
Prototype of Modular Operating System for
Embedded Applications

Martin Vojtko
Faculty of Informatics and
Information Technologies,

Slovak University of Technology,
Ilkovičova 3,

842 16 Bratislava, Slovakia
Email: martin.vojtko@fiit.stuba.sk

Tibor Krajčovič
Faculty of Informatics and
Information Technologies,

Slovak University of Technology,
Ilkovičova 3,

842 16 Bratislava, Slovakia
Email: tkraj@fiit.stuba.sk

Abstract—Future complexity and heterogeneousness
of embedded systems will result into problems with
compatibility and portability of an application software
and also of an operating systems. There is need to change
a standard architecture of operating systems to reduce
these problems. This paper summarises the proposal and
implementation results of a Modular Operating System
which presents a novel concept of an embedded operating
system with emphasis on portability and modularity.
New point of view leads into reduced customisation time
of the operating system and minimal changes to user
applications.

Index Terms—embedded systems, embedded operating
systems, hardware abstraction, kernel, portability, mod-
ularity

I. INTRODUCTION

According to Moore’s law each 24 or 36 months the
number of transistors doubles [1]. This causes grow-
ing complexity and heterogeneousness of embedded
systems. Growing of these factors increases the time
needed for integration of software into new embedded
systems. The code reusing is harder and software
adaptation is more time consuming. The problem of
code reusing is reduced when an operating system
is used as abstraction layer between hardware and
software, but the operating system must be adapted to
the new platform. We can affirm that the architecture
of contemporary embedded operating systems must be
revised.

The standard operating system reduces complexity
of the processor and its peripheries [2]. The center
of each operating system is the kernel. The kernel
of embedded OS manages the tasks, system mem-
ory and I/O devices. There are also special types of
kernels, named micro-kernels and nano-kernels, which
are mostly used in embedded systems [3]. In this
work we propose a revision of the kernel concept,
because if we analyse the kernel, we can find there
platform-dependent and platform-independent parts of
code. This fact results into organization of kernel
into two layers (see Figure 1). The division of the
kernel reduces code changes on platform-dependent
parts only, which simplifies the transport from one
platform to another. Also it is not necessary to change
the platform-independent code, which results into no
or minimal changes in the application software.

Besides the portability of operating systems there
are other attributes to take into consideration in order
to simplify the transfer to other platforms. At the first,
there is a need for a modular architecture of operating
systems. The layered and modular architecture can be
realised together as shown on Figure 1.

Platform

Platform-dependent Base

Power
mng.

V1

Mem.
mng.

V3

Task
mng.

V1

I/O
mng.

V2

...

User Applications

Fig. 1. The layered and modular architecture of embedded operating
system. Each module type connects to base trough specific base
connector. Also each module can have more variations.

The modules can vary in energy effectiveness, per-
formance, memory footprint etc. As is shown in Figure
1 the OS should be a simple frame, which is filled
up by chosen modules which best fit the platform of
concrete embedded system. So we propose that OS
should not be only one implementation, but it should
be a system of services and packages, from which the
consumer can choose.

In this paper we present concepts of the Modular
Operating System and we provide a brief summary of
its architecture. This paper is presenting some related
embedded operating systems. We also present results
from the testing of the MOS.

II. RELATED WORK

The release of a new generation of embedded oper-
ating systems is near so this part of research is lucrative
for many researchers. In this paper we include a brief
summary of two embedded operating systems from the
research.

The TinyOS offers an interesting concept of oper-
ating system. This operating system is build on the
concept of three hardware abstraction layers. The bot-
tom layer (Hardware presentation layer, HPL) presents

the services of hardware to the middle layer. It consists
of modules which encapsulates hardware devices. This
layer is platform-dependent. The middle layer (Hard-
ware adaptation layer, HAL) adapts the services of
HPL to the top layer. It consist of modules which en-
capsulates modules from HPL. Modules from the HAL
apart from HPL modules can store state of devices.
The HAL is platform-dependent too. The top layer
(Hardware interface layer, HIL) interfaces the bottom
layers into the unified interface. Modules of the HIL
encapsulates modules from the HPL. Above the HIL
is a layer of platform-independent user applications,
which do not change from platform to platform. [4].

The FreeRTOS is a popular embedded operating
system. The concept of this system is based on many
developed ports of this system on many platforms.
The developer of the embedded system can choose the
platform port and set-up the basic configuration and
then the test system is prepared for use. FreeRTOS
community supports new platform port development by
very good system documentation [5]. Also the concept
of prepared ports and demo applications minimises
developing time to a minimum.

III. ARCHITECTURE OF MOS
As we mentioned, the kernel of the Modular Op-

erating System (in short MOS) consists of two layers
(Figure 1). The first one is platform-dependent base
layer (in short PDBL) and consists of pieces of assem-
bly code which encapsulates hardware into a higher ab-
straction layer. The second one is platform-independent
modular layer (in short PIML) and encapsulates the
PDBL into a presentation layer (see Figure 1). PIBL
consists of modules which are connected to PDBL
by customisable connectors. Other MOS modules and
user applications can be found above the kernel (see
Figure 2) [6].

I/O mng.
(optional)

Statistics
(optional)

Loading

(optional)

Power
mng.

(optional)

Kernel

Process
mng.

Memory
mng.

M
OS p

ro
ce

ss
es,

Driv
ers

 (O
ptio

nal
)Aktualisation

(optional)

Use
r

Aplic
at

io
ns

Fig. 2. Architecture of MOS [6].

Modules which are presented in Figure 2 can be
implemented in more variations. One variation can be
optimized for best energy savings and another can

be optimized for best reaction times. Each module is
connected to the PDBL by connector.

Compulsory modules of MOS are Process Manage-
ment and Memory Management. These two modules
are the core of MOS and they provide the basic
functions of the whole system. It is also possible to
connect optional modules which do not have to be used
(in Figure 2).

The strength of modular architecture lies in sim-
ple change management and development. User can
choose from many suggested modules that were im-
plemented by the developer of the OS. We propose to
view the OS as a group of many modules in many
variations from which the user can combine his own
system.

A. Process Management

The task of Process Management module is to
manage tasks running in the system. In order to ensure
better change management and portability, the process
management module is divided into the Task Man-
agement sub-module, the Inter-process Communication
(IPC) sub-module and the Scheduler sub-module.

Task Management covers all programs and tasks
needs. These needs can be divided into task switch
handling, stored programs managing and running tasks
managing (creating, destroying, scheduling and inter-
task communication).

Each task has its own header (Task Control Block
TCB) which contains information about the task (see
Figure 3). The TCB is encapsulated in the item
structure for scheduling purposes. Task-switch which
provides extraction of new task context and storing of
old task context to its task header or optionally to task
stack is in the PDBL.

Task control block

Stack begin
Stack end

Heap *
Priority *

Processor time *

PID
Father PID

State *
IPC *

Stack top **

Task context**

List item

Content pointer

Previous Next

Attribute

Fig. 3. Task header (task control block). * included in header if
configured. ** user can choose if the context is stored in the header
or in the stack. *** if priority is configured it gets value of this
priority [6].

Programs are stored in program memory. Each pro-
gram has its own program header called Program
Control Block (PCB). PCB stores information about
program memory localization, data size etc. (see Figure
4).The PCB is encapsulated in a item of a list structure
for managing purpose.

Program control block

Beginning adress

Data memory size

Num. of running tasks

Initial priority

List item

Content pointer

Previous Next

Attribute *

Fig. 4. Structure of the Program Control Block and its encapsulating
item. * Attribute set up as program id [6].

The scheduler orders tasks into a waiting list. We
prepared three types of the schedulers which differ in
concept of the tasks ordering:

• Round-Robin scheduler, which pushes switched
tasks to the list.

• Priority scheduler, which inserts tasks into list
in an order based on the priority criterion.

• Multi-list scheduler, which pushes tasks based
on priority into the concrete priority list.

IPC module manages the creation of the communi-
cation channels between two tasks. We use a Sender-
Receiver model for task communication. The sender
must register for communication with the chosen re-
ceiver. Registration is stored in the list of waiting
requests. The receiver pops the requests from list and
decides if communication will be created. Initialized
communication is provided by queue data structure.

B. Memory Management

Memory Management is the second compulsory
module. It manages program and data memory of the
whole operating system. We decided not to implement
a file system for storing data and programs, because it
is not important for our research.

Memory can be divided into three partitions. In the
first partition the whole program base is stored. The
base consists of a MOS code and a user applications
code. MOS is in a state were no changes in program
memory can be done until the system is running. We
plan to implement a functionality which allows an
update or an upload of user applications. For actual
research it is not important.

Data created by MOS is stored in the second parti-
tion. This partition contains the kernel heap, where the
program and task headers are stored. This memory is
allocated by the kernel’s memory allocation call. This
partition also contains the kernel stack where context
of kernel procedures is stored.

The third partition is the task heap, which stores
data of running tasks. Place for data is allocated by
kernel call when the tasks are created and it is freed
when the tasks are destroyed. The task heap or kernel
heap is organized as a list of memory chunks. At the
beginning, the heap contains only one chunk, which
has the size of a whole heap (see Figure 5).

Task data is divided into the heap and the stack.
The stack contains data pushed by procedure call.
The user can manage the heap by memory allocation

NULL
A2A1 A3 A4

Next

Size F/
U

Fig. 5. The heap fragmentation process and structure of the chunk
in the heap [6].

call. We decided to implement First Fit algorithm for
memory allocation. The memory allocation can be
simply changed by implementing another algorithm.

C. Optional modules

MOS can be set-up as a two-layered micro-kernel
but apart from the compulsory modules also other
modules can be included in MOS.

We decided to implement a Statistical module for
testing purposes. This module collects information
from the compulsory modules. This information con-
sists of whole system and individual task running time,
program memory usage, kernel memory usage and task
memory usage. Statistical module only collects and
sends data through the serial port to the host PC where
they are processed.

IV. RESULTS

We implemented port of MOS on Atmel’s processor
at91sam7s256 [7] from family arm7tdmi [8]. This
processor was embedded in development kit sam7p256
[9]. On this platform we provide analysis of the MOS
implementation.

For testing purposes, we prepared three programs
which were running at the platform together with
MOS Root task in two types of task context storage
settings and two types of scheduling algorithms. After
system start-up and initialisation the Root is started
with priority 14. The Root runs task T1 with priority
12 and then task T3 with same priority as T1. Task
T1 creates task T2 with priority 12 (see Figure 6).

Root

T1
T3

T2

Fig. 6. Graph of starting and communication dependency. Arrow
with circle shows communication from T1 to T2 [6].

TABLE I
MEASURED MEMORY USAGE AND PROCESSOR TIME DISTRIBUTION [6].

Stack memory used Heap memory used Processor time in (s)
Task with task context in (B) with task context in (B)

in stack in TCB in stack in TCB Round-Robin Priority
Root 120 56 0 0 60, 0025 90, 0176

T1 88 24 76 + 24 76 + 24 59, 9071 44, 9283
T2 120 56 40 + 16 40 + 16 0, 0824 0, 0629
T3 80 16 0 0 60, 0080 44, 9912

Kernel 36 36 624 + 160 880 + 160 - -
Total 444 188 940 1196 180, 0 180, 0

The Root task collects data for measuring after
running tasks T1 and T3. T2 is waiting for data from
T1. Tasks T1, T2 and T3 are doing simple counting.
We were monitoring the work with the system memory
and the processing time of tasks (see Table I).

User can chose where will be the task context stored.
If it is stored in the stack, the area of task memory is
used more. If the task context is stored in Task Control
Block, the area of kernel memory is used more (see
columns 2 and 3 at Table I).

Results of two different scheduling techniques (see
column 4 at Table I) shows that the T2 runs on
processor small fragment of time used for the others.
It is caused by T2s waiting for T1.

The MOS uses 5.5kB of program memory at mini-
mal configuration and 9.5kB at maximal configuration.
This size is comparable to other embedded systems.

Data memory usage is divided into modules (see
Table II). As can be seen data memory usage of MOS
is more economical.

TABLE II
DATA MEMORY USAGE OF SYSTEM IN B [6].

Name Used data FreeRTOS
of user in B usage in B [5]

Scheduler 17 + 16 per task 236
Task minimal 30 + 16 item 64
Task maximal 116 + 16 item 64

Queue 25 + 12 per item 76
List 25 + 16 per item -

At clock rate 48MHz and task switch clock rate
10kHz, task switch takes 14, 3µs which is 14, 3%
overhead. This time was measured only with usage of
Round-Robin scheduler. Other scheduling techniques
are dependent on priority and it means that the tasks
must be ordered. This process is not deterministic.

V. FUTURE WORK

Research on MOS is still continuing. There are many
fields where the new OS can be oriented. We plan to
improve power efficiency of MOS. This improvement
begins with exact analysis of MOS power consump-
tion. Consumption can be measured or modelled in
many ways. Analysis of these techniques will be done.
The OS can influence power consumption by observing
and adjusting the system performance.

We also orient our research on MOS in the sphere of
multiprocessor and distributed systems. This decision
is promoted by spreading of distributed and multipro-
cessor embedded systems at world trade.

Our plan is to achieve a complete software platform
where user can simply set up Modular Operating
System according to his needs, without complicated
coding and developing. The result of system set up
would be binary code prepared for porting on chosen
hardware platform.

VI. CONCLUSIONS

In this paper we presented the result of the re-
search on embedded operating systems sphere which
we named Modular Operating System. Main goals of
research were to implement modular, flexible, portable.
Experimental OS is still under research but the first
results show that the method which we have chosen
was right.

ACKNOWLEDGEMENT

This work was supported by the Grant number
VEGA 1/1105/11 of the Slovak VEGA Grant Agency.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated
circuits, reprinted from electronics, volume 38, number 8, april
19, 1965, pp.114 ff.” Solid-State Circuits Newsletter, IEEE,
vol. 11, no. 5, pp. 33 –35, sept. 2006.

[2] A. S. Tanenbaum and A. S. Woodhull, Operating Systems
Design and Implementation (3rd Edition). Prentice Hall, 2006.

[3] J. J. Labrosse, J. Ganssle, and e. a. Robert Oshana, Embedded
Software: Know It All (Newnes Know It All). Newnes, 2007.

[4] TinyOS-community, TinyOS, 2011, http://www.tinyos.net.
[5] FreeRTOS-community, FreeRTOSTM, 2011,

http://www.freertos.org/.
[6] M. Vojtko, “Modulárny operačný systém pre vnorené systémy

(in Slovak),” Master’s thesis, Faculty of Informatics and Infor-
mation Technologies, 2012.

[7] Atmel-corporation, Datasheet, AT91SAM7S256, 2010.
[8] Arm-corporation, Technical Reference Manual, ARM7TDMI

(Rev 3), 2001.
[9] Olimex-Ltd, Datasheet, SAM7-S256 development board, Users

Manual, 2008.

