

1



Abstract—The heterogeneity and complexity of future

processors will introduce problems with the adaptation of

operating systems. When a new processor is presented on a

market, operating systems need to be adapted to it. It is done by

reprogramming of a platform dependent layer and device

modules of an operating system. In this paper, we introduce a

formal description of processor structure by which we reduce

adaptation time of the operating system to a new processor. This

is achieved by automated code generation of platform dependent

layer of the operating system. In connection to the adaptation

process we present a concept of an operating system development

framework that reduces time of the design process. A

classification based on the connection of processor device to a

processing unit of a processor is introduced to make a connection

between code from different layers of an operating system to

processor devices and processing units. In addition to the above

mentioned classification we also introduce a classification of an

operating system code.

Index Terms—Instruction Set Architecture, Modular

Operating Systems, Layered Operating Systems, Platform

Dependent Code.

I. INTRODUCTION

MBEDDED systems are more and more complex and

heterogeneous nowadays. Techniques of embedded

system design such as the hardware-software co-design [1] has

to be used to decrease the time to market and the price of a

development. Decomposition of a problem into a set of tasks

is another way how the developer can reduce the complexity

of a design, but the decomposition introduces new problems

connected with task management (e.g. task planning, inter-

task communication). An operating system helps to solve this

problem by a complexity encapsulation [2].

An operating system is often used in an embedded system

when a complicated set of tasks is needed to meet design

needs [3]. When the system is constrained by deadlines, the

need for an operating system is even higher [4].

The growing number of different processor architectures

Manuscript received November 9, 2014. This work was supported by the

Scientific Grant Agency of the Ministry of Education, Science, Research and
Sport of the Slovak Republic under Grant VEGA 1/0676/12.

Martin Vojtko, is with the Institute of Computer Systems and Networks of

Faculty of Informatics and Information Technologies STU in Bratislava,
Ilkovicova 4, 84216 Bratislava, Slovakia (e-mail: martin.vojtko@ stuba.sk).

Tibor Krajčovič, is with the Institute of Computer Systems and Networks

of Faculty of Informatics and Information Technologies STU in Bratislava,
Ilkovicova 4, 84216 Bratislava, Slovakia (e-mail: tkraj@stuba.sk).

and families introduces problems in the adaptation of an

operating system. This problem is more significant in the

segment of embedded systems. Adaptation problems are

reduced by the introduction of a layered and modular

architecture of an operating system [5], [6], [7]. The layers in

the architecture help to keep changes of an operating system

code in the lower layers of the architecture without affecting

the compatibility with user applications in the higher layers.

On the other hand, the modularity helps to keep the changes of

Operating system code only in the affected modules.

The adaptation of an operating system to a new processor or

to a new processor family will be more complex in the future

[8]. When an operating system needs to be adapted to a new

processor, parts of an operating system code (in the platform

dependent layer) need to be changed. Since the platform

dependent layer of an operating system is tightly connected to

processor architecture, the complexity of the platform

dependent layer will grow with complexity of a processor.

This leads to the idea that this layer can be built

automatically from a defined processor description. In other

words, the developer can focus on other aspects of a system

design.

II. RELATED WORK

The majority of processor manufacturers sell their products

together with software development tools that allow simpler

development of embedded systems. Those tools provide to the

developer a set of standard device drivers and code samples

for processor devices. A good example is Keil MDK tool,

which supports a wide range of ARM microcontrollers and

provides software packs prepared for processor devices. The

developer can use this tool to create own embedded

applications in an easier way [9].

The problem arises when the developer wants to use a

processor that is not supported by the chosen development

tool. The solution to this problem can be a transfer of a

processor description to the preferred development tool of a

developer. We think that there does not exist any standard for

a processor description that allows the transfer.

Furthermore, the majority of manufacturers provides its

solutions, code samples, and headers to its processors. For

example, the header file can contain an initializing code that is

useful for a developer, but existing code cannot be used for a

platform dependent layer because they are not compatible with

a chosen operating system.

Adaptability of an Embedded Operating

System: a Formal Description of a Processor

Martin Vojtko, Tibor Krajčovič

E

2

In addition, header files provide a simple device register

mapping to higher language structures that helps in embedded

application development. The problem is that this initializing

code is different from manufacturer to manufacturer, which

makes usability of this code for an operating system

unthinkable.

III. PROCESSOR

A standard processor consists of one or more processing

units (processor cores), and a set of peripheral devices.

The task of a processing unit is to process instructions that

use data as an input and produce other data as an output.

On one hand, processing units process instructions and its

data, on the other hand, peripheral devices help to distribute

data from/to processing units. In other words, those devices

help to communicate with a surrounding environment (e.g.

Analog-to-Digital Converter, Universal Asynchronous

Receiver/Transmitter) or perform extra services to processing

units (e.g. Timer/Counter, Watchdog Timer).

A. Instruction Set Architecture (ISA)

An Instruction Set Architecture (ISA) describes a user

interface of a processing unit that is represented by an

instruction set, internal registers, possible operating modes

(e.g. real mode and system mode presented in x86

architecture), a width of an address bus, and a width of a

register word. In other words, the ISA tells how to work with a

processing unit, which instruction has to be used, how a task

context during a task switch can be stored, and how different

modes of a processing unit works.

B. Device Classification of a Processor

A device is a separate functional unit which provides

services to a processing unit. In general it behaves as a slave to

a processing unit. A device listens to commands from a

processing unit and can inform a processing unit about certain

specific events only by an interrupt signal. From our point of

view, it is important to introduce a classification of devices

based on a type of connection between a device and a

processing unit (see Fig. 1.).

We identified four types of devices. First of all, it is a

separate, dedicated bus connection between a processing unit

and a co-processing unit. A connection between those two

units can be controlled only by a particular set of instructions.

We call this type of a device a co-processing device. The

second connection type is an internal bus connection. An

internal bus (or system bus or an address/data bus) provides a

direct connection between a processing unit and a device that

is accessible in an assigned range of addresses. The device

connected to an internal bus is called a bus-internal device.

The third type of a connection is the direct connection of a

device to I/O pins of a processing unit. This type of a

connection is not often used; usually, a special device is

preferred for the management of I/O pins of a processor. A

device connected to I/O pins of a processing unit is called a

signal-internal device. The connection of a device to a

processing unit through an internal device is the last type in

our classification. These devices have no internal address that

can be accessed by the processing unit directly. A driver needs

to be written to allow access to the device. This type of device

is called an external device.

A bus arbiter (e.g. Direct Memory Access device, Bridge,

Memory controller) often exists between a processing unit (or

a group of processing units) and other devices. In spite of this,

a device connected to this arbiter can be still marked as a bus-

internal device, because the arbiter behaves transparently to a

processing unit. In other words, a device can still be accessed

directly by a processing unit at a specific range of assigned

addresses.

C. Device description

A device provides a communication interface to a

processing unit or to other master devices. The interface is

used to exchange data between the device and a master, and it

is used to accept commands that change the device behavior.

An operating system has to be able to understand this

communicating interface. In other words, an operating system

must have a mapping of the device communication interface to

its structures. When the mapping is created, an appropriate

module of an operating system can use it to manage and to

control the device.

D. Code Classification

The classification based on connection is important to

clearly determine the difference between types of an operating

system code used to work with a device. Co-processing

device, bus-internal device, and signal-internal device can be

accessed directly by a simple control routine. On the other

hand, an external device must be accessed by a more

complicated code such as a driver. The control routines can

write or read data from/to registers of a device, or I/O signal

wires. Since write and read operations are dependent on

hardware, these routines are placed into a platform dependent

layer of an operating system. The module of an operating

system managing an appropriate device (device module) can

use these routines to manage and to control a device.

Operating system device modules represent a platform

independent layer of an operating system which is placed on

top of a platform dependent layer of operating system. This

platform independent layer is a modular layer, where each

module manages one device of a processor.

Fig. 1. The device classification based on a connection to a processing unit.
(a) co-processing device CoPU, (b) bus-internal device Dev1 and Dev2, (c)

signal-internal device Dev4, (d) external device Dev3 connected through

Dev2.

3

The control code of an external device is more complex

than the previous types of code. An operating system will need

to use a device module of an internal device through which the

external device is connected to a processor. In this situation,

we are talking about a device driver. A device driver is not a

part of an operating system kernel and is out of scope of this

work.

To summarize this chapter, in an operating system it is

possible to identify three layers of a code (see Fig. 2.). The

first layer (Platform dependent layer) contains routines of an

internal devices used to access device registers. The platform

dependent layer encapsulates the communication interface

between a processor core and an internal device (see Fig. 2.a).

The second layer (Internal device modules layer) contains

internal device modules used to manage and to control

processor devices (see Fig. 2.b). The third layer (External

device drivers) contains an external device drivers used to

manage and to control external devices (see Fig.2.c).

IV. FORMAL DESCRIPTION OF A PROCESSOR

A formal description of a processor describes all internal

components of the processor. By this description we want to

translate a processor datasheet into a computer readable

format, which allows future platform dependent code

generation. In this chapter, we present the description.

A processor is a triple , where is an

Instruction Set Architecture of a processor, is a set of all

devices in a processor, and is a set of all addressable

memories. In this paper, we will present the briefly, and

the set of devices in detail.

A. ISA

The instruction set architecture (ISA) describes

functionality of a processing unit. The is a pentad

 , where is a set of all internal registers

 of a processing unit, is a set of all unit modes

 , is an instruction set of a core, is

width of address bus, and is width of a processing unit

registers (architecture).

B. Set of Devices

The set of all devices consist of four

subsets, according to the classification based on a connection

(III-B). In this paper, we focus on bus-internal devices.

Assume a set of bus-internal devices . For each

 , where is a triple ,
where is a set of all device registers, is a set of all device

interrupt signals, and is a set of all possible behaviors of a

device (V-B). The set of device registers and the set of

interrupts form the communication interface of a device,

which will be managed by platform dependent layer of an

operating system. The behavior of a device will be managed

by a device module of the operating system from the platform

independent modular layer [5].

C. Device registers

Each device register can be divided into smaller logical

parts that manage pieces of communication interface or

control the mechanism of a device (e.g. set clock division

factor in prescaler register of a timer/counter device). Based

on previous information, each device register ,

where is a triple , where is an

address of a device register, is a width of a device register

and is a set of all device register parts . For

each part , where is pentad

 , where is a mask of the part , is a

type of access to the part , is a value of the part after

system reset, is a set of options, and is a set of

dependencies to the part .
The mask is important during reads and writes from/to

a device register where a part belongs to. The mask allows

making changes to a register part without influencing other

register parts.

The access type of a part is important for creation of

operating system routines. There are three types of access to a

register part: read only access, write only access, and read

write access.

The reset value informs an operating system to which

value a part pi is set after a reset. However, it is always a good

habit to perform an initialization of a register even if the reset

value is defined.

The set of options defines the values

which a register part can achieve, and what effect these values

have to a device (e.g. set clock division factor). The set of

options is empty if the values of a register part have no

special meaning (e.g. data register or address register).

The set of dependencies covers a

problem of relations between two or more parts. For example,

write to register part is allowed only if register part is set

to 1. For each , where is a

triple , where is a dependence type, is

a dependence time, and is a condition which needs to be met

to successfully perform operation above the register part

which is under dependence. The dependence type defines what

happens when a dependence condition is met. It can be a set

type, a reset type, and a write type. The set type sets the part

 to a value of the part . The reset type sets value of the

part to its reset value when meets condition. The write

part writes a value to the part when meets condition. The

Fig. 2. Layers of Operating system code (top) in connection with processor

hardware (bottom).

4

dependence time defines when the condition has to be

met. It can be before, together with, or after writing to the part

that is under dependence.

D. Device interrupts

The set of interrupts describes all

interrupt signals of a device. For all , where
 is defined as an index of an interrupt in an

interrupt controller device. Based on implementation, this

index can refer to a predefined address of an interrupt in a

program memory (e.g. 8051 architecture) or to an interrupt

register of an interrupt controller, where address of an

interrupt can be written by the user.

E. Platform-dependent code generation

The formal description of a processor can be used for the

automated creation of the operating system platform

dependent code, which can be realized as a set of routines and

macros. According to the type of a register part, there can be a

routine which writes data to a part or reads data from a part.

Furthermore there can be a routine which reads or writes data

from/to a whole register, in order to perform operations related

to more parts of the same register as a single operation.

The benefit of the proposed formal description is that the

developer does not need to develop these routines; they are

created automatically - which saves development time.

V. FORMAL DESCRIPTION OF A DEVICE

In the previous chapter we proposed the formal description

of a processor which describes Instruction set architecture and

communication interfaces of devices. On top of this

description we place description of a device which will use

defined communication interface to create device module of

an operating system.

A. Standard Devices

Processor manufacturers use devices of a same type in more

processors (e.g. Analog-to-Digital Converter, Universal

Asynchronous Receiver/Transmitter). Many of those devices

are created under the same standard. So there is a considerable

probability that same device with the same standard

communication interface and behavior will be used in more

processors of a different type or family.

From an operating system point of view, the device module

controlling one device in one type of a processor can be reused

for same device in another type of a processor with no or

minimal changes.

B. Device Behavior

A device behavior describes possible configurations of a

device under which a device operates. One device can change

behavior partially or completely. The device changes behavior

partially when the changes are applied only to a timing (e.g.

change of watchdog reset interval). The behavior change of a

device is complete when the set of possible states or set of

possible state transitions is changed (e.g. set parity check in a

USART). A more complex description of the behavior of a

device is out of scope of this paper.

C. Operating system development framework

A broad spectrum of operating system modules together

with the platform dependent code generation can be put

together into an operating system development framework.

This framework can combine a set of different processor

descriptions with a set of standard operating system device

modules, which results into easier development and adaptation

of operating systems for embedded applications.

VI. CONCLUSIONS AND FUTURE WORK

Starting from the formal description (IV) we proposed a

processor description based on JavaScript Object Notation

(JSON) format [10] which applies mentioned theory into a

practical realization. The JSON description covers the

communication interface of processor’s bus-internal devices

and partially covers Instruction set architecture. We

implemented a generator of code which generates the platform

dependent code (written in C language) from the processor

description.

According to the classification based on connection of

devices to a processor unit we will extend the formal

description to signal-internal devices and co-processing

devices.

In connection with the formal description of a processor we

are proposing a description of operating system modules.

Furthermore, we are planning mentioned operating system

development framework, which connects the formal

description of a processor (including ISA description and

communication interface description) and a device behavior

description.

 REFERENCES

[1] P. Schaumont, “A Practical Introduction to Hardware/Software
Codesign” Springer 2010, ISBN 978-1-4419-5999-7.

[2] A. S. Tanenbaum and A. S. Woodhull, “Operating Systems Design and

Implementation (3rd Edition)”. Prentice Hall, 2006.
[3] B. Lamie, “Multitasking Mysteries Revealed”, Embedded System

Design 1997.

[4] N. Lethaby, “Why Use a Real-Time Operating System in MCU
Applications”, Texas Instruments Incorporated, 2013.

[5] M. Vojtko, T. Krajčovič, “Prototype of Modular Operating System for

Embedded Applications”, In Applied Electronics – 18th International
Conference on Applied Electronics, Pilsen 2013, ISBN 978-80-261-

0166-6, ISSN 1803-7232, p. 317–320.

[6] S. Bogan, “Formal Specification of a Simple Operating System” Ph.D.
dissertation, der Naturwissenschaftlich-Technischen Fakultäten der

Universität des Saarlandes, 2008.

[7] A. Štrba, “Wireless Embedded System Powered by Energy Harvesting”
Ph.D. dissertation, Faculty of Informatics and Information Technologies

at Slovak University of Technology in Bratislava, 2011.

[8] G. E. Moore, “Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april19, 1965, pp.114

ff.” Solid-State Circuits Newsletter, IEEE, vol. 11, no. 5, pp. 33 –35,
sept. 2006.

[9] ARM KEIL Microcontrollers Tools, “Getting Started”, ARM Germany

GmbH, 2014.
[10] ECMA international, “The JSON Data Interchange Format”, Standard,

Geneva, 2013.

