC Press, 2010. doi:10.1201/

9781439811627-c3.

33



[29] M. Giammarini, M. Conti, S. Orcioni, System-level energy estimation with1080

Powersim, in: 18th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), IEEE, 2011, pp. 723–726. doi:10.1109/ICECS.

2011.6122376.

[30] D. Greaves, M. Yasin, TLM POWER3: Power estimation methodology for
SystemC TLM 2.0, in: J. Haase (Ed.), Models, Methods, and Tools for1085

Complex Chip Design: Selected Contributions from FDL 2012, Vol. 265 of
Lecture Notes in Electrical Engineering, Springer International Publishing,
2014, pp. 53–68. doi:10.1007/978-3-319-01418-0_4.

[31] S. Rigo, R. Azevedo, L. Santos (Eds.), Electronic System Level Design:
An Open-Source Approach, Springer Netherlands, 2011. doi:10.1007/1090

978-1-4020-9940-3_8.

[32] D. Macko, K. Jelemenská, P. Čičák, Power-management specification in
SystemC, in: Proceedings of the 2015 IEEE 18th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems, IEEE, 2015,
pp. 259–262. doi:10.1109/DDECS.2015.16.1095

[33] D. Macko, K. Jelemenská, P. Čičák, Power-management high-level synthe-
sis, in: The 23rd IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), IEEE, 2015, pp. 63–68. doi:10.1109/VLSI-SoC.
2015.7314393.

[34] D. Macko, K. Jelemenská, P. Čičák, Verification of power-management1100

specification at early stages of power-constrained systems design, Jour-
nal of Circuits, Systems and Computers 26 (08) (2017) 1740002. doi:

10.1142/S0218126617400023.

[35] C.-M. Kyung, S. Yoo (Eds.), Energy-Aware System Design: Algo-
rithms and Architectures, Springer Netherlands, 2011. doi:10.1007/1105

978-94-007-1679-7.

[36] P. R. Panda, B. V. N. Silpa, A. Shrivastava, K. Gummidipudi,
Power-Efficient System Design, Springer US, 2010. doi:10.1007/

978-1-4419-6388-8.

[37] V. Venkatachalam, M. Franz, Power reduction techniques for micropro-1110

cessor systems, ACM Computing Surveys 37 (3) (2005) 195–237. doi:

10.1145/1108956.1108957.

[38] L. Benini, G. D. Micheli, Dynamic Power Management: Design Techniques
and CAD Tools, Kluwer Academic Publishers, Norwell, MA, 1998. doi:

10.1007/978-1-4615-5455-4.1115

[39] A. Rogers, Designing a simple system-on-a-chip in under 60 minutes with
the mu0 microprocessor and Xilinx tools (2003).
URL http://www.ece.uah.edu/~lacasa/tutorials/mu0/mu0tutorial.

html

34



[40] Power Compiler: Power optimization in Design Compiler (2017).1120

URL https://www.synopsys.com/implementation-and-signoff/

rtl-synthesis-test/power-compiler.html

[41] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech,
J. Michelsen, Open cell library in 15nm FreePDK technology, in: Pro-
ceedings of the 2015 Symposium on International Symposium on Physi-1125

cal Design (ISPD ’15), ACM, New York, NY, USA, 2015, pp. 171–178.
doi:10.1145/2717764.2717783.

35


