
Adaptability of an Embedded Operating System:
a Generator of a Platform Dependent Code

Martin Vojtko, Tibor Krajčovič
Institute of Computer Systems and Networks of Faculty of Informatics and Information Technologies

of Slovak University of Technology in Bratislava
Ilkovičova 2, 84216 Bratislava, Slovakia

Email: martin.vojtko@stuba.sk, tibor.krajcovic@stuba.sk

Abstract—Adaptation of operating systems to a new processor
architecture is a complicated process during which incompatible
parts of an embedded operating system have to be redesigned and
missing parts have to be implemented. The complications grow
when there is a need to adapt operating system to completely
different processor architecture as was an operating system
optimised for. During our work on this problem we proposed
a tool which reduces effect of these complications to a minimum.
The tool uses a processor formal description file, which can act as
a standard for processor manufacturers, and could help during
generation of a platform dependent code of the operating system
kernel. As a result of a platform code generation the adaptation
time of operating system was reduced into platform independent
adjustments. In this paper reader will find the recent status of
work on an operating system adaptation process. A generator of
platform-dependent code is described together with a framework
that will help to shorten the adaptation process of any operating
system.

Keywords—Adaptation of Embedded Operating systems, Formal
description of Processors, Source Code Generation

I. INTRODUCTION

Adaptability, the ability to easily adapt existing system to
a changing environment is and will be on a great concern. In
a segment of operating systems is this ability useful because
the needed time for an adaptation of operating system to a new
processor is an important competitive factor. An operating
system with well chosen architecture is easier to adapt as
the other operating systems. Therefore, we need to choose
proper architecture of an operating system and propose/use
a proper methodology and development tools to decrease the
complexity of an operating system adaptation.

Most of the modern embedded operating systems have
a kernel architecture that reduces adaptation complexity. It
means that the kernel manages devices of a processor, memory
of a system, and scheduling of processes and its communi-
cation [1], [2]. Other services of an operating systems such
as file management or device drivers are separated from the
kernel. When the operating system has to be used on a new
processor architecture, mentioned parts of the kernel have to
be modified while services which are out of the kernel stays
mostly unchanged. Difficulty of the change depends on internal
structure of an operating system kernel. The worst scenario
represents a monolithic kernel, where only small change in
the code can result into lasting problems. On the other hand,
a modular and layered kernel organization helps to reduce
management of changes in an operating system code [3].

Mostly affected part of a layered operating system is then
platform dependent layer. In this layer, the code connected to
the processor architecture has to be modified. Modular aspect
of a kernel helps to keep changes only in modules which have
to be changed without affection of other modules.

Beside structure of the kernel architecture, a well cho-
sen methodology has great impact on the adaptation time.
a methodology or in other words an adaptation process can
dramatically reduce the adaptation time of an operating system.
Important phases of the adaptation process are analysis of
a new platform (e.g. new processor) and analysis of the needed
changes in the operating system kernel. It is obvious, that more
differences in architecture are found between an existing work-
ing platform and the new platform, more time the adaptation
process needs.

This paper summarises information about adaptation pro-
cess of a generic embedded operating system with kernel
which has layered and modular architecture [3] including
current status and its optimizations and automation [4]. We
will present the ways and means which will allow automatic
generation of the platform dependent parts of an operating
system. A concept of an adaptation framework is presented in
this paper. This framework will consist of a set of tools that
reduces complexity of adaptation of chosen operating system.

A. Adaptation Process

An adaptation process of an operating system can be
divided into three main phases. It is an analysis phase, a design
phase, and an implementation phase (Fig. 1.).

In the first phase an operating system code is compared to
a new processor platform. During this phase developer analyses
processor datasheet and description file. The datasheet file
contains information about each processor device and each
processing core needed for developer. On the other hand,
the processor description file contains code which can be
included into platform dependent code of an operating system,
but the problem is that content of this description file is
not standardized and varies between individual manufacturers.
The result of this phase is the list of needed changes to the
operating system kernel and the list of missing parts in the
kernel.

In the design phase, developer proposes solutions to in-
compatibilities between the kernel of an operating system and
a new platform. Missing parts of the kernel are designed too.
The degree of a needed change is strongly connected to the

Analysis phase

Design phase

Implementation
and Testing

phase

Datasheet of a
Processor

Processor
Description File

Adaptation

Production

Fig. 1. Steps in adaptation process.

difference between a working platform and a new platform.
As we mentioned modern kernel has layered structure ideally
consisting of two layers [3]. The first layer (Platform Depen-
dent Layer) of the kernel is mostly affected part of the kernel.
An important role in the adaptation of the first layer plays
a processor description file from which a platform dependent
code is used [4]. The second layer (Platform Independent
Layer) is affected only if in a new processor are used different
or new devices which are not supported by the kernel. Next
step of design phase contains the proposal of needed changes to
an existing interface between the platform dependent layer and
the platform independent layer because it is possible that the
description file, which is the main part of a platform dependent
layer, has different structure.

In the last phase developer implements proposed solutions
and tests its right functioning. As can be seen in the Figure 1.,
each phase of an adaptation process can be re-established if
defined properties, constraints and requirements do not meet
during validation of the phase results.

B. Problems of an Adaptation Process

There are more issues in previously described adaptation
process. First problem is with the description file of a pro-
cessor. The problem is that each manufacturer has his own
standard for structuring this files which leads into significant
differences in the code content and the structure of this files.
The result of this differences is problematic embedding of
existing code into a kernel structures. Another problem is that
the most of those description files are written in assembly
language and/or in C programming language so developers
are limited only to this preferred programming languages.

There is need for such standard which will standardise
the content and structure of the processor description files
and will eliminate programming language reference from it.
A draft of such standard can be found in [4], where a processor
formal description file acts as a computer readable datasheet.
The structure of this formal description file allows us to do
an automated process of the code generation in a format which

is compatible with the operating system code and is written in
a programming language which is preferred by a developer.

II. RELATED WORK

As we described in previous section, the adaptation of
an operating system is not a trivial task. Therefore issuers
of embedded operating systems writes adaptation manuals
which helps to lead developers step by step in the operating
system adaptation process [5] [6] [7]. For example manual of
FreeRTOS [5] advises to use an existing processor definition
file for implementation of platform dependent parts. The
FreeRTOS provides to user only functionality of task and
memory management, the only think which has to be adapted
are those services. Still this task is not always simple the
difficulty of the task depends on a new processor. It is much
easier to adapt operating system to a processor within the
same family of processors as to adapt operating system to
non supported family. Sometimes the difference can lead into
reimplementation of the whole core of an operating system
kernel.

Many of embedded operating systems provide to user only
functionality of task switching, planing and memory allocation.
This type of operating system is easier to adapt because the
set of changes is reduced mostly to task switch procedure
implementation. The other services of operating system such
as I/O management has to be implemented by developer. Of
course there exist many situations where this solution is the
best solution, but in our situation we use operating system with
a standard kernel architecture so proposed adaptation process
provides to developer I/O management support which helps
developer to concentrate on his application development.

Most of the processor manufacturers prepare for users
processor definition files. In this file is information about
existing devices, its registers and parts. The definition file is
provided mostly as a header file written in a C programming
language. The problem is that structure of definition files varies
from manufacturer to manufacturer. The solution provides
standardization as provides mentioned formal description of
a processor.

III. FORMAL DESCRIPTION OF A PROCESSOR

In a paper [4], is proposed the processor formal description
(PFD). Main aim of this description is to describe processor in
a form which is readable for a computer. The PFD structure is
not written in programming language, that allows generation
of a code for a platform dependent layer of chosen operating
system and chosen programming language.

The PFD decomposes processor into one or more pro-
cessing cores and a number of devices. Those cores and
devices are merit of the PFD and they can be decomposed
into smaller parts. Processing core is defined by Instruction
Set Architecture which describes the instruction set, internal
registers and operating modes. On the other hand, device is
defined by a communication interface. This communication
interface consists of registers, interrupt signals and signals,
which are used for control and data transfer from or to
device. Scope of this work is to generate a platform dependent
code from description of a device communication interface
that is stored in the PFD. In [4] is defined that each device

P

D1 Dn
...

R1 Rn

Pr1 Prn

...

...

...

Pr1 Prn
...

...

Level 0

Level 1

Level 2

Level 3

Level 4
V1 Vn V1 Vn

PC1

I S

DP1

Fig. 2. Graphical visualisation of processor formal description structure.
Where P is processor, PC is a processing core, Di is a device, Ri is a
device register, I is interrupt signal, S is a device signal, Pri is a register
part, Vi is a named value of a part and DPi is a dependence between parts.

contains a set of registers and each register contains a set of
register parts. Each register can be accessed via its address
defined in processor datasheet. Each processor part is placed in
register at specific register bits defined in processor datasheet.
In Figure 2. can be seen visualisation of processor formal
description structure which is based on previously described
structure of the processor [4].

IV. CODE GENERATOR

A code generator is a tool which processes chosen in-
formation from the PFD into platform dependent code of
preferred language. Present version of the generator generates
header file and source file in a C programming language.
The structure of a processor formal description file allows
simple transformation into another programming language by
implementing another code generator.

A. Analysis of Description File

As an input for code generator we use the formal de-
scription of a processor [4]. This definition file is in a .json
format [8] and contains description of all processor devices
and processing cores. For now only devices descriptions are
used for platform dependent code generation. According to
the formal description specification, each device consists of
registers and interrupt signals. Each register consists of register
parts and each register part consists of part options and inter
part dependence (Fig. 2.).

1) Device: An important information about device of pro-
cessor is base address of a device and its ID. ID of a device
is unique identification of a device in a processor description
file and by convention it should be abbreviation of a device

Fig. 3. Selected lines of generated device definitions for Reset controller of
ARM7tdmi based processor and its status register and Part defining type of
detected reset signal.

name. Base address defines beginning address of a device at
internal bus.

2) Register: A Register same as a device has its ID, offset
address and register size. ID is defined in the same way as
a device ID. Offset address defines address position in a parent
device address space. Register size defines the size of register
in bits (typical register size is in powers of twos).

3) Part: A Part is defined with an ID, mask and access.
The mask specifies bits used by part in a parent register.
Access defines how can be the part accessed. There exists three
types of an access, it is write only, read only, and write and
read access. (F.ex. Control register of timer/counter device can
contain the part which defines whether the timer will increment
or decrement a value register.)

4) Named value: A Named Value as a sibling of a part
defines predefined datasheet value. Value is defined by ID
and number which defines the value. (F.ex. Part which sets
up direction of counting can be set to decrementing if value
of direction part is set to 0 or to incrementing if value of
direction part is set to 1.)

5) Dependence: A Dependence structure is useful when
there exist more write or read relationships between two or
more parts. Good example of dependence is write enable signal
which allows to execute write to a protected part only if enable
signal is set to enable state. (F.ex. A specific value will be
written to a data register only if in previous step has been
written write enable bit in control register).

B. Definitions Generation

Biggest part of a generated code forms definitions of
register addresses, masks of register parts and values of parts.
This part of generated code can be found also in other existing
definition files.

1) Device Address Generation: The information about po-
sition of device in a processor address space is generated as
a definition. The definition name is based on device ID (see
Fig. 3. line 1).

Fig. 4. Selected lines of generated encapsulating macros for status register of reset controller device

2) Register Address Generation: If we want to be able to
execute write or read command on a register we need to know
the position of the register at address space. The code generator
generates address definitions for each register from formal
description file. Name of address definition is constructed by
concatenation of a device ID and register ID. The address value
is calculated as a product of device base address and register
offset address (see Fig. 3. lines 3, 4).

3) Part Mask Generation: Part is placed into a register
space. This space is addressed by mask. Mask definition is
used to allow execution above one part of the register without
affecting other parts of the register. The definition name is
constructed by concatenation of a device ID, register ID and
part ID. The value of the definition is chosen from part
description (see Fig. 3. lines 6, 7). Beside mask a negative
mask is generated to avoid calculation of this value by kernel
which on the other hand increases kernel memory footprint.

4) Value Generation: Last part of definitions is definition
of values. Definition name is generated as a concatenation
of device ID, register ID, part ID and processed value ID.
The value of definition is selected from value description (see
Fig. 3. lines 8-12). As you can see in listing, the defined values
are aligned with respect to a mask of the parent part.

C. Primitives Generation

Added value of generated platform dependent code is
a generation of primitives which are simple functions that
realize operations above managed parts and registers. In terms
of granularity, there exist primitives which operates over whole
register or primitives which operates over one part of a register.
In terms of operation type there exist primitives which write
data to a register or a part or read data from register or a part.

The main problem of code generating is optimization level
of a generated code. The platform dependent layer connects
only hardware with higher layer of an operating system
therefore this layer is state-less and should be as thin as
possible. The primitive executes only one operation (if we
see this operation from higher level programming language
perspective) so they should be generated as in-line functions.
In other words the body of the function is placed right into
a code so no procedure call instruction is used. This decision
reduces procedure call overhead on the other hand the code
memory footprint is larger.

The primitive generation can be merged into two steps.

In the first step are generated Set routines and Read
routines. Read routine reads content of a register and stores
it to a variable. Get routine reads value of a chosen part of a

register. Then Set routines and Write routines are generated.
Set routine writes data to a specified part of a register to a
variable without affecting data of other parts. Write routine
writes prepared variable with new values of parts to register.
Examples of a routines definitions can be found at Figure 5.
Because there can be defined registers of different sizes (8b,
16b, 32b, 64b) each routine type has to be defined in more
register size versions. As a result of routine generation a four
groups of routines are created. First group (Fig. 5. lines 1,
2) realizes set of value to defined part of register based on
a mask of a part to a variable. Second group realizes write
of a variable into a register (Fig. 5. lines 3, 4). Third group
realises reading from a register part based on variable and mask
of a part (Fig. 5. lines 5, 6). Last group realizes reading of a
register and writing of its value to variable (Fig. 5. lines 7, 8).
As can be seen at lines 1 and 2 the negation of mask is needed
for a successful setting of a part value since a standard mask
is used for the reading of part value.

In the second step an individual primitives are encapsulated
by macro definitions. This step binds primitive calls with
particular register. At Figure 4. is shown example of this
macro definitions. This encapsulation helps to define full
communication interface for each register of each device. This
interface is then easily used as a connector to higher layer of
an operating system kernel.

D. Dependence between Register Parts

Sometimes there exist situation when one part of register
can be changed only if another part of same register or another
register is set to defined value.

We identified that there exists three types of dependence
in connection with time. It is Before, After and Together. The
Before dependence exists between parts when there have to
be set one part before the another part can be changed. The
Together dependence exists only between two parts which
are in a same register. The After dependence exist when the
dependent part have to be changed before the control part.

Fig. 5. Selected lines of generated function definitions.

In terms of operations there exist more types of depen-
dence. First of all it is Set/Reset dependence where the value
of a dependent part is changed to predefined value without
direct write operation to a part. (F.ex. Reset signal of a device).
Second type of dependence is write dependence which allows
to write data to a dependent part. A activation dependence
is used when some part of register is used in more defined
contexts (F.ex. the value of on part can be used as a clock
divider if another part is set to one or as a multiplier if another
part is set to zero). A mutual exclusion dependence refers to a
parts where one part can be set only if another part is cleared
and vice versa.

Existence of dependence complicates generation of code
and therefore the proper description of this dependence is
important in generated code. This proper description is our
recent work.

V. RESULTS OF CODE GENERATION

We tested generator on five processors:

• ARM7tdmi based 32b processor AT91SAM7S256 [9].

• AVR32 based 32b processor AT32UC3L032 [10].

• PIC10 based 8b processor PIC10F200 [11].

• PIC32 based 32b processor PIC32MX [12].

• Atmel AVR8 based 8b processor XMEGA AU [13].

In the first step of the testing we prepared PFD for every
mentioned processor. This process needed analysis of proces-
sors datasheets. In the second step we processed those files
by the generator. In the Table I. a quantitative results of this
generation are summarised. First part of table summarises

TABLE I. NUMBER OF PROCESSED DEVISES, REGISTERS, PARTS AND
OPTIONS, AND GENERATED NUMBER OF SOURCE CODE LINES.

Processor AT91SAM AT32UC PIC10 PIC32 XMEGA

Architecture 32 32 8 32 8

Devices 20 25 3 19 18

Registers 337(16.9) 432(17.3) 8(2.7) 85(4.5) 125(6.9)

Parts 2342(6.9) 1327(3.1) 28(3.5) 453(5.3) 241(1.9)

Options 3428(1.5) 1298(0.9) 68(2.4) 644(1.5) 99(0.4)

Definitions 8806 4841 143 1739 849

Primitives 3008 2468 50 1006 707

Sum 11814 7309 193 2745 1556

number of processed devices, registers, parts and options
for each processor. Average number of registers in device,
parts in register and options in part is calculated in brackets.
Second part of table shows generated definitions and routines.
Processor PIC10F200 is one of the smaller processor and
therefore number of generated routines is also smaller. This
processor is way too small for such program as is operating
system. On the other hand other processors are much bigger
and they can be used with an operating system.

VI. OS ADAPTATION FRAMEWORK

In a conclusion to this paper we want to present a concept
of OS adaptation framework. This framework will support the
OS adaptation process by set of services and databases that

help manage operating system adaptation. In a Figure 6. is
presented concept of the framework. The framework services
are:

• processor formal description describing,

• processor formal description validating,

• platform dependent code generating,

• device module description modeling,

• processing core description modeling,

• device module to communication interface mapping,

• core module to communication interface mapping,

• device or core module validating,

• code implementation and/or generation, and

• selection of platform dependent code and modules
code.

Beside framework’s services the framework uses 3 databases:

• database of processor formal description,

• database of operating system modules, and

• database of operating system source codes.

1) Description of a Processor: The framework helps during
preparation of processor formal description files (PFD) from
datasheets. Prepared PFD is then validated and sent to a
database. Stored description can be then used by generator to
produce platform dependent code of operating system where
from description of the processor can be generated platform
dependent layer of an operating system. Descriptions are also
used for mapping of operating system modules to communi-
cation interfaces of devices and processing cores.

Inserted description of processor will be decomposed into
devices and cores. Each identified device will be inserted to a
database under version which will guarantee that device is not
presented in the database as a duplicity (We assume that each
device and core will have unique identification).

2) Description of a Module: Since the formal description
of a processor covers only a communication interface of a
device or processing core there is still need for development
of an OS module which manages this device or processing
core. The formal description will be used for mapping of
module to communication interface. Resulting model of an
operating system module will be validated and then inserted
to a database of operating system modules. Each module will
have unique identification. The documentation to a model will
be compulsory part of the design.

3) Module Code Generation/Implementation: From mod-
ule description developer will have to implement operating
system module. Some parts of module can be generated
automatically as a skeleton of the module which will help to
developer during implementation. Implemented module is then
stored in a database of operating system source codes together
with unique version, linkage to parent module description and
compulsory documentation.

New
PFD

Operating System Kernel

Platform Dependent Layer

Module
1

Module
n......Scheduler

OSMDs

PFDs

SRCs

Datasheets

CI
Description Validation

Module
Description

Generation

Mapping

Implementation
and/or

Generation

Selection

Selection

New
OSMD

Validation

Fig. 6. Set of adaptation framework services, where CI is an communication
interface of a device, PFD is an processor description file, OSMD is OS
module description, PFDs is a database of processor formal descriptions,
OSMDs is a database of OS module descriptions and SRCs is database of
OS source codes.

4) Selection of Operating System Parts: As a part of
a system design, developer of embedded system will have
access to database of operating system source codes. From
this database developer will choose platform dependent layer
and select compatible device and processing core modules for
chosen processor. He can also add/describe/implement missing
modules or other parts.

A. Database of Descriptions

Full formal description files of processors can be found in
a database of descriptions. Those files will be also decomposed
into separate devices and processing cores. The problem can
rise when same device exists in a more processors so this
situation has to be solved by device unique identification. A
protection from processor description duplication has to be
created which does not allows upload again existing processor
description. If existing processor was revised by manufacturer
there will be possibility to revise formal description too.

The database can be used also during creation of new
description files where developer can search existing devices
and processing cores in database and include them into new
description, which will reduce duplicity and description time.

B. Database of Modules

This database will store descriptions of operating system
device and processing core modules. As in database of de-
scriptions this database will use unique identification and ver-
sioning. Descriptions from database can be used for describing
similar device modules as working examples. Existing modules
then can be reused in module description which will reduce
description time.

C. Database of Sources

In the database of sources will be stored unique versions
and ports of operating system source code. Developer will be

able to select platform dependent code for selected processor
and he will be able to select module source codes based on
description of a module, because there will be presented more
versions of the module.

VII. CONCLUSIONS

By standardization of processor description a processor
formal description file which acts as a datasheet for a computer
was created. This formal description will have same structure
for every processor therefore platform dependent code can be
generated by code generator. By usage of processor formal
description and generator we reduced complexity of platform
dependent code adaptation which acts as biggest part of oper-
ating system which have to be changed during adaptation. As
we covered by this generator only devices of processor we will
extend this generator with code generation for processing units
of a processor. A inter part dependence issues will be covered
also. There are also issues with task switch routine because
this routine is not trivial and mostly is written in assembly
language. The generator of the platform dependent code will
be a part of an operating system adaptation framework which
gather tools that helps to adapt any operating system to any
processor.

ACKNOWLEDGMENT

REFERENCES

[1] A. S. Tanenbaum and A. S. Woodhull, Operating Systems Design and
Implementation (3rd Edition). Prentice Hall, 2006.

[2] J. J. Labrosse, J. Ganssle, and e. a. Robert Oshana, Embedded Software:
Know It All (Newnes Know It All). Newnes, 2007.

[3] M. Vojtko and T. Krajcovic, “Prototype of modular operating system
for embedded applications,” in Applied Electronics (AE), 2013 Interna-
tional Conference on, Sept 2013, pp. 1–4.

[4] M. Vojtko and T. Krajovi, “Adaptability of an Embedded Operating
System: a Formal Description of a Processor,” in 10th International
Joint Conferences on Computer, Information, Systems Sciences, and
Engineering, Online, Dec. 2014, pp. 1–4.

[5] The FreeRTOS Project, 2011, http://www.freertos.org/.
[6] TinyOS, 2011, http://www.tinyos.net.
[7] L. Barello, AvrX Real Time Kernel, 2007, http://www.barello.net/avrx/.
[8] ECMA international, The JSON Data Interchange Format, ECMA inter-

national, Geneva, 2013, http://www.ecma-international.org/publications/
files/ECMA-ST/ECMA-404.pdf.

[9] AT91 ARM Thumb-based Microcontrollers: AT91SAM7S256, Atmel
Corporation, 8 2010.

[10] 32-bit Atmel AVR Microcontroller AT32UC3L032, Atmel Corporation,
1 2012.

[11] PIC10F200/202/204/206, Microchip Technology Inc., 9 2014, rev. F.
[12] PIC32MX Family Data Sheet, Microchip Technology Inc., 9 2008.
[13] 8-bit Atmel XMEGA AU Microcontroller, Atmel Corporation, 4 2013.

