
Framework for an Embedded Operating System
Adaptation

Abstract—Each year, manufacturers develop better and more
effective processors. As a reaction to this continuous development,
developers of software have to adapt their software to those
new processors. At least, code of an operating system has to be
changed to enable execution of other user applications. Most of
modern embedded operating systems have a kernel architecture.
It means that those operating systems manage: I/O devices of a
processor, memory of a system, and scheduling of tasks. When the
operating system has to be used on a new processor architecture,
mentioned blocks have to be modified. Mostly affected part of an
operating system is its platform dependent layer. In this layer, the
code connected to the processor architecture has to be changed.
In our work we proposed a framework for an operating system
management which helps to reduce complexity of an adaptation
process. In this paper we present concept of this framework.

Keywords-Adaptation of Embedded Operating systems, Formal
description of Processors, Source Code Generation, Processor
Structure

I. INTRODUCTION

With growing number of new processor architectures grows
need for methodology which allows fast and effective oper-
ating system adaptation or porting. Future embedded systems
will have multi-core architecture, many-core architecture [1]
or mixed architectures combining multi-core processors into
clusters. New types of architectures will introduce new types
of operating systems which will be self-adaptive [2]. New
operating systems running in a heterogeneous environment
will need a database of existing processor ports, device mod-
ules and processing cores. Needed modules and platform ports
will be loaded to processor program memories during system
initialization or will be accessed online at a run-time. New
hardware architectures will be easily extendable even during
system run-time so operating system will have to be loaded to
new added processors from a database. To create such database
developer needs to implement missing device modules and
processing core modules and platform ports for an operating
system. The task is not easy because the number of existing
processor is growing quickly.

In this paper we propose a framework which will be
supporting process of adaptation of kernel embedded operating
systems. The framework consists of tools which helps to de-
scribe processor [3], create platform port (platform dependent
code) [4], describe operating system modules which manages
devices and processing cores of a processor, and implement
those modules. The process of an operating system adaptation
is described step by step in this paper.

II. RELATED WORK

Adaptation of operating systems is mostly realized per one
operating system. Mostly it is a need to port specific operating
system to architecture which is in some way special like is
adaptation of OSE operating system to many-core architecture
Tilepro64 [5]. Mapping of operating system scheduler was
done on mentioned many-core architecture.

Well known operating systems such is FreeRTOS [6] or
more other operating systems [7], [8] provides to user adapta-
tion manuals. In those manuals is summarized which parts
of an operating system have to be re-implemented during
adaptation to a new processor.

Many-core systems change standard concept of processor
as a system with many devices and some processing cores.
The number of cores will grow and the new architectures will
use intelligent devices connected to a network together with
cores [1]. This highly scalable architecture calls for adaptivnes
of operating systems and change of standard architecture of
operating systems into distributed architecture.

III. PROCESS OF OS ADAPTATION

Adaptation framework is designed to help developer of an
embedded operating system to produce a platform dependent
code of an operating system for chosen processor and to
develop needed modules of an operating system which will
manage existing processor devices and cores.

The framework is connected with adaptation process which
is described in a Figure 1. The adaptation process is suitable
for kernel embedded operating systems which can be divided
into platform dependent and platform independent layer as are
MOS [9], FreeRTOS [6] and many more. As an input of this
process developer needs:

• Processor datasheet where can be found information
about processor devices and processing cores.

• Processing cores datasheets where can be found infor-
mation about processing core of the processor.

• Processor description file which contains information
about communication interface of every device and pro-
cessing core in the processor [3].

Processor formal description file defined in [3] contains infor-
mation about every device and core which is in the processor.
This description helps to developer and also to computer easily
identify communication interfaces of devices and processing
cores. This communication interface is central part of an
operating system platform dependent code. More information
about the formal description can be found in a section III-C.

Processor
Datasheet

Processor Formal
Description [3]Devices Analysis

Processing Core
Analysis

Device Module
Description

Core Module
Description

Device Module
Description

Device Platform
Dependent Code

Generation [4]

Device Module
Implementation

Core Module
Implementation

Platform
Dependent Code

Core Module
Description

Core Platform
Dependent Code

Generation

Processing Cores
Datasheets

Modules Source
Code

Fig. 1. Process of an embedded operating system adaptation to a new
processor.

According to Figure 1. the adaptation process can be divided
into two separate workflows. A workflow on the left side of
the figure is focused on processor devices. A workflow on the
right side of the figure is focused on processing cores.

A. Device Workflow

The device workflow consists of device analysis phase,
device module description phase, platform dependent code
generation phase and device module implementation phase.

Device workflow begins with the device analysis phase
where a functionality of each device in the processor is
analyzed. In the analysis phase, developer of an operating
system processes information about devices from a processor
datasheet. Developer searches for information such as device
initialization, possible working modes, device timing diagrams
and behavior, and sources of interrupts.

In the device module description phase developer produces
a description of a device module. In this phase, a description of
a device communication interface is used from the processor
formal description file. Developer maps the interface to a
module description and creates a connection between the
module and the processor device. Result of this phase is
module description file, which allows full or partial code
generation depending on complexity of device and created
module description. More information about the description
file can be found in the section III-E.

Parallel phase to the device description phase is phase of
device platform dependent code generation. In this phase a
platform dependent code for a device communication interface
is generated. The resulting code based on a device formal
description creates an interface layer between a processor and
a device module. More information about generation of a
platform dependent code can be found in the section III-D.

Last phase of the device workflow is a phase in which
description of a module is implemented and/or generated to

chosen programming language. In this phase a device module
is implemented and linked with the platform dependent code.

B. Core Workflow

Similarly as is in the device workflow the core workflow
consist of analysis phase, module description phase, platform
dependent code generation phase and module implementation
phase.

In the analysis phase, developer has to analyze processing
core architecture. Main tasks of the analysis is to analyze
interrupt processing, process of a processing core initialization,
possible working modes of processing core, and how a task
switch routine can be implemented. Some information about
processing core is written in the processor datasheet but full
description can be mostly found in a separate datasheet of the
processing core.

In the processing core module description phase a descrip-
tion of a core is produced. The resulting file describes the
process of the processing core initialization, interrupt handling
and task switch. More information can be found in the section
III-F.

Based on processing core description form the processor
formal description a platform dependent code of a core com-
munication interface is generated. More information about the
formal description can be found in the section III-D.

In an implementation phase of a processing core module,
developer implements code which allows initialization of
processing core and handles interrupt subsystem and task
switch. The nature of the processing core module determines
its placement into a platform dependent layer of an operating
system because the code is mostly written in assembly lan-
guage compatible with a processor and therefore is platform
dependent.

C. Processor Formal Description

The processor formal description is a way how can be
processor described in a form which is readable by computer.
This description was designed for platform dependent code
generation. Main idea is that the processor can be decomposed
into devices and processing cores. Devices collect and send
data to processing cores. Cores process data under defined
program which is represented by instructions. The formal
description describes communication interfaces of devices and
cores [3].

Structure of the formal description file is shown in the
Figure 2. It shows that each device of a processor consists of
a set of interrupt signals and a set of registers. Each register
can be then decomposed into a set of parts. Each of them can
come by more options. In some situations, one part of a device
register can depend on another part if there exist connection
which can limit access to the dependent part.

The description of a processor cores is work in progress but
in short a core can be decomposed into a set of general purpose
registers and status registers which represent state space of a
processing core [3].

P

D1 Dn...

R1 Rn

P1 Pn

...

...

...

...

V1 Vn...

P1 Pn...

...V1 Vn

D1

PC1 PCn

I1 In

Level 0

Level 1

Level 2

Level 3

Level 4

Fig. 2. Structure of the processor formal description file. Where P is
processor, PCi is Processing core, Di is Device, Ri is Device register, Ii is
interrupt signal, Pi is Register part, Vi is Part Value and Di is a dependence
between parts [4].

Main advantage of the formal description is that this de-
scription is not connected to any programming language so
the developer of an operating system can select a programming
language which he prefers during implementation not during
design phase. Another advantage of the formal description is
that information about devices and cores can be processed
by code generator. Generated code is then compatible with
operating system structures so the adaptation of operating
system is faster and more effective.

Disadvantage of processor formal description is that it has
to be prepared by developer during analysis of the processor.
But we believe that this file can be prepared by processor man-
ufacturer together with processor datasheet in the future. Even
now most of processor manufacturers provide definition files
where a processor platform dependent code can be found but
the code structure varies from manufacturer to manufacturer
so the processor formal description will standardize those files.

D. Generation of Platform Dependent Code

Generator of code processes information obtained from the
processor formal description file of a processor. The generator
generates pieces of platform dependent code which interface
processor with operating system structures.

The process of code generation can be divided into two
phases. In the first phase that is called definition phase, defi-
nitions for every device, register, part and option are generated
[3]. Those definitions link every mentioned element with an
identifier which helps to understand communication interface
of a device. In the second phase that is called function phase,
interface functions that manages writes and reads to/from
registers and parts are generated. Generated function realizes
simple operation which uses definitions to address needed
register or part of a device without any loops or conditions.

Simplicity of the processor formal description allows to

implement generator which produces code in a programming
language preferred by developer of an operating system and
in a structure and nomenclature which is compatible with an
operating system structure [3].

E. Description of Device Modules

Device module of operating system manages mapped device
of the processor. The description can be divided into 3 parts
which are modeled independently.

• Device Control,
• Device Access Management,
• Device Interrupt.

Processor device is often a complex structure which can
operate in more modes and under many influences. The control
description declares how a device will be initiated at system
start up or how the device operation will be altered during
system execution. It is also used for device status monitoring.
Device control can consist of simpler control flows which
can manage device start up, device termination or power
management.

The device access management controls whether a device
is used by task or not. The complexity of access management
can vary from simple solutions controlling whether device is
running up to complicated solutions with waiting task stacks
and task priority ordering. The design of manager is up to
developer of operating system.

Most of processor devices can produce interrupt signal
which informs processor about specific situation in which a
device is. The description of interrupt describes how each
interrupt source of a device will be processed. An interrupt
handler is mostly represented by simple condition, which
searches for source of interrupt in a device and calls predefined
routine that is executed in a user mode.

F. Description of Core Modules

Similarly as device modules a processing core modules are
described in a way which allows simpler implementation of
defined processing core functionality. The description can be
divided into 3 separate parts:

• Core initialization,
• Core Task switch,
• Core Interrupt.

During system start up, a processing core has to be initialized.
This initialization takes care on set up of operating modes of
core and preparation of operating system start up.

Main task of operating system is planning and switching of
tasks. Task planning does not depend on chosen processor as
much as task switching. To enable task switch, a procedure
which stores old task context and loads new task context have
to be implemented. Task switch can occur after event such as
interrupt, task create or after defined period of a time. The
complexity of a task switch depends on an instruction set
architecture of the processing core and it can vary from one
instruction which realizes whole process in a one atomic step
to a complex set of instructions which can run through several
operating modes of the processing core. Especially processors

for embedded application which have RISC architecture have
often complicated task switch routine. The complexity of
routine also depends on an operating system architecture. An
operating system which runs in a kernel and a user mode uses
the processor operation modes to separate a user space form
a kernel space which have good security reasons but this can
result into more complicated task switch procedures.

Similarly like task switch the interrupt process is described
to enable implementation of interrupt processing routine of
processing core. This routine mostly reads an interrupt source
and searches for an interrupt subroutine which will be called.
The task switch is often one of the called routines.

IV. OS ADAPTATION FRAMEWORK

Concept of OS adaptation framework is based on operating
system adaptation process. This framework will support the
process by set of services and databases which help manage
operating system adaptation. In a Figure 3. is presented
concept of the framework. The framework services are:

• processor formal description describing,
• processor formal description validating,
• platform dependent code generating,
• device module description modeling,
• processing core description modeling,
• device module to communication interface mapping,
• core module to communication interface mapping,
• device or core module validating,
• code implementation and/or generation, and
• selection of platform dependent code and modules code.

Beside framework’s services the framework uses 3 databases:
• database of processor formal description,
• database of operating system modules, and
• database of operating system source codes.
1) Description of a Processor: The framework allows

preparing processor formal description files (PFD) from
datasheets. Prepared PFD is then validated and sent to a
database. Stored description can be then used by generator
to produce platform dependent code of operating system
where from description of the processor can be generated
platform dependent layer of an operating system. Descriptions
are also used for mapping of operating system modules to
communication interfaces of devices and processing cores.

Inserted description of processor will be decomposed into
devices and cores. Each identified device will be inserted to
a database under version which will guarantee that device is
not presented in the database as a duplicity (We assume that
each device and core will have unique identification).

2) Description of a Module: Since the formal description
of a processor covers only a communication interface of a
device or processing core there is still need for development
of an OS module which manages this device or processing
core. The formal description will be used for mapping of
module to communication interface. Resulting model of an
operating system module will be validated and then inserted
to a database of operating system modules. Each module will

New
PFD

Operating System Kernel

Platform Dependent Layer

Module
1

Module
n......Scheduler

OSMDs

PFDs

SRCs

Datasheets

CI
Description Validation

Module
Description

Generation

Mapping

Implementation
and/or

Generation

Selection

Selection

New
OSMD

Validation

Fig. 3. Set of adaptation framework services, where CI is an communication
interface of a device or processing core, PDF is processor description file,
OSMD is operating system module description, PDFs is a database of
processor formal descriptions, OSMDs is a database of operating system
modules and SRCs is database of implemented and/or generated source codes.

have unique identification. The documentation to a model will
be compulsory part of the design.

3) Module Code Generation/Implementation: From module
description developer will have to implement operating system
module. Some parts of module can be generated automatically
as a skeleton of the module which will help to developer
during implementation. Implemented module is then stored
in a database of operating system source codes together with
unique version, linkage to parent module description and
compulsory documentation.

4) Selection of Operating System Parts: As a part of a
system design, developer of embedded system will have access
to database of operating system source codes. From this
database developer will choose platform dependent layer and
select compatible device and processing core modules for
chosen processor. He can also add/describe/implement missing
modules or other parts.

A. Database of Descriptions

Full formal description files of processors can be found in a
database of descriptions. Those files will be also decomposed
into separate devices and processing cores. The problem can
rise when same device exists in a more processors so this
situation has to be solved by device unique identification. A
protection from processor description duplication has to be
created which does not allows upload again existing processor
description. If existing processor was revised by manufacturer
there will be possibility to revise formal description too.

The database can be used also during creation of new
description files where developer can search existing devices
and processing cores in database and include them into new
description, which will reduce duplicity and description time.

B. Database of Modules

This database will store descriptions of operating system
device and processing core modules. As in database of de-
scriptions this database will use unique identification and
versioning. Descriptions from database can be used for de-
scribing similar device modules as working examples. Existing
modules then can be reused in module description which will
reduce description time.

C. Database of Sources

In the database of sources will be stored unique versions
and ports of operating system source code. Developer will be
able to select platform dependent code for selected processor
and he will be able to select module source codes based on
description of a module, because there will be presented more
versions of the module.

V. CONCLUSIONS

A concept of adaptation framework for embedded operating
systems was presented in this paper. The framework will
provide services for developer of embedded operating system
which helps during adaptation of an operating system to
new processors. The adaptation time will be shorter and
adaptation complexity simpler. Until now, a formal description
of processor and generator of platform dependent code was
developed. Generator generates platform dependent code in
programming language C. Next step in the work is design of
a module description tool which allows describing operating
system modules.

ACKNOWLEDGMENT

REFERENCES

[1] P. Ranganathan, “From microprocessors to nanostores: Rethinking data-
centric systems,” Computer, vol. 44, no. 1, pp. 39–48, Jan 2011.

[2] M. Seltzer and C. Small, “Self-monitoring and self-adapting operating
systems,” in Operating Systems, 1997., The Sixth Workshop on Hot Topics
in, May 1997, pp. 124–129.

[3] M. Vojtko and T. Krajčovič, “Adaptability of an Embedded Operating
System: a Formal Description of a Processor,” in 10th International
Joint Conferences on Computer, Information, Systems Sciences, and
Engineering, Dec. 2014, p. 4, in press. [Online]. Available: http:
//www2.fiit.stuba.sk/%7evojtko/VojtkoAoEOS.pdf

[4] M. Vojtko and T. Krajčovič, “Adaptability of an Embedded Operating
System: a Generator of a Platform Dependent Code,” in Digital
System Design (DSD), 2015 18th Euromicro Conference on, Aug 2015,
p. 5, in review. [Online]. Available: http://www2.fiit.stuba.sk/%7evojtko/
VojtkoAoEOS2.pdf

[5] V. Avula, “Adapting operating systems to embedded manycores: Schedul-
ing and inter-process communication,” Master’s thesis, Uppsala univer-
sitet, 2014.

[6] The FreeRTOS Project, 2011, http://www.freertos.org/.
[7] L. Barello, AvrX Real Time Kernel, 2007, http://www.barello.net/avrx/.
[8] TinyOS, 2011, http://www.tinyos.net.
[9] M. Vojtko and T. Krajčovič, “Prototype of modular operating system for

embedded applications,” in Applied Electronics (AE), 2013 International
Conference on, Sept 2013, p. 4.

